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1e VECTORS
AND
FIELDS

Electromagnetics deals with the study of electric and magnetic “fields.”
It is at once-apparent that we need to familiarize ourselves with the concept
of a “field,” and in particular with “electric” and “magnetic” fields. These
fields are vector quantities and their behavior is governed by a set of laws
known as “Maxwell’s equations.” The mathematical formulation of Max-
well’s equations and their subsequent application in our study of the elements
of engineering electromagnetics require that we first learn the basic rules
pertinent to mathematical manipulations involving vector quantities. With
this goal in mind, we shall devote this chapter to vectors and fields.

We shall first study certain simple rules of vector algebra without the im-
plication of a coordinate system and then introduce the Cartesian coordinate
system, which is the coordinate system employed for the most part of our
study in this book. After learning the vector algebraic rules, we shall turn
our attention to a discussion of scalar and vector fields, static as well as time-
varying, by means of some familiar examples. We shall devote particular
attention to sinusoidally time-varying fields, scalar as well as vector, and to
the phasor technique of dealing with sinusoidally time-varying quantities.
With this general introduction to vectors and fields, we shall then devote
the remainder of the chapter to an introduction of the electric and magnetic
field concepts, from considerations of the experimental laws of Coulomb
and Ampere.



1.1 VECTOR ALGEBRA

In the study of elementary physics we come across several quantities
such as mass, temperature, velocity, acceleration, force, and charge. Some
of these quantities have associated with them not only a magnitude but also
a direction in space whereas others are characterized by magnitude only.
The former class of quantities are known as “vectors” and the latter class of
quantities are known as “scalars.” Mass, temperature, and charge are scalars
whereas velocity, acceleration, and force are vectors. Other examples are
voltage and current for scalars and electric and magnetic fields for vectors.

Vector quantities are represented by boldface roman type symbols, e.g.,
A, in order to distinguish. them from scalar quantities which are represented
by lightface italic type symbols, e.g., A. Graphically, a vector, say A, is
represented by a straight line with an arrowhead pointing in the direction of
A and having a length proportional to the magnitude of A, denoted [A] or
simply 4. Figures 1.1(a)-(d) show four vectors drawn to the same scale. If

A B
e —_—
(a) (b)
C D
(c) (d)

Figure 1.1. Graphical representation of vectors.

the top of the page represents north, then vectors A and B are directed east-
ward with the magnitude of B being twice that of A. Vector C is directed
toward the northeast and has a magnitude three times that of A. Vector D is
directed toward the southwest and has a magnitude equal to that of C. Since
C and D are equal in magnitude but opposite in direction, one is the negative
of the other.

Since a vector may have in general an arbitrary orientation in three dimen-
sions, we need to define a set of three reference directions at each and every
point in space in terms of which we can describe vectors drawn at that point.
It is convenient to choose these three reference directions to be mutually

2



SEC. 1.1 VECTOR ALGEBRA 3

orthogonal as, for example, east, north and upward or the three contiguous
edges of a rectangular room. Thus let us consider three mutually orthogonal
reference directions and direct “unit vectors” along the three directions as
shown, for example, in Fig. 1.2(a). A unit vector has magnitude unity. We
shall represent a unit vector by the symbol i and use a subscript to denote
its direction. We shall denote the three directions by subscripts 1, 2, and 3.
We note that for a fixed orientation of i,, two combinations are possible
for the orientations of i, and i,, as shown in Figs. 1.2(a) and (b). If we
take a right-hand screw and turn it from i, to i, through the 90°-angle, it
progresses in the direction of i, in Fig. 1.2(a) but opposite to the direction of
i, in Fig. 1.2(b). Alternatively, a left-hand screw when turned from i, to i,
in Fig. 1.2(b) will progress in the direction of i,. Hence the set of unit vectors
in Fig. 1.2(a) corresponds to a right-handed system whereas the set in Fig.
1.2(b) corresponds to a left-handed system. We shall work consistently with
the right-handed system.

(b)

Figure 1.2. (a) Set of three orthogonal unit vectors in a right-handed
system. (b) Set of three orthogonal unit vectors in a left-handed system.

A vector of magnitude different from unity along any of the reference
directions can be represented in terms of the unit vector along that direction.
Thus 4i, represents a vector of magnitude 4 units in the direction of i,, 6i,
represents a vector of magnitude 6 units in the direction of i,, and —2i,
represents a vector of magnitude 2 units in the direction opposite to that of
i,, as shown in Fig. 1.3. Two vectors are added by placing the beginning of
the second vector at the tip of the first vector and then drawing the sum vec-
tor from the beginning of the first vector to the tip of the second vector. Thus
to add 4i, and 6i,, we simply slide 6i, without changing its direction until
its beginning coincides with the tip of 4i, and then draw the vector 4i; + 6i,
from the beginning of 4i, to the tip of 6i,, as shown in Fig. 1.3. By adding
—2i, to this vector 4i, -+ 6i, in a similar manner, we obtain the vector
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> 6i,

4i, + 6i,

4i, +6i, — 2i, -2i,
Figure 1.3. Graphical addition of vectors.

(4i, + 6i, — 2i,), as shown in Fig. 1.3. We note that the magnitude of
(4i, + 6i,) is /4% + 62 or 7.211 and that the magnitude of (4i, + 6i, — 2i,)
is /42 + 62 + 22 or 7.483. Conversely to the foregoing discussion, a vector
A at a given point is simply the superposition of three vectors A4,i,, 4,i,,
and A4;i, which are the projections of A onto the reference directions at that
point. A,, A,, and A, are known as the components of A along the 1, 2, and
3 directions, respectively. Thus

A=A, + A,i, + A, (1.1)

We now consider three vectors A, B, and C given by

A = Aji, + A, + 44, (1.22)
B = B,i, + B,i, + B, (1.2b)
C = Cji, + Cyi, + Cii, (1.20)

at a point and discuss several algebraic operations involving vectors as fol-
lows.

VECTOR ADDITION AND SUBTRACTION: Since a given pair of like com-
ponents of two vectors are parallel, addition of two vectors consists simply
of adding the three pairs of like components of the vectors. Thus

A+B= (Alil + Aziz + A3i3) + (B1i1 -+ Bziz + Baia)
= (A1 =+ B1)i1 + (Az + Bz)iz + (As + Ba)ia (1-3)

Vector subtraction is a special case of addition. Thus

B—C=B+ (—C) = (B1i1 + Bziz + Bais) + (_C1i1 = Cziz . Cais)
= (Bl - C1)i1 + (Bz - Cz)iz + (Ba - Ca)is (1-4)
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MULTIPLICATION AND DIVISION BY A SCALAR: Multiplication of a vector
A by a scalar m is the same as repeated addition of the vector. Thus

mA = m(A,i, 1 A,i, + A,i,) = mAi, + mA,i, + mA,i, (1.5)
Division by a scalar is a special case of multiplication by a scalar. Thus

B_ gy By o By By
B L@y =i, 4 B, 1 B, (1.6)

MAGNITUDE OF A VECTOR: From the construction of Fig. 1.3 and the
associated discussion, we have

|A|:|A1i1+A2iz+A3i3|:/\/A%+A%‘|‘A§' (1-7)

UnNIT VECTOR ALONG A: The unit vector i, has a magnitude equal to
unity but its direction is the same as that of A. Hence

A A+ A, -+ Ay

“TAIT VAT A+ A
_ A, A, ] T A, : 13
AT AT At varara T ar s Y

ScALAR OR DoT ProbucT oF Two VECcTORrS: The scalar or dot product
of two vectors A and B is a scalar quantity equal to the product of the magni-
tudes of A and B and the cosine of the angle between A and B. It is represented
by a dot between A and B. Thus if ¢ is the angle between A and B, then

A+B=|A]|B|cosa = ABcosa (1.9

For the unit vectors iy, i,, i;, we have

iei,=1 d,eiy=0 i +i,=0 (1.10a)
Lei, =0 dyeiy=1 i,siz=0 (1.10b)
jyed, =0 dyeiy=0 dyei;=1 (1.10c)

By noting that A « B = A(B cos &) = B(A4 cos ), we observe that the dot
product operation consists of multiplying the magnitude of one vector by
the scalar obtained by projecting the second vector onto the first vector as
shown in Figs. 1.4(a) and (b). The dot product operation is commutative
since

BeA=BAcosa = ABcosoo = A« B (1.11)
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Figure 1.4. (a) and (b) For showing that the dot product of two vectors
A and B is the product of the magnitude of one vector and the projection
of the second vector onto the first vector. (c) For proving the distributive
property of the dot product operation.

The distributive property also holds for the dot product as can be seen from
the construction of Fig. 1.4(c), which illustrates that the projection of B + C
onto A is equal to the sum of the projections of B and C onto A. Thus

A-B4+C)=A-B+A.C (1.12)
Using this property, and the relationships (1.10a)-(1.10c), we have

A« B = (4,i; + A,i; + Ajiy) « (Bii; + By, + Bsis)
= A,i, » Byi; + 4,i, » B,i, + A4,i, « Bii,
-k A,i, « Byi; + A,i, ¢ B,i, + 4,1, » Bii,
+ Ajiy « Biiy + Aji; « By, + Ay« Byl
= A,B, + A,B, + A4,B, (1.13)

Thus the dot product of two vectors is the sum of the products of the like
components of the two vectors.

VECTOR OR CRroOss PropDUCT OF Two VECTORS: The vector or cross
product of two vectors A and B is a vector quantity whose magnitude is
equal to the product of the magnitudes of A and B and the sine of the angle
o between A and B and whose direction is the direction of advance of a right-
hand screw as it is turned from A to B through the angle &, as shown in Fig.
1.5. Tt is represented by a cross between A and B. Thus if iy is the unit vector
in the direction of advance of the right-hand screw, then

AxB=|A||B|sinaiy = ABsinaiy (1.14)
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L :

N

Figure 1.5. The cross product operation A X B.

For the unit vectors i, 1,, i;, we have

i, xi, =0 i, x i, = i i, x i, = —i, (1.15a)
i, xi, =—i;, i, xi,=0 i, x i, =i, (1.15b)
i, xi, =1, i, xi,=—i, dyxi;=0 (1.15¢c)

Note that the cross product of identical vectors is zero. If we arrange the

of any two successive unit vectors is equal to the following unit vector, but
if we go backward, the cross product of any two successive unit vectors is
the negative of the following unit vector.

The cross product operation is not commutative since

Bx A =|B||A|sing (—iy) = —4Bsinaiy=—AxB (1.16)

The distributive property holds for the cross product (we shall prove this
later in this section) so that

AxB+CO=AxB+AxC 1.17)
Using this property and the relationships (1.15a)-(1.15c), we obtain

A x B = (4,i; + A4, + 4;i;) x (Bii; + Byl + Bily)

= A,i, X Byi; + Ai, x B,i, + A,i; x Bsi,
4 A,i, x B,i, + A4,i, x B,i, + A,i, X Bii,
+4- A,4iy % Bii; + Aji; X B,i, + Asl; X Bii,

= A,B,i; — A,B,;i, — A,B.i; + A,B;i;
+ A;B,i, — A;B,i,

= (4,B; — A;B,)i; + (4,8, — 4,By)i,
+ (A1Bz - AzB1)i3 (1-18)
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This can be expressed in determinant form in the manner

iy 1, i,
AxB=|d4, 4, 4, (1.19)
B, B, B

A triple cross product involves three vectors in two cross product opera-
tions. Caution must be exercised in evaluating a triple cross product since
the order of evaluation is important, that is, A x (B x C) is not equal to
(A x B) x C. This can be illustrated by means of a simple example involv-
ing unit vectors. Thus if A = i,, B =1i,, and C = i,, then

AxBxCO =i, x({, xi)=1i, xi;,=—1I,
whereas
AxB)xC=(,xi)xi,=0xi,=0

ScALAR TRIPLE PrODUCT: The scalar triple product involves three vec-
tors in a dot product operation and a cross product operation as, for exam-
ple, A « B x C. It is not necessary to include parentheses since this quantity
can be evaluated in only one manner, that is, by evaluating B x C first and
then dotting the resulting vector with A. It is meaningless to try to evaluate
the dot product first since it results in a scalar quantity and hence we cannot
proceed any further. From (1.13) and (1.19), we have

il iZ i3 Al AZ AB
A+Bx C=(4i, + 4,i, + 4,i,)+|B, B, B,|=|B, B, B,
Cl C2 C3 Cl CZ C3

(1.20)

Since the value of the determinant on the right side of (1.20) remains un-
changed if the rows are interchanged in a cyclical manner,

A'BxC=B:-CxA=C-+-AxB (1.21)

We shall now show that the distributive law holds for the cross product
operation by using (1.21). Thus let us consider A x (B + C). Then if D is
any arbitrary vector, we have

D AXxB+C)=B+C)+DxA)=B.DxA)+C-(DxA)

=D+AxB+D:AxC=D+(AxB+AxC)
(1.22)
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where we have used the distributive property of the dot product operation.
Since (1.22) holds for any D, it follows that

AxB+C=AxB+AxC

Example 1.1. Given three vectors

A=i, +i,
B =i, + 2i, — 2i,
C =i, + 2i,

let us carry out several of the vector algebraic operations.
(@) A+ B=(, +i,)+ @, + 2i, — 2i;) = 2i; + 3i, — 2i,
(b) B—-C=(, +2i2—2i3)_(iz+2i3)=i1 +i2_4i3
(©) 4C = 4(, + 2i,) = 4i, + 8i,

@) |B] =i, + 2i, — 20| = /(1) + @* + (=2)* =3

(e) iaz%:l———l +21§—213 =%i1 +%iz—%i3
() A+B=(; +i) e (i + 2i; — 2i;) = D) + (D@ + O)(~2) =3
i i, i
(g) AxB=|1 1 0|=(—2—0); + (0 + 2, + 2 — i,
1 2 =2
= —2i; 4 2i, + 1,
iy 1, i
() AxB)xC=|—2 2 1 |=3i,+ 4, —2i,
0 1 2
|1 1 0!
@ A+BxC=|1 2 —=2/=()6)+ U=+ O))=4 =
01 2

12 CARTESIAN COORDINATE SYSTEM

In the previous section we introduced the technique of expressing a vector
at a point in space in terms of its component vectors along a set of three
mutually orthogonal directions defined by three mutually orthogonal unit
vectors at that point. Now in order to relate vectors at one point in space to
vectors at another point in space, we must define the set of three reference
directions at each and every point in space. To do this in a systematic man-
ner, we need to use a coordinate system. Although there are several different
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coordinate systems, we shall use for the most part of our study the simplest
of these, namely, the Cartesian coordinate system, also known as the “rectan-
gular coordinate system,” to keep the geometry simple and yet sufficient to
learn many of the elements of engineering electromagnetics. We shall, how-
ever, find it necessary in a few cases to resort to the use of cylindrical and
spherical coordinate systems. Hence a discussion of these coordinate systems
is included in Appendix A. In this section we introduce the Cartesian coor-
dinate system.

The Cartesian coordinate system is defined by a set of three mutually
orthogonal planes as shown in Fig. 1.6(a). The point at which the three planes
intersect is known as the origin O. The origin is the reference point relative
to which we locate any other point in space. Each pair of planes intersects
in a straight line. Hence the three planes define a set of three straight lines
which form the coordinate axes. These coordinate axes are denoted as the
x, y, and z axes. Values of x, y, and z arc measured from the origin and hence
the coordinates of the origin are (0, 0, 0), that is, x =0, y = 0, and z = 0.
Directions in which values of x, y, and z increase along the respective coor-
dinate axes are indicated by arrowheads. The same set of three directions is
used to erect a set of three unit vectors, denoted i,, i,, and i,, as shown in
Fig. 1.6(a), for the purpose of describing vectors drawn at the origin. Note
that the positive x, y, and z directions are chosen such that they form a
right-handed system, that is, a system for which i, x i, = i,.

On one of the three planes, namely, the yz plane, the value of x is constant
and equal to zero, its value at the origin, since movement on this plane does
not require any movement in the x direction. Similarly, on the zx plane the
valuc of y is constant and cqual to zero, and on the xy plane the value of z
is constant and equal to zero. Any point other than the origin is now given
by the intersection of three planes obtained by incrementing the values of
the coordinates by appropriate amounts. For example, by displacing the
x = 0 plane by 2 units in the positive x direction, the y = 0 plane by 5 units
in the positive y direction, and the z = 0 plane by 4 units in the positive z
direction, we obtain the planes x = 2, y = 5, and z = 4, respectively, which
intersect at the point (2, 5, 4) as shown in Fig. 1.6(b). The intersections of
pairs of these planes define three straight lines along which we can erect the
unit vectors i, i,, and i, toward the directions of increasing values of x, y,
and z, respectively, for the purpose of describing vectors drawn at that point.
These unit vectors are parallel to the corresponding unit vectors drawn at
the origin, as can be seen from Fig. 1.6(b). The same is true for any point in
space in the Cartesian coordinate system. Thus each one of the three unit
vectors in the Cartesian coordinate system has the same direction at all points
and hence it is uniform. This behavior does not, however, hold for all unit
vectors in the cylindrical and spherical coordinate systems.
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Py(x3.5,:2,)
_..JT

| /¥

(c)

|
|
0 i 7 =Y
|
|

11

59

(b)

(d)

Figure 1.6, Cartesian coordinate system. (a) The three orthogonal planes
defining the coordinate system. (b) Unit vectors at an arbitrary point,
(c) Vector from one arbitrary point to another arbitrary point. (d) Differ-
ential lengths, surfaces, and volume formed by incrementing the coordi-

nates.

It is now a simple matter to apply what we have learned in Sec. 1.1 to
vectors in Cartesian coordinates. All we need to do is to replace the subscripts
1,2, and 3 for the unit vectors and the components along the unit vectors
by the subscripts x, y, and z, respectively, and also utilize the property that

lx’ l}"

and i, are uniform vectors. Thus let us, for example, obtain the expres-
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sion for the vector drawn from point P,(x,, y,, z,) to point P,{(x,, y,, z,), as
shown in Fig. 1.6(c). To do this, we note that the vector drawn from the origin
to the point P,, that is, OP, is given by

OP, = x,i, + p,i, + z, (1.23)

and that the vector drawn from the origin to the point P,, that is, OP, is
given by

OP, = x,i, + y,i, + 2,0, (1.24)
Since, from the rule for vector additior, OP, -+ P,P, = OP,, we obtain
PP, = OP, — OP, = (x, — x )i, + (yo — yu)i, + (2, — zi,  (1.25)

In our study of electromagnetic fields, we have to work with line integrals,
surface integrals, and volume integrals. As in elementary calculus, these
involve differential lengths, surfaces, and volumes obtained by incrementing
the coordinates by infinitesimal amounts. Since in the Cartesian coordinate
system the three coordinates represent lengths, the differential length ele-
ments obtained by incrementing one coordinate at a time keeping the other
two coordinates constant are dxi,, dyi,, and dz i, for the x, y, and z coor-
dinates, respectively, as shown in Fig. 1.6(d), at an arbitrary point P(x, y, z).
The three differential length elements form the contiguous edges of a rectan-
gular box in which the corner Q diagonally opposite to P has the coordinates
(x + dx, y + dy, z + dz). The differential length vector dl from P to Q is
simply the vector sum of the three differential length elements. Thus

dl = dxi, + dyi, + dzi, (1.26)

The box has six differential surfaces with each surface defined by two of the
three length elements, as shown by the projections onto the coordinate planes
in Fig. 1.6(d). The orientation of a differential surface dS is specified by a
unit vector normal to it, that is, a unit vector perpendicular to any two vec-
tors tangential to the surface. Unless specified, the normal vector can be
drawn toward any one of the two sides of a given surface. Thus the differential
surfaces formed by the pairs of differential length elements are

+dSi, = +dxdyi, = +dxi, x dyi, (1.27a)
+dSi, = ddydzi, = +dyi, x dz i, (1.27b)
+dSi, = +dzdxi, = 4-dzi, x dxi, (1.27¢)
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Finally, the differential volume dv formed by the three differential lengths
is simply the volume of the box, that is,

dv = dx dy dz (1.28)
We shall now briefly review some elementary analytic geometrical details

that will be useful in our study of electromagnetics. An arbitrary surface is
defined by an equation of the form

fGe,y,2)=0 (1.29)

In particular, the equation for a plane surface making intercepts a, b, and ¢
on the x, y, and z axes, respectively, is given by

X Yz _
e (1.30)

Since a curve is the intersection of two surfaces, an arbitrary curve is defined
by a pair of equations

fx,y,2)=0 and g(x,»,2) =0 (1.31)
Alternatively, a curve is specified by a set of three parametric equations

x=x@), y=y0, z=1:20 (1.32)
where ¢ is an independent parameter. For example, a straight line passing
through the origin and making equal angles with the positive x, y, and z axes
is given by the pair of equations y = x and z = x, or by the set of three
parametric equations x = ¢,y = t, and z = 1.
Example 1.2. Let us find a unit vector normal to the plane

Sx+2y+42z=20

By writing the given equation for the plane in the form

X Y,z
41 1] 5

we identi1fy the intercepts made by the plane on the x, y, and z axes to be
4, 10, and 5, respectively. The portion of the plane lying in the first octant of
the coordinate system is shown in Fig. 1.7.
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B(0, 10, 0)

Lt |

X

Figure 1.7. The plane surface 5x + 2y + 4z = 20.

To find a unit vector normal to the plane, we consider two vectors lying
in the plane and evaluate their cross product. Thus considering the vectors
AB and AC, we have from (1.25),

AB = (0 — #)i, + (10 — )i, + (0 — O)i, = —4i, + 10i,
AC = (0 — 4)i, + (0 — 0)i, + (5 — O)i, = —4i, + 5i,

The cross product of AB and AC is then given by

i, i, i

X ¥y z
ABx AC=|—4 10 0|= 50i, - 20i, + 40i,
—4 0 5

This vector is perpendicular to both AB and AC and hence to the plane.
Finally, the required unit vector is obtained by dividing AB x AC by its
magnitude. Thus it is equal to

50i, 4 200, + 40, _ 5i, - 26, +4h, 1 g oo
[50i, + 20i, + 40i,] ~ /25 - 4 + 16—3ﬁ(51x+21y+41,) -

1.3 SCALAR AND VECTOR FIELDS

Before we take up the task of studying electromagnetic fields, we must
understand what is meant by a “field.” A field is associated with a region
in space and we say that a field exists in the region if there is a physcial phe-
nomenon associated with points in that region. For example, in everyday life
we are familiar with the earth’s gravitational field. We do not “see” the field
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in the same manner as we see light rays but we know of its existence in the
sense that objects are acted upon by the gravitational force of the earth.
In a broader context, we can talk of the field of any physical quantity as
being a description, mathematical or graphical, of how the quantity varies
from one point to another in the region of the field and with time. We can talk
of scalar or vector fields depending on whether the quantity of interest is a
scalar or a vector. We can talk of static or time-varying fields depending on
whether the quantity of interest is independent of or changing with time.

We shall begin our discussion of fields with some simple examples of
scalar fields. Thus let us consider the case of the conical pyramid shown in
Fig. 1.8(a). A description of the height of the pyramidal surface versus posi-
tion on its base is an example of a scalar field involving two variables. Choos-
ing the origin to be the projection of the vertex of the cone onto the base and
setting up an xy coordinate system to locate points on the base, we obtain
the height field as a function of x and y to be

h(x,p) =6 — 2,/x% + »? (1.33)

Although we are able to depict the height variation of points on the conical
surface graphically by using the third coordinate for 4, we will have to be
content with the visualization of the height field by a set of constant-height
contours on the xy plane if only two coordinates were available, as in the
case of a two-dimensional space. For the field under consideration, the con-
stant-height contours are circles in the xy plane centered at the origin and
equally spaced for equal increments of the height value as shown in Fig.
1.8(a).

For an example of a scalar field in three dimensions, let us consider a
rectangular room and the distance field of points in the room from one corner
of the room as shown in Fig. 1.8(b). For convenience, we choose this corner
to be the origin O and set up a Cartesian coordinate system with the three
contiguous edges meeting at that point as the coordinate axes. Each point
in the room is defined by a set of values for the three coordinates x, y, and z.
The distance r from the origin to that point is ./x? + y? + z2. Thus the
distance field of points in the room from the origin is given by

r(x, y, 2) = A/ x* + y* 4 2% (1.34)

Since the three coordinates are already used up for defining the points in the
field region, we have to visualize the distance field by means of a set of con-
stant-distance surfaces. A constant-distance surface is a surface for which
points on it correspond to a particular constant value of r. For the case under
consideration, the constant-distance surfaces are spherical surfaces centered
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at the origin and are equally spaced for equal increments in the value of the
distance as shown in Fig. 1.8(b).

The fields we have discussed thus far are static fields. A simple example
of a time-varying scalar field is provided by the temperature field associated
with points in a room, especially when it is being heated or cooled. Just as
in the case of the distance field of Fig. 1.8(b), we set up a three-dimensional
coordinate system and to each set of three coordinates corresponding to the

Y%
6 2

(b)

Figure 1.8, (a) A conical pyramid lying above the xy plane, and a set of
constant-height contours for the conical surface. (b) A rectangular room,
and a set of constant-distance surfaces depicting the distance field of
points in the room from one corner of the room.

location of a point in the room, we assign a number to represent the tem-
perature T at that point. Since the temperature at that point, however, varies
with time ¢, this number is a function of time. Thus we describe mathemati-
cally the time-varying temperature field in the room by a function T'(x, y, z, ).
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For any given instant of time, we can visualize a set of constant-temperature
or isothermal surfaces corresponding to particular values of T as representing
the temperature field for that value of time. For a different instant of time,
we will have a different set of isothermal surfaces for the same values of T.
Thus we can visualize the time-varying temperature field in the room by a
set of isothermal surfaces continuously changing their shapes as though in
a motion picture.

The foregoing discussion of scalar fields may now be extended to vector
fields by recalling that a vector quantity has associated with it a direction
in space in addition to magnitude. Hence in order to describe a vector field
we attribute to each point in the field region a vector that represents the
magnitude and direction of the physical quantity under consideration at
that point. Since a vector at a given point can be expressed as the sum of its
components along the set of unit vectors at that point, a mathematical descrip-
tion of the vector field involves simply the descriptions of the three compo-
nent scalar fields. Thus for a vector field F in the Cartesian coordinate system,
we have

F(x,y,z,t) = F(x, ¥, 2z, )i, + F,(x, y, z, Di, + F,(x, y, z, )i, (1.35)

Similar expressions hold in the cylindrical and spherical coordinate systems.
We should, however, note that two of the unit vectors in the cylindrical coor-
dinate system and all the unit vectors in the spherical coordinate system are
themselves functions of the coordinates.

To illustrate the graphical description of a vector field, let us consider
the linear velocity vector field associated with points on a circular disk rotat-
ing about its center with a constant angular velocity o rad/s. We know that
the magnitude of the linear velocity of a point on the disk is then equal to
the product of the angular velocity w and the radial distance r of the point
from the center of the disk. The direction of the linear velocity is tangential
to the circle drawn through that point and concentric with the disk. Hence
we may depict the linear velocity field by drawing at several points on the
disk vectors that are tangential to the circles concentric with the disk and
passing through those points, and whose lengths are proportional to the
radii of the circles, as shown in Fig. 1.9(a), where the points are carefully
selected in order to reveal the circular symmetry of the field with respect to
the center of the disk. We, however, find that this method of representation
of the vector field results in a congested sketch of vectors. Hence we may
simplify the sketch by omitting the vectors and simply placing arrowheads
along the circles, giving us a set of “direction lines,” also known as “stream
lines” and “flux lines,” which simply represent the direction of the field at
points on them, We note that for the field under consideration the direction
lines are also contours of constant magnitude of the velocity, and hence by
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(a) (b)

Figure 1.9. (a) Linear velocity vector field associated with points on a
rotating disk. (b) Same as (a) except that the vectors are omitted, and the
density of direction lines is used to indicate the magnitude variation.

increasing the density of the direction lines as r increases, we can indicate
the magnitude variation, as shown in Fig. 1.9(b).

1.4 SINUSOIDALLY TIME-VARYING FIELDS

In our study of electromagnetic fields we will be particularly interested
in fields that vary sinusoidally with time. Hence we shall devote this section
to a discussion of sinusoidally time-varying fields. Let us first consider a
scalar sinusoidal function of time. Such a function is given by an expression
of the form 4 cos (et - @) where A is the peak amplitude of the sinusoidal
variation, w = 2xf is the radian frequency, f is the linear frequency, and
(wt + @) is the phase. In particular, the phase of the function for ¢ = 0 is ¢.
A plot of this function versus ¢ shown in Fig. 1.10 illustrates how the func-
tion changes periodically between positive and negative values. If we now
have a sinusoidally time-varying scalar field, we can visualize the field quant-
ity varying sinusoidally with time at each point in the field region with the
amplitude and phase governed by the spatial dependence of the field quantity.
Thus, for example, the field Ae=** cos (w? — Bz) where A, &, and § are posi-
tive constants is characterized by sinusoidal time variations with amplitude
decreasing exponentially with z and the phase at any given time decreasing
linearly with z.

For a sinusoidally time-varying vector field, the behavior of each com-
ponent of the field may be visualized in the manner just discussed. If we now
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| B |
o
w

Figure 1,10. Sinusoidally time-varying scalar function 4 cos (wf 4 ¢).

\A cos (wt + ¢)
- A
A cos¢
1 1 \ 1 L
1] 0 1 I
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fix our attention on a particular point in the field region, we can visualize
the sinusoidal variation with time of a particular component at that point by
a vector changing its magnitude and direction as shown, for example, for
the x component in Fig. 1.11(a). Since the tip of the vector simply moves
back and forth along a line, which in this case is parallel to the x axis, the
component vector is said to be “linearly polarized” in the x direction. Simil-
arly, the sinusoidal variation with time of the y component of the field can
be visualized by a vector changing its magnitude and direction as shown in
Fig. 1.11(b), not necessarily with the same amplitude and phase as those of
the x component. Since the tip of the vector moves back and forth parallel

LY N
N TR €3 5 R
2w 2w 2w 2w l

Figure 1.11. (a) Time variation of a linearly polarized vector in the x
direction. (b) Time variation of a linearly polarized vector in the y direc-
tion.
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to the y axis, the y component is said to be linearly polarized in the y direc-
tion. In the same manner, the z component is linearly polarized in the z
direction.

If two components sinusoidally time-varying vectors have arbitrary
amplitudes but are in phase as, for example,

F, = F, cos (wt + ¢) i, (1.36a)
F, = F, cos (ot + ¢) i, (1.36b)

then the sum vector F = F, + F, is linearly polarized in a direction making
an angle

1 :tan‘lﬂ

o =tan '
Fx Fl

with the x direction as shown in the series of sketches in Fig. 1.12 illustrating
the time history of the magnitude and direction of F over an interval of one
period.

° ]-1—0 I-d— 1-1—0 ° [ L

|
|
X A I r
|
¥ e s

Figure 1.12. The sum vector of two linearly polarized vectors in phase is
a linearly polarized vector.

If two component sinusoidally time-varying vectors have equal ampli-
tudes, differ in direction by 90°, and differ in phase by #/2, as, for example,

F, = F,cos (wt + ¢) i, (1.37a)
F, = Fysin (wt 4 ¢) i, (1.37b)

then, to determine the “polarization” of the sum vector F = F, -+ F,, we note
that the magnitude of F is given by

IF| =|F, cos (et + @) i, + F,sin (wt + @) i,| = F, (1.38)
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and that the angle & which F makes with i, is given by

o =tan 22 By _ tan- [%_Q_w:‘ —ot+ ¢ (1.39)

Thus the sum vector rotates with constant magnitude F, and at a rate of
 rad/s so that its tip describes a circle. The sum vector is then said to be
“circularly polarized.” The series of sketches in Fig. 1.13 illustrates the time
history of the magnitude and direction of F over an interval of one period.

—__F -
® o—> @ e @ ® |<—o @ I<——o °
|
.
y
For the general case in which two component sinusoidally time-varying

vectors differ in amplitude, direction, and phase by arbitrary amounts, the
sum vector is “elliptically polarized,” that is, its tip describes an ellipse.

Figure 1.13, Circular polarization,

Example 1.3. Given two vectors F, = (3i, — 4i_) cos wt and F, = 5i, 8in cot,
we wish to determine the polarization of the vector F = F, 4 F,.

We note that the vector F,, consisting of two component vectors in
phase, is linearly polarized with amplitude /32 4+ (—4)? or 5 which is equal
to that of F,. Since F, varies as cos wt and F, varies as sin wt, they differ in
phase by 7/2. Also,

FI.F2:(3ix_4iz).5iy:0

so that F, and F, are perpendicular. Thus F, and F, are two linearly polarized
vectors having equal amplitudes but differing in direction by 90° and differ-
ing in phase by /2. Hence F = F, + F, is circularly polarized. m

In the remainder of this section we shall briefly review the phasor tech-
nique which, as the student may have already learned in sinusoidal steady-
state circuit analysis, is very useful in carrying out mathematical manipula-
tions involving sinusoidally time-varying quantities. Let us consider the
simple problem of adding the two quantities 10 cos ¢ and 10 sin (et — 30°).
To illustrate the basis behind the phasor technique, we carry out the follow-
ing steps:
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10 cos et -} 10 sin (ot — 30°) = 10 cos wt + 10 cos (wt — 120°)
= Re[10e/] - Re[10e/ @ —~27/3)]
= Re[10e/%/=!] 4+ Re[10g=72%/ 3¢/
= Re[(10e/0 -+ 10e~/27/3)glef]
= Re[10e—/#/3g/o"
= Re[10¢/ @]
= 10 cos (vt — 60°) (1.40)

where Re stands for “real part of,” and the addition of the two complex
numbers 10e/° and 10e=/2*/3 is performed by locating them in the complex
plane and then using the parallelogram law of addition of complex numbers,
as shown in Fig. 1.14. Alternatively, the complex numbers may be expressed
in terms of their real and imaginary parts and then added up for conversion
into exponential form in the manner

10e/0 4+ 10e=/2%/3 = (10 4 jO) -+ (—5 — j8.66)

= 5 — j8.66 = /52 | 8.662 g~/ tan" 8.66/3
= [Qe~ /3 (1.41)

In practice, we do not write all of the steps shown in (1.40). First, we
express all functions in their cosine forms and then recognize the phasor
corresponding to cach cosine function as the complex number having the
magnitude equal to the amplitude of the cosine function and phase angle
equal to the phase angle of the cosine function for t = 0. For the above exam-

Alm

Figure 1.14. Addition of two complex numbers.
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ple, the complex numbers 10e/° and 10e~/*/* are the phasors corresponding
to 10 cos w? and 10 sin (wf — 30°), respectively. Then we add the phasors
and from the sum phasor write down the required cosine function. Thus
the steps involved are as shown in Fig. 1.15.

10 cos wt + 10 sin (wt — 30°)
r Y
10 cos wt + 10 cos (et — 120°)
Y 3
10e/0 + 10e/2m/3 (Phasors)
= 10e—im3 (Sum Phasor)

Y
10 cos (wt — 60°)

4

Figure 1.15. Block diagram of steps involved in the application of phasor
technique to the addition of two sinusoidally time-varying functions,

The same technique is adopted for solving differential equations by
recognizing, for example, that
% [4 cos (wt + 8)] = — Aw sin (ot + 0) = Aw cos (wt + 6 + n/2)
and hence the phasor for % [4 cos (@t + )] is
Awe!®*? = Awe'™?e’® = joAe’®

or jo times the phasor for 4 cos (wt + 6). Thus the differentiation operation
is replaced by jw for converting the differential equation into an algebraic
equation involving phasors. To illustrate this, let us consider the differential
equation

10-3 % + i = 10 cos 1000t (1.42)
The solution for this is of the form i = I, cos (w? + ). Recognizing that

w = 1000 and replacing d/dt by j1000 and all time functions by their phasors,
we obtain the corresponding algebraic equation as

103710001 + I = 10e/® (1.43)
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or
I(1 + j1) = 10e’° (1.44)

where the overhar ahove [ indicates the complex nature of the quantity.
Solving (1.44) for I, we obtain

f 10 106 g G7p-ims (1.45)

T+j1 -/ 2e

and finally

i =7.07 cos (1000: - %) (1.46)

1.5 THE ELECTRIC FIELD

Basic to our study of the elements of engineering electromagnetics is an
understanding of the concepts of electric and magnetic fields. Hence we shall
devote this and the following section to an introduction of the electric and
magnetic fields. From our study of Newton’s law of gravitation in element-
ary physics, we are familiar with the gravitational force field associated with
material bodies by virtue of their physical property known as “mass.” New-
ton’s experiments showed that the gravitational force of attraction between
two bodies of masses m, and m, separated by a distance R, which is very large
compared to their sizes, is equal to m,m,G/R* where G is the constant of
universal gravitation. In a similar manner, a force field known as the “electric
field” is associated with bodies that are “charged.” A material body may be
charged positively or negatively or may possess no net charge. In the
International System of Units which we shall use throughout this book,
the unit of charge is coulomb, abbreviated C. The charge of an electron is
—1.60219 x 10~ C. Alternatively, approximately 6.24 X 10!* electrons
represent a charge of one negative coulomb.

Experiments conducted by Coulomb showed that the following hold for
two charged bodies that are very small in size compared to their separation
so that they can be considered as “point charges”:

1. The magnitude of the force is proportional to the product of the mag-
nitudes of the charges.

2. The magnitude of the force is inversely proportional to the square of
the distance between the charges.

3. The magnitude of the force depends on the medium.

The direction of the force is along the line joining the charges.

5. Like charges repel; unlike charges attract.

&

For free space, the constant of proportionality is 1/4zme, where €, is known
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as the permittivity of free space, having a value 8.854 x 10-!2 or approxi-
mately equal to 10-9/36z. Thus if we consider two point charges Q, C and
0, C separated Rm in free space, as shown in Fig. 1.16, then the forces
F, and F, experienced by Q, and Q,, respectively, are given by

— 210 ;

= 1
U™ 4ze,R2

(1.47a)

and

, = ﬁilz (1.47b)
where i,, and i,, are unit vectors along the line joining @, and Q, as shown
in Fig. 1.16. Equations (1.47a) and (1.47b) represent Coulomb’s law. Since
the units of force are newtons, we note that ¢, has the units (coulomb)?
per (newton-meter?). These are commonly known as “farads per meter”
where a farad is (coulomb)? per newton-meter.

F/ iy
Figure 1.16. Forces experienced by two point charges Q; and Q5.

In the case of the gravitational field of a material body, we define the
gravitational field intensity as the force per unit mass experienced by a small
test mass placed in that field. In a similar manner, the force per unit charge
experienced by a small test charge placed in an electric field is known as the
“electric field intensity,” denoted by the symbol E. Alternatively, if in a
region of space, a test charge g experiences a force F, then the region is said
to be characterized by an electric field of intensity E given by

E— e (1.48)

The unit of electric field intensity is newton per coulomb, or more commonly
volt per meter, where a volt is newton-meter per coulomb. The test charge
should be so small that it does not alter the electric field in which it is
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placed. Ideally, E is defined in the limit that ¢ tends to zero, that is,

E — Lim L (1.49)
-0 g

Equation (1.49) is the defining equation for the electric field intensity ir-
respective of the source of the electric field. Just as one body by virtue of its
mass is the source of a gravitational field acting upon other bodies by virtue
of their masses, a charged body is the source of an electric field acting upon
other charged bodies. We will, however, learn in Chap. 2 that there exists

another source for the electric field, namely, a time-varying magnetic field.
Returning now to Coulomb’s law and letting one of the two charges in
Fig. 1.16, say Q,, be a small test charge g, we have

F, — 0.q

Treaina (1.50)

The electric field intensity E, at the test charge due to the point charge O,
is then given by

_F_ 0
By = 2= gt (1.51)

Generalizing this result by making R a variable, that is, by moving the test
charge around in the medium, writing the expression for the force experi-
enced by it, and dividing the force by the test charge, we obtain the electric
field intensity E of a point charge Q to be

= WIR (1.52)
where R is the distance from the point charge to the point at which the field
intensity is to be computed and i, is the unit vector along the line joining the
two points under consideration and directed away from the point charge.
The electric field intensity due to a point charge is thus directed everywhere
radially away from the point charge and its constant-magnitude surfaces
are spherical surfaces centered at the point charge, as shown in Fig. 1.17.

If we now have several point charges Q,, @, . . ., as shown in Fig. 1.18,
the force experienced by a test charge situated at a point P is the vector sum
of the forces experienced by the test charge due to the individual charges.
It then follows that the electric field intensity at point P is the superposition
of the electric field intensities due to the individual charges, that is,

O (1.53)

_ 9 . 0, .
i 47z60R%1R‘ + 47zeoR§an ot 4me,R2

Let us now consider an example.
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Figure 1.17. Direction lines and constant-magnitude surfaces of electric
field due to a point charge.

1 .’?3
le
R, 'r,
04’”/
Q, R,
./
04
Q,

Figure 1.18. A collection of point charges and unit vectors along the
directions of their electric fields at a point P,

Example 1.4. Figure 1.19 shows eight point charges situated at the corners
of a cube. We wish to find the electric field intensity at each point charge,
due to the remaining seven point charges.

First we note from (1.52) that the electric field intensity at a point
B(x,,y,, z,) due to a point charge Q at point A(x,, y,, z,) is given by

E. — 0 ° goor_ AB _ Q(AB)
27 4mey(AB)* *®  4me,(AB)* (AB)  4me,(AB)?

- Q (g —x)i, + (p — Yy + (2, — 2y, (1.54)
dme, [(x2 — x1)* + (2 — y)* + (22 — 2)*)* '

Let us now consider the point (1, 1, 1). Applying (1.54) to each of the charges
at the seven other points and using (1.53), we obtain the electric field intensity
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AZ
] Q
.0, 1/))'*“———71’(0, 1,1)
/ 7
7 7
/ /
Q |
(1,0, 1) —“—--—frl LD |
| 0,0,042 ey
1 /(0. 1,0)
| 7
/

A%

(1,0,0) (1, 1,0

Figure 1.19. A cubical arrangement of point charges.

at the point (1, 1, 1) to be

i, 41, | 0,41,

47[60[(1)3/2 + (1)3/2 + (1)3/2 + (2)3/2 + (2)3/2
i, +1i, 41,41,

+ (2)3/2 + (3)3/2 :|
TR GRS U VR
— (1 )t bt
_3.290 <ix + i, + i,)
= dne, \ 3

Noting that (i, + i, + i,)/a/3 is the unit vector directed from (0, 0, 0) to
(1, 1, 1), we find the electric field intensity at (1, 1, 1) to be directed diagonally

away from (0, 0, 0), with a magnitude equal to 3472t20Q N/C. From symmetry

E(l,l.l) -

considerations, if then follows that the electric field intensity at each point

3.290
dre, RIS
and it is directed away from the corner opposite to that charge. =

charge, due to the remaining seven point charges, has a magnitude

The foregoing illustration of the computation of the electric field intensity
due to a multitude of point charges may be extended to the computation of
the field intensity for a continuous charge distribution by dividing the region
in which the charge exists into elemental lengths, surfaces, or volumes depend-
ing on whether the charge is distributed along a line, over a surface, or in a
volume, and treating the charge in each elemental length, surface, or volume
as a point charge and then applying superposition. We shall include some of
the simpler cases in the problems for the interested reader.
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Let us now consider the motion of a cloud of electrons, distributed uni-
formly with density &, under the influence of a time-varying electric field of
intensity

E = FE,coswti, (1.55)
Each electron experiences a force given by
F = ¢E = ¢E,coswti, (1.56)

where e is the charge of the electron. The equation of motion of the electron
is then given by

m%' = eE, cos ot i, (1.57)

where m is the mass of the electron and v is its velocity. Solving (1.57) for
v, we obtain

_ B o
V=, sin wti, + C (1.58)

where C is the constant of integration. Assuming an initial condition of
v = 0 for t = 0 gives us C = 0, reducing (1.58) to

eE, . .
v=ginwti, = —
mo

Lel By g gori, (1.59)
mm

The motion of the electron cloud gives rise to current flow. To find the

current crossing an infinitesimal surface of area AS oriented such that the

normal vector to the surface makes an angle o with the x direction as shown
in Fig 120, let us for instance consider an infinitesimal time interval At

Figure 1.20. For finding the current crossing an infinitesimal area in a
moving cloud of electrons.

when v, is negative. The number of electrons crossing the area AS from its
right side to its left side in this time interval is the same as that which exists
in a column of length |v,| Ar and cross-sectional area AS cos o to the right
of the area under consideration. Thus the negative charge AQ crossing the
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area AS in time At to its left side is given by

AQ = (AS cos a)(|v, |At) Ne
= Ne|v, |AS cos a At (1.60)

The current A7 flowing through the area AS from its left side to its right
side is then given by

Al = ‘AA_Q| — Nle||v,|AS cos &
t
2
= MEo sin at AS cos o
mao
2
_Nelp sinari, - ASi, (1.61)
mao

where i, is the unit vector normal to the area AS as shown in Fig. 1.20.

We can now talk of a current density vector J, associated with the cur-
rent flow. The current density vector has a magnitude equal to the current
per unit area and a direction normal to the area when the area is oriented
in order to maximize the current crossing it. The current crossing AS is
maximized when o = 0, that is, when the area is oriented such that i, = i,.

2
The current per unit area is then equal to ]’X—;Eo sin et. Thus the current

density vector is given by
2
J-YCE ginri,
mo
= Nev (1.62)

Finally, by substituting (1.62) back into (1.61), we note that the current
crossing any area AS = AS'i, is simply equal to J « AS.

1.6 THE MAGNETIC FIELD

In the preceding section we presented an experimental law known as
Coulomb’s law having to do with the electric force associated with two
charged bodies, and we introduced the electric field intensity vector as the
force per unit charge experienced by a test charge placed in the electric field.
In this section we present another experimental law known as “Ampere’s
law of force,” analogous to Coulomb’s law, and use it to introduce the mag-
netic field concept.

Ampere’s law of force is concerned with “magnetic” forces associated
with two loops of wire carrying currents by virtue of motion of charges in
the loops. Figure 1.21 shows two loops of wire carrying currents I, and I,
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Figure 1.21. Two loops of wire carrying currents I; and I,

and each of which is divided into a large number of elements having infini-
tesimal lengths. The total force experienced by a loop is the vector sum of
forces experienced by the infinitesimal current elements comprising the loop.
The force experienced by each of these current elements is the vector sum of
the forces exerted on it by the infinitesimal current elements comprising the
second loop. If the number of elements in loop 1 is m and the number of
elements in loop 2 is n, then there are m X n pairs of elements. A pair of
magnetic forces is associated with each pair of these elements just as a pair
of electric forces is associated with a pair of point charges. Thus if we con-
sider an element dl, in loop 1 and an element dl, in loop 2, then the forces
dF, and dF, experienced by the elements d1, and dl,, respectively, are given by

dF, = I, dl, x (L}{gxiz—l) (1.63a)
dF, = I, dl, x (y‘—d%) (1.63b)

where i,, and i,, are unit vectors along the line joining the two current ele-
ments, R is the distance between them, and k is a constant of proportion-
ality that depends on the medium. For free space, k is equal to p,/4n where
I, is known as the permeability of free space, having a value 4z X 1077,
From (1.63a) or (1.63b), we note that the units of 4, are newtons per ampere
squared. These are commonly known as “henrys per meter” where a henry
is a newton-meter per ampere squared.

Equations (1.63a) and (1.63b) represent Ampere’s force law as applied
to a pair of current elements. Some of the features evident from these equa-
tions are as follows:

1. The magnitude of the force is proportional to the product of the two
currents and to the product of the lengths of the two current elements.
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2. The magnitude of the force is inversely proportional to the square of
the distance between the current elements.

3. To determine the direction of the force acting on the current element
dl,, we first find the cross product dl, X i,, and then cross dl, into the
resulting vector. Similarly, to determine the direction of the force
acting on the current element dl,, we first find the cross product
dl, x i,, and then cross dl, into the resulting vector. For the general
case of arbitrary orientations of dl; and dl,, these operations yield
dF,, and dF,, which are not equal and opposite. This is not a violation
of Newton’s third law since isolated current elements do not exist
without sources and sinks of charges at their ends. Newton’s third
law, however, must and does hold for complete current loops.

The forms of (1.63a) and (1.63b) suggest that each current element is
acted upon by a field which is due to the other current element. By definition,
this field is the magnetic field and is characterized by a quantity known as the
“magnetic flux density vector,” denoted by the symbol B. Thus we note from
(1.63b) that the magnetic flux density at the element 41, due to the element
dl, is given by

I, dl, x i
B, — 2‘_;; Lal X by 11{2" Ya (1.64)

and that this flux density acting upon dl, results in a force on it given by
dF, =1,dl, x B, (1.65)

Similarly, we note from (1.63a) that the magnetic flux density at the element
dl, due to the element dl, is given by

Ldl, xi
B, — f“_’; %;“u (1.66)

and that this flux density acting upon d1, results in a force on it given by
dF, =1,dl, x B, (1.67)

From (1.65) and (1.67), we see that the units of B are newtons per ampere-
meter, commonly known as “webers/meter?” where a weber is a newton-
meter per ampere. The units of webers per unit area give the character of
flux density to the quantity B.

Generalizing (1.64) and (1.66), we obtain the magnetic flux density due
to an infinitesimal current element of length dl and carrying current / to be

B toldl Xl A Xl (1.68)
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Figure 1.22. Magnetic flux density due to an infinitesimal current element.

where R is the distance from the current element to the point at which the
flux density is to be computed and i is the unit vector along the line joining
the current element and the point under consideration and directed away from
the current element as shown in Fig. 1.22. Equation (1.68) is known as the
“Biot-Savart law” and is analogous to the expression for the electric field
intensity due to a point charge. The Biot-Savart law tells us that the magni-
tude of B at a point P is proportional to the current I, the element length
dl, and the sine of the angle & between the current element and the line joining
it to the point P and is inversely proportional to the square of the distance
from the current element to the point P. Hence the magnetic flux density is
zero at points along the axis of the current element. The direction of B at
point P is normal to the plane containing the current element and the line
joining the current element to P as given by the cross product operation
dl X ig, that is, right circular to the axis of the wire. As a numerical example,
for a current element 0.01i, m situated at the origin and carrying current 2
amperes, the magnetic flux density at the point (0, 1, 1) has a magnitude
10-°/./2 Wb/m? and is directed in the —i, direction. The magnetic field
due to a given current distribution can be found by dividing the current
distribution into a number of infinitesimal current elements, applying the
Biot-Savart law to find the magnetic field due to each current element, and
then using superposition. We shall include some simple cases in the prob-
lems for the interested reader. ,

Turning our attention now to (1.65) and (1.67) and generalizing, we say
that an infinitesimal current element of length dl and current I placed in a
magnetic field of flux density B experiences a force dF given by

dF =Idl x B (1.69)

Alternatively, if a current element experiences a force in a region of space,
then the region is said to be characterized by a magnetic field. Since current
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is due to flow of charges, (1.69) can be formulated in terms of the moving
charge causing the flow of current. Thus if the time taken by the charge dg
contained in the length dl of the current element to flow with a velocity v
across the cross-sectional area of the wire is dt, then I = dg/dt, and dl = v dt
so that

ﬂh:%vmsznhva (1.70)

It then follows that the force F experienced by a test charge ¢ moving with a
velocity v in a magnetic field of flux density B is given by

F=gvxB (1.71)

We may now obtain a defining equation for B in terms of the moving
test charge. To do this, we note from (1.71) that the magnetic force is directed
normally to both v and B as shown in Fig. 1.23, and that its magnitude is

-
s

Figure 1.23. Force experienced by a test charge ¢ moving with a velocity v
in a magnetic field B.

B

equal to gvB sin § where J is the angle between v and B. A knowledge of the
force F acting on a test charge moving with an arbitrary velocity v provides
only the value of B sin §. To find B, we must determine the maximum force
gvB that occurs for ¢ equal to 90° by trying out several directions of v, keep-
ing its magnitude constant. Thus if this maximum force is F,, and it occurs
for a velocity #i,,, then

F,xi,
B= s (1.72)

As in the case of defining the electric field intensity, we assume that the test
charge does not alter the magnetic field in which it is placed. Ideally, B is
defined in the limit that gv tends to zero, that is,

B=Um5%h (1.73)

qu—0 q
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Equation (1.73) is the defining equation for the magnetic flux density irre-
spective of the source of the magnetic field. We have learned in this section
that an electric current or a charge in motion is a source of the magnetic
field. We will learn in Chap. 2 that there exists another source for the mag-
netic field, namely, a time-varying electric field.

We can now combine (1.48) and (1.71) to write the expression for the
total force acting on a test charge ¢ moving with a velocity v in a region char-
acterized by an electric field of intensity E and a magnetic field of flux density
B as

F=gE+qvx B=g(E+vxB) (1.74)

Equation (1.74) is known as the “Lorentz force equation.” We shall now
consider an example.

Example 1.5. The forces experienced by a test charge g for three different
velocities at a point in a region characterized by electric and magnetic fields
are given by

F, = g[Eji, + (E; — voBo)i] for v, = i,
F, = q[(E, + voBoi, + Eii,] for v, = v,
F, = q[Ei, + E,i)] for v, = vy,

where v,, E,, and B, are constants. Find E and B at the point.
From Lorentz force equation, we have

gE + quii, x B = g[Ei, + (Eo — voBo)i,] (1.75a)
gE + qu,i, x B = g[(Ey + vBy)i, + Eoi,] (1.75b)
gE + qvgi, x B = glEi, + Eoi)] (1.750)

Eliminating E by subtracting (1.75a) from (1.75b) and (1.75¢) from (1.75b),
we obtain

(i, —i,) x B =By, +1,) (1.76a)
(i, — i,) x B = Byi, (1.76b)
It follows from these two equations that B is perpendicular to both (i, + i,)
and i,. Hence it is equal to C(i, + i,) x i, or —Ci, where C is to be deter-
mined. To do this, we substitute B = —Ci, in (1.76a) to obtain
(iy = ix) X (_ Clz) — Bo(ix + iy)
—C(ix + iy) . BO(ix + iy)
or C = —B,. Thus we get
B = BOiz
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Substituting this result in (1.75c), we obtain

E = Ey(, +1i,) -

1.7 SUMMARY
We first learned in this chapter several rules of vector algebra that are
necessary for our study of the elements of engineering electromagnetics by
considering vectors expressed in terms of their components along three
mutually orthogonal directions. To carry out the manipulations involving
vectors at different points in space in a systematic manner, we then introduced
the Cartesian coordinate system and discussed the application of the vector

algebraic rules to vectors in the Cartesian coordinate system. To summarize
these rules, we consider three vectors

A=A, + Aj + A,
B =B, + B, + Bi,
C=Ci, + Cji, + Ci,

in a right-handed Cartesian coordinate system, that is, with i, xi, =i,
We then have

A + B e (Ax + Bx)ix + (Ay + By)iy + (Az + Bz)iz
B—-C= (Bx . Cx)ix e (B.v - Cy)iy + (-Bz - Cz)iz
mA = mAi, + mAji, + mA,i,

B_B,. , B , B,
_n—~71"+ nl”+ n
Al = VET BT

a_ A, . 4, : A, .
VBT A T TET AT A AT AT A
AB=AB, + AB,+ AB,

1, ly 1,
AxB=|A4, 4, 4,
B, B, B,

A, 4, 4,
A-BxC=|B, B, B,
C. C, C,
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Other useful expressions are

dl=dxi, + dyi, + dzi,
dS = +dx dyi,, +dy dzi,, +dz dxi,
dv=dxdydz

As a prelude to the introduction of electric and magnetic fields, we dis-
cussed the concepts of scalar and vector fields, static and time-varying, by
means of some simple examples such as the height of points on a conical
surface above its base, the temperature field of points in a room, and the
velocity vector field associated with points on a disk rotating about its center.
We learned about the visualization of fields by means of constant-magnitude
contours or surfaces and in addition by means of direction lines in the case
of vector fields. Particular attention was devoted to sinusoidally time-varying
fields. Polarization of vector fields as a means of describing how the orienta-
tion of a vector at a point changes with time was discussed. The phasor
technique as a means of facilitating mathematical operations involving
sinusoidally time-varying quantities was reviewed.

Having obtained the necessary background vector algebraic tools and
physical field concepts, we then jntroduced the electric and magnetic fields
from considerations of experimental laws known as Coulomb’s law and
Ampere’s force law, having to do with the electric forces between two point
charges and the magnetic forces between two current elements, respectively.
From these laws, we deduced the expressions for the electric field intensity
E due to a point charge Q and the magnetic flux density B due to a current
element 7 dl. These expressions are

- 47t€uRle

ol dl X ig
B = 4nR>

where €, and g, are the permittivity and the permeability, respectively, of
free space, R is the distance from the source to the point, say P, at which the
field is to be computed, and i, is the unit vector directed from the source
toward the point P. We learned that the electric field is a force field acting on
charges merely by virtue of the property of charge. The electric force is given
simply by

F =gqE

On the other hand, the magnetic field exerts forces only on moving charges,
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or current elements, as given by
F=dyvxB=1IdlxB

Combining the electric and magnetic field concepts, we finally introduced the
Lorentz force equation for the force exerted on a charge ¢ moving with a
velocity v in a region of electric and magnetic fields E and B, respectively, as

F = ¢(E + v x B)

REVIEW QUESTIONS

1.1. Give some examples of scalars.

1.2, Give some examples of vectors,

1.3. State all conditions for which A « B =0,

1.4. State all conditions for which A x B = 0.

1.5. What is the significance of A+ B x C =0?

1.6. Is it necessary for the reference vectors iy, i,, and i; to be an orthogonal set?

1.7. State whether i;, i,, and i; directed westward, northward, and downward,
respectively, is a right-handed or a left-handed set.

1.8. What is the particular advantageous characteristic associated with the unit
vectors in the Cartesian coordinate system?

1.9. How do you find a vector perpendicular to a plane?
1.10. How do you find the perpendicular distance from a point to a plane?

1.11. What is the total distance around the circumference of a circle of radius 1 m?
What is the total vector distance around the circle?

1.12. What is the total surface area of a cube of sides 1 m? Assuming the normals
to the surfaces to be directed outward of the cubical volume, what is the total
vector surface area of the cube?

1.13. Describe briefly your concept of a scalar field and illustrate with an example.
1.14. Describe briefly your concept of a vector field and illustrate with an example.
1.15. How do you depict pictorially the gravitational fiecld of the earth?

1.16. A sinusoidally time-varying vector is expressed in terms of its components
along the x, y, and z axes. What is the polarization of each of the components ?

1.17. What are the conditions for the sum of two linearly polarized sinusoidally
time-varying vectors to be circularly polarized?

1.18. What is the polarization for the general case of the sum of two sinusoidally
time-varying linearly polarized vectors having arbitrary amplitudes, phase
angles, and directions ?
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1.19.

1.20.
1.21.
1.22,
1.23.

1.24.
1.25.
1.26.
1.27.
1.28.
1.29.

1.30.
1.31.

1.32.
1.33.
1.34.
1.35.
1.36.

1.37.
1.38.
1.39.
1.40.

Considering the second hand on your watch to be a vector, state its polariza-
tion. What is the frequency?

What is a phasor?
Is there any relationship between a phasor and a vector ? Explain.
Describe the phasor technique of adding two sinusoidal functions of time.

Describe the phasor technique of solving a differential equation for the sinu-
soidal steady-state solution.

State Coulomb’s law. To what law in mechanics is Coulomb’s law analogous ?
What is the definition of the electric field intensity ?

What are the units of the electric field intensity ?

What is the permittivity of free space? What are its units?

Describe the electric field due to a point charge.

How do you find the electric field intensity due to a continuous charge dis-
tribution ?

How is current density defined? What are its units?

For a current flowing on a sheet, how would you define the current density at
a point on the sheet? What are the units?

State Ampere’s force law as applied to current elements.

Why is it not necessary for Newton’s third law to hold for current elements ?
What is the permeability of free space? What are its units?

Describe the magnetic field due to a current element.

How is the magnetic flux density defined in terms of force on a current ele-
ment?

How is the magnetic flux density defined in terms of force on a moving charge?
What are the units of the magnetic flux density ?
State Lorentz force equation.

If it is assumed that there is no electric field, the magnetic field at a point can
be found from the knowledge of forces exerted on a moving test charge for
two different velocities. Explain.

PROBLEMS

1.1,

A bug starts at a point and travels 1 m northward,  m eastward, 4 m south-
ward, § m westward, {% m northward, and so on, making a 90°-turn to the
right and halving the distance each time. (a) What is the total distance trav-
eled by the bug? (b) Find the final position of the bug relative to its starting
location. (¢) Find the straight-line distance from the starting location to the
final position.
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1.2. Solve the following equations for A, B, and C:

1.3.

1.4.

1.5.

1.6.

1.7

1.8.

1.9

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

2A+B —-C =i, +3i,
A — 2B + 3C = 4i; + 5ip 4 iy

Show that (A 4-B) « (A — B) = A2 — B2 and that (A - B) x (A — B) =
2B x A. Verify the above for A = 3i; — 5i, + 4i; and B = i; + i, — 2i;.

Given A = —2i; +1i,, B=1i; —2i, +1i; and C = 3i; + 2i, +1i,, find
Ax(BxC)y+Bx(Cx A)+ C x (A xB).

Show that 4|A x B| is equal to the area of the triangle having A and B as
two of its sides. Then find the area of the triangle formed by the points
(1: 29 1)’ (_35 _4’ 5)’ and (25 —15 _3)'

Show that A + B x C is the volume of the parallelepiped having A, B, and
C as three of its contiguous edges. Then find the volume if A = 4i,, B =
2i, + i, 4 3i,, and C = 2i, 4 6i,. Comment on your result.

Given i, x A = —1i, 4+ 2i; and i, x A =i, — 2i,, find A.

Find the component of the vector drawn from (5, 0, 3) to (3, 3, 2) along the
direction of the vector drawn from (6, 2, 4) to (3, 3, 6).

Find the unit vector normal to the plane 4x — 5y 4- 3z = 60. Then find the
distance from the origin to the plane.

Write the expression for the differential length vector 41 at the point (1, 2, 8)
on the straight line y = 2x, z = 4y, and having the projection dx on the x
axis.

Write the expression for the differential length vector d1 at the point (4, 4, 2)
on the curve x = y = z2 and having the projection dz on the z axis.

Write the expression for the differential surface vector dS at the point (1, 1, 5
on the plane x + 2z = 2 and having the projection dx dy on the xy plane.

Find two differential length vectors tangential to the surface y = x2 at the
point (2, 4, 1) and then find a unit vector normal to the surface at that point.

A hemispherical bowl of radius 2 m lies with its base on the xy plane and with
its center at the origin. Write the expression for the scalar field, describing the
height of points on the bowl as a function of x and y.

A number equal to the sum of its coordinates is assigned to each point in a
rectangular room having three of its contiguous edges as the coordinate axes.
Draw a sketch of the constant-magnitude surfaces for the number field gen-
erated in this manner.

Write the expression for the vector distance of a point in a rectangular room
from one corner of the room, choosing the three edges meeting at that point
as the coordinate axes. Describe the vector distance field associated with the
points in the room.

For the rotating disk of Fig. 1.9, write the expression for the linear velocity
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1.18.

1.19,
1.20.
1.21.

1.22.

1.23.

1.24.
1.25.

1.26.

1.27.

1.28.

1.29.
1.30.

1.31.
1.32.

vector field associated with the points on the disk; use an xy coordinate sys-
tem with the origin at the center of the disk.

Given f(z,t) = 10cos (2 x 107t — 0.1%z), (a) draw sketches of f versus
zfor t =0, 4 x 1077, 1 x 1077, § x 1077, and 4 x 10775, and (b) draw
sketches of f versus ¢ for z = 0, 2.5, 5, 7.5, and 10 m. From your sketches of
part (a), what can you say about the function f(z, ¢)?

Repeat Problem 1.18 for f(z, 1) = 10 cos 2z X 107¢ 4 0.1%z).
Repeat Problem 1.18 for f(z, ) = 10 cos 2 x 107¢ cos 0.17z.

For each of the following vector fields, find the polarization:
() 1cos (@t + 30%i, + /2 cos (0f + 3091,

(b) 1cos (wr + 30%i, + 1cos (wt — 60°) i,

(©) 1cos(wt + 30° i, + 4/ 2 cos (@t — 60°) i,

Determine the polarization of the sum vector obtained by adding the two
vector fields

Fy = (—+/3ix +1i,) cos wt
F, = (gh + %20, — /3 i) sin o1

For the vector field 1 cos wri, + /2 sin @t i, draw sketches similar to
those of Figs. 1.12 and 1.13 and describe the polarization.

Find 10 cos (¢ — 30°) -+ 10 cos (wt -+ 210°) by using the phasor technique.
Find 3 cos (@t 4 60°) — 4 cos (@t + 150°) by using the phasor technique.

Solve the differential equation 5 x 1076 z—lt 4+ 12§ = 13 cos 106¢ by using the

phasor technique.

Two point charges each of mass m and charge g are suspended by strings of
length / from a common point. Find the value of g for which the angle made
by the strings at the common point 1s 90°.

Point charges Q and — Q are situated at (0, 0, 1) and (0, 0, —1), respectively.
Find the electric field intensity at (a) (0, 0, 100), and (b) (100, 0, 0).

For the point charge configuration of Example 1.4, find E at the point (2, 2, 2).

A line charge consists of charge distributed along a line just as graphite in a
pencil lead. We then talk of line charge density, or charge per unit length,
having the units C/m. Obtain a series expression for the electric field intensity
at (0, 1, 0) for a line charge situated along the z axis between (0, 0, —1) and
(0, 0, 1) with uniform density 1073 C/m by dividing the line into 100 equal
segments. Consider the charge in each segment to be a point charge located
at the center of the segment, and use superposition.

Repeat Problem 1.30, but assume the line charge density to be 1073 | z| C/m.

Charge is distributed uniformly with density 1073 C/m on a circular ring of
radius 2 m lying in the xy plane and centered at the origin. Obtain the electric
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1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

1.41.

1.42.

1.43.
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field intensity at the point (0, 0, 1) by using the procedure described in Problem
1.30.

A surface charge consists of charge distributed on a surface just as paint on a
table top. We then talk of surface charge density or, charge per unit area,
having the units C/m2. Obtain a series expression for the electric field inten-
sity at (0, 0, 1) for a surface charge of uniform density 1073 C/m? situated
within the square on the xy plane having the corners (1, 1,0), (—1,1,0),
(—1, —1,0), and (1, —1, 0) by dividing the square into 10,000 equal areas.
Consider the charge in each area as a point charge located at the center of the
area, and use superposition.

Repeat Problem 1.33, but assume the surface charge density to be 1073 | xy2|
C/m2,

For an electron cloud of uniform density N = 1012 m~3 oscillating under the
influence of an electric field E = 1073 cos 2 X 107¢i, V/m, find (a) the cur-
rent density, and (b) the current crossing the surface 0.01(i, -+ i,) m2.

An object of mass m and charge g, suspended by a spring of spring constant &k
is acted upon by the earth’s gravitational field and an electric field E, cos w¢
parallel to the gravitational field. Obtain the steady-state solution for the
velocity of the object.

Find dF, and dF, for I, d1; = I, dx i, located at the origin and for I, dl, =
I, dy i, located at (0, 1, 0).

For an infinitesimal current element I dx (i, + 2i, + 2i,) located at the point
(1, 0,0), find the magnetic flux density at (a) the point (0, 1, 1) and (b) the
point (2, 2, 2).

A square loop of wire of sides 0.01 m lies in the xy plane, with its sides parallel
to the x and y axes and with its center at the origin. It carries a current of 1
ampere in the clockwise sense as seen along the positive z axis. Find the mag-
netic flux density at (a) (0, 0, 1) and (b) (0, 1, 0).

A straight wire along the z axis carries current I amperes in the positive z
direction. Consider the portion of the wire lying between (0,0, —1) and
(0, 0, 1). By dividing this portion into 100 equal segments and using super-
position, obtain a series expression for B at (0, 1, 0).

A circular loop of wire of radius 2 m is situated in the xy plane and with its
center at the origin. It carries a current of 1 ampere in the clockwise sense as
seen along the positive z axis. Find B at (0, 0, 1) by dividing the loop into a
large number of equal infinitesimal segments and by using superposition.

Obtain the expression for the orbital frequency for an electron moving in a
circular orbit normal to a uniform magnetic field of flux density B, Wb/m?2.
Compute its value for B, equal to 5 X 1075,

A magnetic field B = By(i, + 2i, — 4i.) exists at a point. What should be the
electric field at that point if the force experienced by a test charge moving with
a velocity v = vo(3i, — i, -+ 2i,) is to be zero?
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1.44. The forces experienced by a test charge ¢ at a point in a region of electric
and magnetic fields are given as follows for three different velocities of the
test charge:

Fl bl 0 fOI V= 'Uoix
F, =0 for v = wol,
F; = —qEgi,  for v = vo(i, -+ 1i,)

where v, and E, are constants. (a) Find E and B at that point. (b) Find the
force experienced by the test charge for v = vo(i. — i,).



2o MAXWELL’S
EQUATIONS
IN
INTEGRAL
FORM

In Chap. 1 we learned the simple rules of vector algebra and familiarized
ourselves with the basic concepts of fields, particularly those associated with
electric and magnelic fields. We now have the necessary background to
introduce the additional tools required for the understanding of the various
quantities associated with Maxwell’s equations and then discuss Maxwell’s
equations. In particular, our goal in this chapter is to learn Maxwell’s equa-
tions in integral form as a prerequisite to the derivation of their differential
forms in the next chapter. Maxwell’s equations in integral form govern the
interdependence of certain field and source quantities associated with regions
in space, that is, contours, surfaces, and volumes. The differential forms of
Maxwell’s equations, however, relate the characteristics of the field vectors at
a given point to one another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from
several experimental findings and a purely mathematical contribution. We
shall, however, consider them as postulates and learn to understand their
physical significance as well as their mathematical formulation. The source
quantities involved in their formulation are charges and currents. The field
quantities have to do with the line and surface integrals of the electric and
magnetic field vectors. We shall therefore first introduce line and surface
integrals and then consider successively the four Maxwell’s equations in
integral form.

45



2.1 THE LINE INTEGRAL

Let us consider in a region of electric field E the movement of a test
charge g from the point 4 to the point B along the path C as shown in Fig.
2.1(a). At each and every point along the path the electric field exerts a force
on the test charge and hence does a certain amount of work in moving the
charge to another point an infinitesimal distance away. To find the total
amount of work done from A to B, we divide the path into a number of
infinitesimal segments Al,, Al,, Al,, . .., Al,, as shown in Fig. 2.1(b), find the
infinitesimal amount of work done for each segment and then add up the
contributions from all the segments. Since the segments are infinitesimal in
length, we can consider each of them to be straight and the electric field at all
points within a segment to be the same and equal to its value at the start of the
segment.

E
n !}
4 E: [/bL ﬂciT
C E /,‘a"
g E, 3 & Ali

2 Q)
(a)

Figure 2.1. For evaluating the total amount of work done in moving a
test charge along a path C from point A to point B in a region of electric
field.

If we now consider one segment, say the jth segment, and take the com-
ponent of the electric field for that segment along the length of that segment,
we obtain the result E, cos a; where a; is the angle between the direction of
the electric field vector E; at the start of that segment and the direction of that
segment. Since the electric field intensity has the meaning of force per unit
charge, the electric force along the direction of the jth segment is then equal
to gE; cos a; where g is the value of the test charge. To obtain the work done
in carrying the test charge along the length of the jth segment, we then
multiply this electric force component by the length A/, of that segment. Thus
for the jth segment, we obtain the result for the work done by the electric field
as

AW, =qE; cos a; Al, 2.1

If we do this for all the infinitesimal segments and add up all the contributions,

46
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we get the total work done by the electric field in moving the test charge from
Ato Bas

We =AW, + AW, + AW, 4 ... + AW,
=qE, cosa, Al, + qE, cos &, Al, + qE; cos a5 Al,
+ ...+ ¢gE,cosa, Al,

—q3 E, cosa; Al, 2.2
i=1

In vector notation we make use of the dot product operation between two
vectors to write this quantity as

By Z: E, -+ Al Q.3)

Example 2.1. Let us consider the electric field given by
E =yi,
and determine the work done by the field in carrying 3 #C of charge from the

point 4(0, 0, 0) to the point B(1, 1, 0) along the parabolic path y = x2,z =0
shown in Fig. 2.2(a).

AY B

Ay

j20.01

(j— D?0.01

= X

(G-no1  joi
(b)

Figure 2.2. (a) Division of the path y = x2 from 4 (0,0, 0) to B (1,1, 0)
into ten segments. (b) The length vector corresponding to the jth segment
of part (a) approximated as a straight line.

For convenience, we shall divide the path into ten segments having equal
widths along the x direction, as shown in Fig. 2.2(a). We shall number the
segments 1,2, 3, . . ., 10. The coordinates of the starting and ending points of
the jth segment are as shown in Fig. 2.2(b). The electric field at the start of the
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Jth segment is given by
E, = (j — 12 0.0li,

The length vector corresponding to the jth segment, approximated as a
straight line connecting its starting and ending points is

Al = 0.1i, 4 [j2 — (j — 1)2] 0.01i,
— 0.1i, + (2j — 1) 0.01i,

The required work is then given by
10
W8=3x10"5 3 E, « Al
ji=1
1
=3x 10°°¢ Eo] [(j — 1)20.01i,] - [0.1i, - (2j — 1)0.01i,]
j=1

— 3% 1070 3 (j— DA — 1)
/1
=3 X 1071°[0 + 3 + 20 + 63 + 144 + 275 + 468 + 735
+ 1088 + 1539]
=3 X 1071° x 4335 = 1.3005 uJ -

The result that we have obtained in Example 2.1, for W3, is approximate
since we divided the path from A to B into a finite number of segments. By
dividing it into larger and larger numbers of segments, we can obtain more
and more accurate results. In fact, the problem can be conveniently for-
mulated for a computer solution and by varying the number of segments from
a small value to a large value, the convergence of the result can be verified.
The value to which the result converges is that for which n = oo. The summa-
tion in (2.3) then becomes an integral, which represents exactly the work done
by the field and is given by

B
W5 =q L E - dl 2.4)

The integral on the right side of (2.4) is known as the “line integral of E from
A to B.”

Example 2.2. We shall illustrate the evaluation of the line integral by
computing the exact value of the work done by the electric field in Example
2.1.

To do this, we note that at any arbitrary point (x, y, 0) on the curve
y = x2, z = 0, the infinitesimal length vector tangential to the curve is given
by
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dl=dxi, + dyi,
=dxi, + dx?)i,
=dxi, + 2x dxi,

The value of E « dl at the point (x, y, 0) is

E . dl = yi,» (dxi, - dyi,)
= x2i, o (dxi, + 2x dx i)
= 2x3 dx

Thus the required work is given by

B (1,1,0)
Wg:qLE-d|=3><10-6f 2x% dx

(0,0,0)

=3 10—6[2_"“}"‘1 —1.54]

4 x=0 ||

Dividing both sides of (2.4) by ¢, we note that the line integral of E from

A to B has the physical meaning of work per unit charge done by the field in

moving the test charge from A4 to B. This quantity is known as the “voltage

between A and B” and is denoted by the symbol [V13, having the units of
volts, Thus

V]E = E E - dl 2.5)

When the path under consideration is a closed path, as shown in Fig. 2.3,
the line integral is written with a circle associated with the integral sign in the

manner§ E . dl. The line integral of a vector around a closed path is known
[0}

as the “circulation” of that vector. In particular, the line integral of E around a
closed path is the work per unit charge done by the field in moving a test
charge around the closed path. It is the voltage around the closed path and is

Figure 2.3. Closed path C in a region of electric field.
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also known as the “electromotive force.” We shall now consider an example
of evaluating the line integral of a vector around a closed path.

Example 2.3. Let us consider the force field
F = xi

y

and evaluate ff; F . dl where C is the closed path ABCDA shown in Fig. 2.4.
&

AV
3,95
C
(1, 3)
D A
A B
1,1 G, D

=X

Figure 2.4. For evaluating the line integral of a vector field around a
closed path.

Noting that

5€ABCMF.d1=f;F.d1+f:F.d1+LDF.lerJ:F,dl 2.6)

we simply evaluate each of the line integrals on the right side of (2.6) and add
them up to obtain the required quantity. Thus for the side 4B,

y=1, dy=0, dl=adxi,+ O, =dxi,
Fedl=(xi)e(dxi,)=0
B
[[Feat=0
A
For the side BC,
= B dx =0, dl= ), + dyi, = dyi,
Fedl =QGi)e (dyi)=3dy
c 5
jlhdl:j 3dy =12
B 1
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For the side CD,

y=24x, dy = dx, dl = dxi, + dxi,
F o dl = (xi,)) « (dxi, + dxi,) = xdx

I:F-dlzj:xdx=—4

x=1, dx =0, dl = (0)i, + dyi,
Fedl=(,) @dyi)=dy

L’:F dl— j: dy — —2
Finally,

§ Fedl=0+12—4—2=6
ABCDA

2.2 THE SURFACE INTEGRAL

Let us consider a region of magnetic field and an infinitesimal surface at a
point in that region. Since the surface is infinitesimal, we can assume the
magnetic flux density to be uniform on the surface, although it may be non-
uniform over a wider region. If the surface is oriented normal to the magnetic
field lines, as shown in Fig. 2.5(a), then the magnetic flux crossing the surface
is simply given by the productof the surface area and the magnetic flux
density on the surface, that is, B AS. If, however, the surface is oriented
parallel to the magnetic field lines, as shown in Fig. 2.5(b), there is no

B B Normal B
A t f A
A 1.“ A A Lhu ‘MT An
d | AS A\
/ | AS /l 7AS
|1 | qrrl

(a) (b) (c)

Figure 2.5. An infinitesimal surface AS in a magnetic field B oriented (a)
normal to the field, (b) parallel to the field, and (c) with its normal making
an angle & to the field.
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magnetic flux crossing the surface. If the surface is oriented in such a manner
that the normal to the surface makes an angle & with the magnetic field lines
as shown in Fig. 2.5(c), then the amount of magnetic flux crossing the surface
can be determined by considering that the component of B normal to the
surface is B cos o and the component tangential to the surface is B sin a.
The component of B normal to the surface results in a flux of (B cosa) AS
crossing the surface whereas the component tangential to the surface does
not contribute at all to the flux crossing the surface. Thus the magnetic flux
crossing the surface in this case is (B cos &) AS. We can obtain this result
alternatively by noting that the projection of the surface onto the plane
normal to the magnetic field lines is AS cos a.

Let us now consider a large surface S in the magnetic field region, as
shown in Fig. 2.6. The magnetic flux crossing this surface can be found by

Normal

Figure 2.6. Division of a large surface S in a magnetic field region into a
number of infinitesimal surfaces.

dividing the surface into a number of infinitesimal surfaces AS,, AS,, AS,,
... AS, and applying the result obtained above for each infinitesimal surface
and adding up the contributions from all the surfaces. To obtain the con-
tribution from the jth surface, we draw the normal vector to that surface and
find the angle o, between the normal vector and the magnetic flux density
vector B, associated with that surface. Since the surface is infinitesimal, we
can assume B, to be the value of B at the centroid of the surface and we can
also erect the normal vector at that point. The contribution to the total
magnetic flux from the jth infinitesimal surface is then given by

Ay, = B, cosa,; AS; 2.7

where the symbol y represents magnetic flux. The total magnetic flux crossing
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the surface .S is then given by

wls = Ay, + Ay, + Ay, + ... + Ay,
= B, cos 0, AS, - B, cos &, AS, + B; cos 03 AS;
4+ ... B, cosa, AS,

— 3 B, cosa, AS, (2.8)
J—1

In vector notation we make use of the dot product operation between two
vectors to write this quantity as

[wls = le B, - AS,i,, (2.9)

where i,, is the unit vector normal to the surface AS,. In fact, by recalling that
the infinitesimal surface can be considered as a vector quantity having
magnitude equal to the area of the surface and direction normal to the
surface, that is,

AS, = AS, i, (2.10)

we can write (2.9) as
wls = JZZ]I B, . AS, .11

Example 2.4. Let us consider the magnetic field given by
B = 3xy2i, Wb/m?

and determine the magnetic flux crossing the portion of the xy plane lying
between x =0, x =1, y=0,and y = 1.

For convenience, we shall divide the surface into 25 equal areas as showi
in Fig. 2.7(a). We shall designate the squares as 11, 12, ..., 15,21,22, ..., 55
where the first digit represents the number of the square in the x direction and
the second digit represents the number of the square in the y direction. The
x and y coordinates of the midpoint of the ijth square are (2i — 1)0.1 and
(2j — 1)0.1, respectively, as shown in Fig. 2.7(b). The magnetic ficld at the
center of the ijth square is then given by

B, = 3(2i — 1)(2j — 1)20.001i,

Since we have divided the surface into equal areas and since all areas are in
the xy plane,

AS,; = 0.04i, for all i and j
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(2j—1o.1
0 1 = Iy
A LS LS 2i-00—
LI 7 Z LS
[ i LS
WL L L LB
(1,1,0)

(a) (b)

Figure 2.7, (a) Division of the portion of the xy plane lying between x = 0,
x =1,y =0, and y = 1 into 25 squares. (b) The area corresponding to the
ifth square.

The required magnetic flux is then given by

5 5

], = ZE ,; B, - AS,
5

3 3(2i — 1)(2j — 1)20.001i, » 0.04i,

1 /=1

0012 izi;l ; Qi — 12 — 1)?

0.0
0.00012(1 +3 4+ 547491 + 9+ 25+ 49 + 81)
0.495 Wb =

I
DM

i

The result that we have obtained for [y]s in Example 2.4 is approximate
since we have divided the surface S into a finite number of areas. By dividing
it into larger and larger numbers of squares, we can obtain more and more
accurate results. In fact, the problem can be conveniently formulated for a
computer solution, and by varying the number of squares from a small value
to a large value, the convergence of the result can be verified. The value to
which the result converges is that for which the number of squares in each
direction is infinity. The summation in (2.11) then becomes an integral that
represents exactly the magnetic flux crossing the surface and is given by

vls=[ B.ds (2.12)

where the symbol S associated with the integral sign denotes that the integra-
tion is performed over the surface S. The integral on the right side of (2.12) is
known as the “surface integral of B over S.” The surface integral is a double
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integral since dS is equal to the product of two differential lengths. In fact, the
work in Example 2.4 indicates that as 7 and j tend to infinity, the double
summation becomes a double integral involving the variables of integration
x and y.

Example 2.5. We shall illustrate the evaluation of the surface integral by
computing the exact value of the magnetic flux in Example 2.4

To do this, we note that at any arbitrary point (x, y) on the surface, the
infinitesimal surface vector is given by

dS =dxdyi,
The value of B « dS at the point (x, y) is

B« dS =3xy%, s dxdyi,
= 3xy? dx dy

Thus the required magnetic flux is given by

Wls= [ B-ds

- J.;O J'ylo 3xy*dxdy = 0.5Wb

When the surface under consideration is a closed surface, the surface
integral is written with a circle associated with the integral sign in the manner

fj; B . dS. The surface integral of B over the closed surface .S is simply the
S
magnetic flux emanating from the volume bounded by the surface. We shall
now consider an example of evaluating 5(; B . dS.

N
Example 2.6. Let us consider the magnetic field

B = (x + i, + (I — 3p)i, + 2zi,

and evaluate §; B« dS where S is the surface of the cubical box bounded by
S

the planes
=0, x=1
=0, y=1
z=20, z=1

as shown in Fig. 2.8,
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1

e f

X

Figure 2.8. For evaluating the surface integral of a vector field over a
closed surface.

Noting that

ffsB-dS:Lbch-dS—i- B-dS—I—LeMB-dS—[— B . dS

efgh bfec

+ Beas+ [ B.ds (2.13)

aefb dhge

we simply evaluate each of the surface integrals on the right side of (2.13) and
add them up to obtain the required quantity. In doing so, we recognize that
since the quantity we want is the magnetic flux out of the box, we should
direct the normal vectors toward the outside of the box. Thus for the surface
abed,

x=0, B=2 +(—3i +2z, dS=—dydzi,
B.dS=—2dydz

1 1
B-dS:J j (—2)dydz = —2
abcd z=0 vy=0
For the surface efgh,

x =1, B = 3i, + (1 — 3p)i, + 2zi,, dS =dydzi,
B.dS=3dydz

B-dS=LI=D L:osdydz=3

efegh
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For the surface aehd,

y=0, B=(c+i, +li,+ 2z, dS=—dzdxi,
B.dS= —dzdx

.Leth NS = L1=O J.;o (—Ddzdx =—1

For the surface bz,

y=1, B = (x + 2)i, — 2i, + 2zi,, dS = dz dx1i,
B.dS=—2dzdx

B.dszj’

bfegc x=0

f‘ (—2) dzdx = —2
z=0

For the surface aefb,
z=0, B = (x + 2)i, + (1 — 3y}, + 0i,, dS = —dxdyi,
B.dS=0
B.dS=0

aefbh

For the surface dhgc,
z=1, B=(x+2i, + 10— 3, +2i, dS=dxdyi,
B:dS=2dxdy
1 1
B ° — ==
J:ihgc dS J.J'=0 J;=0 2 dx dy 2
Finally,
§ BedS= 2]3-1-240+2=0
S

2.3 FARADAY'S LAW

In the previous sections we introduced the line and surface integrals. We
are now ready to consider Maxwell’s equations in integral form. The first
equation, which we shall discuss in this section, is a consequence of an
experimental finding by Michael Faraday in 1831 that time-varying magnetic
fields give rise to electric fields and hence it is known as “Faraday’s law.”
Faraday discovered that when the magnetic flux enclosed by a loop of wire
changes with time, a current is produced in the loop, indicating that a voltage
or an “clectromotive force,” abbreviated as emf, is induced around the loop.
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The variation of the magnetic flux can result from the time variation of the
magnetic flux enclosed by a fixed loop or from a moving loop in a static
magnetic field or from a combination of the two, that is, a moving loop in a
time-varying magnetic field.

Thus far we have merely stated Faraday’s finding without regard to the
polarity of the induced emf around the loop or that of the magnetic flux
enclosed by the loop. To clarify the point, let us consider a planar circular
loop in the plane of the paper as shown in Fig. 2.9. Then we can talk of emf
induced in the clockwise sense or in the counterclockwise sense. The emf
induced in the clockwise sense is the line integral of E (§ E « dl) evaluated by
traversing the loop in the clockwise direction, as shown in Figs. 2.9(a) and
2.9(b). The emf induced in the counterclockwise sense is the line integral of
E(§ E . dl) evaluated by traversing the loop in the counterclockwise direction,
as shown in Figs. 2.9(c) and 2.9(d). One is, of course, the negative of the other.
Similarly, we can talk of enclosed magnetic flux directed into the paper or out
of the paper. The enclosed magnetic flux into the paper is the surface integral
of B (j B . dS) evaluated over the plane surface bounded by the loop and with
the normal to the surface directed into the paper, as shown in Figs, 2.9(a) and
2.9(c). The enclosed magnetic flux out of the paper is the surface integral of
B (f B + dS) evaluated over the plane surface bounded by the loop and with
the normal to the surface directed out of the paper, as shown in Figs. 2.9(b)
and 2.9(d). One is, of course, the negative of the other.

(a) (b) () (d)

Figure 2.9. Four possible pairs of directions of traversal around a planar
circular loop and normal to the surface bounded by the loop.

If we do not pay any attention to the polarities, we can write four equa-
tions relating the emf around the loop to the magnetic flux enclosed by the
loop. These are

[emf]clockwise = %[magnetic ﬂux]into the paper (2'143)
[emf]clockwise = %[magnetic ﬂux]out of the paper (2'14b)
[emf]counterclockwisa = %[magnetic ﬂux]into the paper (2140)

[emf]counterclockwise == g?[magnetic ﬂux]out of the paper (2'14d)
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The fourth equation is, however, consistent with the first and the third
equation is consistent with the second. Thus we are left with a choice between
the first and the second. Only one of them can be correct since they provide
contradictory results for the emf. Faraday’s experiments showed that the
second equation is the one that should be used. Alternatively, if we wish to
work with clockwise induced emf and magnetic flux into the paper (or with
counterclockwise induced emf and magnetic flux out of the paper), we must
include a minus sign in front of the time derivative. This is, in fact, what is
done conventionally. The convention is to use that normal to the surface
which is directed toward the advancing direction of a right-hand screw when
it is turned in the sense in which the loop is traversed, as shown in Figs. 2.10(a)
and 2.10(b). This is known as the “right-hand screw rule” and is applied
consistently for all electromagnetic field laws. Hence, it is well worthwhile
digesting it at this early stage.

o 3

(a)

Figure 2.10. Right-hand screw rule convention employed in the formula-
tion of electromagnetic field laws.

We can now express Faraday’s law mathematically as

d
E-dl:-—fB-ds 2.15
§C dt S ( )

where S is a surface bounded by C. For the law to be unique, the surface S
need not be a plane surface and can be any curved surface bounded by C. This
tells us that the magnetic flux through all possible surfaces bounded by C must
be the same. We shall make use of this later. In fact, if Cis not a planar loop,
we cannot have a plane surface bounded by C. A further point of interest is
that C need not represent a loop of wire but can be an imaginary closed path.
It means that the time-varying magnetic flux induces an electric field in the
region and this results in an emf around the closed path. If a wire is placed in
the position occupied by the closed path, the emf will produce a current in the
loop simply because the charges in the wire are constrained to move along the
wire. Let us now consider some examples.

Example 2.7. A rectangular loop of wire with three sides fixed and the fourth
side movable is situated in a plane perpendicular to a uniform magnetic field
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<Y

X X X X X X X X

Figure 2,11. A rectangular loop of wire with a movable side situated in
a uniform magnetic field.

B = B,i,, asillustrated in Fig. 2.11. The movable side consists of a conducting
bar moving with a velocity v, in the y direction. It is desired to find the emf
induced in the loop.

Letting the position of the movable side at any time ¢ be y, + v,¢, we
obtain the magnetic flux enclosed by the loop and directed into the paper as

v = (area of the loop)B,
= l(y, + vot)B,

The emf induced in the loop in the clockwise sense is then given by

4
jﬁE-dl_ s

= — L1 + v0)By]
= —B,ly,

Thus if the bar is moving to the right, the induced emf produces a current in
the counterclockwise sense. Note that this polarity of the current is such that
it gives rise to a magnetic field directed out of the paper inside the loop. The
flux of this magnetic field is in opposition to the flux of the original magnetic
field and hence tends to decrease it. This observation is in accordance with
“Lenz’s law,” which states that the induced emf is such that it acts to oppose
the change in the magnetic flux producing it. The minus sign on the right side
of Faraday’s law ensures that Lenz’s law is always satisfied.

It is also of interest to note that the induced emf can also be interpreted
as due to the electric field induced in the moving bar by virtue of its motion
perpendicular to the magnetic field. Thus a charge Q in the bar experiences a
force F = Qv x B or Qv,i, x Byi, = Qv,Bi,. To an observer moving with
the bar, this force appears as an electric force due to an electric field F/Q =
vy Bi,. Viewed from inside the loop, this electric field is in the counter-
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clockwise direction and hence the induced emf is v,B,/ in that sense as
deduced above from Faraday’s law. This concept of induced emf is known
as the “motional emf concept,” which is employed widely in the study of
electromechanics. -

Example 2.8. A time-varying magnetic field is given by
B = B, cos ot i,

where B, is a constant. It is desired to find the induced emf around a rectan-
gular loop in the xz plane as shown in Fig. 2.12.

X X X X X X X
v x=0
2  ——
X X X X X X X
z=0 z=b
X A X X X X X ¥ X
X X X X X X X
< B, cos wf i,
x=a :
X l X X X X X X

X
Figure 2.12. A rectangular loop in the xz plane situated in a time-varying
magnetic field,

The magnetic flux enclosed by the loop and directed into the paper is given
by

b ]
v = LB + dS = J-FO x=0B0 coswt i, dxdzi,
b a
= B, cos wt J. dx dz = abB, cos wt
z=0 Jx=0

The induced emf in the clockwise sense is then given by

d
E'dl:—'— BodS
§C dt S

= — %[abB0 cos wt] = abB,w sin wt

The time variations of the magnetic flux enclosed by the loop and the
induced emf around the loop are shown in Fig. 2.13. It can be seen that when
the magnetic flux enclosed by the loop is decreasing with time, the induced
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Figure 2.13. Time variations of magnetic flux ¥ enclosed by the loop of
Fig. 2.12, and the resulting induced emf around the loop.

emf is positive, thereby producing a clockwise current if the loop were a wire.
This polarity of the current gives rise to a magnetic field directed into the
paper inside the loop and hence acts to increase the magnetic flux enclosed by
the loop. When the magnetic flux enclosed by the loop is increasing with time,
the induced emf is negative, thereby producing a counterclockwise current
around the loop. This polarity of the current gives rise to a magnetic field
directed out of the paper inside the loop and hence acts to decrease the
magnetic flux enclosed by the loop. These observations are once again con-
sistent with Lenz’s law. . ]

2.4 AMPERE’S CIRCUITAL LAW

In the previous section we introduced Faraday’s law, one of Maxwell’s
equations, in integral form. In this section we introduce another of Maxwell’s
equations in integral form. This equation, known as “Ampere’s circuital law,”
is a combination of an experiemental finding of Oersted that electric currents
generate magnetic fields and a mathematical contribution of Maxwell that
time-varying electric fields give rise to magnetic fields. It is this contribution
of Maxwell that led to the prediction of electromagnetic wave propagation
even before the phenomenon was discovered experimentally. In mathematical
form, Ampere’s circuital law is analogous to Faraday’s law and is given by

§ E-dl:fJ-dSJrifeoE-ds .16)
C S dt S

0
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where S is any surface bounded by C. Here again, in order to evaluate the
surface integrals on the right side of (2.16), we choose that normal to the
surface which is directed toward the advancing direction of a right-hand
screw when it is turned in the sense of C, just as in the case of Faraday’s law.
Also, both integrals on the right side of (2.16) must be evaluated on the same
surface, whatever be the surface chosen.

The quantity J on the right side of (2.16) is the volume current density
vector having the magnitude equai to the maximum value of curreni per unit
area (amp/m2) at the point under consideration, as discussed in Sec. 1.5.

Thus the quantity f J « dS, being the surface integral of J over S, has the
s

meaning of current due to flow of charges crossing the surface S bounded by
C. It also includes line currents, that is, currents flowing along thin filamentary
wires enclosed by C, and surface currents, that is, currents flowing along

ribbon-like wires enclosed by C. Thus f J » dS, although formulated in
S

terms of the volume current density vector J, represents the algebraic sum of
all the currents due to flow of charges across the surface S.

The quantity f €,E + dS on the right side of (2.16) is the flux of the vector
N

field €,E crossing the surface S. The vector €,E is known as the “displacement
vector” or the “displacement flux density vector” and is denoted by the
symbol D. By recalling from (1.52) that E has the units of (charge) per
[(permittivity)(distance)?], we note that the quantity D has the units of charge

per unit area or C/m2. Hence the quantity J. €,E « dS, that is, the displace-
S
ment flux has the units of charge, and the quantity%f €,E + dS has the
S

units of %(charge) or current and is known as the “displacement current.”

Physically, it is not a current in the sense that it does not represent the
flow of charges, but mathematically it is equivalent to a current crossing the
surface S.

B

The quantit
q y ffc s
vector field B/u, around the closed path C. We learned in Sec. 2.1 that the

« dl on the left side of (2.16) is the line integral of the

quantityff E - dl has the physical meaning of work per unit charge associat-
c

ed with the movement of a test charge around the closed path C. The quantity

§ L dl does not have a similar physical meaning. This is because magnetic
c Ko

force on a moving charge is directed perpendicular to the direction of motion
of the charge as well as to the direction of the magnetic field and hence does
not do work in the movement of the charge. The vector B/x, is known as the
“magnetic field intensity vector” and is denoted by the symbol H. By recalling
from (1.68) that B has the units of [(permeability)(current)(length)] per
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[(distance)?], we note that the quantity H has the units of current per unit

distance or amp/m. This gives the units of current or amp to fi; H.dl.In
c
analogy with the name “electromotive force” for 36 E « dl, the quantity
c

§ H . dlis known as the “magnetomotive force,” abbreviated as mmf.
c

Replacing B/u, and €,E in (2.16) by H and D, respectively, we rewrite
Ampere’s circuital law as

§Hdhﬁﬁuw+% D.ds @2.17)
(o) S S

In words, (2.17) states that “the magnetomotive force around a closed path C
is equal to the total current, that is, the current due to actual flow of charges
plus the displacement current bounded by C.” When we say “the total current
bounded by C,” we mean “the total current crossing any given surface S
bounded by C.” This implies that the total current crossing all possible sur-

faces bounded by C must be the same since for a given C, ff; H » dl must have
c

a unique value.

Example 2.9. An infinitely long, thin, straight wire situated along the z axis
carries a current J amperes in the z direction. It is desired to find 3@ H.dl
c

around a circle of radius a lying on the xy plane and centered at the origin as
shown in Fig. 2.14.

Let us consider the plane surface enclosed by C. The total current crossing
the surface consists entirely of the current 7 carried by the wire. In fact, since
the wire is infinitely long, the total current crossing any of the infinite number
of surfaces bounded by C is equal to I. The situation is illustrated in Fig,
2.14(a) for a few of the infinite number of surfaces. Thus, noting that the
current  is bounded by C in the right-hand sense, and that it is uniquely given,
we obtain

§JL&=I (2.18)

We can proceed further and evaluate H at points on the circular path from
symmetry considerations. In order for SF H . dl to be nonzero, H must be
c

directed (or have a component) tangential to the circular path and then from
symmetry considerations, it must have the same magnitude at all points on the
circle since the circle is centered at the wire. We, however, know from
elementary considerations of the magnetic field due to a current element that
H must be directed entirely tangential to the circular path. Thus let us divide
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a
L

(a) (b)

Figure 2.14. (a) For illustrating the uniqueness of a wire current enclosed
by a closed path for an infinitely long, straight wire. (b) For finding the
magnetic field due to the wire.

the circle into a large number of equal segments, say #, as shown in Fig.
2.14(b). Since the length of each segment is 2za/n and since H is parallel to
the segment, H ¢ dl for the segment is (2za/n)H and

ff H.dl= znﬂH (number of segments)
c

From (2.18), we then have
2naH =1

or
T
Hi—me

Thus the magnetic field intensity due to the infinitely long wire is directed
circular to the wire in the right-hand sense and has a magnitude I/2ra where
a is the distance of the point from the wire. The method we have discussed
here is a standard procedure for the determination of the static magnetic field
due to current distributions possessing certain symmetries. We shall include
some cases in the problems for the interested reader. =

If the wire of Example 2.9 is finitely long, say, extending from —d to +d
on the z axis, then the construction of Fig. 2.15 illustrates that for some
surfaces the wire pierces through the surface whereas for some other surfaces
it does not. Thus for this case there is no unique value of the wire current
alone that is enclosed by C. Hence there must be a displacement current



66 CH. 2 MAXWELL’S EQUATIONS IN INTEGRAL FOrRM

Figure 2.15. For illustrating that the wire current enclosed by a closed path
is not unique for a finitely long wire,

through the surfaces in addition to the wire current so that the total current
enclosed by C is uniquely given. In fact, this displacement current is provided
by the time-varying electric field due to charges accumulating at one end and
depleting at the other end of the current-carrying wire. Thus considering, for
example, the surfaces S| and S; and setting the total currents through S, and
S; to be equal, we have

f J-ds+if D'dS=f J-ds+if D.dS (2.19)
5 dt Js, . at Js.
Now, since the wire pierces through S; in the right-hand sense,
JedS=1 (2.20)
S
The wire does not pierce through S,. Hence

JedS=0 (2.21)
83

Substituting (2.20) and (2.21) into (2.19), we get

d B d )
I+ £ SID-dS—O—I——dtL!D ds (2.22)
or
d d _
E SaD'dS—gt—J‘SlD'ds—I (2.23)

Reversing the sense of evaluation of the surface integral of D over S, and
changing the minus sign to a plus sign, we obtain
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7§
mtel D.dS=1 2.24)
dt Sa+81 (

Thus the displacement current emanating from the closed surface S; + S; is
equal to 1.

Another example in which the wire current enclosed by C is not uniquely
defined is shown in Fig. 2.16 which is that of a simple circuit consisting of a
capacitor driven by an alternating voitage source. Considering two surfaces
S, and S, where S, cuts through the wire and S, passes between the plates of
the capacitor, we have

JedS=1 (2.25)

81

and

JedS =0 (2.26)

1A

Figure 2.16. A capacitor circuit illustrating that the wire current enclosed
by a closed path is not unique.

If we neglect fringing and assume that the electric field in the capacitor is
contained entirely within the region between the plates, then

D.dS=0 2.27)

S

For ff H . dI to be unique,
c

fJ-dS—l—i D-dS=fJ-dS+ifD-dS (2.28)
S1 dt S S2 dt Sa

Substituting (2.25), (2.26), and (2.27) into (2.28), we obtain

d

%) D.dS—1 (2.29)
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Thus the displacement current, that is, the time rate of change of the displace-
ment flux between the capacitor plates, is equal to the wire current.

Example 2.10. A time-varying electric field is given by
E = E,zsin wt i,

where E, is a constant. It is desired to find the induced mmf around a rectan-
gular loop in the yz plane, as shown in Fig. 2.17.

J) X X X X
P
: Eyzsinwt i
X X X X
Z=Ojk Yz=5
X X [x x
~ —_— 7
X y=0
X X X X

Figure 2.17. A rectangular loop in a time-varying electric field.

The total current here is composed entirely of displacement current. The
displacement flux enclosed by the loop and directed into the paper is given by

LD-dSZfbofdoeoEozsmwtix-dydzix
el

] d
= €,E, sin wt J. f zdydz
z=0 Jy=0

2
. fol%i'Eg Sin wt

The induced mmf around C is then given by

ff; H-dlz% D . ds
(& s

2

= %(fob—on sin cot)

2
— Eodeng Cos !



2.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous two sections we learned two of the four Maxwell’s equa-
tions. These two equations have to do with the line integrals of the electric
and magnetic fields around closed paths. The remaining two Maxwell’s
equations are pertinent to the surface integrals of the electric and magnetic
fields over closed surfaces. These are known as Gauss’ laws. The Gauss’ law
for the magnetic field states that “the total magnetic flux emanating from a
closed surface S is equal to zero.” In mathematical form, this is given by

§SB «dS=0 (2.30)

Equation (2.30) is not independent of Faraday’s law. This can be shown
by considering a closed path C and two surfaces S; and S,, both of which are
bounded by C as shown in Fig. 2.18. Applying Faraday’s law to C and S, we
have

jc E-dl:-if B . dS, .31)
c dt 51

where dS, is directed out of the volume bounded by the closed surface
S; + S,. Applying Faraday’s law to C and S,, we have

§E-dl=iJB-dS2 2.32)
c dt S

where dS, is directed out of the volume bounded by S; + §;. Combining
(2.31) and (2.32), we obtain

d

d | g.gs, =2 | B.ds, (2.33)
Sa

Tt g dt

Figure 2.18. A closed path C, and two surfaces S1 and S, bounded by C.

69
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or
d
4 B.dS—0 (2.34)
dt Si1+8
or
§ B « dS = constant with time (2.35)
S1+82

Since there is no experimental evidence that the right side of (2.35) is nonzero,
it follows that

§SB-dS=o

where we have replaced S; 4 S, by S.

In physical terms, (2.30) signifies that magnetic charges do not exist and
magnetic flux lines are closed. Whatever magnetic flux enters (or leaves) a
certain part of a closed surface must leave (or enter) through the remainder of
the closed surface.

2.6 GAUSS’ LAW FOR THE ELECTRIC FIELD

Gauss’ law for the electric field states that “the total displacement flux
emanating from a closed surface S is equal to the total charge contained
within the volume ¥V bounded by that surface.” This statement, although
familiarly known as Gauss’ law, has its origin in experiments conducted by
Faraday. In mathematical form, Gauss’ law for the electric field is given by

D.dS= | pav (2.36)
$, J,

where p is the volume charge density associated with points in the volume V.
The volume charge density at a point is defined as the charge per unit volume
(C/m?) at that point in the limit that the volume shrinks to zero. Thus

As an illustration of the computation of the charge contained in a given
volume for a specified charge density, let us consider

p=x+y—+zCm?

and the cubical volume ¥V bounded by the planes x =0, x=1, y =0,
y=1,z=0, and z = 1. Then the charge Q contained within the cubical
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volume is given by
Q=fpdv=f:= j1 fl (x+y+2)dxdydz

_f=0£ 0[xz—l—yz ];odxdy

= on= (45 + 5 ) dxdy

=£=0|:xy+ -|—— ; dx

_L_ (x + Ddx
2 1

=[5+,

_3

=3

Although the quantity on the right side of (2.36), that is, the charge
contained within the volume ¥ bounded by the surface S associated with the
quantity on the left side of (2.36) is formulated in terms of the volume charge
density, it includes surface charges, line charges, and point charges enclosed
by S. Thus it represents the algebraic sum of all the charges contained in the
volume V. Let us now consider an example.

Example 2.11. A point charge Q is situated at the origin. It is desired to
find ff D . 4S and D over the surface of a sphere of radius @ centered at the
s
origin.
According to Gauss’ law for the electric field, the required displacement
flux is given by

3€SD cdS=0 (2.38)

To evaluate D on the surface of the sphere, we note that in order for fl; D.dS
S

to be nonzero, D must be directed normal to the spherical surface. From
symmetry considerations, it must have the same magnitude at all points on the
spherical surface since the surface is centered at the origin. Thus let us divide
the spherical surface into a large number of infinitesimal areas, as shown in
Fig. 2.19. Since D is normal to each area, D « dS for each area is simply equal
to D dS. Hence
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D D

b~ ol

Figure 2.19. For evaluating the displacement flux density over the surface
of a sphere centered at a point charge,

fst-dS: DLdS

= D (surface area of the sphere)

= 4ga*D
From (2.38), we then have
4na*D = Q
or
p_ @

4na®

Thus the displacement flux density due to the point charge is directed away
from the charge and has a magnitude Q/4na? where qg is the distance of the
point from the charge. The method we have discussed here is a standard
procedure for the determination of the static electric field due to charge dis-
tributions possessing certain symmetries. We shall include some cases in the
problems for the interested reader. -

Gauss’ law for the electric field is not independent of Ampere’s circuital
law if we recognize that, in view of conservation of electric charge, “the total
current due to flow of charges emanating from a closed surface S is equal to
the time rate of decrease of the charge within the volume V bounded by S,”

that is,
d
J.dS = ——f dv
§S dt Vp

§J.ds+g_fpdv=0 2.39)
S t 14

or

This statement is known as the “law of conservation of charge.” In fact, it is
this consideration that led to the mathematical contribution of Maxwell to
Ampere’s circuital law. Ampere’s circuital law in its original form did not



SEC. 2.7 SUMMARY 73

include the displacement current term which resulted in an inconsistency with
(2.39) for time-varying fields.

Returning to the discussion of the dependency of Gauss’ law on Ampere’s
circuital law through (2.39), let us consider the geometry of Fig. 2.18.
Applying Ampere’s circuital law to C and S, and to C and S, we get

jEH.dl: [ 5.as, +_fD ds, (2.402)
C
and
§H.d1:—f J.dsz—if D.ds, (2.40b)
[od S dt S

respectively. Combining (2.40a) and (2.40b), we obtain

jﬁ J.ds+%§ D-dS—0 (2.41)
S1+S3 S+ 82

Now, using (2.39), we have

d
— g )Pt g §D ds = 0
or
EH D-dS—J pdvi‘:O (2.42)
EARP ,

where we have replaced .S, + S, by S and where ¥ is the volume enclosed by
S, + S,. Thus from (2.42), we get

§ D.dS — [ pdv— constant with time (2.43)
s Jv

Since there is no experimental evidence that the right side of (2.43) is nonzero,
it follows that

f{;SD-dS:J.Vpdv

thereby giving Gauss’ law for the electric field.

2.7 SUMMARY

We first learned in this chapter how to evaluate line and surface integrals
of vector quantities and then we introduced Maxwell’s equations in integral
form. These equations, which form the basis of electromagnetic field theory,
are given as follows in words and in mathematical form and are illustrated in
Figs. 2.20 through 2.23.
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FARADAY’S LAW: The electromotive force around a closed path C is
equal to the negative of the time rate of change of the magnetic flux enclosed
by that path, that is,

ff E-dl:—ifB.ds (2.44)
c dt S

AMPERE’S CIRCUITAL LAw: The magnetomotive force around a closed
path C is equal to the sum of the current enclosed by that path due to the
actual flow of charges and the displacement current due to the time rate of
change of the displacement flux enclosed by that path, that is,

§H-dl=fJ»dS+%fD-dS (2.45)
(o4 S S

Figure 2.21. For illustrating Ampere’s circuital law,
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GAuss’ LAw ForR THE MAGNETIC FIELD: The magnetic flux emanating
from a closed surface S is equal to zero, that is,

ffs B.dS=0 (2.46)

Gauss’ Law For THE ELECTRIC FIELD: The displacement flux emanating
from a closed surface S is equal to the charge enclosed by that surface, that is,

§s D.dS—= L pdv (2.47)

The vectors D and H, known as the displacement flux density and the
magnetic field intensity vectors, respectively, are related to E and B, known
as the electric field intensity and the magnetic flux density vectors, respec-

Dy
// Fri \\

Figure 2.22. For illustrating Gauss® law for the magnetic field.

Figure 2.23. For illustrating Gauss’ law for the electric field.
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tively, in the manner

D = ¢,E (2.48)
B

H=— 2.49
Ho )

where €, and u, are the permittivity and the permeability of free space,
respectively. In evaluating the right sides of (2.44) and (2.45), the normal
vectors to the surfaces must be chosen such that they are directed in the right-
hand sense, that is, toward the side of advance of a right-hand screw as it is
turned around C, as shown in Figs. 2.20 and 2.21. We have also learned that
(2.46) is not independent of (2.44) and that (2.47) follows from (2.45) with the
aid of the law of conservation of charge given by

§J.ds+ifpdv:o (2.50)
S dt |4

In words, (2.50) states that the sum of the current due to the flow of charges
across a closed surface S and the time rate of increase of the charge within
the volume ¥ bounded by S is equal to zero. In (2.46), (2.47), and (2.50) the
surface integrals must be evaluated in order to find the flux outward from the
volume bounded by the surface.

REVIEW QUESTIONS

2.1. How do you find the work done in moving a test charge by an infinitesimal
distance in an electric field ?

2.2. What is the amount of work involved in moving a test charge normal to the
electric field ?

2.3. What is the physical interpretation of the line integral of E between two points
A and B?

2.4. How do you find the approximate value of the line integral of a vector along a
given path?

2.5. How do you find the exact value of the line integral ?

2.6. What is the physical significance of the line integral of the earth’s gravita-
tional field intensity ?

2.7. What is the value of the line integral of the earth’s gravitational field intensity
around a closed path?

2.8. How do you find the magnetic flux crossing an infinitesimal surface ?

2.9. What is the magnetic flux crossing an infinitesimal surface oriented parallel
to the magnetic flux density vector?
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2.10.

2.11.

2.12.
2.13.

2.14.
2.15.

2.16.
2.17.
2.18.

2.19.
2.20.
2.21.

2.22.
2.23.
2.24.
2.25.
2.26.

2.27.

2.28.

2.29

2.30.

2.31.

2.32.

2.33.

For what orientation of the infinitesimal surface relative to the magnetic flux
density vector is the magnetic flux crossing the surface a maximum?

How do you find the approximate value of the surface integral over a given
surface?

How do you find the exact value of the surface integral ?

Provide physical interpretations for the closed surface integrals of any two
vectors of your choice.

State Faraday’s law.

Why is it necessary to have the minus sign associated with the time rate of
increase of magnetic flux on the right side of Faraday’s law ?

What is electromotive force?
What are the different ways in which an emf is induced around a loop ?

To find the induced emf around a planar loop, is it necessary to consider the
nagnetic flux crossing the plane surface bounded by the loop?

Discuss briefly the motional emf concept.
What is Lenz’s law ?

How would you orient a loop antenna in order to obtain maximum signal
from an incident electromagnetic wave which has its magnetic field linearly
polarized in the north-south direction?

State three applications of Faraday’s law.

State Ampere’s circuital law.

What are the units of the magnetic field intensity vector ?
What are the units of the displacement flux density vector?

What is displacement current? Give an example involving displacement cur-
rent.

Why is it necessary to have the displacement current term on the right side of
Ampere’s circuital law?

When can you say that the current in a wire enclosed by a closed path is uni-
quely defined ? Give two examples.

Give an example in which the current in a wire enclosed by a closed path is not
uniquely defined.

Is it meaningful to consider two different surfaces bounded by a closed path
to compute the two different currents on the right side of Ampere’s circuital

law to find if; H . dl around the closed path?

Discuss briefly the application of Ampere’s circuital law to determine the
magnetic field due to current distributions.

State Gauss’ law for the magnetic field. How is it derived from Faraday’s law ?

What is the physical interpretation of Gauss’ law for the magnetic field ?
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2.34.
2.35.
2.36.
2.37.
2.38.

2.39.
2.40.
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State Gauss’ law for the electric field.

How is volume charge density defined ?

State the law of conservation of charge.

How is Gauss’ law for the electric field derived from Ampere’s circuital law ?

Discuss briefly the application of Gauss’ law for the electric field to determine
the electric field due to charge distributions.

Summarize Maxwell’s equations in integral form.

Which two of the Maxwell’s equations are independent ?

PROBLEMS

2.1.

2.2,

2.3.

24.

2.5.

2.6.

2.7.

2.8,

For the force field F = x2i,, find the approximate value of the line integral of
F from the origin to the point (1, 3, 0) along a straight line path by dividing
the path into ten equal segments.

For the force field F = x2i,, obtain a series expression for the line integral of
F from the origin to the point (1, 3, 0) along a straight line path by dividing
the path into # equal segments. Express the sum of the series in closed form
and compute its value for values of # equal to 5, 10, 100, and co.

For the force field F = x2i,, find the exact value of the line integral of F from
the origin to the point (1, 3, 0) along a straight line path.
(1,1,0)

Given E = yi, + xi,, find j( E . dl along the following paths: (a)

0,0,0)
straight line path y = x, z = 0, (b) straight line path from (0, 0, 0) to (1, 0, 0)
and then straight line path from (1, 0, 0) to (1, 1, 0), and (c) any path of your
choice.

Show that for any closed path C, .(j;c dl = 0 and hence show that for a uniform
field F, .‘f;c F.dl=0.

Given F = yi, — xi,, find Sgc F . dl where C'is the closed path in the xy plane

consisting of the following: the straight line path from (0, 0, 0) to (—1, 1, 0),
the straight line path from (—1, 1, 0) to (0, /2, 0), the straight line path
from (0, 4/ 2, 0) to (0, 1, 0), the circular path from (0, 1, 0) to (1, 0, 0) having
its center at (0, 0, 0), and the straight line path from (1, 0, 0) to (0, 0, 0).

Given F = xyi, + yzi, + zxi,, find '(J;c F « dl where C is the closed path com-

prising the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and
from (1, 1, 0) to (0, 0, 0).

For the magnetic flux density vector B = x2¢~7i, Wb/m2, find the approxi-
mate value of the magnetic flux crossing the portion of the xy plane lying
between x =0, x = 1, y = 0, and y = 1, by dividing the area into 100 equal
parts.
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2.9.

2.10.

2.11.

212,

2.13.

2.14.

2.15.

2.16

2.17.

2.18.

2.19.

For the magnetic flux density vector B = x%~*i, Wb/m2, obtain a series
expression for the magnetic flux crossing the portion of the xy plane lying
between x =0, x = 1, y = 0, and y = 1, by dividing the area into n? equal
parts. Express the sum of the series in closed form and compute its value for
values of » equal to 5, 10, 100, and co.

For the magnetic flux density vector B = x2e™7i, Wb/m?, find the exact value
of the magnetic flux crossing the portion of the xy plane lying between x = 0,
x =1,y =0, and y = 1, by evaluating the surface integral of B.

Given A = xi, + yi, + zi,, find fSA + dS where S is the hemispherical sur-

face of radius 2 m lying above the xy plane and having its center at the origin.

Show that for any closed surface S, ffs dS = 0 and hence show that for a uni-

form field A, jgsA . dS —0.

Given J = 3xi, + (v — i, + (2 + 2)i, amp/m?, find f};sJ « dS, that is, the

current flowing out of the surface S of the rectangular box bounded by the
planessx =0, x =1,y =0,y =2,z =0,and z = 3.

Given E = (i, — xi,) cos 0t V/m, find the time rate of decrease of the
magnetic flux crossing toward the positive z side and enclosed by the path in
the xy plane from (0, 0, 0) to (1, 0, 0) along y = 0, from (1, 0, 0) to (1, 1, 0)
along x = 1, and from (1, 1, 0) to (0, 0, 0) along y = x?.

A magnetic field is given in the xz plane by B = %iy Whb/m2, where By is a

constant. A rigid rectangular loop is situated in the xz plane and with its cor-
ners at the points (xo, zg), (X0, Zo -+ B), (xo + a, 2o + b), and (xo + a, 2o)-
If the loop is moving in that plane with a velocity v = vi, m/s, where v, is a
constant, find by using Faraday’s law the induced emf around the loop in the
sense defined by connecting the above specified points in succession. Discuss
your result by using the motional emf concept.

Assuming the rectangular loop of Problem 2.15 to be stationary, find the

induced emf around the loop if B = —B;c—° cos wt i, Wb/m2.

Assuming the rectangular loop of Problem 2.15 to be moving with the velocity

v = vgi, m/s, find the induced emf around the loop if B = 1—;2 cos ot i, Wb/m?,

For B = B, cos wt i, Wb/m2, find the induced emf around the closed path
comprising the straight lines successively connecting the points (0, 0, 0),
@, 0, 0.01), (1, 1, 0.02), (0, 1, 0.03), (0, 0, 0.04), and (0, 0, 0).

Repeat Problem 2.18 for the closed path comprising the straight lines succes-
sively connecting the points (0,0, 0), (1,0,0.01), (1,1,0.02), (0, 1, 0.03),
(0, 0, 0.04), (1, 0, 0.05), (1, 1, 0.06), (0, 1, 0.07), (0, 0, 0.08), and (0, 0, 0), with
a slight kink in the last straight line at the point (0, 0, 0.04) to avoid touching
the point.
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2.20.

2.21.

2.22,

2.23.

2.24.

2.25

2.26.

2.27.

2.28

2.29.

2.30.
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A rigid rectangular locp of area A is situated normal to the xy plane and
symmetrically about the z axis. It revolves around the z axis at @, rad/s in the
sense defined by the curling of the fingers of the right hand when the z axis is
grabbed with the thumb pointed in the positive z direction. Find the induced
emf around the loop if B = B, cos @t i, where B, is a constant, and show
that the induced emf has two frequency components (@, - @;) and
lCOl — @, I

For the revolving loop of Problem 2.20, find the induced emf around the loop
if B= Bo(COS it i. + sin [O2%3 iy).

For the revolving loop of Problem 2.20, find the induced emf around the loop
if B = Bo(cos w1, — sin @, 7i,).

A current I; amp flows from infinity to a point charge at the origin through a
thin wire along the negative y axis and a current I, amp flows from the point
charge to infinity through another thin wire along the positive y axis. From

considerations of uniqueness of fj; H . dl, find the displacement current ema-
Cc

nating from (a) a spherical surface of radius 1 m and having its center at the
point (2, 2, 2) and (b) a spherical surface of radius 1 m and having its center
at the origin.

A current density due to flow of charges is given by J = y cos @t i, amp/m?2.
From consideration of uniqueness of fﬁc H . dl, find the displacement current

emanating from the cubical box bounded by the planes x =0, x =1,y = 0,
y=1z=0,andz=1.

An infinitely long, cylindrical wire of radius a, having the z axis as its axis,
carries current in the positive z direction with uniform density J, amp/m?2,
Find H both inside and outside the wire.

An infinitely long, hollow, cylindrical wire of inner radius @ and outer radius
b, having the z axis as its axis, carries current in the positive z direction with
uniform density J, amp/m2, Find H everywhere.

An infinitely long, straight wire situated along the z axis carries current 7 amp
. o — (0,1,0)

in the positive z direction. What are the values of fu - H . dl along (a) the
circular path of radius 1 m and centered at the origin and (b) along a straight
line path?

Using the property that §S B.dS =0, find J- B - dS over that portion of the
surface y = sin x bounded by x =0, x =7, z=0, and z =1, for B =
Vi, — xi,.

Given D = yi,, find the charge contained in the volume of the wedge-shaped
box defined by the planes x =0, x - z=1,y =0,y =1,and z = 0.

Given p = xe~** C/m?, find the displacement flux emanating from the sur-
face of the cubical box defined by the planes x =0, x =1,y =0,y =1,
z=0,and z = 1.
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2.31.

2.32.

2.33.

2.34.

2.35.

Charge is distributed uniformly along the z axis with density pro, C/m. Using
Gauss’ law for the electric field, find the electric field intensity due to the line
charge.

Charge is distributed uniformly with density p, C/m? within a spherical vol-
ume of radius ¢ m and having its center at the origin. Using Gauss’ law for the
electric field, find the electric field intensity both inside and outside the charge
distribution.

A point charge Q C is situated at the origin. What are the values of the dis-
placement flux crossing (a) the spherical surface x2 4+ y? + z2 =1, x > 0,
y > 0,and z > 0 and (b) the planesurfacex +y +z=1,x > 0,y > 0,and
z>0?

Given J = xi, amp/m2, find the time rate of increase of the charge contained
in the cubical volume bounded by the planes x =0, x =1, y =0, y =1,
z=0,and z = 1.

Given J = xi, amp/m?, find the time rate of increase of the charge contained
in the volume of the wedge-shaped box that is defined by the planes x = 0,
x+z=1,y=0,y=1andz=0.



ePe MAXWELL’S
EQUATIONS
IN
DIFFERENTIAL
FORM

In Chap. 2 we introduced Maxwell’s equations in integral form. We
learned that the quantities involved in the formulation of these equations are
the scalar quantities, electromotive force, magnetomotive force, magnetic
flux, displacement flux, charge, and current, which are related to the field
vectors and source densities through line, surface, and volume integrals. Thus
the integral forms of Maxwell’s equations, while containing all the informa-
tion pertinent to the interdependence of the field and source quantities over a
given region in space, do not permit us to study directly the interaction
between the field vectors and their relationships with the source densities at
individual points. It is our goal in this chapter to derive the differential forms
of Maxwell’s equations that apply directly to the field vectors and source
densities at a given point.

We shall derive Maxwell’s equations in differential form by applying
Maxwell’s equations in integral form to infinitesimal closed paths, surfaces,
and volumes, in the limit that they shrink to points. We will find that the
differential equations relate the spatial variations of the field vectors at a
given point to their temporal variations and to the charge and current
densities at that point. In this process we shall also learn two important
operations in vector calculus, known as curl and divergence, and two related
theorems, known as Stokes’ and divergence theorems.
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31 FARADAY’S LAW

We recall from the previous chapter that Faraday’s law is given in
integral form by

d
E.-dl=—— | B.dS 3.1
§C dt Iy ( )

where S is any surface bounded by the closed path C. In the most general
case, the electric and magnetic fields have all three components (x, y, and z)
and are dependent on all three coordinates (x, y, and z) in addition to time
(¢). For simplicity, we shall, however, first consider the case in which the
electric field has an x component only, which is dependent only on the z
coordinate, in addition to time. Thus

E = E.(z, i, 3.2

In other words, this simple form of time-varying electric field is everywhere
directed in the x direction and it is uniform in planes parallel to the xy plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the xz plane and defined by the points (x, 2), (x, z + Az),
(x + Ax, z + Az), and (x + Ax, z) as shown in Fig. 3.1. According to

y > 2

(x,2) Az (x,z + Az)

Ax A ) YC
(x+Ax,z)  (x+Ax,z+Az)
Y«

Figure 3.1. Infinitesimal rectangular path lying in a plane parallel to the
xz plane.

Faraday’s law, the emf around the closed path C is equal to the negative of
the time rate of change of the magnetic flux enclosed by C. The emf is given
by the line integral of E around C. Thus evaluating the line integrals of E
along the four sides of the rectangular path, we obtain

(x,2+Az)
f( “Eedl=0 since E,—0 (3.3a)

X, 2)

84
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(x+Ax,z+Az)
f E«dl =[E]l.a Ax (3.3b)
(x,z+Az)
(x+Ax,z)
j E+dl—0 since E, =0 (3.3¢)
(x+Ax,z+Az)
(x,z
f " E.dl— —[E], Ax (3.3d)
{(x+Ax,z)

Adding up (3.3a)-(3.3d), we obtain

§ B dl=[E]sAx — [E,]. Ax
= ((E.Lsas — [E,]} Ax (3.4)

In (3.3a)-(3.3d) and (3.4), [E,], and [E,].. 4, denote values of E, evaluated
along the sides of the path for which z = z and z = z + Az, respectively.

To find the magnetic flux enclosed by C, let us consider the plane surface
S bounded by C. According to the right-hand screw rule, we must use the
magnetic flux crossing S toward the positive y direction, that is, into the page,
since the path C is traversed in the clockwise sense. The only component of B
normal to the area S is the y component. Also since the area is infinitesimal in
size, we can assume B, to be uniform over the area and equal to its value at
(x, 2). The required magnetic flux is then given by

j B . dS =[B,],.., Ax Az (3.5)
S

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the
rectangular path C under consideration, we get

(Eds: — [EL} Ax = — (B ) Ax AZ)

or

[Ex]z+Az _ [Ex]z il 6[B.V](x,z
= T | 3.6)

Az

If we now let the rectangular path shrink to the point (x, z) by letting Ax and
Az tend to zero, we obtain

Lim [Ex]z+A2_ [Ex]z — —Lim 0[331(::,2)

Ax—0 ¥4 Ax—0
Az—0 Az—0

or
dE, 0B
9 = o (&0

Equation (3.7) is Faraday’s law in differential form for the simple case of
E given by (3.2). It relates the variation of E, with z (space) at a point to the
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variation of B, with ¢ (time) at that point. Since the above derivation can be
carried out for any arbitrary point (x, y, z), it is valid for all points. It tells us
in particular that a time-varying B, at a point results in an E, at that point
having a differential in the z direction. This is to be expected since if this is not
the case, § E » dl around the infinitesimal rectangular path would be zero.

Example 3.1. Given B = B, cosw! i, and it is known that E has an x
component only, let us find E,.
From (3.6), we have

0E, _ _0B, _
dz =~ ar

E,. = wByz sin wt

——%(B0 cos wi) = wB, sin wt

We note that the uniform magnetic field gives rise to an electric field varying
linearly with z.

Proceeding further, we can verify this result by evaluating ¢ E « dl around
the rectangular path of Example 2.8. This rectangular path is reproduced in
Fig. 3.2. The required line integral is given by

§Eeal=[ (Elodet [ [Blsdx

4] 1]
+ [ [Blegdz+ [ [Ediodx
z=b x=a
=0+ [wB, bsinwtla+0+0

= abB,w sin wt

x=0
¥ - >z
Yz=
z=04 z=k
xX=a
Yx

Figure 3.2. Rectangular path of Example 2.8.
which agrees with the result of Example 2.8. ™

We shall now proceed to generalize (3.7) for the arbitrary case of the
electric field having all three components (x, y, and z), each of them depending
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on all three coordinates (x, y, and z), in addition to time (¢), that is,
E = E (x, y, z, i, + E/(x,», z, )i, + E/(x, y, z, Di, (3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes
parallel to the three mutually orthogonal planes of the Cartesian coordinate
system, as shown in Fig. 3.3. Evaluating § E . dl around the closed paths
abcda, adefa, and afgba, we gel

§abcda E.dl= [E.v (x,2) Ay + [Ez](x.y+Ay) Az

— [Esssan Ay = [Elis Az (3.92)
§ . Bedl=[Eluy Az + [Eosan Ax

~ [Ediean Az = [Eo, Ax (3.9)
§  Eedl=(ElonAx + [Blusan A7

— [Edosaro A% = (Bl By (399

d(x,y,z +Az) clx,y + Ay, z + Az)

/ Az
§e(x +Ax,y,z + Az) z

la(x,y, z) b(x,y + Ay, z2)

//// 4 '
Ax N

fox+Ax,y,2)  glx+Ax,y + Ay, 2)

Figure 3.3. Infinitesimal rectangular paths in three mutually orthogonal
planes.

In (3.9a)—(3.9c) the subscripts associated with the field components in the
various terms on the right sides of the equations denote the value of the
coordinates that remain constant along the sides of the closed paths corre-
sponding to the terms. Now, evaluating [ B « dS over the surfaces abcd,
adef, and afgb, keeping in mind the right-hand screw rule, we have

B. dS = [Bx](x,y,z) Ay AZ (3‘103)

abcd



88 CH.3 MaxweLL’S EQUATIONS IN DIFFERENTIAL FORM
B« dS = [B,]xy,n Az Ax (3.10b)
adef

B+ dS = [B],.. Ax Ay (3.10¢)

afgh

Applying Faraday’s law to each of the three paths by making use of
(3.92)-(3.9¢) and (3.10a)—(3.10c) and simplifying, we obtain

[Ez](x,y+Ay) _ [Ez](x._v) . [Ey](x,z+Az) _ [Eyﬁ,z)

Ay Az
— _d[Bx(;;‘x.y,z) (3.113)
[Ex](y.z+Az) _ [Ex](.v.z) _ [Ez](x+Ax.J') —_ [Ez](x.J')
Az Ax
_ _5[Bya<tx.y.z> (3.11b)
[Ey (x+Ax,z) —_ [Ey](x,z) _ [Ex](_v+Ay.z) — [Ex](y,z)
Ax Ay
= _6[Bzg(tx.y 2 (3.11¢)

If we now let all three paths shrink to the point a by letting Ax, Ay, and Az
tend to zero, (3.11a)-(3.11c¢) reduce to

dE, JE, 4B, E
50 - Gl
dE, OE, 0B,

dz ~ dx ot e
dE, JE, 4B, (3.12¢)

9x  dy of

Equations (3.12a)-(3.12c) are the differential equations governing the rela-
tionships between the space variations of the electric field components and
the time variations of the magnetic field components at a point. An examina-
tion of one of the three equations is sufficient to reveal the physical meaning
of these relationships. For example, (3.12a) tells us that a time-varying B, at a
point results in an electric field at that point having y and z components such
that their net right-lateral differential normal to the x direction is nonzero.
The right-lateral differential of E, normal to the x direction is its derivative in
, affyz ; %. The right-lateral differ-
ential of E, normal to the x direction is its derivative in the i, x i,, or i

the i, x i,, or —i, direction, that is or —

14
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6E’. Thus the net right-lateral differential of the y and z

oy
components of the electric field normal to the x direction is (—%) + (0E’),

0z dy
dE, OE, N . . o
or ( W 9/ An example in which the net right-lateral differential is zero
although the individual derivatives are nonzero is shown in Fig. 3.4(a),
whereas Iig. 3.4(b) shows an example in which the net right-lateral differential
is nonzero.

direction, that is,

E}‘ E.V
—_— —_—
xI——> y Ezl . E, £ l . E,
z - JR———
E E
y y
(a) (b)

Figure 3.4. For illustrating (a) zero, and (b) nonzero net right-lateral
differential of E, and E, normal to the x direction.

Equations (3.12a)—~(3.12¢) can be combined into a single vector equation
as given by

|
0B,
— T

. 0By‘ oBz ]
L — 5720, — 5f (3.13)

This can be expressed in determinant form as

i i
9 9 d|_ B
T d 9|~ ar (314

or as

. d .4 .0 : . . B
(lx Ox + lya_y + 1, 0_2) x (E,j, + Ej, + Ei,) = —or (3.15)

The left side of (3.14) or (3.15) is known as the “curl of E,” denoted as
Y x E (del cross E) where V (del) is the vector operator given by

dJ 0

o X . 0
V—lxa-—x-l-l_,,—o—y-—FI,E (3.16)
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Thus we have

VxE— _‘39_'; G.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to
Faraday’s law. We shall discuss curl further in Sec. 3.3.

Example 3.2. Given A = yi, — xi, find V x A.
From the determinant expansion for the curl of a vector, we have

_ld @
VxA—a;a—y P

=i [0 ]|+ L[Z0)]+i[ED—20)]

3.2 AMPERE’S CIRCUITAL LAW

In the previous section we derived the differential form of Faraday’s law
from its integral form. In this section we shall derive the differential form of
Ampere’s circuital law from its integral form in a completely analogous
manner. We recall from Sec. 2.4 that Ampere’s circuital law in integral form
is given by

j;H-dl:fJ-dS—l—dit D.ds (3.18)
(o] S 8

where S'is any surface bounded by the closed path C. For simplicity, we shall
first consider the case in which the magnetic field has a y component only,
which is dependent only on the z coordinate, in addition to time. Thus

H = H,z, t)i, (3.19)

In other words, this simple form of the time-varying magnetic field is every-
where directed in the y direction and it is uniform in planes parallel to the xy
plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the yz plane and defined by the points (y, z), (v, z + Az),
(y + Ay,z+ Az) and (y + Ay, z) as shown in Fig. 3.5. According to
Ampere’s circuital law, the mmf around the closed path C is equal to the total
current enclosed by C. The mmf is given by the line integral of H around C.
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Ay
(y+Ay,z) (y+Ay,z+Az)

Ay A S Y¢

-

(r,2) Az (y,z+Az2)

X = Z

Figure 3.5. Infinitesimal rectangular path lying in a plane parallel to the
yz plane.

Thus evaluating the line integrals of H along the four sides of the rectangular
path, we obtain

§ Hedl= j("w") H.dl - .[((””'”“’ H-dl

¥, 2} Y+ Ay, z)

, Z+Az) w, 2]
_l_J.(y i H.dl+ ) H.d
(

y+ Ay, z+Az) ,z+Az)
=[H,]. Ay + 0 — [H,),+a; Ay + 0
{[ ]z+Az [IIy]z} AZ (3.20)

To find the total current enclosed by C, we consider the plane surface S
bounded by C. According to the right-hand screw rule, we must find the
current crossing S toward the positive x direction, that is, into the page, since
the path is traversed in the clockwise sense. This current consists of two parts:

[ 3+dS =y Az (3.21a)
N

d d 0 D],

4 L D-dS = LD, Ay Ay =B ppa: 321t

where we have assumed that since the area is infinitesimal in size, J, and D,
are uniform over the area and equal to their values at (v, 2).

Substituting (3.20), (3.21a), and (3.21b) into (3.18) to apply Ampere’s
circuital law to the rectangular path C under consideration, we get

~{(H s — (L} By =[ 7, +9D-  MyA
¥z
or

[Hy]m, [(H), __ [ L :I( ) (3.22)
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If we now let the rectangular path shrink to the point (y, z) by letting Ay and
Az tend to zero, we obtain

Lim [HJ' z+A3_ [H.v]z — —Lim I:Jx _|_ an:|
(y,2)

Ay—0 z Ay—0 ot
Az—~0 Az—-0
or
OH, D,
2=, — (3.23)

Equation (3.23) is Ampere’s circuital law in differential form for the simple
case of H given by (3.19). Tt relates the variation of H, with z (space) at a
point to the current density J, and to the variation of D, with ¢ (time) at that
point. Since the above derivation can be carried out for any arbitrary point
(x, y, 2), it is valid at all points. It tells us in particular that a current density
J, or a time-varying D, or a nonzero combination of the two quantities at a
point results in an H, at that point having a differential in the z direction.
This is to be expected since if this is not the case, § H « 4l around the infini-
tesimal rectangular path would be zero.

Example 3.3. Given E = E,z sin @t i, and it is known that J is zero and B
has a y component only, let us find B,.
From (3.23), we have

OH, oD, d , _
= —J, — i 0— m(eoEoz sin wf) = —wey Eyz cos wt
zZ
H,= —w60E07 cos wt
zZ
B, = pH, = —CoﬂofoE07 Cos ot

We note that the electric field varying linearly with z gives rise to a magnetic
field proportional to z2. In Example 3.1, however, an electric field varying
linearly with z was found to result from a uniform magnetic field, according
to Faraday’s law in differential form. The inconsistency of these two results
implies that neither the combination of E, and B, in Example 3.1 nor the
combination of E, and B, in this example simultaneously satisfies the two
Maxwell’s equations in differential form given by (3.7) and (3.23). The pair of
E, and B, in Example 3.1 satisfies only (3.7), whereas the pair of E, and B, in
this example satisfies only (3.23). In the following chapter we shall find a pair
of solutions for E, and B, that simultaneously satisfies the two Maxwell’s
equations. m
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Example 3.4. Let us consider the current distribution given by
J = Jil, for —a<z<a

as shown in Fig. 3.6(a), where J, is a constant, and find the magnetic field
everywhere.

Since the current density is independent of x and y, the field is also
independent of x and y. Also, since the current density is not a function of
time, the field is static. Hence (8.D,/d7) = 0, and we have

0H, __

dz I

Integrating both sides with respect to z, we obtain
H=—| J.d:+C

where C is the constant of integration,
The variation of J, with z is shown in Fig. 3.6(b). Integrating —J, with
respect to z, that is, finding area under the curve of Fig. 3.6(b) as a function of

JONix
A 1L T {L AAA AJ, (b)
J[l
>z
—a 0 a
A (c)
\‘Joa
. t = Z
z=-a z=0 z=a —;"\\ %
X \\ _y
n\oa
y z \\
(@) T 2/pa ===

Figure 3.6. The determination of magnetic field due to a current distribu-
tion.
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z, and taking its negative, we obtain the result shown by the dashed curve in
Fig. 3.6(c) for —fz J, dz. From symmetry considerations, the field must be

equal and opposite on either side of the current region —a < z < a. Hence
we choose the constant of integration C to be equal to J,a thereby obtaining
the final result for H, as shown by the solid curve in Fig. 3.6(c). Thus the
magnetic field intensity due to the current distribution is given by

Joai, forz < —a
H=4{—Jyzi, for—a<z<a
—Joai, forz>a

The magnetic flux density, B, is equal to z,H. -

We now generalize (3.23) for the arbitrary case of a magnetic field having
all three components, each of them depending on all three coordinates, in
addition to ¢, that is,

H= Hx(x5 Y 2, t)ix + Hy(x’ Vs Z, t)iy + Hz(x, Y, 2, t)iz (324)

We do this in exactly the same manner as for the case of Faraday’s law by
considering the three infinitesimal rectangular paths shown in Fig. 3.3.
Applying Ampere’s circuital law to each of the three paths and simplifying, we
obtain

[Hz](x.y+AJZ_ [H ](x »} [Hy](x.z+A1) — [Hy (x,2)

Az
—[7 ] 3.25a
I: —I_ 0t (x,¥,2) ( )
[Hx](y,z+Az) — [Hx](.v,z) = [Hz](x+Ax,J’) —— [Hz](x‘y)
Az Ax
aD,
3.25b
[ —I_ T (o, p,8) ( )
[Hy (x+Ax,z) ~ [H.v (x,2) __ [Hx]{rﬂ\r,.-} — [Hxlf.v.:}
Ax Ay
oD ]
=\|J, z 3.25¢
|: + 0t (x,»,2) ( )

If we now let all three paths shrink to the point a by letting Ax, Ay, and Az
tend to zero, (3.252)—(3.25¢) reduce to

OH, OH, . . oD,
TR I T

(3.26a)
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OH, 0H, , , 9D,
dz  dx =%+ gt (3.26D)
0H, O0H, oD,
dxy_ 3y =J, 4 o (3.26¢)

Equations (3.26a)—(3.26c) are the differential equations governing the
relationships between the space variations of the magnetic field components,
the components of the current density and the time variations of ihe electric
field components, at a point. They can be interpreted physically in a manner
analogous to the interpretation of (3.12a)-(3.12c) in the case of Faraday’s
law. .

Equations (3.26a)-(3.26c) can be combined into a single vector equation
in determinant form as given by

4 & i
3 9 D
L=+ 3.27)
\H, H, H.
- or
VxH=J+%—It) (3.28)

Equation (3.28) is Maxwell’s equation in differential form corresponding to
Ampere’s circuital law. The quantity dD/d¢ is known as the “displacement
current density.” We shall discuss curl further in the following section.

3.3 CURL AND STOKES’ THEOREM

In Secs. 3.1 and 3.2 we derived the differential forms of Faraday’s and
Ampere’s circuital laws from their integral forms. These differential forms
involve a new vector quantity, namely, the “curl” of a vector. In this section
we shall introduce the basic definition of curl and then present a physical
interpretation of the curl. In order to do this, let us, for simplicity, consider
Ampere’s circuital law in differential form without the displacement current
density term, i.e.,

VxH=1J (3.29)

We wish to express V x H at a point in the current region in terms of H at
that point. If we consider an infinitesimal surface AS at the point and take the
dot product of both sides of (3.29) with AS, we get

(VxH) - AS=J:AS (3.30)
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But J « AS is simply the current crossing the surface AS, and according to
Ampere’s circuital law in integral form without the displacement current
term,

3€ H-dl=J.AS (3.31)
C

where C is the closed path bounding AS. Comparing (3.30) and (3.31), we
have
(VxH)-AS=3§ H- dl
c
or

(VxH)-ASi, = §CH . dl (3.32)

where i, is the unit vector normal to AS. Dividing both sides of (3.32) by AS,
we obtain

H.dl

<VxH)-in=3£cA—S

(3.33)

The maximum value of (V x H) « i,, and hence that of the right side of
(3.33), occurs when i, is oriented parallel to V x H, that is, when the surface
AS is oriented normal to the current density vector J. This maximum value is

simply |V x H|. Thus
H . dl
— if;L (3.34)
IV x H| _[ A5 Lx

Since the direction of V x H is the direction of J, or that of the unit vector
normal to AS, we can then write

H.dl
VxH:[—ﬁgcAS } i, @39

Equation (3.35) is only approximate since (3.32) is exact only in the limit that
AS tends to zero. Thus

H.dl
= [} §c i (3.36)
ren-g| 3507

Equation (3.36) is the expression for V x H at a point in terms of H at that
point. Although we have derived this for the H vector, it is a general result
and, in fact, is often the starting point for the introduction of curl.
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Equation (3.36) tells us that in order to find the curl of a vector at a point
in that vector field, we first consider an infinitesimal surface at that point and
compute the closed line integral or circulation of the vector around the
periphery of this surface by orienting the surface such that the circulation is
maximum. We then divide the circulation by the area of the surface to obtain
the maximum value of the circulation per unit area. Since we need this
maximum value of the circulation per unit area in the limit that the area tends
to zero, we do this by graduaily shrinking the area and making sure that each
time we compute the circulation per unit area an orientation for the area that
maximizes this quantity is maintained. The limiting value to which the
maximum circulation per unit area approaches is the magnitude of the curl.
The limiting direction to which the normal vector to the surface approaches is
the direction of the curl, The task of computing the curl is simplified if we
consider one component of the field at a time and compute the curl corre-
sponding to that component since then it is sufficient if we always maintain
the orientation of the surface normal to that component axis. In fact, this is
what we did in Secs. 3.1 and 3.2, which led us to the determinant form of curl.

We are now ready to discuss the physical interpretation of the curl. We do
this with the aid of a simple device known as the “curl meter.” Although the
curl meter may take several forms, we shall consider one consisting of a
circular disc that floats in water with a paddle wheel attached to the bottom of
the disc, as shown in Fig. 3.7. A dot at the periphery on top of the disc serves
to indicate any rotational motion of the curl meter about its axis, i.e., the axis
of the paddle wheel. Let us now consider a stream of rectangular cross section
carrying water in the z direction, as shown in Fig. 3.7(a). Let us assume the
velocity v of the water to be independent of height but increasing uniformly
from a value of zero at the banks to a maximum value v, at the center, as
shown in Fig. 3.7(b), and investigate the behavior of the curl meter when it is
placed vertically at different points in the stream. We assume that the size of
the curl meter is vanishingly small so that it does not disturb the flow of water
as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either
side of the center line are hit by the same velocities, the paddle wheel does not
rotate. The curl meter simply slides down the stream without any rotational
motion, i.e., with the dot on top of the disc maintaining the same position
relative to the center of the disc, as shown in Fig. 3.7(c). At a point to the left
of the midstream the blades of the paddle wheel are hit by a greater velocity
on the right side than on the left side so that the paddle wheel rotates in the
counterclockwise sense. The curl meter rotates in the counterclockwise direc-
tion about ifs axis as it slides down the stream, as indicated by the changing
position of the dot on top of the disc relative to the center of the disc, as
shown in Fig. 3.7(d). At a point to the right of midstream, the blades of the
paddle wheel are hit by a greater velocity on the left side than on the right side
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(a) (b)

(c) (d) (e)

Figure 3.7. For explaining the physical interpretation of curl using the
curl meter.

so that the paddle wheel rotates in the clockwise sense. The curl meter
rotates in the clockwise direction about its axis as it slides down the stream,
as indicated by, the changing position of the dot on top of the disc relative to
the center of the disc, as shown in Fig. 3.7(e).

To relate the foregoing discussion of the behavior of the curl meter with
the curl of the velocity vector field of the water flow, we note that at a point in
midstream, the circulation of the velocity vector per unit area in the plane
normal to the axis of the paddle wheel, i.e., parallel to the surface of the
stream, is zero and hence the component of the curl along that axis, i.e., in
the x direction, is zero. At points on either side of midstream, however, the
circulation per unit area is not zero in view of the velocity differential along
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the y direction. Hence the x component of the curl is nonzero at these points.
Furthermore, the x component of the curl at points on the right side of
midstream is opposite in sign to that on the left side of midstream since the
velocity differentials are opposite in sign. These properties are exactly similar
to those of the rotational motion of the curl meter.

If we now pick up the curl meter and insert it in the water with its axis
parallel to the surface of the stream, the curl meter does not rotate because its
blades are hit with the same force on either side of its axis. This behavior of
the curl meter is akin to the property that the horizontal component of the
curl of the velocity vector is zero since the velocity differential along the x
direction is zero.

The foregoing illustration of the physical interpretation of the curl of a
vector field can be used to visualize the behavior of electric and magnetic
fields. Thus, for example, from

___dB
V % =

we know that at a point in an electromagnetic field at which dB/dt is nonzero,
there exists an electric field with nonzero circulation per unit area in the plane
normal to the vector dB/d¢. Similarly, from

VxH=J+%]7).

we know that at a point in an electromagnetic field at which J + dD/dt is
nonzero, there exists a magnetic field with nonzero circulation per unit area in
the plane normal to the vector J + dD/d.

We shall now derive a useful theorem in vector calculus, the “Stokes’
theorem.” This relates the closed line integral of a vector field to the surface
integral of the curl of that vector field. To derive this theorem, let us consider
an arbitrary surface S in a magnetic field region and divide this surface into a
number of infinitesimal surfaces AS,, AS,, AS;, . . ., bounded by the contours
C,, C,, Cs, ..., respectively. Then, applying (3.32) to each one of these
infinitesimal surfaces and adding up, we get

YV xH), ASi,=¢ Hedl+§ Hedl+... (337
J Ch Cs

where i,, are unit vectors normal to the surfaces AS; chosen in accordance
with the right-hand screw rule. In the limit that the number of infinitesimal
surfaces tends to infinity, the left side of (3.37) approaches to the surface
integral of V x H over the surface S. The right side of (3.37) is simply the
closed line integral of H around the contour C since the contributions to the
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line integrals from the portions of the contours interior to C cancel, as shown
in Fig. 3.8, Thus we get

VxH)-dS=¢ H.dl (3.38)
Js §C

Equation (3.38) is Stokes’ theorem. Although we have derived it by con-
sidering the H field, it is general and is applicable for any vector field.
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Figure 3.8. For deriving Stokes’ theorem.
Example 3.5. Let us verify Stokes’ theorem by considering
A =yi, —xi,

and the closed path C shown in Fig. 3.9.

I 9%
b
C
A x2+y2=1
a - @ - X
o c

Figure 3.9. A closed path for verifying Stokes’ theorem.
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We first determine 3€ A « dl by evaluating the line integrals along the
[

three segments of the closed path. To do this, we first note that A.dl=
y dx — x dy. Then, fromato b, x =0,dx =0, A « dl=0

L”A-dlzo

Frombtoc, x> +yp*=1,y=./1—x%

dxdx+2ydy—0, dy—=-—X%_ X __gx
y 1 — x?
2 dx dx
Aedl=/T—x*d = =
x x+ﬂ—x2 1 — x?

¢ Voode T =
LAM—LJﬁﬁr{m;&_2
Fromctoa,y=0,dy=0,A+dl=0

j"A-dl:o
Thus ’
fch-dl:LbA-dH—J.:A-dl—rf:A-dl

=0+ 2 +0=7%

Now, to evaluate Sg A « dl by using Stokes’ theorem, we recall from
c
Example 3.2 that
VxA=Vx(Qi,—xi,)=—2i,

For the plane surface S enclosed by C,

dsS = —dx dyi,
Thus
(VxA)edS= —2i,«(—dxdyi)=2dxdy

[@xay-as=]_ LT2dx dy

7z=

= 2(area enclosed by C) = 2 X %

|

thereby verifying Stokes’ theorem. =
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Thus far we have derived Maxwell’s equations in differential form corre-
sponding to the two Maxwell’s equations in integral form involving the line
integrals of E ~nd H, that is, Faraday’s law and Ampere’s circuital law,
respectively. The remaining two Maxwell’s equations in integral form,
namely, Gauss’ law for the electric field and Gauss’ law for the magnetic
field, are concerned with the closed surface integrals of D and B, respectively.
We shall in this and the following sections derive the differential forms of
these two equations.

We recall from Sec. 2.6 that Gauss’ law for the electric field is given by

D.dS=( pav (3.39)
§S J.V

where V is the volume enclosed by the closed surface S. To derive the differ-
ential form of this equation, let us consider a rectangular box of infinitesimal
sides Ax, Ay, and Az and defined by the six surfaces x = x, x = x 4 Ax,
y=y,y=y-+ Ay, z=2z, and z=z + Az, as shown in Fig. 3.10, in a
region of electric field

D =D.(x, y, z, Di. + Dy(x, y, z, ), + D,(x,y, z, t)i, (3.40)

and charge of density p(x, y, z, ). According to Gauss’ law for the electric
field, the displacement flux emanating from the box is equal to the charge
enclosed by the box. The displacement flux is given by the surface integral of
D over the surface of the box, which is comprised of six plane surfaces. Thus
evaluating the displacement flux emanating out of the box over each of the
six plane surfaces of the box, we have

f D.dS = —[D,],. Ay Az for the surface x = x (3.41a)
f D« dS =1[D,], s Ay Az for the surface x = x + Ax  (3.41b)
J. D.dS= —[D), Az Ax for the surface y = y (3.41¢)
J- D« dS =[D,], s, Az Ax for the surface y =y + Ay (3.41d)
J D.dS=—[D],AxAy for the surface z — z (3.41¢)
j D . dS=1[D),.s,AxAy forthesurfacez—=z-+ Az  (3.41f)

102
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Figure 3.10. An infinitesimal rectangular box.

Adding up (3.41a)-(3.41f), we obtain the total displacement flux emanating
from the box to be
§SD +dS = {[Dx]x+Ax - [Dx]x} A.V Az
+ {[D.v]y+Ay . [Dy]y} AZ Ax
+ {[Dz]z+Az - [Dz]z} Ax Ay (3'42)

Now the charge enclosed by the rectangular box is given by
j padv=p(x,y,z,0 - Ax Ay Az= p Ax Ay Az (3.43)
14

where we have assumed p to be uniform throughout the volume of the box
and equal to its value at (x, y, z) since the box is infinitesimal in volume.

Substituting (3.42) and (3.43) into (3.39) to apply Gauss’ law for the
electric field to the surface of the box under consideration, we get

{[Dx]x+Ax ol [Dx]x} Ay AZ + {[Dy]y+Ay - [Dy]y} AZ Ax
+ {[D.).+a. — [D.1.} Ax Ay = p Ax Ay Az
or

[Dx]x+AXx_ [Dx]x + [Dy]y+AK; [DJ'].V _|_ [Dz]z+AZz_ [Dz]z =p (3.44)

If we now let the box shrink to the point (x, y, z) by letting Ax, Ay, and Az
tend to zero, we obtain

Lim [Dx]x+AZ —_ [Dx]x + Lim [Dy]y+A£; [Dy]y

Ax—0 X Ay—0

4 Lim Pederas = D) _ 1im p
Az—0 AZ el
Ay—0
Az—0
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or
dD,

VR (3.45)

ﬂyy + 02

Equation (3.45) tells us that the net longitudinal differential of the com-
ponents of D, that is, the algebraic sum of the derivatives of the components
of D along their respective directions is equal to the charge density at that
point. Conversely, a charge density at a point results in an electric field, having
components of D such that their net longitudinal differential is nonzero.
An example in which the net longitudinal differential is zero although some
of the individual derivatives are nonzero is shown in Fig. 3.11(a). Fig. 3.11(b)
shows an example in which the net longitudinal differential is nonzero. Equa-
tion (3.45) can be written in vector notation as

. d . . d : . .
<lx o + ly% +1, 0—2) (D, 4 Dj,+ D,ji,)=0p (3.46)

| I £ Y

(a) (b)

Figure 3.11. For illustrating (a) zero, and (b) nonzero net longitudinal
differential of the components of D.

The left side of (3.46) is known as the “divergence of D,” denoted as V « D
(del dot D). Thus we have

V.D=p (3.47)

Equation (3.47) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the electric field. We shall discuss divergence further in Sec. 3.6.

Example 3.6. Given A = 3xi, + (y — 3)i, + 2 — 2)i,,find V « A,
From the expansion for the divergence of a vector, we have

voa=(iLd +1yay+n,0) « B3xi, + (¢ — i, + 2 — 2]

d
=(ﬁ(3x)+@(y—3)+a—z(2—2)
=34+1—1=3 =
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Example 3.7. Let us consider the charge distribution given by

_[—pe for —a<x <0
’ po for0<x<a

as shown in Fig. 3.12(a), where p, is a constant, and find the electric field
everywhere.

Since the charge density is independent of y and z, the field is also inde-
pendent of y and z, thereby giving us dD,/dy = 0D,/dz =0 and reducing
Gauss’ law for the electric field to

D, _
ax P

Integrating both sides with respect to x, we obtain

D, = j pdx+C
where C is the constant of integration.

The variation of p with x is shown in Fig. 3.12(b). Integrating p with
respect to x, that is, finding the area under the curve of Fig. 3.12(b) as a

“Po Py Ar L
————I++++ Py
iy + 4+ +
——==]++++
—~——=++++ —

_-__'l++++ 0 a =X
-——— =1+ +++
-———=|++++
===+ +++
—=—==l++++ “Po
—--——-|++++
-—— -t +++
——— =ttt + A ©
—==== e+ + +
—— ==+ +++ - = e
-—==l++++
R
x=-a x=0 x=a
—_—X
T8

(a)

Figure 3.12. The determination of electric field due to a charge distribu-
tion,
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function of x, we obtain the result shown in Fig. 3.12(c) for fx p dx. The

constant of integration C is zero since the symmetry of the field required by
the symmetry of the charge distribution is already satisfied by the curve of
Fig. 3.12(c). Thus the displacement flux density due to the charge distribution
is given by

0 for x < —a
D— —po(x + ai, for —a<x<0
N Polx — i, for0<x<a
0 for x > a
The electric field intensity, E, is equal to D/e,. =

3.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous section we derived the differential form of Gauss’ law for
the electric field from its integral form. In this section we shall derive the
differential form of Gauss’ law for the magnetic field from its integral form.
We recall from Sec. 2.5 that Gauss’ law for the magnetic field in integral
form is given by

ffs B.dS=0 (3.48)

where S is any closed surface. This equation states that the magnetic flux
emanating from a closed surface is zero. Thus considering an infinitesimal
rectangular box as shown in Fig. 3.10 in a region of magnetic field

B = B.(x,y, z, )i, + B,(x, y, z, i, + B.(x, y, 2, 1)i, (3.49)

and evaluating the magnetic flux emanating out of the box in a manner
similar to that of the evaluation of the displacement flux in the previous
section, and substituting in (3.48), we obtain

{Blsrax — [B:]:} Ay Az -+ {[B)),a, — [B,),} Az Ax
+ {[Bli+a. — [B.L}Ax Ay =0 (3.50)

Dividing (3.50) on both sides by Ax Ay Az and letting Ax, Ay, and Az tend to
zero, thereby shrinking the box to the point (x, y, z), we obtain

3 [Bx]x+Ax — [-Bx]x 3 [By]y+Ay — [By]y
{;13} Ax Cx IZylE} Ay

3 [Bz]z+ z ~ [Bz]z -
+ Lim ——AAZ =0

Az—0
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or

JB
t+ay+0z (3.51)
Equation (3.51) tells us that the net longitudinal differential of the com-
ponents of B is zero. In vector form it is given by
V:B=0 (3.52)

Equation (3.52) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the magnetic field. We shall discuss divergence further in the
following section.

Example 3.8. Determine if the vector A = yi, — xi, can represent a mag-
netic field B.

From (3.52), we note that a given vector can be realized as a magnetic
field B if its divergence is zero. For A = yi, — xi,,

VeA= 2oy L+ f@=0

Hence the given vector can represent a magnetic field B. =

3.6 DIVERGENCE AND THE DIVERGENCE THEOREM

In Secs. 3.4 and 3.5 we derived the differential forms of Gauss’ laws for
the electric and magnetic fields from their integral forms. These differential
forms involve a new quantity, namely, the “divergence” of a vector. The
divergence of a vector is a scalar as compared to the vector nature of the curl
of a vector. In this section we shall introduce the basic definition of divergence
and then present a physical interpretation for the divergence. In order to do
this, let us consider Gauss’ law for the electric field in differential form, that
is,

VeD=p (3.53)

We wish to express V « D at a point in the charge region in terms of D at that
point. If we consider an infinitesimal volume Av at the point and multiply both
sides of (3.53) by Av, we get

(VeD)Av = pAv (3.54)

But p Aw is simply the charge contained in the volume Av, and according to
Gauss’ law for the electric field in integral form,

5{5 D.dS=pAv (3.55)
S
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where S is the closed surface bounding Av. Comparing (3.54) and (3.55),
we have

(V.D)Av = ff D . dS (3.56)
N
Dividing both sides of (3.56) by Av, we obtain

§D-ds
_SAT_

VeD— (3.57)

Equation (3.57) is only approximate since (3.56) is exact only in the limit that
Av tends to zero. Thus

D.
V.D = Lim fﬁ_sA—d_S (3-58)

Ay—0 v

Equation (3.58) is the expression for V « D at a point in terms of D at that
point. Although we have derived this for the D vector, it is a general result
and, in fact, is often the starting point for the introduction of divergence.

Equation (3.58) tells us that in order to find the divergence of a vector at a
point in that vector field, we first consider an infinitesimal volume at that
point and compute the surface integral of the vector over the surface bounding
that volume, that is, the outward flux of the vector field emanating from that
volume. We then divide the flux by the volume to obtain the flux per unit
volume. Since we need this flux per unit volume in the limit that the volume
tends to zero, we do this by gradually shrinking the volume. The limiting
value to which the flux per unit volume approaches is the value of the
divergence of the vector field at the point to which the volume is shrunk.

We are now ready to discuss the physical interpretation of the divergence.
To simplify this task, we shall consider the differential form of the law of
conservation of charge given in integral form by (2.39), or

d
iJ dS = —7 J;p dv (3.59)

where S is the surface bounding the volume V. Applying (3.59) to an infini-
tesimal volume Av, we have

d ]
§SJ L dS = —Z(p Av) = —ZF Av

or

§ a-as _dp (3.60)
Av 0t
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Now taking the limit on both sides of (3.60) as Av tends to zero, we obtain

J.ds
) § _FF ap 3.61)
IZ,E% Av IZJE; 9
or
V.39 (.62)
ot )
or
v.3+9_o¢ (3.63)

Equation (3.63), which is the differential form of the law of conservation of
charge, is familiarly known as the “continuity equation.” It tells us that the
divergence of the current density vector at a point is equal to the time rate of
decrease of the charge density at that point.

Let us now investigate three different cases: (a) positive value, (b) negative
value, and (c) zero value of the time rate of decrease of the charge density ata
point, that is, the divergence of the current density vector at that point. We
shall do this with the aid of a simple device which we shall call the “divergence
meter.” The divergence meter can be imagined to be a tiny, elastic balloon
enclosing the point and that expands when hit by charges streaming outward
from the point and contracts when acted upon by charges streaming inward
toward the point. For case (a), that 1s, when the time rate of decrease of the
charge density at the point is positive, there is a net amount of charge stream-
ing out of the point in a given time, resulting in a net current flow outward
from the point that will make the imaginary balloon expand. For case (b), that
is, when the time rate of decrease of the charge density at the point is negative
or the time rate of increase of the charge density is positive, there is a net
amount of charge streaming toward the point in a given time, resulting in a
net current flow toward the point and the imaginary balloon will contract.
For case (c), that is, when the time rate of decrease of the charge density at the
point is zero, the balloon will remain unaffected since the charge is streaming
out of the point at exactly the same rate as it is streaming into the point.
These three cases are illustrated in Figs. 3.13(a), (b), and (c), respectively.

Generalizing the foregoing discussion to the physical interpretation of the
divergence of any vector field at a point, we can imagine the vector field to be
a velocity field of streaming charges acting upon the divergence meter and
obtain in most cases a qualitative picture of the divergence of the vector field.
If the divergence meter expands, the divergence is positive and a source of the
flux of the vector field exists at that point. If the divergence meter contracts,
the divergence is negative and a sink of the flux of the vector field exists at that
point. If the divergence meter remains unaffected, the divergence is zero and
neither a source nor a sink of the flux of the vector field exists at that point.
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Figure 3.13. For explaining the physical interpretation of divergence using
the divergence meter,

Alternatively, there can exist at the point pairs of sources and sinks of equal
strengths.

We shall now derive a useful theorem in vector calculus, “the divergence
theorem.” This relates the closed surface integral of the vector field to the
volume integral of the divergence of that vector field. To derive this theorem,
let us consider an arbitrary volume ¥ in an electric field region and divide this
volume into a number of infinitesimal volumes Av,, Av,, Av,, .. ., bounded
by the surfaces S, S,, S, . . ., respectively. Then, applying (3.56) to each one
of these infinitesimal volumes and adding up, we get

> (V.D),Av,=¢ D-dS+§ DedS+... (3.64)
J S Sz

In the limit that the number of the infinitesimal volumes tends to infinity, the
left side of (3.64) approaches to the volume integral of V « D over the volume
V. The right side of (3.64) is simply the closed surface integral of D over S
since the contribution to the surface integrals from the portions of the sur-
faces interior to S cancel, as shown in Fig. 3.14. Thus we get

[[(-D)yav=§ D.as (3.65)

Equation (3.65) is the divergence theorem. Although we have derived it by
considering the D field, it is general and is applicable for any vector field.

Example 3.9. Let us verify the divergence theorem by considering
A = 3xi, + (y — 3)i, + 2 — 2)i,

and the closed surface of the box bounded by the planes x =0, x = 1,y = 0,
y=2,z=0,and z = 3.

We first determine fﬁ A - dS by evaluating the surface integrals over the
N
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Figure 3.14. For deriving the divergence theorem.
six surfaces of the rectangular box. Thus for the surface x = 0,

A=y -3, +Q2—2)i, dS=—dydzi,
A.dS—0
jA-dS:O

For the surface x = 1,

A=3i,+ (y—3i,+ 2 —2i, dS=dydzi,
A.dS=3dydz

fA.dszLio Lioadydz= 18

For the surface y = 0,

A = 3xi, — 3i, + 2 — 2, dS = —dzdxi,
A+dS=3dzdx

fA-dS: J.:-=0 La=03dzdx=9

For the surface y = 2,

A =3xi, —i, -+ 2 — 2)i, dS = dz dxi,
AdS=—dzdx

IA «dS = L:O Lio —dzdx = —3
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For the surface z = 0,

A = 3xi, 4+ (y — 3)i, + 2i,, dS = —dxdyi,
A«dS=-2dxdy

[acas=[" [ —2avdy— —4
y=0 Jx=

For the surface z = 3,

A=3xi,4+ (y—3)i—i, dS=dxdyi,
A «dS = —dxdy

JA-dS=fi fl_o—dxdy=—2
Thus e
3§SA.dS=0+18+9—3—4—2=18

Now, to evaluate fﬁ A « dS by using the divergence theorem, we recall
N

from Example 3.6 that
VeA=V o [3xi, +(y — i, + 2 —2)i,]=3
For the volume enclosed by the rectangular box,

[V nyaw= Lio f;o L:O 3dxdydz — 18

thereby verifying the divergence theorem, =

37 SUMMARY

We have in this chapter derived the differential forms of Maxwell’s
equations from their integral forms, which we introduced in the previous
chapter. For the general case of electric and magnetic fields having all three
components (x, y, z), each of them dependent on all coordinates (x, y, z), and
time (¢), Maxwell’s equations in differential form are given as follows in words
and in mathematical form.

FARADAY’S LAW: The curl of the electric field intensity is equal to the
negative of the time derivative of the magnetic flux density, that is,

JdB

VXE= —3r (3.66)
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AMPERE’s CIRCUITAL LAW: The curl of the magnetic field intensity is
equal to the sum of the current density due to flow of charges and the dis-
placement current density, which is the time derivative of the displacement
flux density, that is,

VxH=J+%$ (3.67)

GaAuss’ LAw ror TIic ELecTrIC FIELD: The divergence of the displace-
ment flux density is equal to the charge density, that is,
VeD=p (3.68)

GAuss’ LAw FOR THE MAGNETIC FIELD: The divergence of the magnetic
flux density is equal to zero, that is,

V-.B=0 (3.69)
Auxiliary to (3.66)—(3.69), the continuity equation is given by

dp _
V.J+ = (3.70)
This equation, which is the differential form of the law of conservation of
charge, states that the sum of the divergence of the current density due to flow
of charges and the time derivative of the charge density is equal to zero. Also,
we recall that

D =¢,E (3.71)
B

— 3.72

Ko ( )

which relate D and H to E and B, respectively, for free space.

We have learned that the basic definitions of curl and divergence, which
have enabled us to discuss their physical interpretations with the aid of the
curl and divergence meters, are

[gﬁ A dl}
- 1 _—c 1
VxA=Lim “pe—| T

§ A.dS
VeA=Lim<s
Ay—0 Av

Thus the curl of a vector field at a point is a vector whose magnitude is the
circulation of that vector field per unit area with the area oriented so as to
maximize this quantity and in the limit that the area shrinks to the point. The
direction of the vector is normal to the area in the aforementioned limit and
in the right-hand sense. The divergence of a vector field at a point is a scalar



114 CH. 3 MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

quantity equal to the net outward flux of that vector field per unit volume in
the limit that the volume shrinks to the point. In Cartesian coordinates the
expansions for curl and divergence are

o d 4
A, A, 4,
(04, GAN: o (04,  OAN: | (04, 94
— \dy —W)l"_l_((?z B (9x>l”+(w_ 0y)l’
dAd, 04 dA4,
VA=t T

Thus Maxwell’s equations in differential form relate the spatial variations of
the field vectors at a point to their temporal variations and to the charge and
current densities at that point.

We have also learned two theorems associated with curl and divergence.
These are the Stokes’ theorem and the divergence theorem given, respectively,
by

ff;cA-dl:L(VxA)-dS
jSSA.dszjV(v-A)dv

Stokes’ theorem enables us to replace the line integral of a vector around a
closed path by the surface integral of the curl of that vector over any surface
bounded by that closed path, and vice versa. The divergence theorem enables
us to replace the surface integral of a vector over a closed surface by the
volume integral of the divergence of that vector over the volume bounded by
the closed surface, and vice versa.

In Chap. 2 we learned that all Maxwell’s equations in integral form are
not independent. Since Maxwell’s equations in differential form are derived
from their integral forms, it follows that the same is true for these equations.
In fact, by noting that (see Problem 3.32),

VeVXxA=0 (3.73)
and applying it to (3.66), we obtain

V-(-%-?):V-Vxlzzo

d _

V « B = constant with time (3.74)
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Similarly, applying (3.73) to (3.67), we obtain

v-(J+%$)=v-VxH=o

V-J+%(V.D):0

0p a .

¢ _
S(V-D—p)=0
V + D — p = constant with time 3.75

Since for any given point in space, the constants on the right sides of (3.74)

and (3.75) can be made equal to zero at some instant of time, it follows that

they are zero forever, giving us (3.69) and (3.68), respectively. Thus (3.69)

follows from (3.66), whereas (3.68) follows from (3.67) with the aid of (3.70).
Finally, for the simple, special case in which

E = E.(z i,
H = H,(z, 1i,

the two Maxwell’s curl equations reduce to

JE, 0B

PRk 3 (3.76)
OH, D,

= —J. =% (3.77)

In fact, we derived these equations first and then the general equations (3.66)
and (3.67). We will be using (3.76) and (3.77) in the following chapters to
study the phenomenon of electromagnetic wave propagation resulting from
the interdependence between the space-variations and time-variations of the
electric and magnetic fields.

REVIEW QUESTIONS

3.1. State Faraday’s law in differential form for the simple case of E = E,(z, f)i.
How is it derived from Faraday’s law in integral form ?

3.2. Discuss the physical interpretation of Faraday’s law in differential form for
the simple case of E = E,(z, t)i,.

3.3, State Faraday’s law in differential form for the general case of an arbitrary
electric field. How is it derived from its integral form?
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34.

3.5

3.6.

3.7.
3.8.
3.9.

3.10.

311

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.
3.18.

3.19.

3.20.

3.21.
3.22.

3.23.
3.24.
3.25.

3.26.

CH. 3 MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

What is meant by the net right-lateral differential of the x and y components
of a vector normal to the z direction ?

Give an example in which the net right-lateral differential of E, and E, normal
to the x direction is zero although the individual derivatives are nonzero.

If at a point in space B, varies with time but B, and B, do not, what can we
say about the components of E at that point?

What is the determinant expansion for the curl of a vector?

What is the significance of the curl of a vector being equal to zero?

State Ampere’s circuital law in differential form for the simple case of H =
Hy(z, t)i,. How is it derived from Ampere’s circuital law in integral form?
Discuss the physical interpretation of Ampere’s circuital law in differential
form for the simple case of H = H,(z, ti,.

State Ampere’s circuital law in differential form for the general case of an
arbitrary magnetic field. How is it derived from its integral form?

What is the significance of a nonzero net right-lateral differential of H, and
H, normal to the z direction at a point in space?

If a pair of E and B at a point satisfies Faraday’s law in differential form, does
it necessarily follow that it also satisfies Ampere’s circuital law in differential
form and vice versa?

State and briefly discuss the basic definition of the curl of a vector.

What is a curl meter ? How does it help visualize the behavior of the curlofa
vector field ?

Provide two examples of physical phenomena in which the curl of a vector
field is nonzero.

State Stokes’ theorem and discuss its application.

State Gauss’ law for the electric field in differential form. How is it derived
from its integral form?

What is meant by the net longitudinal differential of the components of a
vector field ?

Give an example in which the net longitudinal differential of the components
of a vector is zero, although the individual derivatives are nonzero.

What is the expansion for the divergence of a vector?

State Gauss’ law for the magnetic field in differential form. How is it derived
from its integral form?

How can you determine if a given vector can represent a magnetic field ?
State and briefly discuss the basic definition of the divergence of a vector.

What is a divergence meter ? How does it help visualize the behavior of the
divergence of a vector field?

Provide two examples of physical phenomena in which the divergence of a
vector field is nonzero.
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3.27.
3.28.

3.29.
3.30.
3.31.
3.32.

State the continuity equation and discuss its physical interpretation.

Distinguish between the physical interpretations of the divergence and the
curl of a vector field by means of examples.

State the divergence theorem and discuss its application.
What is the divergence of the curl of a vector?
Summarize Maxwell’s equations in differential form.

Are all Maxwell’s equations in differential form independent ? If not, which of
them are independent ?

PROBLEMS

3.1.

3.2.

3.3.

34.

3.5.

3.6

3.7.

3.8.

3.9.

Given B = Byz cos @t i, and it is known that E has only an x component, find
E by using Faraday’s law in differential form. Then verify your result by ap-
plying Faraday’s law in integral form to the rectangular closed path, in the
xz plane, defined by x =0, x =4,z =0,and z = b.

Assuming E = E,(z, 1)i, and considering a rectangular closed path in the yz
plane, carry out the derivation of Faraday’s law in differential form similar to
that in the text.

Find the curls of the following vector fields:

(@) zxi, + xpi, + yzi,; (b) ye~*i, — e™*i,.

For A = xy%, + x2i,, (2) find the net right-lateral differential of 4. and 4,
normal to the z direction at the pdint (2, 1, 0), and (b) find the locus of the
points at which the net right-lateral differential of A, and 4, normal to the z
direction is zero.

Given E = 10 cos (61 x 108 — 27z) i, V/m, find B by using Faraday’s law
in differential form,

9
dy
scalar function of x, y, and z, is zero. Then find the scalar function for which
Vf = yi, + xi,.

Given E = E,z2 sin @¢ i, and it is known that J is zero and B has only a y
component, find B by using Ampere’s circuital law in differential form. Then
find E from B by using Faraday’s law in differential form. Comment on your
result.

. 0 . . 0 . }
Show that the curl of (1x o 4 iy —— + i, 6'2) /, that is, Vf, where fis any

Assuming H = H,(z, 1) i, and considering a rectangular closed path in the xz
plane, carry out the derivation of Ampere’s circuital law in differential form
similar to that in the text.

-7
Given B = %— cos (61 x 108t — 27z) i, Wb/m? and it is known that J =0,
find E by using Ampere’s circuital law in differential form. Then find B from
E by using Faraday’s law in differential form. Comment on your result.
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

CH. 3 MaxweLL’s EQUATIONS IN DIFFERENTIAL FOrRM

Assuming J = 0, determine which of the following pairs of E, and H, simul-
taneously satisfy the two Maxwell’s equations in differential form given by
(3.7) and (3.23):

(@) E, — 10 cos 27z cos 6T X 1081,  H, — ——sin 27z sin 61 x 108¢

127
€
(b) E, = (t — za/ lto€0) H, = F[;(f — za/ [o€0)
(¢c) E, = z%sin wf, H, = —%23 cos Wt

A current distribution is given by

3 {—Joix for —a<z<0
N Jolix for0<z<a
where J, is a constant. Using Ampere’s circuital law in differential form and
symmetry considerations, find the magnetic field everywhere.

A current distribution is given by
J=J0< —%)ix for —a<z<a

where J, is a constant, Using Ampere’s circuital law in differential form and
symmetry considerations, find the magnetic field everywhere.

Assume that the velocity of water in the stream of Fig. 3.7(a) decreases linearly
from a maximum at the top surface to zero at the bottom surface, with the
velocity at the top surface given by Fig. 3.7(b). Discuss the curl of the velocity
vector field with the aid of the curl meter.

For the vector fieldr = xi, -+ yi, + zi,, discuss the behavior of the curl meter
and verify your reasoning by evaluating the curl of r.

Discuss the curl of the vector field yi, — xi, with the aid of the curl meter.

Verify Stokes’ theorem for the vector field A = yi, + zi, + xi, and the
closed path comprising the straight lines from (1,0, 0) to (0, 1, 0), from
(0, 1, 0) to (0, 0, 1), and from (0, 0, 1) to (1, 0, 0).

Verify Stokes’ theorem for the vector field A = e7%i, — xe™i, and any
closed path of your choice.

For the vector A = yzi, -+ zxi, -+ xyi,, use Stokes’ theorem to show that
ff A - dlis zero for any closed path C. Then evaluate [ A » dl from the origin
c

to the point (1,1, 2) along the curve x = 4/2 sin¢, y =4/2 sint, z =
(8/m)t.

Find the divergences of the following vector fields:

(@) 3xy%, + 3x2yi, + 23,5 (b) 2xpi. — ¥2,.

For A = xyi, + yzi, + zxi,, (a) find the net longitudinal differential of the
components of A at the point (1, 1, 1), and (b) find the locus of the points at
which the net longitudinal differential of the components of A is zero.
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3.21.

3.22.

3.23

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

3.30.

3.31.

3.32.

For each of the following vectors, find the curl and the divergence and discuss
your results: (a) xyi,; (b) yi,; () xiy; (d) yi, + xi,.
A charge distribution is given by

p=p0(1—lail) for —a<x<a

where p, is a constant. Using Gauss’ law for the electric field in differential
form and symmetry considerations, find the electric field everywhere.

A charge distribution is given by
x
p=p07 for —a<x<a

where p, is a constant. Using Gauss’ law for the electric field in differential
form and symmetry considerations, find the electric field everywhere.

Given D = x2yi, — »3i,, find the charge density at (a) the point (2, 1, 0) and
(b) the point (3, 2, 0).

Determine which of the following vectors can represent a magnetic flux density
vector B: (a) yi, — xi,; (b) xi. -+ yi,; (c) 23 cos ot i,.

Given J = e~*'i,, find the time rate of decrease of the charge density at (a)
the point (0, 0, 0) and (b) the point (1, 0, 0).

For the vector field r = xi, -+ yi, + zi,, discuss the behavior of the diver-
gence meter, and verify your reasoning by evaluating the divergence of r.

Discuss the divergence of the vector field yi, — xi, with the aid of the diver-
gence meter.

Verify the divergence theorem for the vector field A = xi, + yi, + zi; and
the closed surface bounding the volume within the hemisphere of radius unity
above the xy plane and centered at the origin.

Verify the divergence theorem for the vector field A = xyi, -+ yzi, + zxi,
and the closed surface of the volume bounded by the planes x =0, x =1,
y=0,y=1,z=0,andz=1

For the vector A = y%i, — 2yzi,, use the divergence theorem to show that

j; A + dSiszero for any closed surface S. Then evaluate | A « S over the sur-
S

facex +y+z=1,x>0,y>0,z>0.

Show that V+V x A =0 for any A in two ways: (a) by evaluating
V . V x A in Cartesian coordinates, and (b) by using Stokes” and divergence
theorems.
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In Chaps. 2 and 3 we learned Maxwell’s equations in integral form and in
differential form. We now have the knowledge of the fundamental laws of
electromagnetics that enable us to embark upon the study of the elements of
their applications. Many of these applications are based on electromagnetic
wave phenomena, and hence it is necessary to gain an understanding of the
basic principles of wave propagation, which is our goal in this chapter. In
particular, we shall consider wave propagation in free space. We shall then
in the next chapter consider the interaction of the wave fields with materials
to extend the application of Maxwell’s equations to material media and
discuss wave propagation in material media.

We shall employ an approach in this chapter that will enable us not
only to learn how the coupling between space-variations and time-variations
of the electric and magnetic fields, as indicated by Maxwell’s equations,
results in wave motion but also to illustrate the basic principle of radiation
of waves from an antenna, which will be treated in detail in Chap. 8. In this
process, we will also learn several techniques of analysis pertinent to field
problems. We shall augment our discussion of radiation and propagation
of waves by considering such examples as the principle of an antenna array
and the Doppler effect. Finally, we shall discuss power flow and energy storage
associated with the wave motion and introduce the Poynting vector.
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4.1 THE INFINITE PLANE CURRENT SHEE’f

In Chap. 3 we learned that the space-variations of the electric and mag-
netic field components are related to the time-variations of the magnetic
and electric field components, respectively, through Maxwell’s equations.
This interdependence gives rise to the phenomenon of electromagnetic wave
propagation. In the general case, electromagnetic wave propagation involves
electric and magnetic fields having more than one component, each dependent
on all three coordinates, in addition to time. However, a simple and very
useful type of wave that serves as a building block in the study of electro-
magnetic waves consists of electric and magnetic fields that are perpendicular
to each other and to the direction of propagation and are uniform in planes
perpendicular to the direction of propagation. These waves are known as
“uniform plane waves.” By orienting the coordinate axes such that the elec-
tric field is in the x direction, the magnetic field is in the y direction, and the
direction of propagation is in the z direction, as shown in Fig. 4.1, we have

E = E,(z, i, @.1)
H = Hz, )i, (4.2)

Uniform plane waves do not exist in practice because they cannot be
produced by finite-sized antennas. At large distances from physical antennas
and ground, however, the waves can be approximated as uniform plane waves.
Furthermore, the principles of guiding of electromagnetic waves along trans-
mission lines and waveguides and the principles of many other wave phenom-
ena can be studied basically in terms of uniform plane waves. Hence it is
very important that we understand the principles of uniform plane wave

propagation.
T x

E

Direction of
Propagation
>z

)H/ :
e

y

Figure 4.1. Directions of electric and magnetic fields and direction of
propagation for a simple case of uniform plane wave.
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In order to illustrate the phenomenon of interaction of electric and magne-
tic fields giving rise to uniform plane electromagnetic wave propagation, and
the principle of radiation of electromagnetic waves from an antenna, we shall
consider a simple, idealized, hypothetical source. This source consists of an
infinite sheet lying in the xy plane, as shown in Fig. 4.2. On this infinite plane

/)

Figure 4.2. Infinite plane sheet in the xy plane carrying surface current of
uniform density.

sheet a uniformly distributed current varying sinusoidally with time flows
in the negative x direction. Since the current is distributed on a surface, we
talk of surface current density in order to express the current distribution
mathematically. The surface current density, denoted by the symbol Js,
is a vector quantity having the magnitude equal to the current per unit width
(amp/m) crossing an infinitesimally long line, on the surface, oriented so as
to maximize the current. The direction of Jg is then normal to the line and
toward the side of the current flow. In the present case, the surface current
density is given by

Jo = —Jg, coswti, forz=0 4.3)

where J;, is a constant and e is the radian frequency of the sinusoidal time-
variation of the current density.

Because of the uniformity of the surface current density on the infinite
sheet, if we consider any line of width w parallel to the y axis, as shown in
Fig. 4.2, the current crossing that line is simply given by w times the current
density, that is, w/g, cos ot. If the current density is non-uniform, we have
to perform an integration along the width of the line in order to find the cur-
rent crossing the line. In view of the sinusoidal time-variation of the current
density, the current crossing the width w actually alternates between negative
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x and positive x directions, that is, downward and upward. The time history
of the current flow for one period of the sinusoidal variation is illustrated in
Fig. 4.3, with the lengths of the lines indicating the magnitudes of the current.

R T ] e

0 wt—» m wt —» 27

Figure 4.3. Time history of current flow across a line of width w parallel
to the y axis for the current sheet of Fig. 4.2,

42 MAGNETIC FIELD ADJACENT
TO THE CURRENT SHEET

In the previous section we introduced the infinite current sheet lying in
the xy plane and upon which a surface current flows with density given by

Jeg= —Jgcoswti, 4.4

Our goal is to find the electromagnetic field due to this time-varying current
distribution. In order to do this, we have to solve Faraday’s and Ampere’s
circuital laws simultaneously. Since we have here only an x component of the
current density independent of x and y, the equations of interest are

dE, 0B,

dz  or )
0H, oD,

0z _(J" T ) (4.6)

The quantity J, on the right side of (4.6) represents volume current density
whereas we now have a surface current density. Furthermore, in the free space
on either side of the current sheet the current density is zero and the differ-
ential equations reduce to

JE, 0B,

9 = o @7
o, 9D, (4.8)

To obtain the solutions for E, and H, on either side of the current sheet,
we therefore have to solve these two differential equations simultaneoulsy.
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To obtain a start on the solution, however, we need to consider the surface
current distribution and find the magnetic field immediately adjacent to the
current sheet. This is done by making use of Ampere’s circuital law in
integral form given by

§H-dl=fJ-dS+%fD-dS (4.9)
c S S

and applying it to a rectangular closed path abcda, as shown in Fig. 4.4, with
the sides ab and cd lying immediately adjacent to the current sheet, that is,
touching the current sheet, and on either side of it. This choice of the rectan-
gular path is not arbitrary but is intentionally chosen to achieve the task of
finding the required magnetic field. First, we note from (4.6) that an x-directed
current density gives rise to a magnetic field in the y direction. At the source
of the current, this magnetic field must also have a differential in the third
direction, namely, the z direction. In fact, from symmetry considerations, we
can say that H, on ab and cd must be equal in magnitude and opposite in
direction.

Y
N

Figure 4.4. Rectangular path enclosing a portion of the current on the
infinite plane current sheet.

If we now consider the line integral of H around the rectangular path
abcda, we have

H-dl:f:H-lerL°H-d1+fH-d1+L"H-d1 (4.10)

abcda

The second and the fourth integrals on the right side of (4.10) are, however,
equal to zero since H is normal to the sides bc and da and furthermore bc
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and da are infinitesimally small. The first and third integrals on the right
side of (4.10) are given by

[T« a1 = [H).u(ab)

[ "H.dl = —[H].(cd)
Thus
§; bod H . dl = [H ),)(ab) — [H,).cd) = 2[H,],,(ab) )

since [Hy]cd s _[Hy]ab'

We have just evaluated the left side of (4.9) for the particular problem
under consideration here. To complete the task of finding the magnetic field
adjacent to the current sheet, we now evaluate the right side of (4.9), which
consists of two terms. The second term is, however, zero since the area
enclosed by the rectangular path is zero in view of the infinitesimally small
thickness of the current sheet. The first term is not zero since there is a cur-
rent flowing on the sheet. Thus the first term is simply equal to the current
enclosed by the path abcda in the right-hand sense, that is, the current
crossing the width ab toward the negative x direction. This is equal to the
surface current density multiplied by the width ab, that is, Jg, cos w? (ab).
Thus substituting for the quantities on either side of (4.9), we have

2[H ], ,(ab) = Jg, cos wt (ab)

or
— JSO
[H].: = ' cos wt “4.12)
It then follows that
[H,J.s = — %5 cos ot 4.13)

Thus immediately adjacent to the current sheet the magnetic field intensity
has a magnitude ‘% cos et and is directed in the positive y direction on the

side z > 0 and in the negative y direction on the side z < 0. This is illustrated
in Fig. 4.5. It is cautioned that this result is true only for points right next to
the current sheet since if we consider points at some distance from the cur-
rent sheet, the second term on the right side of (4.9) will no longer be zero.

The technique we have used here for finding the magnetic field adjacent
to the time-varying current sheet by using Ampere’s circuital law in integral
form is a standard procedure for finding the static electric and magnetic
fields due to static charge and current distributions, possessing certain sym-
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z>0

\{]

Figure 4.5. Magnetic field adjacent to and on either side of the infinite
plane current sheet.

metries, by using Gauss’ law for the electric field and Ampere’s circuital law
in integral forms, respectively, as we have already demonstrated in Chap. 2.
Since for the static field case the terms involving time derivatives are zero,
Ampere’s circuital law simplifies to

fch-dlzLJ-ds

Hence, if the current distribution were not varying with time, then in order
to compute the magnetic field we can choose a rectangular path of any width
be and it would still enclose the same current, namely, the current on the
sheet. Thus the magnetic field would be independent of the distance away
from the sheet on either side of it. There are several problems in static fields
that can be solved in this manner. We shall not discuss these here; instead,
we shall include a few cases in the problems for the interested reader and we
shall continue with the derivation of the electromagnetic field due to our
time-varying current sheet in the following section.

43 SUCCESSIVE SOLUTION OF
MAXWELL’S EQUATIONS*

In the preceding section we found the magnetic field ajdacent to the

infinite plane sheet of current introduced in Sec. 4.1. Now, to find the solu-
tions for the fields everywhere on either side of the current sheet, let us first

*This section may be omitted without loss of continuity.
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consider the region z > 0. In this region the fields simultaneously satisfy the
two differential equations (4.7) and (4.8) and with the constraint that the
magnetic field at z = 0 is given by (4.12). To find the solutions for these
differential equations, we have a choice of starting with the solution for H,
given by (4.12) and solving them successively and repeatedly in a step-by-step
manner until the solutions satisfy both differential equations or of combining
the two differential equations into one and then solving the single equation
subject to the constraint at z = 0. Although it is somewhat longer and ted-
ious, we shall use the first approach in this section in order to obtain a feeling
for the mechanism of interaction between the electric and magnetic fields.
We shall consider the second and more conventional approach in the follow-
ing section.

To simplify the task of the repetitive solution of the two differential equa-
tions (4.7) and (4.8) we shall employ the phasor technique. Thus by letting

E (z,1) = Re [E,(2)e"] 4.14)
H/(z, 1) = Re [H(2)e’] 4.15)

where Re stands for “real part of” and E,(z) and H H (z) are the phasors cor-
responding to the time functions E,(z,¢) and H,(z, f), respectively, and
replacing the time functions in (4.7) and (4.8) by the corresponding phasor
functions and @/d¢ by jw, we obtain the differential equations for the
phasor functions as

9L, : — —joB, — —jouH, (4.16)
06_112’ — —jwD, = —jwe,E, (4.17)

We also note that since (4.12) can be written as
J
[H.s = Re (“52e")
the solution for the phasor 1-7, at z = 0 is given by

[H),.o= % (4.18)

We start with (4.18) and solve (4.16) and (4.17) successively and repeatedly,
and after obtaining the final solutions for E, and H,, we put them in (4.14)
and (4.15), respectively, to obtain the solutions for the real fields.

Thus starting with (4.18) and substituting it in (4.16), we get
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JdE, Jso

s _Jwﬂo 2

Z

Integrating both sides of this equation with respect to z, we have
E, = —jop st + €

where C is the constant of integration. This constant of integration must,
however, be equal to [E,],., since the first term on the right side tends to
zero as z — 0. Thus

B, = —joue?SE + (B @19

Now, substituting (4.19) into (4.17), we obtain

3t = —jweo{—jwqusz"z + (B

= —jweE,).-o — wzuoeojs"z

& , = J
Hy s _JCO€OZ[Ex]z=o e CO Ho€o Soz +[ ylz=0

Jsoz Jso

. _ja)foz[Ex]z=o — W2 l,€ + 5

= —jwez[E,],-o + JS°( “’—"206—02—) (4.20)

We have thus obtained a second-order solution for ﬁy, which, however,
does not satisfy (4.16) together with the solution for E, given by (4.19). Hence
we must continue the step-by-step solution by substituting (4.20) into (4.16)
and finding a higher-order solution for E, and so on. Thus by substituting
(4.20) into (4.16), we get

JE, . . = Jsof1 _ ©o€oz>
9z ]w/‘o{ Jw€ Z[E,]. -0 + T(l —2—‘>}

- : 3
= ——Cl)zﬂofoz[Ex]z=0 _]CO# JSO <1 - a)—'u;’jz—)

txy
I

= 2 - J 2 3 .
x _wzﬂofo%[Ex]z 0 deu 50( Mgﬂz—) + [Ex]z=0

=[E,,- (1 _ wzﬂéfozz) _ .]'wﬂ;-]so (z _ wzﬂgfoza) @.21)
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From (4.17), we then have

0Hy — i 0 €022 O lo€ods0 (, _ O M€y
62 - JwGO[Ex]z=0 (I - P ) - 2 (Z 6 >

= 2 3
o _waO[Ex]z=0 (Z - M__gfi)

_ @ Ue€od s (ﬁ_ wzﬂofoz4) [H ]
2 2 24 ==0

L

- 2 3
= _jwe(![Ex]z=0 (Z - %)

(1 Cllseer” | IR “22)

Continuing in this manner, we will get infinite series expressions for E,
and H, as follows:

=[Ex]z=o[1—(gz,z+(—/fflx—...]

H, = 1B dena fr = B2 G2 ]
JS“[I (ﬂz)z + (32)4 ] (4.24)

where we have introduced the notations

B = on/ sk 4.29)
o = of £ (4.26)

It is left to the student to verify that the two expressions (4.23) and (4.24)
simultaneously satisfy the two differential equations (4.16) and (4.17). Now,
noting that

(B2)* | (B2)*

v T T

cos fz=1—

sin Bz = Bz — (ﬂz) (ﬂz) +.
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and substituting into (4.23) and (4.24), we have

E, = [B),-o cos Bz — j1eJ50 sin pz 4.27)
7 _:legr o
H, = —Jn—[Ex]Fo sin fz + =3¢ cos pz (4.28)
0

We now obtain the expressions for the real fields by putting (4.27) and
(4.28) into (4.14) and (4.15), respectively. Thus

E(z,) = Re{[E_x]z=0 cos Bz elor — jﬂ% sin Bz ejwr}
= cos fz Re {[E,],- o’} + ”OTJSO sin Bz Re [e/@=/2)]

= cos Bz (C cos et + D sin wt) +- @% sin Bz sin ot 4.29)

Hz,t) = Re{_J—-[Ex], o sin fz e + JS" cos fiz ef“”}

= ?I_ sin Bz Re {[E-x]z=0 elt@t-m2} | % cos Bz Re [/
0

JS 0

= ﬂi sin Bz (C sin wt — D cos wt) + cos fzcoswt  (4.30)

0

where we have replaced the quantity Re {[E,],-,e’} by (C cos wt - D sin ot)
in which C and D are arbitrary constants to be determined. Making use of
trigonometric identities and proceeding further, we write (4.29) and (4.30) as

Mo

E(z,t)= cos (wt — pz) 2 Y cos (@t + fz)

2C | 1oJs0
4
+ g sin (@f — B2) -+ % sin (ot + 82) (4.31)
Hfz, 1) = 2C -+ nds, cos (wt — fz) — 2C — floJso cos (wt + f2)
4n, a1,
+ 2—];;— sin (wt — fz) — TR sm (wt + B2) 4.32)
0

Equation (4.32) is the solution for H, which together with the solution
for E, given by (4.31) satisfies the two differential equations (4.7) and (4.8)
and which reduces to (4.12) for z = 0. Likewise, we can obtain the solutions
for H, and E, for the region z < 0 by starting with [H,],-- given by (4.13)
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and proceeding in a similar manner. We shall however proceed with the
evaluation of the constants C and D in (4.31) and (4.32). In order to do this,
we first have to understand the meanings of the functions cos (w! F fz)
and sin (wt T= Bz). We shall do this in Sec. 4.5.

4.4 SOLUTION BY WAVE EQUATION

In Sec. 4.3 we found the solutions to the two simultaneous differential
equations (4.7) and (4.8) by solving them successively and repeatedly in a
step-by-step manner. In this section we shall consider an alternative and more
conventional method by combining the two equations into a single equation
and then solving it. We recall that the two simultaneous differential equations
to be satisfied in the free space on either side of the current sheet are

Oy 0D 95 (4.34)

Differentiating (4.33) with respect to z and then substituting for § H,/dz from
(4.34), we obtain

0%E, _ dHN_ _, 0 (9HN_ _ d( _JE,
92 _—""E(T)' ”°at<az)_ ”°oz( €o dr)
or
2 2
% . ,‘060% (4.35)

We have thus eliminated H, from (4.33) and (4.34) and obtained a single
second-order partial differential equation involving E, only.

Equation (4.35) is known as the “wave equation.” A technique of solving
this equation is the “separation of variables” technique. Since it is a differ-
ential equation involving two variables z and ¢, the technique consists of
assuming that the required solution is the product of two functions, one of
which is a function of z only and the second is a function of ¢ only. Denoting
these functions to be Z and T, respectively, we have

Ef(z,0) =Z(2) T@t) (4.36)

Substituting (4.36) into (4.35) and dividing throughout by u,€,Z(z) T(t), we
obtain

1 d?*Z 1 4*T
Uo€oZ dz2 — T di? (4.37)
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In (4.37) the left side is a function of z only and the right side is a function of
t only. In order for this to be satisfied, they both must be equal to a constant.
Hence setting them equal to a constant, say a2, we have

d*Z

Ez— = OCZ,UOGOZ (4'38a)
dT - wr (4.38b)

We have thus obtained two ordinary differential equations involving separ-
ately the two variables z and ¢; hence the technique is known as the “separa-
tion of variables” technique.

The constant 2 in (4.382) and (4.38b) is not arbitrary since for the case
of the sinusoidally time-varying current source the fields must also be sin-
usoidally time-varying with the same frequency although not necessarily in
phase with the source. Thus the solution for T'(f) must be of the form

T(t) = A cos wt + Bsinw!? 4.39)

where A and B are arbitrary constants to be determined. Substitution of (4.39)
into (4.38b) gives us a* = —w?. The solution for (4.38a) is then given by

Z(z) = A’ cos wa/ tho€oz + B’ sin wa/ to€oz
= A’ cos fz + B'sin fz (4.40)

where A’ and B’ are arbitrary constants to be determined and we have defined

B = o/ po€o (4.41)
The solution for E, is then given by
E, = (A’ cos Bz + B’ sin Bz)(A cos wt + B sin wt)
= C cos fz cos wt 4+ D cos Bz sin wt
+ C’sin Bz cos wt + D' sin fz sin ot (#.42)

The corresponding solution for H, can be obtained by substituting (4.42)
into one of the two equations (4.33) and (4.34). Thus using (4.34), we get

0H, _

9z —€y[—wC cos Bz sin wt + @D cos fz cos wt

—aC’ sin Bz sin wt + wD’ sin fz cos wt]
H,= %[C sin fz sin wt — D sin fz cos wt

—C’ cos Bz sin wt + D' cos fz cos wt]
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Defining

_ B _ o _ i
Mo we,  we, Vg (@)

we have
H,= ﬂi[C sin Bz sin ¢ — D sin fz cos wt
0
— C' cos fz sin wt + D’ cos fiz cos wt] (4.44)

Equation (4.44) is the general solution for H, valid on both sides of the
current sheet. In order to deduce the arbitrary constants, we first recall that
the magnetic field adjacent to the current sheet is given by

']—52 cos wt for z = 04
H,= (4.45)
—!‘29—0 cos wt for z = 0—

Thus for z > 0,

ﬂi[—C’ sin wt 4+ D’ cos wf] = ﬁcos wt
0

2
or
C'=0 and D' =T
giving us
H, = % cos fz cos wt -+ ;’1; sin Bz (Csin wt — Dcos wt)  (4.46)
E. = MoJso sin Bz sin @t + cos Bz (C cos wt -+ D sin wt) 4.47)

2

Making use of trigonometric identities and proceeding further, we write
(4.47) and (4.46) as

E(z,0) = 2C—+4’7LJS9 cos (wt — fz) - 2£_4ﬂ—°']s° cos (ot + f2)
D . D .
+ 7 sin (ot — Bz) + - sin (ot + B2) (4.48)
H/fz,t) = —2C_ZT”°JS° cos (wt — Bz) — 2—("—4717""&’ cos (ot + fz)
0 0

+ 2%0 sin (wt — Bz) — 2%0 sin (et - f2) 4.49)
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Equation (4.49) is the solution for H, which together with the solution
for E,_ given by (4.48) satisfies the two differential equations (4.7) and (4.8)
and which reduces to (4.12) for z = 0. Similarly, we can obtain the solutions
for H, and E, for the region z < 0 by using the value of [H,],_,- to evaluate
C’ and D' in (4.44). We shall, however, proceed with the evaluation of the
constants C and D in (4.48) and (4.49). In order to do this, we first have to
understand the meanings of the functions cos (wt F fz) and sin (@t F f2).
We shall do this in the following section.

4.5 UNIFORM PLANE WAVES

In the previous two sections we derived the solutions for E, and H,,
due to the infinite plane sheet of sinusoidally time-varying uniform current
density, for the region z > 0. These solutions consist of the functions
cos (et F Pz) and sin (et F fz), which are dependent on both time and dis-
tance. Let us first consider the function cos (wt — fz). To understand the
behavior of this function, we note that for a fixed value of time it varies in a
cosinusoidal manner with the distance z. Let us therefore consider three
values of time £ = 0, t = n/4w, and ¢t = n/2m and examine the sketches of
this function versus z for these three times. By noting that

fort =0, cos(wt — fz) = cos (—fz) = cos Bz

for t = %), cos (wt — fz) = cos (% - ﬁz)

=7 . = & m = s
for t = 7 €% (ot — Bz) = cos ( > ﬁz) sin fz

we draw the sketches of the three functions as shown in Fig. 4.6.

cos (wt — fz S _
|4 e t=0 T3 "= 26
0 } 4 1 -z
1 g 3% s ﬁr\
28 B 26 g 28

Figure 4.6. Sketches of the function cos (wt — fz) versus z for three values
of ¢.
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It is evident from Fig. 4.6 that the sketch of the function for ¢ = 7/4w is
a replica of the function for # = 0 except that it is shifted by a distance of
7/4B toward the positive z direction. Similarly, the sketch of the function
for t = z/2¢ is a replica of the function for ¢ = 0 except that it is shifted by
a distance of /2 toward the positive z direction. Thus as time progresses,
the function shifts bodily to the right, that is, toward increasing values of z.
In fact, we can even find the velocity with which the function is traveling by
dividing the distance moved by the time elapsed. This gives

Lo mB—a2f o _
velocity = RRBE0- B G/
N 1
~lo€o  A/Am X 1077 X 107°/36%
=3 X 10® m/s

which is the velocity of light in free space. Thus the function cos (wt — fz)
represents a “traveling wave” moving with a velocity w/f toward the direc-
tion of increasing z. The wave is also known as the “positive going” or
“(+) wave.”

Similarly, by considering three values of time ¢ = 0, t = n/4w, and t =
/2 for the function cos (w? + Bz), we obtain the sketches shown in Fig.
4.7. An examination of these sketches reveals that cos (wt -- fz) represents
a “traveling wave” moving with a velocity w/f toward the direction of de-
creasing values of z. The wave is also known as the “negative going” or
“(—) wave.” Since the sine functions are cosine functions shifted in phase by
7/2, it follows that sin (wt — fz) and sin (w? + fz) represent traveling waves
moving in the positive and negative z directions, respectively.

Acos (wt + fz)

1

3 2m 517\
28 B8 28

J
=
™|

Figure 4.7. Sketches of the function cos (wf + fz) versus z for three values
of 1.
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Returning to the solutions for E, and H, given by (4.31) and (4.32) or
(4.48) and (4.49), we now know that these solutions consist of superpositions
of traveling waves propagating away from and toward the current sheet. In
the region z > 0 we, however, have to rule out traveling waves propagating
toward the current sheet because such a situation requires a source of waves
to the right of the sheet or an object that reflects the wave back toward the
sheet. Thus we have

D=0
2C — foJgo =0 or C=”°TJS°
which give us finally

E. = ”0—2']“3 cos (wt — Bz)
forz>0 (4.50)

P

y = 5 Cos (ot — f2)

Having found the solutions for the fields in the region z > 0, we can now
consider the solutions for the fields in the region z < 0. From our discussion
of the functions cos (wt F fz), we know that these solutions must be of the
form cos (wt -+ fBz) since this function represents a traveling wave progress-
ing in the negative z direction, that is, away from the sheet in the region z < 0.
Recalling that the magnelic field adjacent to the current sheet and to the
left of it is given by

[H,];=¢- = %cos ot
we get

H, = Jso cos (@t + Bz)  forz <0 (4.512)

The corresponding E, can be obtained by simply substituting the result just
obtained for H, into one of the two differential equations (4.7) and (4.8).
Thus using (4.7), we obtain

JE. 9B,

TE= gt = —E"gico sin (wt + Bz)

E,. = %S—“—cﬁg cos (wt -+ f2)
ﬂogso cos (wt + f2) forz <0 (4.51b)

Combining (4.50) and (4.51), we find that the solution for the electro-



138 CH. 4 WAVE PROPAGATION IN FREE SPACE

magnetic ficld due to the infinite plane current sheet in the xp plane charac-
terized by

Js = —Jg coswti,
is given by
E= ”"ZJS" cos (ax T B2)i, forz=0 (4.52a)
H— :I:'—’;—° cos (@t F f2)i, forz=0 (4.52b)

These results are illustrated in Fig. 4.8, which shows sketches of the current
density on the sheet and the distance-variation of the electric and magnetic
fields on either side of the current sheet for a few values of ¢. It can be seen
from these sketches that the phenomenon is one of electromagnetic waves
“radiating” away from the current sheet to either side of it, in step with the
time-variation of the current density on the sheet.

The solutions that we have just obtained for the fields due to the time-
varying infinite plane current sheet are said to correspond to “uniform plane
electromagnetic waves” propagating away from the current sheet to either
side of it. The terminology arises from the fact that the fields are uniform
(that is, they do not vary with position) over the planes z = constant. Thus
the phase of the fields, that is, the quantity (w? + fz), as well as the ampli-
tudes of the fields, is uniform over the planes z = constant. The magnitude
of the rate of change of phase with distance z for any fixed time is §. The
quantity f§ is therefore known as the “phase constant.” Since the velocity of
propagation of the wave, that is, @/f, is the velocity with which a given con-
stant phase progresses along the z direction, that is, along the direction of
propagation, it is known as the “phase velocity” and is denoted by the
symbol v,. Thus

v, = % (4.53)
The distance in which the phase changes by 2z radians for a fixed time is

2z/B. This quantity is known as the “wavelength” and is denoted by the
symbol 4. Thus

2n
== 4.54
7 4.54)
Substituting (4.53) into (4.54), we obtain
2n v
A= =z
/v, f

or

Af =v, (4.55)



JS = _Jso cos Wiy,

Figure 4.8, Time history of uniform plane electromagnetic wave radiating
away from an infinite plane current sheet in free space.

139
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Equation (4.55) is a simple relationship between the wavelength A4 which is a
parameter governing the variation of the field with distance for a fixed time
and the frequency f which is a parameter governing the variation of the field
with time for a fixed value of z. Since for free space v, = 3 X 10® m/s, we
have

A in meters X fin Hz = 3 X 108
A in meters X fin MHz = 300 (4.56)
Other properties of uniform plane waves evident from (4.52) are that the
electric and magnetic fields have components lying in the planes of constant
phase and perpendicular to each other and to the direction of propagation.

In fact, the cross product of E and H results in a vector that is directed along
the direction of propagation, as can be seen by noting that

E x H=E.,i, x H,ji,

= £ MoT50 cos? (at F )i, for 220 (50

Finally, we note that the ratio of E, to H, is given by

E, { fo for z > 0, i.e., for the () wave (4.58)
H,  |—n, for z <0, i.e., for the (—) wave )

¥y

The quantity #, which is equal to ./ ,/€, is known as the “intrinsic imped-
ance” of free space. Its value is given by

_ [(4r x 10°7)H/m _ ] i
o = 4/ "(10-7/36m) Fjm = /(144n* x 10*) H/F

= 1207 ohms = 377 ohms 4.59)
Example 4.1. The electric field of a uniform plane wave is given by E =
10 cos (3n x 108t — zmz)i, V/m. Let us identify the various parameters asso-

ciated with the uniform plane wave.
We recognize that

w = 3n X 10% rad/s

f =% —15x 108 Hz = 150 MHz

2n
B = mrad/m
2n
A==5=2m
B
_ o 3mx10® 8
U”—ﬁ_——n =3 x 10® m/s
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Also, Af =v, =2 x 1.5 x 108 = 3 x 10® m/s. From (4.58) and since the
given field represents a (+) wave,

E.. 10 8,
n—oly 377 €08 3z x 10% — @z)i, amp/m -

H=
Example 4.2. An antenna array consists of two or more antenna elements
spaced appropriately and excited wilh currents having the appropriate ampli-
tudes and phases in order to obtain a desired radiation characteristic. To
illustrate the principle of an antenna array, let us consider two infinite plane
parallel current sheets, spaced A/4 apart and carrying currents of equal ampli-
tudes but out of phase by n/2 as given by the densities

Js, = —Jgo cos @t 1, =0
Js, — —Js, sin @t i — 4
52 = —Jso Sin wt i, 2=
and find the electric field due to the array of the two current sheets.
We apply the result given by (4.52) to each current sheet separately and
then use superposition to find the required total electric field due to the array

of the two current sheets. Thus for the current sheet in the z = 0 plane, we
have

MoJso cos (@t — fr)i,  forz >0
E, —
ﬁ‘gﬂ cos (wt -+ P2)1i, forz <0

For the current sheet in the z = 1/4 plane, we have

’h‘TJ”sin[cot—ﬂ(z——%)]ix forz>%

E,= szlﬂsin[wt“’ﬁ(z_%)]i" forz<—f1l
’7°'Is°s1n( t—[)’z—l—%)ix forz>%

- TIoTJsosin(a)f‘Fﬁz_%)ix forz<%
5o cos (@t — ) i for z > &

1 —ﬁ;ﬂ cos (@t - fz)i, for z < %
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Now, using superposition, we find the total electric field due to the two
current sheets to be

E—E, +E
Molso cos (@t — o), forz> %
oS50 sin ot sin fz i, for0 <z < %
0 forz <0

Thus the total field is zero in the region z << 0 and hence there is no
radiation toward that side of the array. In the region z > A/4 the total field
is twice that of the field due to a single sheet. The phenomenon is illustrated
in Fig. 4.9, which shows sketches of the individual fields E,, and E,, and
the total field E, = E,, + E,, for a few values of ¢. The result that we have
obtained here for the total field due to the array of two current sheets,
spaced 1/4 apart and fed with currents of equal amplitudes but out of phase
by n/2, is said to correspond to an “endfire” radiation pattern. =

Returning now to the solution for the electromagnetic field given by
(4.52), let us ask ourselves the question, “How does the phase associated
with the wave change with time as viewed by a moving observer ?” To answer
this question, let us consider the (4-) wave and an observer moving along the
positive z direction with a velocity v, m/s, starting at z = z, at t = 0. Then
the position of the observer as a function of time is given by z = z, + v,
and the phase of the wave at that position is given by

Bops = WF — P(zo + vot)
= (w — Bvy)t — Bz, (4.60)

Ignoring relativistic effects, the rate of change of phase with time or the
radian frequency of the wave viewed by the moving observer is

Wops = %[(w — foo)t — Pz]

:w—ﬂ’l}ozw—gvo

vl’
v
= CO( — —0—)
,UP

=B s(1-2)

T Vp

)
= f — -+ 4.61)

or
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A
z=0 z=3
P 1 t=0
E,(l,/ ~q
/ N
\ 1, \
>z
/\\ /I\
\\ 4 E
-..,___",/ XZ\\_// E
X
i
'= %
>
EX
—plits
\ TN / s
d N\
3¢ >z
//
s_// e
EX
A
z=0 z=3

Figure 4.9. Time history of individual fields and the total ficld due to an
array of two infinite plane parallel current sheets.

Thus the moving observer views a frequency that is different from that
of the source of the wave. This phenomenon of a shift in the frequency of
the wave is known as the “Doppler shift.” For an observer moving along
the direction of propagation, the Doppler-shifted frequency is less than the
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actual frequency by the amount fv,/v, or v,/A. For an observer moving oppo-
site to the direction of propagation of the wave, the Doppler-shifted frequency
is higher than the actual frequency by the same amount. The situation is
illustrated in Fig. 4.10 which depicts the wave motion as viewed by a sta-

Observer/ Stationary | \ Observer \ Wave
Motion | Observer ¢A \\Motion \\Moliun

|
|
\
|
RV 1 "‘LO
/ I \ \
X 0 3 X BE
TP 2 2

Figure 4.10. Wave motion as viewed by a stationary observer (4) and two
moving observers (O and R).
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tionary observer (4) and two moving observers (O and R), one moving along,
and the other moving opposite to the direction of propagation of the wave
with a velocity which, for simplicity, is assumed to be one-half the phase
velocity of the wave. From the series of sketches for one period of the wave,
it can be seen that observer A4 views a complete cycle of the wave whereas
observer O views only one-half cycle of the wave and observer R views one
and one-half cycles of the wave during that period. Thus the stationary
observer A views the same frequency as that of the wave, but moving observer
O views a frequency that is one-half that of the wave and moving observer R
views a frequency that is one and one-half that of the wave. The Doppler
shifts are greater when relativistic effects are included.

Example 4.3. Let us consider an automotive radar operating at a frequency
f= 9 GHz = 9000 MHz and determine the Doppler shift due to an auto-
mobile directly approaching the radar at a speed of 100 km/hr.

300 1

For the given frequency, 4 = 5000 ™ = 75 ™ Since v, = 100 km/hr =
10°

3600 m/s, the Doppler shift in frequency as given by (4.61) is

A=Y — 10 _333Hz

P74 3600 x (1/30)

Since the automotive radar operates on the signal reflected from the moving
automobile, the actual Doppler shift is 2 X 833.3 Hz or 1666.6 Hz. =

To discuss the phenomenon of Doppler shift further, let us consider the
case of a satellite that transmits electromagnetic waves at a radian frequency
@ and a receiver on the earth’s surface. For simplicity, we shall consider the
earth to be plane and the satellite orbit to be horizontal at a height & above
the earth, as shown in Fig. 4.11. Let the satellite be overhead at ¢ = 0 and its

Satellite
30
—_— —_— -
v, 1
\\ [
N |
N |
\\ | 7
vVt + n{‘*; 12 \\ ||
N |
N
S
\\\LReceiver

Figure 4.11. For the discussion of Doppler shift of a satellite signal.
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velocity be v, so that its horizontal distance from the overhead point is v,¢.
Although the satellite is a point source, the waves at a large distance from it
are approximately uniform plane waves with the constant phase surfaces
normal to the line joining the point of observation to the satellite. In the
present case, the distance between the satellite and the receiver is ./h2 + v2¢2.
The phase of the wave as observed at the receiver is therefore given by

¢obs =t — ﬁ’\/ hZ + ’U%ZZ + ¢0 (4'62)

where ¢, is the phase of the field at the satellite when it is at the overhead
point. Thus the Doppler-shifted frequency observed at the receiver is given by

wp = Bes — L (ot — f /T + ¢0)

Bt
A vEe?
— m(] ] ol

v, S hE v&r’)

A sketch of the variation of w, with 7 is shown in Fig. 4.12, Note that when
the satellite is overhead, there is no Doppler shift.

(4.63)

L]

Wp A vy
——————————— wll +—
N I'P

Lot}

Figure 4.12, Doppler-shifted frequency versus time for the satellite signal
of Fig. 4.11.

Example 4.4. Let us consider a satellite at a height of 1000 km, operating
at a frequency f = 40 MHz, and with an orbital velocity v, = 7 km/s and
find the maximum Doppler shift.

From (4.63), the maximum Doppler shift is given by

Y s Tx 10° _
[Afplas = [ = 40 X 10° X 35— = 933.3 Hz
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Proceeding further, the Doppler shifts are 933.3/,/5 and 933.3/,/2 or
417.4 Hz and 660.0 Hz when the horizontal distances of the satellite from the
overhead point are 500 km and 1000 km, respectively. =

4.6 POYNTING VECTOR AND
ENERGY STORAGE

In the preceding section we found the solution for the electromagnetic
field due to an infinite plane current sheet situated in the z = 0 plane. For
a surface current flowing in the negative x direction, we found the electric
field on the sheet to be directed in the positive x direction. Since the current
is flowing against the force due to the electric field, a certain amount of
work must be done by the source of the current in order to maintain the
current flow on the sheet. Let us consider a rectangular area of length Ax
and width Ay on the current sheet as shown in Fig. 4.13. Since the cur-

Figure 4.13. For the determination of power flow density associated with
the electromagnetic field.

rent density is Jg, cos et, the charge crossing the width Ay in time dt is
dq = Jg, Ay cos wt dt coulombs. The force exerted on this charge by the
electric field is given by

F=dgE =Jg Aycoswt dt E,i, 4.64)

The amount of work required to be done against the electric field in displac-
ing this charge by the distance Ax is

dw = F, Ax = J5E, cos ot dt Ax Ay (4.65)
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Thus the power supplied by the source of the current in maintaining the
surface current over the area Ax Ay is

‘2—‘; = JsoE, cos ot Ax Ay (4.66)
Recalling that E, on the sheet is r]o'% cos t, we obtain

dw _ o IS0 ocn

a7 — o=y cos wt Ax Ay 4.67)

We would expect the power given by (4.67) to be carried by the electro-
magnetic wave, half of it to either side of the current sheet. To investigate
this, we note that the quantity E x H has the units of

newtons _ amperes  newtons = coulomb meter

coulomb meter ~ coulomb *° second-meter © meter
__hewton-meters 1 watts
B second (meter)? = (meter)?

which represents power density. Let us then consider the rectangular box
enclosing the area Ax Ay on the current sheet and with its sides almost touch-
ing the current sheet on either side of it, as shown in Fig. 4.13. Recalling
that E x H is given by (4.57) and evaluating the surface integral of E x H
over the surface of the rectangular box, we obtain the power flow out of the
box as

2
§EXH-dS=no%’cosza)ti,-AxAyi,

4 (—ﬂnJ‘%cos2 wt i,> +(—Ax Api)

2
= 110'—]% cos? wt Ax Ay (4.68)

This result is exactly equal to the power supplied by the current source as
given by (4.67).

We now interpret the quantity E x H as the power flow density vector
associated with the electromagnetic field. It is known as the “Poynting vector”
after J. H. Poynting and is denoted by the symbol P. Although we have here
introduced the Poynting vector by considering the specific case of the electro-
magnetic fleld due to the infinite plane current sheet, the interpretation that

fﬁ E x H. dS is equal to the power flow out of the closed surface S is
s

applicable in the general case.
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Example 4.5. Far from a physical antenna, that is, at a distance of several
wavelengths from the antenna, the radiated electromagnetic waves are approx-
imately uniform plane waves with their constant phase surfaces lying normal
to the radial directions away from the antenna, as shown for two directions
in Fig. 4.14. We wish to show from the Poynting vector and physical consid-
erations that the electric and magnetic fields due to the antenna vary inversely
proportional to the radial distance away from the antenna,

Constant Phase
Surfaces

Figure 4.14. Radiation of electromagnetic waves far from a physical
antenna.

From considerations of electric and magnetic fields of a uniform plane
wave, the Poynting vector is directed everywhere in the radial direction indi-
cating power flow radially away from the antenna and is proportional to
the square of the magnitude of the electric field intensity. Let us now consider
two spherical surfaces of radii r, and r, and centered at the antenna and insert
a cone through these two surfaces such that the vertex is at the antenna,
as shown in Fig. 4.14. Then the power crossing the portion of the spherical
surface of radius r, inside the cone must be the same as the power crossing
the portion of the spherical surface of radius r, inside the cone. Since these
surface areas are proportional to the square of the radius and since the sur-
face integral of the Poynting vector gives the power, the Poynting vector must
be inversely proportional to the square of the radius. This in turn means that
the electric field intensity and hence the magnetic field intensity must be
inversely proportional to the radius.

Thus from these simple considerations we have established that far from
a radiating antenna the electromagnetic field is inversely proportional to the
radial distance away from the antenna. This reduction of the field intensity
inversely proportional to the distance is known as the “free space reduction.”
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For example, let us consider communication from earth to the moon. The
distance from the earth to the moon is approximately 38 x 10* km or
38 x 107 m. Hence the free space reduction factor for the field intensity is
10-7/38 or, in terms of decibels, the reduction is 20log,, 38 x 107, or
171.6 db. =

Returning to the electromagnetic field due to the infinite plane current
sheet, let us consider the region z > 0. The magnitude of the Poynting vector
in this region is given by

T30 cos (ot — B2) (4.69)

P,=EH, =n, )

The variation of P, with z for = 0 is shown in Fig. 4.15. If we now consider
a rectangluar box lying between z = z and z = z + Az planes and having
dimensions Ax and Ay in the x and y directions, respectively, we would in
general obtain a nonzero result for the power flowing out of the box, since
dP,/0z is not everywhere zero. Thus there is some energy stored in the volume
of the box. We then ask ourselves the question, “Where does this energy
reside 7’ A convenient way of interpretation is to attribute the energy storage
to the electric and magnetic fields.

AP,
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+ Az
Figure 4.15, For the discussion of energy storage in electric and magnetic

fields.

To discuss the energy storage in the electric and magnetic fields further,
we evaluate the power flow out of the rectangular box. Thus

§ P-dS=[Pl.s Ax Ay — [P, Ax Ay
R}

e [Pz]z Az [Pz]z
- +T Ax Ay Az

JP,
= (4.70)
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where Aw is the volume of the box. Letting P, equal E,H, and using (4.7) and
(4.8), we obtain

9
§SP +dS = 3 [EH,] Av

= (Hy% + Exaa—hz!y) Av
= (—HJ,(%z o E,,a£") Av

= — ,uoHy‘—{%' Av — eoE,,% Av

— S (Lumza) - & (Fearza) @M

Equation (4.71), which is known as Poynting’s theorem, tells us that the power
flow out of the box is equal to the sum of the time rates of decrease of the
quantities J€,E2 Av and 4 u, H} Av. These quantities are obviously the energies
stored in the electric and magnetic fields, respectively, in the volume of the
box. It then follows that the energy densities associated with the electric
and magnetic fields are J&,E2 and JuoH}, respectively. It is left to the student
to verify that the quantities }¢,E? and Ju,H* do indeed have the units J/m?,
Once again, although we have obtained these results by considering the
particular case of the uniform plane wave, they hold in general.

Summarizing our discussion in this section, we have introduced the
Poynting vector P = E x H as the power flow density associated with the
electromagnetic field characterized by the electric and magnetic fields, E and
H, respectively. The surface integral of P over a closed surface always gives
the correct result for the power flow out of that surface. There is energy
storage associated with the electric and magnetic fields with the energy
densities given by

W, = € 4.72)
and

W, = % o H? (4.73)
respectively.

4.7 SUMMARY

In this chapter we studied the principles of uniform plane wave propaga-
tion in free space. Uniform plane waves are a building block in the study of
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electromagnetic wave propagation. They are the simplest type of solutions
resulting from the coupling of the electric and magnetic fields in Maxwell’s
curl equations. We learned that uniform plane waves have their electric and
magnetic fields perpendicular to each other and to the direction of propaga-
tion. The fields are uniform in the planes perpendicular to the direction of
propagation.

We obtained the uniform plane wave solution to Maxwell’s equations by
considering an infinite plane current sheet in the xy plane with uniform sur-
face current density given by

Js = —Jgo cOs @t i, amp/m (4.74)

and deriving the electromagnetic field due to the current sheet to be given by

E= ”"TJS" cos (@t F fz)i,  forz=0 (4.75a)
H =+ %0 cos (ot F p)i,  forz=0 (4.75b)

In (4.75a) and (4.75b), cos (wt — fz) represents wave motion in the positive
z direction, whereas cos (w? + fz) represents wave motion in the negative z
direction. Thus (4.75a) and (4.75b) correspond to waves propagating away
from the current sheet to either side of it. Since the fields are independent of
x and p, they represent uniform plane waves.

The quantity f (= w/1.€,) 1 the phase constant, that is, the magnitude
of the rate of change of phase with distance along the direction of propaga-
tion, for a fixed time. The phase velocity v, that is, the velocity with which
a particular constant phase progresses along the direction of propagation, is
given by

v, = % (4.76)

The wavelength A, that is, the distance along the direction of propagation in
which the phase changes by 2z radians, for a fixed time, is given by

2n
= “@.77)

B
The wavelength is related to the frequency fin a simple manner as given by
v,=Af (4.78)

which follows from (4.76) and (4.77). The quantity 5, (== »/Ho/€,) is the
intrinsic impedance of free space. It is the ratio of the magnitude of E to the
magnitude of H and has a value of 120z ohms.
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In the process of deriving the electromagnetic field due to the infinite
plane current sheet, we used two approaches and learned several useful
techniques. These are discussed in the following:

1. The determination of the magnetic field adjacent to the current sheet
by employing Ampere’s circuital law in integral form: This is a com-
mon procedure used in the computation of static fields due to charge
and current distributions possessing certain symmetries. In Chap. 6
we shall derive the “boundary conditions,” that is, the relationships
between the fields on either side of an interface between two different
media, by applying Maxwell’s equations in integral form to closed
paths and surfaces straddling the boundary as we have done here in
the case of the current sheet.

2. The successive, step-by-step solution of the two Maxwell’s curl equa-
tions, to obtain the final solution consistent with the two equations,
starting with the solution obtained for the field adjacent to the current
sheet : This technique provided us a feel for the phenomenon of “radia-
tion” of electromagnetic waves resulting from the time-varying current
distribution and the interaction between the electric and magnetic
fields. We shall use this kind of approach and the knowledge gained
on wave propagation to obtain in Chap. 8 the complete electro-
magnetic field due to an elemental antenna, which forms the basis
for the study of physical antennas

3. The solution of wave equation by the separation of variables tech-
nique: This is the standard technique employed in the solution of
partial differential equations involving multiple variables. We shall
use it in Chap. 9 to solve Laplace’s equation in two dimensions.

4. The application of phasor technique for the solution of the differential
equations: The phasor technique is a convenient tool for analyzing
sinusoidal steady-state problems as we learned in Chap. 1. We shall
continue to use it in the following chapters.

We also learned that there is power flow and energy storage associated
with the wave propagation that accounts for the work done in maintaining
the current flow on the sheet. The power flow density is given by the Poynting
vector

P=ExH

and the energy densities associated with the electric and magnetic fields
are given, respectively, by
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The surface integral of the Poynting vector over a given closed surface gives
the total power flow out of the volume bounded by that surface.

Finally, we have augmented our study of uniform plane wave propaga-
tion in free space by illustrating (a) the principle of an antenna array, (b)
the Doppler effect, and (c) the inverse distance dependence of the fields far
from a physical antenna.

REVIEW QUESTIONS

4.1.
4.2
4.3.

4.4.

4.5.

4.6.
4.7.

4.8.

4.9,

4.10.

4.11.

4.12

4.13.

4.14.

4.15.

What is a uniform plane wave?
Why is the study of uniform plane waves important ?

How is the surface current density vector defined? Distinguish it from the
volume current density vector.

How do you find the current crossing a given line on a sheet of surface cur-
rent ?

Why is it that Ampere’s circuital law in integral form is used to find the mag-
netic field adjacent to the current sheet of Fig. 4.2?

Why is the path chosen to evaluate the magnetic field in Fig. 4.4 rectangular?

Outline the application of Ampere’s circuital law in integral form to find the
magnetic field adjacent to the current sheet of Fig. 4.2.

Why is the displacement current enclosed by the rectangular path abeda in
Fig. 4.4 equal to zero?

How would you use Ampere’s circuital law in differential form to find the
magnetic field adjacent to the current sheet ?

If the current density on the infinite plane current sheet of Fig. 4.2 were direct-
ed in the positive y direction, what would be the directions of the magnetic
field adjacent to the current sheet and on either side of it ?

Why are the results given by (4.12) and (4.13) for the magnetic field not valid
for points at some distance from the current sheet ?

Under what conditions would a result obtained for the magnetic field adjacent
to the infinite plane current sheet of Fig. 4.2 be valid at points distant from the
current sheet ?

Briefly outline the procedure involved in the successive solution of Maxwell’s
equations.

How does the technique of successive solution of Maxwell’s equations reveal
the interaction between the electric and magnetic fields giving rise to wave
propagation ?

State the wave equation for the case of E = E,(z, #)i,. How is it derived ?
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4.16.

4.17.

4.18.

4.19.

4.20.

4.21.
4.22.

4.23.
4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.
4.31.
4.32.

4.33.

4.34.
4.35.

Briefly outline the separation of variables technique of solving the wave
equation,

Discuss how the function cos (@t — fz) represents a traveling wave propagat-
ing in the positive z direction.

Discuss how the function cos (wf + fz) represents a traveling wave propa-
gating in the negative z direction.

Give some examples of nonsinuscidally time-varying functions representing
traveling waves propagating in the positive z direction.

Discuss how the solution for the electromagnetic field given by (4.52) cor-
responds to that of a uniform plane wave.

Why is the quantity 8 in cos (w¢ — fz) known as the phase constant?

What is phase velocity? How is it related to the radian frequency and the
phase constant of the wave?

Define wavelength. How is it related to the phase constant?

What is the relationship between frequency, wavelength, and phase velocity ?
What is the wavelength in free space for a frequency of 15 MHz?

What is the direction of propagation for a uniform plane wave having its
electric field in the negative y direction and its magnetic field in the positive z
direction?

What is the direction of the magnetic field for a uniform plane wave having
its electric field in the positive z direction and propagating in the positive x
direction ?

What is intrinsic impedance ? What is its value for free space?
Discuss the principle of an antenna array.

What should be the spacing and the relative phase angle of the current densi-
ties for an array of two infinite, plane, parallel current sheets of uniform den-
sities, equal in magnitude, to confine their radiation to the region between
the two sheets?

What is the Doppler effect ? Tllustrate with some examples.
When is the Doppler shift of a satellite signal frequency zero? Why?

How can a Doppler shift be observed for the case of a stationary transmitter
and a stationary receiver ?

Why is a certain amount of work involved in maintaining current flow on the
sheet of Fig. 4.2? How is this work accounted for?

What is a Poynting vector ? What is its physical significance?

What is the physical interpretation of the surface integral of the Poynting
vector over a closed surface?
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4.36.

4.37.

4.38.
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Discuss how the fields far from a physical antenna vary inversely proportional
to the distance from the antenna.

Discuss the interpretation of energy storage in the electric and magnetic fields
of a uniform plane wave.

What are the energy densities associated with the electric and magnetic fields ?

PROBLEMS

4.1.

4.2

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density Jg = —0.1i, amp/m. Find the currents crossing the following straight
lines: (a) from (0, 0, 0) to (0, 2, 0); (b) from (0, 0, 0) to (2,0, 0); (c) from
(0,0,0) to (2,2, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of non-
uniform density Jg = —0.1e~"7li, amp/m. Find the currents crossing the
following straight lines: (a) from (0, 0, 0) to (0, 1, 0); (b) from (0, 0, 0) to
(0, =0, 0); (c) from (0, 0, 0) to (1, 1, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density

Js =(—0.1coswti, + 0.1sin wti,) amp/m

Find the currents crossing the following straight lines: (a) from (0, 0, 0) to
0, 2,0); (b)from (0,0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density

Js = (—02cos wri, 4+ 0.2 sin wri,) amp/m

Find the magnetic field intensities adjacent to the sheet and on either side of
it. What is the polarization of the field ?

An infinite plane sheet lying in the z = 0 plane carries a current of non-
uniform density Jg = —0.2¢~" cos @z i, amp/m. Find the magnetic field
intensities adjacent to the current sheet and on either side of it at (a) the
point (0, 1, 0) and (b) the point (2, 2, 0).

Current flows with uniform density J = Joi, amp/m? in the region |z| < a.
Using Ampere’s circuital law in integral form and symmetry considerations,
find H everywhere.

Current flows with nonuniform density J = Jo(1 — |z|/a)i, amp/m? in the
region | z| < a, where J; is a constant. Using Ampere’s circuital law in inte-
gral form and symmetry considerations, find H everywhere.

For an infinite plane sheet of charge lying in the xy plane with uniform sur-
face charge density pgso C/m?2, find the electric field intensity on both sides of
the sheet by using Gauss’ law for the electric field in integral form and sym-
metry considerations.
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4.9.

4.10.

4.13.

4.14.

4.15.

4.16.

Charge is distributed with uniform density p = po C/m3 in the region le <a.
Using Gauss’ law for the electric field in integral form and symmetry con-
siderations, find E everywhere.

Charge is distributed with nonuniform density p = po(1 — [x|/a) C/m?3 in
the region | x| < a, where pq is a constant. Using Gauss’ law for the electric
field in integral form and symmetry considerations, find E everywhere.

. Verify that expressions (4.23) and (4.24) simultaneously satisfy the differential

equations (4.16) and (4.17).

. For the infinite plane current sheet in the z = 0 plane carrying surface current

of density Js = —Jgoti. amp/m, where Jg, is a constant, find the magnetic
field adjacent to the current sheet. Then use the method of successive solution
of Maxwell’s equations to show that for z > 0,

E, — <2C +4ﬂofso)(t _ ZM) + (20_j4”_°‘@)(t + za/ Uo€o)

H, = (%’M—M)( — za/ Wo€o) — (ZC—Z%’&)O + za/ tho€o)

where C is a constant.

For the infinite plane current sheet in the z = 0 plane carrying surface current
of density Jg = —Jsot2i, amp/m, where Jg, is a constant, find the magnetic
field adjacent to the current sheet. Then use the method of successive solution
of Maxwell’s equations to show that for z > 0,

B, — (A Is0) — o/ + (IR + 2/ Hatoy

i, = (R Ta) ¢ o/ — (EG TN + 2/

where C is a constant.

Verify that expressions (4.48) and (4.49) simultaneously satisfy the differential
equations (4.7) and (4.8), and that (4.49) reduces to (4.12) for z = 0+-.

Show that (t — za/Jo€0)> and (¢ -+ za/ lo€o)? are solutions of the wave
equation. With the aid of sketches, discuss the nature of these functions.

For arbitrary time-variation of the fields, show that the solutions for the
differential equations (4.33) and (4.34) are

E, = Af(t — za/Uo€0) + Be(t + za/ o€0)
- ;71—0[Af(t — 2/ ThoEs) — Be(t + 28/ Tafo)]

where A and B are arbitrary constants. Discuss the nature of the functions
f(t — 2/ Pho€o) and g(t - za/ Uo€o)-
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4.17. In Problems 4.12 and 4.13, evaluate the constant C and obtain the solutions
for E, and H, in the region z > 0. Then write the solutions for E, and H, in
the region z < 0.

4.18. The electric field intensity of a uniform plane wave is given by
E = 37.7cos (6m x 103t 4 27mz) i, V/m.

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the
direction of propagation of the wave, and (e) the associated magnetic field
intensity vector H.

4.19. An infinite plane sheet lying in the z = 0 plane carries a surface current of
density

Js = (—0.2cos 6m x 103¢i, — 0.1 cos 127 x 108¢i,) amp/m

Find the expressions for the electric and magnetic fields on either side of the
sheet.

4.20. An infinite plane sheet lying in the z = 0 plane carries a surface current of
density Js = —Js(#)i., where J(?) is the periodic function shown in Fig. 4.16.
Find and sketch (a) H, versus ¢ for z = 0+, (b) E, versus ¢ for z = 150 m,
and (c) E, versus z for £ = 1 us.

A Jg, amp/m

-2 =] 0 ! 2

[, 1S

Figure 4.16. For Problem 4.20,

4.21. The time-variation of the electric field intensity E, in the z = 600 m plane of
a uniform plane wave propagating away from an infinite plane current sheet
lying in the z = 0 plane is given by the periodic function shown in Fig. 4.17.

TEX,V/m
75.4
= 5 ] 3 0 i |4 T |7 LM
a -3 g 3 3 3
-37.7

Figure 4.17. For Problem 4.21.
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4.22.

4.23.

4.24.

4.25.

4.26.

Find and sketch (a) E, versus ¢ for z = 200 m, (b) E; versus z for t = 0, and
(c) H, versus z for t =4 us.

The time-variation of the electric field intensity E, in the z = 300 m plane of a
uniform plane wave propagating away from an infinite plane current sheet
lying in the z = 0 plane is given by the aperiodic function shown in Fig. 4.18.
Find and sketch (a) E. versus ¢ for z = 600m, (b) E. versus z for t =
1 usec, and (c) H, versus z for t = 2 usec.

AE,, V/m

37.74

—> {, US

Figure 4.18. For Problem 4.22.

An array is formed by two infinite plane parallel current sheets with the cur-
rent densities given by

JSI = _JSO cos @t iy zZ =
Jga = —Jgo COS OF i z =

where Js, is a constant. Find the electric field intensity in all three regions:
(@) z <0; (b)0 <z <A2;(c)z> A2

Determine the spacing, relative amplitudes, and phase angles of current den-
sities for an array of two infinite plane parallel current sheets required to
obtain a radiation characteristic such that the field radiated to one side of the
array is twice that of the field radiated to the other side of the array.

For an atray of two infinite plane parallel current sheets with the current
densities given by

Jg1 = _JSO cos Ot i, zZ =
Jsz = —Jgo COS ¢ iy Z =

where Jo is a constant, find the electric field in all three regions: (a) z < 0;
B)0 <z <Af2; (©)z> A/2. Discuss the polarization of the field in all three
regions.
For an array of two infinite plane parallel current sheets with the current den-
sities given by

JSI = —Jgg COS WO ix zZ =

ENESgS

Jsz = '—Jso Ccos wtiy V4
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4.27.

4.28.

4.29.

4.30.

4.31.

4.32,

4.33.
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where Jg, is a constant, find the electric field in all three regions: (a) z < 0;
(b) 0 < z < A/4; (¢c) z > A/4. Discuss the polarization of the field in all three
regions. '

The electric field intensity of a uniform plane wave is given by
E = 37.7 cos (67 x 10%f — 2:z) i, V/m

(a) What is the Doppler shift for an observer moving in the positive x direc-
tion? (b) Find the Doppler shift for an observer moving in the positive z
direction with a velocity 3 km/s. (¢) Find the magnitude of the Doppler shift
for an observer moving along the straight line path x = y = z with a velocity
3 km/s.

Consider an observer moving on the circumference of a circle of radius « in the
xz plane with an angular velocity @, rad/s, in the field of a uniform plane wave
of frequency f propagating in the positive z direction. Find and sketch the
Doppler shift observed by the moving observer as a function of position on
the circle.

An experimental rocket is fired with an initial velocity »; m/s and making an
angle of 45° with the horizontal. Communication is maintained between the
rocket and the launching site. Show that the received frequency when the
rocket is at its apogee is Doppler shifted by the amount 0.6324 v, f/c where f
is the transmitted frequency and c is the velocity of light in free space. Assume
plane earth.

Show that the time-average value of the magnitude of the Poynting vector
given by (4.69) is one-half its peak value. For an antenna radiating a time-
average power of 150 kW, find the peak value of the electric field intensity at
a distance of 100 km from the antenna. Assume the antenna to be radiating
equally in all directions.

The electric field of a uniform plane wave propagating in the positive z direc-
tion is given by

E = Ej, cos (wt — fiz)i, + Eqsin (@t — f2)i,

where E; is a constant. (a) Find the corresponding magnetic field H. (b) Find
the Poynting vector.

Show that the quantities %EOE 2 and % UoH? have the units joules/m3.

Show that the energy is stored equally in the electric and magnetic fields of a
traveling wave.



s»o WAVE
PROPAGATION
IN
MATERIAL
MEDIA

In Chapter 4 we introduced wave propagation in free space by considering
the infinite planc current sheet of uniform, sinusoidally time-varying current
density. We learned that the solution for the electromagnetic ficld due to the
infinite plane current sheet represents uniform plane electromagnetic waves
propagating away from the sheet to either side of it. With the knowledge of
the principles of uniform plane wave propagation in free space, we are now
ready to consider wave propagation in material media, which is our goal in
this chapter. Materials contain charged particles that respond to applied
electric and magnetic fields and give rise to currents, which modify the
properties of wave propagation from those associated with free space.

We shall learn that there are three basic phenomena resulting from the
interaction of the charged particles with the electric and magnetic fields.
These are conduction, polarization, and magnetization. Although a given
material may exhibit all three properties, it is classified as a conductor, a
dielectric, or a magnetic material depending on whether conduction, polariza-
tion, or magnetization is the predominant phenomenon. Thus we shall
introduce these three kinds of materials one at a time and develop a set of
relations known as the constitutive relations which enable us to avoid the
necessity of explicitly taking into account the interaction of the charged
particles with the fields. We shall then use these constitutive relations together
with Maxwell’s equations to first discuss uniform plane wave propagation in
a general material medium and then consider several special cases.

161



5.1 CONDUCTORS

We recall that the classical model of an atom postulates a tightly bound,
positively charged nucleus surrounded by a diffuse cloud of electrons spin-
ning and orbiting around the nucleus. In the absence of an applied elec-
tromagnetic field, the force of attraction between the positively charged
nucleus and the negatively charged electrons is balanced by the outward
centrifugal force to maintain stable electronic orbits. The electrons can be
divided into “bound” electrons and “free” or “conduction” electrons. The
bound electrons can be displaced but not removed from the influence of the
nucleus. The conduction electrons are constantly under thermal agitation,
being released from the parent atom at one point and recaptured by another
atom at a different point.

In the absence of an applied field, the motion of the conduction electrons
is completely random ; the average thermal velocity on a “macroscopic” scale,
that is, over volumes large compared with atomic dimensions, is zero so that
there is no net current and the electron cloud maintains a fixed position. With
the application of an electromagnetic field, an additional velocity is superim-
posed on the random velocities, predominatly due to the electric force. This
causes drift of the average position of the electrons in a direction opposite to
that of the applied electric field. Due to the frictional mechanism provided by
collisions of the electrons with the atomic lattice, the electrons, instead of
accelerating under the influence of the electric field, drift with an average drift
velocity proportional in magnitude to the applied electric field. This phenome-
non is known as “conduction,” and the resulting current due to the electron
drift is known as the “conduction current.”

In certain materials a large number of electrons may take part in the
conduction process, but in certain other materials only a very few or negligible
number of electrons may participate in conduction. The former class of
materials is known as “conductors,” and the latter class is known as “dielec-
trics” or “insulators.” If the number of free electrons participating in conduc-
tion is N, per cubic meter of the material, then the conduction current
density is given by

J, = N.,ev, 5.1

where e is the charge of an electron, and v, is the drift velocity of the electrons.
The drift velocity varies from one conductor to another, depending on the
average time between successive collisions of the electrons with the atomic
lattice. It is related to the applied electric field in the manner

Vo= —4.E (.2)

162



SEC. 5.1 CONDUCTORS 163

where u, is known as the “mobility” of the electron. Substituting (5.2) into
(5.1), we obtain

Jc = _ﬂeNeeE . ﬂeNe Iel E (53)

Semiconductors are characterized by drift of “holes,” that is, vacancies
created by detachment of electrons from covalent bonds, in addition to the
drift of electrons. If N, and N, are the number of electrons and holes, respec-
tively, per cubic meter of the material and if u, and u, are the electron
and hole mobilities, respectively, then the conduction current density in the
semiconductor is given by

Jo= (u.N. el + mN,y | eDE 4

Defining a quantity g, known as the “conductivity” of the material, as
given by

_ [u.N.|e] for conductors 5.5)
uN.|le| + uNy,\el for semiconductors '
we obtain the simple and important relationship
J, =0oE (5.6)

for the conduction current density in a material. Equation (5.6) is known as
Ohm’s law applicable at a point from which follows the familiar form of
Ohm'’s law used in circuit theory. The units of ¢ are mhos/meter where a mho
(“ohm” spelled in reverse and having the symbol U) is an ampere per volt.
Values of ¢ for a few materials are listed in Table 5.1. In considering elec-
tromagnetic wave propagation in conducting media, the conduction current
density given by (5.6) must be employed for the current density term on the
right side of Ampere’s circuital law. Thus Maxwell’s curl equation for H for

TABLE 5.1. Conductivities of Some Materials

Conductivity Conductivity
Material mhos/m Material mhos/m
Silver 6.1 x 107 Sca water 4
Copper 5.8 x 107 Intrinsic germanium 2.2
Gold 4.1 x 107 Intrinsic silicon 1.6 X 1073
Aluminum 3.5 x 107 Fresh water 10-3
Tungsten 1.8 x 107 Distilled water 2 x 10~4
Brass 1.5 x 107 Dry earth 10-5
Solder 7.0 x 106 Bakelite 109
Lead 4.8 x 106 Glass 10-10-10-14
Constantin 2.0 X 106 Mica 10-11-10-15
Mercury 1.0 x 106 Fused quartz 0.4 x 10717
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a conducting medium is given by

oD

VtzJC—I—W—aE—i-aD

3 5.7

5.2 DIELECTRICS

In the previous section we learned that conductors are characterized by
abundance of “conduction” or “free” electrons that give rise to conduction
current under the influence of an applied electric field. In this section we turn
our attention to dielectric materials in which the “bound” electrons are
predominant. Under the application of an external electric field, the bound
electrons of an atom are displaced such that the centroid of the electron cloud
is separated from the centroid of the nucleus. The atom is then said to be
“polarized,” thereby creating an “electric dipole,” as shown in Fig. 5.1(a).
This kind of polarization is called “electronic polarization.” The schematic
representation of an electric dipole is shown in Fig. 5.1(b). The strength of the
dipole is defined by the electric dipole moment p given by

p=20d (5.8)

where d is the vector displacement between the centroids of the positive and
negative charges, each of magnitude Q coulombs.

In certain dielectric materials, polarization may exist in the molecular
structure of the material even under the application of no external electric
field. The polarization of individual atoms and molecules, however, is
randomly oriented, and hence the net polarization on a “macroscopic™ scale
is zero. The application of an external field results in torques acting on the
“microscopic” dipoles, as shown in Fig. 5.2, to convert the initially random
polarization into a partially coherent one along the field, on a macroscopic
scale. This kind of polarization is known as “orientational polarization.” A
third kind of polarization known as “ionic polarization” results from the
separation of positive and negative ions in molecules formed by the transfer
of electrons from one atom to another in the molecule. Certain materials

£ Q
d
-0
(a) (b)

Figure 5.1. (a) An electric dipole. (b) Schematic representation of an
electric dipole.
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QE

Figure 5.2. Torque acting on an electric dipole in an external electric
field.

exhibit permanent polarization, that is, polarization even in the absence of an
applied electric field. Electrets, when allowed to solidify in the applied electric
field, become permanently polarized and ferroelectric materials exhibit
spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the “polarization
vector,” as the “clectric dipole moment per unit volume.” Thus if N denotes
the number of molecules per unit volume of the material, then there are N Av
molecules in a volume Av and

NAv

P— Av > p, = Np (5.9)

where p is the average dipole moment per molecule. The units of P are
coulomb-meter/meter? or coulombs per square meter, It is found that for
many dielectric materials the polarization vector is related to the electric field
E in the dielectric in the simple manner given by

P=¢yxE (5.10)

where y,, a dimensionless parameter, is known as the “electric susceptibility.”
The quantity , is a measure of the ability of the material to become polarized
and differs from one dielectric to another.

To discuss the influence of polarization in the dielectric upon electromag-
netic wave propagation in the dielectric medium, let us consider the case of
the infinite plane current sheet of Fig. 4.8, radiating uniform plane waves,
except that now the space on either side of the current sheet is a dielectric
medium instead of being free space. The electric field in the medium induces
polarization. The polarization in turn acts together with other factors to
govern the behavior of the electromagnetic field. For the case under considera-
tion, the electric field is entirely in the x direction and uniform in x and y.
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Thus the induced electric dipoles are all oriented in the x direction, on a
macroscopic scale, with the dipole moment per unit volume given by

P=P,i, = e,x.E.d, (5.11)

where E, is understood to be a function of z and ¢.

If we now consider an infinitesimal surface of area Ay Az parallel to the yz
plane, we can write E, associated with that infinitesimal area to be equal to
E, cos wt where E, is a constant. The time history of the induced dipoles
associated with that area can be sketched for one complete period of the
current source, as shown in Fig. 5.3. In view of the cosinusoidal variation of

wt=—2—

Figure 5.3. Time history of induced electric dipoles in a dielectric material
under the influence of a sinusoidally time-varying electric field.
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the electric field with time, the dipole moment of the individual dipoles varies
in a cosinusoidal manner with maximum strength in the positive x direction
at ¢ = 0, decreasing sinusoidally to zero strength at t= m/20 and then
reversing to the negative x direction, increasing to maximum strength in that
direction at t = 7/, and so on.

The arrangement can be considered as two plane sheets of equal and
opposite time-varying charges displaced by the amount § in the x direction,
as shown in Fig. 5.4. To find the magnitude of either charge, we note that the
dipole moment per unit volume is

P, = €yx.E, cos wt (5.12)

/ 0, = €y Ey cos wrt AyAz

\ Ay

\
A

Az \
Q2 =—Q

Figure 5.4. Two plane sheets of equal and opposite time-varying charges
equivalent to the phenomenon depicted in Fig. 5.3.

1-4—-:»—0-

1

Since the total volume occupied by the dipoles is § Ay Az, the total dipole
moment associated with the dipoles is €,x.E, cos wt (§ Ay Az). The dipole
moment associated with two equal and opposite sheet charges is equal to the
magnitude of either sheet charge multiplied by the displacement between the
two sheets. Hence we obtain the magnitude of either sheet charge to be
€ox.E, cos wt Ay Az. Thus we have a situation in which a sheet charge
0, = €,x.E, cos wt Ay Az is above the surface and a sheet charge Q, =
—Q, = —€,).E, cos wt Ay Az is below the surface. This is equivalent to a
current flowing across the surface, since the charges are varying with time.

We call this current the “polarization current” since it results from the
time variation of the electric dipole moments induced in the dielectric due to
polarization. The polarization current crossing the surface in the positive x
direction, that is, from below to above, is

1

px

- % — —eyx.Eow sin ot Ay Az (5.13)



168 CH.5 WAVE PROPAGATION IN MATERIAL MEDIA

where the subscript p denotes polarization. By dividing I,, by Ay Az and
letting the area tend to zero, we obtain the polarization current density
associated with the points on the surface as

Jow = Idying A;MAZ = —€ox.E,m sin wt
Az—0
d 0P,
= W(GO}(EEO cos W) = 3 (5.14)
or
P
T %_t (5.15)

Although we have deduced this result by considering the special case of the
infinite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium,
the polarization current density given by (5.15) must be included with the
current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.28), we have

VxH=J+J,+ %(GOE) (5.16)
Substituting (5.15) into (5.16), we get

VxH:J+%—|—g—t(eoE)

:J+0§t(eoE+P) (5.17)

In order to make (5.17) consistent with the corresponding equation for free
space given by (3.28), we now revise the definition of the displacement vector
D to read as

D=¢E+P (5.18)
Substituting for P by using (5.10), we obtain

D = €,E 4 €,x.E
= €y(1 + x)E
= €,6,E
=¢E (5.19)
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where we define

e, =14y, (5.20)
and

€ = €,€, (5.2D

The quantity €, is known as the “relative permittivity” or “dielectric
constant” of the dielectric, and ¢ is the “permittivity” of the dielectric. The
new definition for D permits the use of the same Maxwell’s equations as for
free space with €, replaced by € and without the need for explicitly considering
the polarization current density. The permittivity € takes into account the
effects of polarization, and there is no need to consider them when we use €
for €,! The relative permittivity is an experimentally measurable parameter
and its values for several dielectric materials are listed in Table 5.2.

TABLE 5.2. Relative Permittivities of Some Materials

Relative Relative
Material Permittivity Material Permittivity
Air 1.0006 Dry earth 5
Paper 2.0-3.0 Mica 6
Teflon 2.1 Neoprene 6.7
Polystyrene 2.56 Wet earth 10
Plexiglass 2.6-3.5 Ethyl alcohol 24.3
Nylon 35 Glycerol 42.5
Fused quartz 3.8 Distilled water 81
Bakelite 4.9 Titanium dioxide 100

Equation (5.19) governs the relationship between D and E for dielectric
materials. Dielectrics for which € is independent of the magnitude as well as
the direction of E as indicated by (5.19) are known as “linear isotropic
dielectrics.” For certain dielectric materials, each component of the polariza-
tion vector can be dependent on all components of the electric field intensity.
For such materials, known as “anisotropic dielectric materials,” I is not in
general parallel to E and the relationship between these two quantities is
expressed in the form of a matrix equation as

D, €xx €xy €y |[ Ex
D,|=|€, €, €:|E (5.22)
_D: 6_zx Ezy 6:2_ Ez

The square matrix in (5.22) is known as the “permittivity tensor” of the
anisotropic dielectric.
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Example 5.1. An anisotropic dielectric material is characterized by the
permittivity tensor

Te, 26, O
[e]=|2¢, 4€, O
0 0 3¢

Let us find D for several cases of E.
Substituting the given permittivity matrix in (5.22), we obtain

D, ="Te,E, + 2¢,E,
D, = 2¢,E, -+ 4€,E,
Dz = 3€0Ez

For E = E; cos wti,, D = 3€,E, cos @t i,; D is parallel to E.

For E = E, cos @t i,, D = Te E, cos wt i, + 2€,E, cos wti,; D is not
parallel to E.

For E = E, cos wti,, D = 2¢e,E; cos wt i, + 4e,E, cos wti,; D is not
parallel to E.

For E = E, cos ot (i, + 2i,), D = 1le,E, coswt i, 4+ 10¢,E; cos wt i, ;
D is not parallel to E.

For E = E; cos wt (2i, 4 i,), D = 16¢€,E, cos @t i, 4 8¢,E, cos et i, =
8¢,E; D is parallel to E and the dielectric behaves “effectively” in the same
manner as an isotropic dielectric having the permittivity 8¢,, that is, the
“effective permittivity” of the anisotropic dielectric for this case is 8¢,.

Thus we find that in general D is not parallel to E but for certain polariza-
tions of E, D is parallel to E. These polarizations are known as the charac-
teristic polarizations. -

5.3 MAGNETIC MATERIALS

The important characteristic of magnetic materials is “magnetization.”
Magnetization is the phenomenon by means of which the orbital and spin
motions of electrons are influenced by an external magnetic field. An elec-
tronic orbit is equivalent to a current loop, which is the magnetic analog of an
electric dipole. The schematic representation of a magnetic dipole as seen
from along its axis and from a point in its plane are shown in Figs. 5.5(a) and
5.5(b), respectively. The strength of the dipole is defined by the magnetic
dipole moment m given by

m = Idi, (5.23)
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11" Iout
I ¥———— 0
(b)

(a)

Figure 5.5. Schematic representation of a magnetic dipole as seen from
(a) along its axis and (b) a point in its plane,

where A is the area enclosed by the current loop and i, is the unit vector
normal to the plane of the loop and directed in the right-hand sense.

In many materials the net magnetic moment of each atom is zero, that is,
on the average, the magnetic dipole moments corresponding to the various
electronic orbital and spin motions add up to zero. An external magnetic field
has the effect of inducing a net dipole moment by changing the angular
velocities of the electronic orbits, thereby magnetizing the material. This kind
of magnetization, known as “diamagnetism,” is in fact prevalent in all
materials. In certain materials known as “paramagnetic materials,” the
individual atoms possess net nonzero magnetic moments even in the absence
of an external magnetic field. These “permanent” magnetic moments of the
individual atoms are, however, randomly oriented so that the net magnetiza-
tion on a macroscopic scale is zero. An applied magnetic field has the effect
of exerting torques on the individual permanent dipoles as shown in Fig. 5.6
to convert, on a macroscopic scale, the initially random alignment into a
partially coherent one along the magnetic field, that is, with the normal to the
current loop directed along the magnetic field. This kind of magnetization is
known as “paramagnetism.” Certain materials known as “ferromagnetic,”
“antiferromagnetic,” and “ferrimagnetic” materials exhibit permanent
magnetization, that is, magnetization even in the absence of an applied
magnetic field.

On a macroscopic scale we define a vector M, called the “magnetization

IdlxB

IdlxB

Figure 5.6. Torque acting on a magnetic dipole in an external magnetic
field,
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vector,” as the “magnetic dipole moment per unit volume.” Thus if N denotes
the number of molecules per unit volume of the material, then there are N Av
molecules in a volume Av and

M— L5 N 5.04
:M,:Zim’_ m (5.24)

where m is the average dipole moment per molecule. The units of M are
ampere-meter?/meter? or amperes per meter. It is found that for many
magnetic materials, the magnetization vector is related to the magnetic field
B in the material in the simple manner given by

B
M—_-Xn 2 5.25
U+ xm o ( )

where y,,, a dimensionless parameter, is known as the “magnetic susceptibil-
ity.” The quantity y,, is a measure of the ability of the material to become
magnetized and differs from one magnetic material to another.

To discuss the influence of magnetization in the material on electromag-
netic wave propagation in the magnetic material medium, let us consider the
case of the infinite plane current sheet of Fig. 4.8, radiating uniform plane
waves, except that now the space on either side of the current sheet possesses
magnetic material properties in addition to dielectric properties. The magnetic
field in the medium induces magnetization. The magnetization in turn acts
together with other factors to govern the behavior of the electromagnetic
field. For the case under consideration, the magnetic field is entirely in the y
direction and uniform in x and y. Thus the induced dipoles are all oriented
with their axes in the y direction, on a macroscopic scale, with the dipole
moment per unit volume given by

M= M, — —Xn_Bs; (5.26)

where B, is understood to be a function of z and ¢.

Let us now consider an infinitesimal surface of area Ay Az parallel to the
yz plane and the magnetic dipoles associated with the two areas Ay Az to the
left and to the right of the center of this area as shown in Fig. 5.7(a). Since B,
is a function of z, we can assume the dipoles in the left area to have a different
moment than the dipoles in the right area for any given time. If the dimen-
sion of an individual dipole is § in the x direction, then the total dipole
moment associated with the dipoles in the left arca is [M,],_A,» 6 Ay Az
and the total dipole moment associated with the dipoles in the right area is
[My]z+Az/2 0 Ay Az.

The arrangement of dipoles can be considered to be equivalent to two
rectangular surface current loops as shown in Fig. 5.7(b) with the left side
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Figure 5.7. (a) Induced magnetic dipoles in a magnetic material. (b)
Equivalent surface current loops.

current loop having a dipole moment [M,], 4., 6 Ay Az and the right side
current loop having a dipole moment [M,],,4,,» & Ay Az. Since the magnetic
dipole moment of a rectangular surface current loop is simply equal to the
product of the surface current and the cross-sectional area of the loop, the
surface current associated with the left loop is [M,),_4.,» Ay and the surface
current associated with the right loop is [M,],,4.,2 Ay. Thus we have a stitua-
tion in which a current equal to [M,],_,/» Ay is crossing the area Ay Az in the
positive x direction, and a current equal to [M,], 4./, Ay is crossing the same
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area in the negative x direction. This is equivalent to a net current flowing
across the surface.

We call this current the “magnetization current” since it results from the
space variation of the magnetic dipole moments induced in the magnetic
material due to magnetization. The net magnetization current crossing the
surface in the positive x direction is

Imx e [My z—Az/2 Ay = [My]z+Az/2 Ay (5'27)

where the subscript m denotes magnetization. By dividing I,,, by Ay Az and
letting the area tend to zero, we obtain the magnetization current density
associated with the points on the surface as

me — le Imx = le [My z—Az/2 [My]z+Az/2

ﬁﬁ:g Y AZ Az—0 Az
oM
e (5.28)
or
i,ooi, i,
.l a4 o
me]x - 0_x a—y E
0 M, 0
or
J =VxM (5.29)

Although we have deduced this result by considering the special case of the
infinite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material
medium, the magnetization current density given by (5.29) must be included
with the current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.28), we have

vxB_y4y, 4%

" ¥ (5.30)

Substituting (5.29) into (5.30), we get

B JD
V><E~J—|—V><M+W

or
B _ a dD
V x ( M) J+ T (5.31)

0
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In order to make (5.31) consistent with the corresponding equation for free
space given by (3.28), we now revise the definition of the magnetic field
intensity vector H to read as

H=2 _ M (5.32)
Ho

Substituting for M by using (5.25), we obtain

B X B
H=—— m__ =
Ho 14 Xm Mo
- B
ﬂo(l + Xm)
_ B
ﬂOlur
B
e 5.33
e (5.33)
where we define
te=14 gn (5.34)
and
B= polt, (5.35)

The quantity g, is known as the “relative permeability” of the magnetic
material and g is the “permeability” of the magnetic material. The new
definition for H permits the use of the same Maxwell’s equations as for free
space with u, replaced by u and without the need for explicitly considering
the magnetization current density. The permeability x4 takes into account the
effects of magnetization, and there is no need to consider them when we use
u for u,! For anisotropic magnetic materials, H is not in general parallel to
B and the relationship between the two quantities is expressed in the form of a
matrix equation as given by

B, B Hay U || Ha
B, |=|tx Uy UW.|H, (5.36)
B, Wew Moy Mo, || H,

just as in the case of the relationship between D and E for anisotropic dielectric
materials.

For many materials for which the relationship between H and B is linear,
the relative permeability does not differ appreciably from unity, unlike the
case of linear dielectric materials, for which the relative permittivity can be
very large, as shown in Table 5.2. In fact, for diamagnetic materials, the
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magnetic susceptibility y,, is a small negative number of the order —10~* to
—10-8 whereas for paramagnetic materials, y,, is a small positive number of
the order 1073 to 10-7. Ferromagnetic materials, however, possess large values
of relative permeability on the order of several hundreds, thousands, or more.
The relationship between B and H for these materials is nonlinear, resulting
in a nonunique value of u, for a given material. In fact, these materials are
characterized by hysteresis, that is, the relationship between B and H depen-
dent on the past history of the material.

A typical curve of B versus H, known as the “B—H curve” or the “hystere-
sis curve” for a ferromagnetic material, is shown in Fig. 5.8. If we start with
an unmagnetized sample of the material in which both B and H are initially
zero, corresponding to point ¢ in Fig. 5.8, and then magnetize the material,

AB b

c

e

Figure 5.8. Hysteresis curve for a ferromagnetic material.

the manner in which magnetization is built up initially to saturation is given
by the portion ab of the curve. If the magnetization is now decreased gradually
and then reversed in polarity, the curve does not retrace ab backward but
instead follows along bcd until saturation is reached in the opposite direction
at point e. A decrease in the magnetization back to zero followed by a
reversal back to the original polarity brings the point back to b along the curve
through the points f and g, thereby completing the loop. A continuous
repetition of the process thereafter would simply make the point trace the
hysteresis loop bedefgh repeatedly.

5.4 WAVE EQUATION AND SOLUTION

In the previous three sections we introduced conductors, dielectrics, and
magnetic materials. We found that conductors are characterized by conduc-
tion current, dielectrics are characterized by polarization current, and
magnetic materials are characterized by magnetization current. The conduc-
tion current density is related to the electric field intensity through the
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conductivity ¢ of the conductor. To take into account the effects of polariza-
tion, we modified the relationship between D and E by introducing the
permittivity ¢ of the dielectric. Similarly, to take into account the effects of
magnetization, we modified the relationship between H and B by introducing
the permeability u of the magnetic material. The three pertinent relations,
known as the “constitutive relations,” are

J, = oE (5.372)

D = ¢E (5.37b)
B

) § 5.37
i (5.37¢)

A given material may possess all three properties although usually one of
them is predominant. Hence in this section we shall consider a material
medium characterized by o, €, and u. The Maxwell’s curl equations for such
a medium are

9B H

VxE= -5 = S0 (5.38)

., dD D JE
VxH=J+52=1J 22 =0k + % (5.39)

To discuss electromagnetic wave propagation in the material medium, let us
consider the infinite plane current sheet of Fig. 4.8, except that now the
medium on either side of the sheet is a material instcad of free space, as shown
in Fig. 5.9.

The electric and magnetic fields for the simple case of the infinite plane

A X

g,€u

Figure 5.9, Infinite plane current sheet imbedded in a material medium.
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current sheet in the z = 0 plane and carrying uniformly distributed current in
the negative x direction as given by

Jo= —Jg, cos wt i, (5.40)

are of the form
E = E,(z, i, (5.41a)
H = H/(z, 1), (5.41b)

The corresponding simplified forms of the Maxwell’s curl equations are

JE, _ 0H,

= T H e Ehe)
0£y — —0E, —¢ "ﬁx (5.43)

We shall make use of the phasor technique to solve these equations. Thus
letting

E(z,t) = Re [E (2) /] (5.44a)

Hy(z,t) = Re[H2) e/ (5.44b)

and replacing E, and H, in (5.42) and (5.43) by their phasors E,and H,,

respectively, and d/dt by jow, we obtain the corresponding differential equa-
tions for the phasors E, and H, as

JE,

0z

— —joul, (5.45)

0H,
dz

oE, — jweE, = —(o + jwe)E, (5.46)

Differentiating (5.45) with respect to z and using (5.46), we obtain

25 7 -
% = —jou B—}f = jou(o + joe)kE, (5.47)
Defining
7 = /joulo -+ jowe) (5.48)

and substituting in (5.47), we have

PE, o as
o = PE, (5.49)

Equation (5.49) is the wave equation for E, in the material medium and
its solution is given by
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E(2) = Ae* + Be’ (5.50)

where 4 and B are arbitrary constants. Noting that 7 is a complex number and
hence can be written as

7—a+jB (5.51)

and also writing 4 and B in exponential form as 4e’ and Be’$, respectively,
we have
E (z) = Ae®e~=e~I%= | Beide*7eif?
or
E.(2,t) = Re[E,(2) ]
= Re[Ade®e=*?e /f2giot | Belte*ze/fzelwt]

= Ae~** cos (wt — fz + 0) + Be** cos (wt + Pz + ¢) (5.52)

We now recognize the two terms on the right side of (5.52) as representing
uniform plane waves propagating in the positive z and negative z directions,
respectively, with phase constant 8, in view of the factors cos (wt — fz + 6)
and cos (wt + fiz + @), respectively. They are, however, multiplied by the
factors e=*¢ and e**, respectively. Hence the peak amplitude of the field
differs from one constant phase surface to another. Since there cannot be a
positive going wave in the region z < 0, that is, to the left of the current sheet,
and since there cannot be a negative going wave in the region z > 0, that is, to
the right of the current sheet, the solution for the electric field is given by

Ae ** cos (ot — Bz + 0) forz >0

(5.53)
Be** cos (@t + Bz + ¢) forz <0

Efz,t) = {

To discuss how the peak amplitude of E, varies with z on either side of
the current sheet, we note that since , €, and u are all positive, the phase
angle of jou(e + jowe) lies between 90° and 180° and hence the phase angle of
7 lies between 45° and 90°, making & and # positive quantities. This means
that e~** decreases with increasing value of z, that is, in the positive z direc-
tion, and e** decreases with decreasing value of z, that is, in the negative z
direction. Thus the exponential factors e~** and e** associated with the
solutions for E, in (5.53) have the effect of reducing the amplitude of the field,
that is, attenuating it as it propagates away from the sheet to either side of it.
For this reason, the quantity & is known as the “attenuation constant.” The
attenuation per unit length is equal to e*. In terms of decibels, this is equal to
20 log,, e* or 8.686¢ db. The units of & are nepers per meter. The quantity 7
is known as the “propagation constant™ since its real and imaginary parts, &
and f, together determine the propagation characteristics, that is, attenuation
and phase shift of the wave.
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Returning now to the expression for § given by (5.48), we can obtain the
expressions for ¢ and f# by squaring it on both sides and equating the real and
imaginary parts on both sides. Thus

P = (& + jp)* = joulo + jwe)
or
— p* = —w?ue (5.54a)
208 = wuo (5.54b)

Now, squaring (5.54a) and (5.54b) and adding and then taking the square
root, we obtain

o? + f2 = coz,uex/l + (&)2 (5.55)

From (5.54a) and (5.55), we then have

Ao TG
- Hforwe one 5

Since & and f are both positive, we finally get

“_w«/uf[\/ n (coe) _ il”z (5.56)
ﬁ:ai“//—é‘-f[\/l i (&> i 1]” (5.57)

We note from (5.56) and (5.57) that & and f§ are both dependent on o through
the factor o/we. This factor, known as the “loss tangent,” is the ratio of
the magnitude of the conduction current density ¢ E, to the magnitude of the
displacement current density jweE, in the material medium. In practice, the
loss tangent is, however, not 'simply inversely proportional to « since both
o and ¢ are generally functions of frequency.

The phase velocity of the wave along the direction of propagation is given

by
- % . %[\/1 n (6%)2 + 1]—“2 (5.58)

We note that the phase velocity is dependent on the frequency of the wave.
Thus waves of different frequencies travel with different phase velocities, that
is, they undergo different rates of change of phase with z at any fixed time.

<
L)
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This characteristic of the material medium gives rise to a phenomenon known
as “dispersion.” We shall discuss dispersion in Chap. 7. The wavelength in the
medium is given by

BT T e

Having found the solution for the electric field of the wave and discussed
its general properties, we now turn to the solution for the corresponding
magnetic field by substituting for E, in (5.45). Thus

= 1 9E

H, = —]w—,ud_zx _M(Ae 7 Be’)
;LmE(Ae‘" l}'ef’)
i %(A_e‘f’ — Ber) (5.60)
where
7= oSOk (5.61)

o -+ joe

is the intrinsic impedance of the medium. Writing

7= |7e" (5.62)

we obtain the solution for H,(z, ¢) as

H(z,f) = Re [H(2) e/

= Re —_1——., Aelfeze IFzglot ~—_1—.,Be’¢e°"ef”'e"‘":|
7]’ 71’

. (0t — Bz 46 —17) —

7 e**cos (ot + fz+¢ — 1)

It "I
(5.63)

Remembering that the first and second terms on the right side of (5.63)
correspond to (4) and (—) waves, respectively, and hence represent the
solutions for the magnetic field in the regions z > 0 and z < 0, respectively,
and recalling that the solution for H, adjacent to the current sheet is given by

J;" cos wt for z = 0+

H,= (5.64)

JS“ cos ot for z = 0—
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we obtain
A— |’7IZJS°, =1 (5.65a)
B— |'7|2’s0, 6=1 (5.65b)

Thus the electromagnetic field due to the infinite plane current sheet
in the xy plane having

Jg= —Js coswt i,

and with a material medium characterized by o, €, and x on either side of it is
given by

E(z, t) = |ﬁ|2JS°e”’ cos (ot F fz+ 1)i, forzz=0 (5.66a)
H(z, 1) — i%ew cos (ot F f2)i, forz=0 (5.66b)

We note from (5.66a) and (5.66b) that wave propagation in the material
medium is characterized by phase difference between E and H in addition to
attenuation. These properties are illustrated in Fig. 5.10, which shows
sketches of the current density on the sheet and the distance—variation of the
electric and magnetic fields on either side of the current sheet for a few values
of 1.

Since the fields are attenuated as they progress in their respective direc-
tions of propagation, the medium is characterized by power dissipation. In
fact, by evaluating the power flow out of a rectangular box lying between z
and z + Az and having dimensions Ax and Ay in the x and y directions,
respectively, as was done in Sect. 4.6, we obtain

jf Poas =LAy Az = L (g1 ) A0
S

= ( xd;{y + HyaaE ) Av
- [Ex(—aEx — 60(5") ( ,u a7 ):‘ Av

:—aEiAv—(%(l €E2 Av) — gt(lumAv) (5.67)

The quantity g E2 Av is obviously the power dissipated in the volume Aw due

to attenuation and the quantities %eE2 Av and < o ,uH 2 Av are the energies



Js = —JSO cos wii,

Figure 5.10. Time history of uniform plane electromagnetic wave radiating
away from an infinite plane current sheet imbedded in a material medium.

183



184 CH. 5 WAVE PROPAGATION IN MATERIAL MEDIA

stored in the electric and magnetic fields, respectively, in the volume Aw. It
then follows that the power dissipation density, the stored energy density
associated with the electric field and the stored energy density associated with
the magnetic field are given by

P, — oE? (5.68)

We = 5 €E3 (5.69)
and

Wy = % uH? (5.70)

respectively. Equation (5.67) is the generalization, to the material medium, of
the Poynting’s theorem given by (4.71) for free space.

5.5 UNIF ORI(’[ PLANE WAVES IN DIELECTRICS

In the previous section we discussed electromagnetic wave propagation
for the general case of a material medium characterized by conductivity o,
permittivity €, and permeability 4. We found general expressions for the
attenuation constant ¢, the phase constant f, the phase velocity v,, the
wavelength 1, and the intrinsic impedance 7. These are given by (5.56), (5.57),
(5.58), (5.59), and (5.61), respectively. For ¢ = 0, the medium is a “perfect
dielectric,” having the propagation characteristics

% =0 (5.71a)
B = w./ue (5.71b)
v, — Jl/z_e (5.71¢)
e ﬁ}_ﬁ (5.71d)
7 — g (5.71e)

Thus the waves propagate without attenuation as in free space but with €, and
U, replaced by € and u, respectively. For nonzero o, there are two special
cases: (a) imperfect dielectrics or poor conductors and (b) good conductors.
The first case is characterized by conduction current small in magnitude
compared to the displacement current; the second case is characterized by
just the opposite. We shall consider the first case in this section and the
second case in the following section.
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Thus considering the case of “imperfect dielectrics,” we have |6E,| <
|jweE, |, or a/we < 1. We can then obtain approximate expressions for o, 3,
v,, A, and # as follows:

_ w«/ﬁéw (1)2 _ ]‘”
- W€
o N 1+ 1
I g2 at 1/2
2 L +2w262_8w464+"'—1]

xw/\/l} o I—l— o2 ]1/2
2 A/ 2wel 4w2e?

-5/~ o)
- T
NCO,\/EI:Z + 20-2 ]1/2

. 2
~ Wue(l + ga) (5.72b)

el @) ]
Va2 ]

e~ (1_ 02) (5.726)
VT 8w?e? '

L T ]
S~/ ue o) T
~ 77l ~ o)
F/ue\  sate
— ]CO,U - M( __—a-_>—1/2
" Yo + joe — V jowe 1 Jcoe
_ |k o 3 o ]
- 6|:1+j2606 8 w2
~ JH[(1 -3 _6_2_) j_] 2
N*/e ‘:(1 8 w2e? T T 30e G128)
In (5.72a)-(5.72¢) we have retained all terms up to and including the second
power in o/we and have neglected all higher-order terms. For a value of o/we
equal to 0.1, the quantities f, »,, and 4 are different from those for the

corresponding perfect dielectric case by a factor of only 0.01/8 or g Whereas
the intrinsic impedance has a real part differing from the intrinsic impedance

v, =

2

),:

(5.72d)
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of the perfect dielectric medium by a factor of g5 and an imaginary part
which is 515 of the intrinsic impedance of the perfect dielectric medium, Thus
the only significant feature different from the perfect dielectric case is the

attenuation.

Example 5.2. Let us consider that a material can be classified as a dielectric
for /we << 0.1 and compute the values of the several propagation parameters
for three materials: mica, dry earth, and sea water.

Denoting the frequency for which o/we = 1 as f,, we have f, = o/2re,
assuming that ¢ and € are independent of frequency. Values of o, €, and £,
and approximate values of the several propagation parameters for f > 10f,
are listed in Table 5.3, in which ¢ is the velocity of light in free space and g,

TABLE 5.3. Values of Several Propagation Parameters for Three
Materials for the Dielectric Range of Frequencies

o Ja o 7
Material UO/m e Hz Np/m BlBo  wplc AfAy  ohms
Mica 10-11 6 3 x 1072 77 x 10-11 245 0.408 0.408 153.9
Dry earth  10-5 5 3.6 X104 84 x 1073 224  0.447 0.447 168.6
Sea water 4 80 0.9 x 10° 84.3 894 0.112 0.112 42.15

and A, are the phase constant and wavelength in free space for the frequency
of operation. It can be seen from Table 5.3 that mica behaves as a dielectric
for almost any frequency, but sea water can be classified as a dielectric only
for frequencies above approximately 10 GHz. We also note that because of
the low value of &, mica is a good dielectric, but the high value of & for sea
water makes it a poor dielectric. m

5.6 UNIFORM PLANE WAVES IN CONDUCTORS

In the previous section we considered the special case of imperfect
dielectrics. Turning now to the case of “good conductors,” we have |¢E, | >
| jeE, |, or a/we > 1. We can then obtain approximate expressions for o, §,
v,, A, and n as follows:

“:w&/g_e[«/l+(&>2_l]1/z

OJUe [o _ [ous
~73 V=2
= /7fHo (5.732)
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ﬁ:wA/ue ’\/1_‘_(606) +1]1/2

coJ ue | a
2 We
= /nfuo (5.73b)

U= Jue[\/ i (co6> 1]-1/2

N2 «/ we _ 2co

0

22

— 4nf
=N (5.730)

f«/uf[‘/ i (mf l] N

dn
S i 5.73d
fuo ( )

Jou x/jwu
o - joe

=1+ j)J @ (5.73¢)

fi—=

We note that &, f, v,, and # are proportional to ,/ f , provided that o and x
are constants.

To discuss the propagation characteristics of a wave inside a good
conductor, let us consider the case of copper. The constants for copper are
o = 5.80 x 107 mho/m, € = €,, and u = u,. Hence the frequency at which
o is equal to we for copper is equal to 5.8 X 107/2ze, or 1.04 X 10'% Hz.
Thus at frequencies of even several gigahertz, copper behaves like an excellent
conductor. To obtain an idea of the attenuation of the wave inside the
conductor, we note that the attenuation undergone in a distance of one
wavelength is equal to e~** or e~2*, In terms of decibels, this is equal to
20 log,, €** = 54.58 db. In fact, the field is attenuated by a factor e™! or
0.368 in a distance equal to 1/&. This distance is known as the “skin depth”
and is denoted by the symbol d. From (5.73a), we obtain

1
R (5.74)
~ Tf o
The skin depth for copper is equal to
1 _0.066

TR X0 X358 X10 S
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Thus in copper the fields are attenuated by a factor e~! in a distance of 0.066
mm even at the low frequency of 1 MHz, thereby resulting in the concentra-
tion of the fields near to the skin of the conductor. This phenomenon is
known as the “skin effect.” It also explains “shielding” by conductors.

To discuss further the characteristics of wave propagation in a good
conductor, we note that the ratio of the wavelength in the conducting medium
to the wavelength in a dielectric medium having the same ¢ and g as those of
the conductor is given by

Aconductor = /\/47t/f,u0' _ 47tf€ . «/@ 5 75
ldie]ectric l/f,\/E - /\/ c ag ( ) )

Since g/me > 1, Awnguctor € Agieteotrics FOr example, for sea water, o =
4 mhos/m, € = 80¢,, and x4 = u, so that the ratio of the two wavelengths for
S =25kHz is equal to 0.00745. Thus for f = 25 kHz, the wavelength in sea
water is 11 of the wavelength in a dielectric having the same € and 4 as those
of sea water and a still smaller fraction of the wavelength in free space.
Furthermore, the lower the frequency, the smaller is this fraction. Since it is
the electrical length, that is, the length in terms of the wavelength, instead of
the physical length that determines the radiation efficiency of an antenna, this
means that antennas of much shorter length can be used in sea water than in
free space. Together with the property that & oc ./ f, this illustrates that low
frequencies are more suitable than high frequencies for communication under
water, and with underwater objects.

Equation (5.73e) tells us that the intrinsic impedance of a good conductor
has a phase angle of 45°. Hence the electric and magnetic fields in the medium
are out of phase by 45°. The magnitude of the intrinsic impedance is given by

191 = |0ty 2| = 2 (576)

As a numerical example, for copper, this quantity is equal to

Inf X 4w X 1077

sgqor — = 369 % 10-7,/ f ohms

Thus the intrinsic impedance of copper has as low a magnitude as 0.369 ohms
even at a frequency of 102 Hz. In fact, by recognizing that

we note that the magnitude of the intrinsic impedance of a good conductor
medium is a small fraction of the intrinsic impedance of a dielectric medium
having the same ¢ and u. It follows that for the same electric field, the
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magnetic field inside a good conductor is much larger than the magnetic field
inside a dielectric having the same € and z as those of the conductor.

Finally, for ¢ = oo, the medium is a “perfect conductor,” an idealization
of the good conductor. From (5.74), we note that the skin depth is then equal
to zero and that there is no penectration of the fields. Thus no fields can exist
inside a perfect conductor.

57 SUMMARY

In this chapter we studied the principles of uniform plane wave propaga-
tion in a material medium. Material media can be classified as (a) conductors,
(b) dielectrics, and (c) magnetic materials, depending on the nature of the
response of the charged particles in the materials to applied fields. Conductors
are characterized by conduction which is the phenomenon of steady drift of
free electrons under the influence of an applied electric field. Dielectrics are
characterized by polarization which is the phenomenon of the creation and
net alignment of electric dipoles, formed by the displacement of the centroids
of the electron clouds from the centroids of the nucleii of the atoms, along the
direction of an applied electric field. Magnetic materials are characterized by
magnetization which is the phenomenon of net alignment of the axes of the
magnetic dipoles, formed by the electron orbital and spin motion around the
nucleii of the atoms, along the direction of an applied magnetic field.

Under the influence of applied electromagnetic wave fields, all three
phenomena described above give rise to currents in the material which in turn
influence the wave propagation. These currents are known as the conduction,
polarization, and magnetization currents, respectively, for conductors,
diclectrics, and magnetic materials. They must be taken into account in the

first term on the right side of Ampere’s circuital law, that is, j J+dS in

the case of the integral form and J in the case of the differential form. The
conduction current density is given by

J, =0oE (5.78)
where ¢ is the conductivity of the material. The conduction current is taken
into account explicitly by replacing J by J... The polarization and magnetiza-
tion currents are taken into account implicitly by revising the definitions of
the displacement flux density vector and the magnetic field intensity vector
to read as

D=¢E+P (5.79)

B
H=—-M 5.80
Ho Q80
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where P and M are the polarization and magnetization vectors, respectively.
For linear isotropic materials, (5.79) and (5.80) simplify to

D = ¢E (5.81)
B
H== 5.82
I (5.82)
where
€ = €,€,
u= Ui,

are the permittivity and the permeability, respectively, of the material. The
quantities €, and u, are the relative permittivity and the relative permeability,
respectively, of the material. The parameters &, €, and u vary from one
material to another and are in general dependent on the frequency of the
wave. Equations (5.78), (5.81), and (5.82) are known as the constitutive
relations. For anisotropic materials, these relations are expressed in the form
of matrix equations with the material parameters represented by tensors.

Together with Maxwell’s equations, the constitutive relations govern the
behavior of the electromagnetic field in a material medium. Thus Maxwell’s
curl equations for a material medium are given by

___dB_ JH
VxE= 3= Hor

. dD JE
VxH=J, + 5 =0k + e~

We made use of these equations for the simple case of E = E,(z, #)i, and
H = H(z, /)i, to obtain the uniform plane wave solution by considering the
infinite plane current sheet in the xy plane with uniform surface current
density

Js = —Jg, cos ot i,

and with a material medium on either side of it and finding the electromag-
netic field due to the current sheet to be given by

E = l’ﬂ"‘s”e:‘“ cos (wt F fz + 1)i, forzz=0 (5.83a)

2
H = 75067 cos (et T f2)i, forz=0  (5.83b)

In (5.83a-b), & and B are the attenuation and phase constants given, respec-
tively, by the real and imaginary parts of the propagation constant, . Thus

7=a+ jB = /joulo + jwe)
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The quantities |7| and 7 are the magnitude and phase angle, respectively, of
the intrinsic impedance, #, of the medium. Thus

7 — 7| elt — Jop
f1=1I7le" = o & joe

The uniform plane wave solution given by (5.83a-b) tells us that the wave
propagaiion in the material medium is characterized by attcnuation as
indicated by e¥** and phase difference between E and H by the amount 7. We
learned that the attenuation of the wave results from power dissipation due to
conduction current flow in the medium. The power dissipation density is
given by

ps = OE}

The stored energy densities associated with the electric and magnetic fields in
the medium are given by

w, = =-€E?

ot NID—‘

Wy = 7.”H2
Having discussed uniform plane wave propagation for the general case of
a medium characterized by o, €, and u, we then considered several special
cases. These are discussed in the following:

PerrEcT DIELECTRICS: For these materials, ¢ = 0. Wave propagation
occurs without attenuation as in free space but with the propagation pa-
rameters governed by € and g instead of €, and u,, respectively.

IMPERFECT DIELECTRICS: A material is classified as an imperfect dielec-
tric for o < e, that is, conduction current density is small in magnitude
compared to the displacement current density. The only significant feature of
wave propagation in an imperfect dielectric as compared to that in a perfect
dielectric is the attenuation undergone by the wave.

Goob CONDUCTORS: A material is classified as a good conductor for
0 > we, that is, conduction current density is large in magnitude compared to
the displacement current density. Wave propagation in a good conductor
medium is characterized by attenuation and phase constants both equal to
~/7fuo. Thus for large values of fand/or g, the fields do not penetrate very
deeply into the conductor. This phenomenon is known as the skin effect.
From considerations of the frequency dependence of the attenuation and
wavelength for a fixed o, we learned that low frequencies are more suitable for
communication with underwater objects. We also learned that the intrinsic
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impedance of a good conductor medium is very low in magnitude compared
to that of a dielectric medium having the same ¢ and u.

PerrecT CONDUCTORS: These are idealizations of good conductors in
the limit & -— oo. For ¢ = oo, the skin depth, that is, the distance in which
the fields inside a conductor are attenuated by a factor e~!, is zero and hence
there can be no penetration of fields into a perfect conductor.

REVIEW QUESTIONS

5.1.
5.2,
5.3.

54.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.

5.12.
5.13.

5.14.
5.15.
5.16.
5.17.

5.18.
5.19.

5.20.
5.21.

Distinguish between bound electrons and free electrons in an atom.
Briefly describe the phenomenon of conduction.

State Ohms’ law applicable at a point. How is it taken into account in Max-
well’s equations ?

Briefly describe the phenomenon of polarization in a dielectric material.
What is an electric dipole ? How is its strength defined ?

What are the different kinds of polarization in a dielectric?

What is the polarization vector ? How is it related to the electric field intensity ?
Discuss how polarization current arises in a dielectric material.

State the relationship between polarization current density and electric field
intensity. How is it taken into account in Maxwell’s equations ?

What is the revised definition of D ?

State the relationship between D and E in a dielectric material. How does it
simplify the solution of field problems involving dielectrics ?

What is an anisotropic dielectric material ?

When can an effective permittivity be defined for an anisotropic dielectric
material ?

Briefly describe the phenomenon of magnetization.
What is a magnetic dipole? How is its strength defined?
What are the different kinds of magnetic materials?

What is the magnetization vector? How is it related to the magnetic flux
density ?

Discuss how magnetization current arises in a magnetic material.

State the relationship between magnetization current density and magnetic
flux density. How is it taken into account in Maxwell’s equations ?

What is the revised definition of H?

State the relationship between H and B for a magnetic material. How does it
simplify the solution of field problems involving magnetic materials ?
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5.22.
5.23.
5.24.
5.25.

5.26.

5.27.
5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.
5.36.

5.37.
5.38.

5.39.

5.40.

What is an anisotropic magnetic material ?
Discuss the relationship between B and H for a ferromagnetic material.
Summarize the constitutive relations for a material medium.

What is the propagation constant for a material medium? Discuss the sig-
nificance of its real and imaginary parts.

Discuss the consequence of the frequency dependence of the phase velocity of
a wave in a material medium.

What is loss tangent ? Discuss its significance.

What is the intrinsic impedance of a material medium? What is the con-
sequence of its complex nature ?

How do you account for the attenuation undergone by the wave in a material
medium ?

What is the power dissipation density in a medium characterized by nonzero
conductivity ?

What are the stored energy densities associated with electric and magnetic
fields in a material medium?

What is the condition for a medium to be a perfect dielectric? How do the
characteristics of wave propagation in a perfect dielectric medium differ from
those of wave propagation in free space?

What is the criterion for a material to be an imperfect dielectric? What is the
significant feature of wave propagation in an impertect dielectric as compared
to that in a perfect dielectric?

Give two examples of matetials that behave as good dielectrics for frequencies
down to almost zero.

What is the criterion for a material to be a good conductor?

Give two examples of materials that behave as good conductors for frequen-
cies of up to several gigahertz.

What is skin effect ? Discuss skin depth, giving some numerical values.

Why are low-frequency waves more suitable than high-frequency waves for
communication with underwater objects?

Discuss the consequence of the low intrinsic impedance of a good conductor
as compared to that of a dielectric medium having the same € and .

Why can there be no fields inside a perfect conductor?

PROBLEMS

5.1.

Find the electric field intensity required to produce a current of 0.1 amp cross-
ing an area of 1 cm? normal to the field for the following materials: (a) cop-
per, (b) aluminum, and (c) sea water. Then find the voltage drop along a
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5.2,

5.3.

54.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.
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length of 1 cm parallel to the field, and find the ratio of the voltage drop to
the current (resistance) for each material.

The free electron density in silver is 5.80 x 1028 m~3. (a) Find the mobility of
the electron for silver. (b) Find the drift velocity of the electrons for an applied
electric field of intensity 0.1 V/m.

Use the continuity equation, Ohm’s law, and Gauss’ law for the electric field
to show that the time variation of the charge density at a point inside a con-
ductor is governed by the differential equation

o o, _
E_l_eop—o

Then show that the charge density inside the conductor decays exponentially
with a time constant €,/0. Compute the value of the time constant for copper.

Show that the torque acting on an electric dipole of moment p due to an
applied electric field E is p x E.

For an applied electric field E = 0.1 cos 2 x 10°¢i, V/m, find the polariza-
tion current crossing an area of 1 cm? normal to the field for the following
materials: (a) polystyrene, (b) mica, and (c) distilled water.

For the anisotropic dielectric material having the permittivity tensor given in
Example 5.1, find D for E = E; (cos wti, + sin ti,). Comment on your
result.

An anisotropic dielectric material is characterized by the permittivity tensor

4 2 2
[6]—:602 4 2
2 2 4

(a) Find D for E = Eyi,. (b) Find D for E = Ey(i, + i, + i,). (¢) Find E
which produces D = 4€,Ei..

An anisotropic dielectric material is characterized by the permittivity tensor

€vx €xy, O
[el=|€x €, O
0 0 ¢,

For E = (E.i, + E,i,) cos wt, find the value(s) of E,/E, for which D is paral-
lel to E. Find the effective permittivity for each case.

Find the magnetic dipole moment of an electron in circular orbit of radius a
normal to a uniform magnetic field of flux density B,. Compute its value for
a=10"3m and By = 5 X 1075 Wb/m?,

Show that the torque acting on a magnetic dipole of moment m due to an
applied magnetic field B is m x B. For simplicity, consider a rectangular loop
in the xp plane and B = B,i, + B,i, + B.i,.
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5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

For an applied magnetic field B = 1076 cos 2nzi, Wb/m?, find the magnetiza-
tion current crossing an area 1 cm?2 normal to the x direction for a magnetic
material having ¥,, = 1073,

An anisotropic magnetic material is characterized by the permeability tensor

7 6 0
(4] = uol 6 12 0
lo 0 3

Find the effective permeability for H = H,(3i, — 2i,) cos 1.
Obtain the wave equation for ﬁ, similar to that for E, given by (5.49).

Obtain the expression for the attenuation per wavelength undergone by a
uniform plane wave in a material medium characterized by o, €, and y. Using
the logarithmic scale for o/we, plot the attenuation per wavelength in decibels
Versus o/we.

For dry earth, ¢ = 10~5 mho/m, € = 5€,, and u = Uo. Compute &, B, vy A
and 7 for f = 100 kHz.

Obtain the expressions for the real and imaginary parts of the intrinsic im-
pedance of a material medium given by (5.61).

An infinite plane sheet lying in the xy plane carries current of uniform density
J¢ = —0.1cos 2w x 1067 i, amp/m

The medium on either side of the sheet is characterized by & = 10~3 mho/m,

€ = 18¢€,, and u = U,. Find E and H on either side of the current sheet.

Repeat Problem 5.17 for

Js = —0.1(cos 2 x 106ti, + cos 4m x 105¢1i,) amp/m

For an array of two infinite plane parallel current sheets of uniform densities
situated in a medium characterized by & = 103 mho/m, € = 18¢€,, and
I = MUo, find the spacing and the relative amplitudes and phase angles of the
current densities to obtain an endfire radiation characteristic for f = 106 Hz.

Show that energy is not stored equally in the electric and magnetic fields in a
material medium for o # 0.

The electric field of a uniform plane wave propagating in a perfect dielectric
medium having 4 = U, is given by

E = 10 cos (6w x 107¢ — 0.472) i, V/m
Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the
permittivity of the medium, and () the associated magnetic field vector H.

The electric and magnetic fields of a uniform plane wave propagating in a
perfect dielectric medium are given by



196

5.23.

5.24.

5.25.

5.26.

5.27.

CH. S5 WAVE PROPAGATION IN MATERIAL MEDIA

E = 10cos (6 x 107t — 0.87z) i, V/m

H= %r cos (6m x 107¢ — 0.87z) i, amp/m

Find the permittivity and the permeability of the medium.

An infinite plane sheet situated in the xy plane carries a current of uniform
density

Js = —0.2cos 3n x 107¢i, amp/m

The medium on either side of the current sheet is a perfect dielectric having
€ = 8€yand u = 2u,. (a) Find H,B, M, and J,, for z > 0. (b) Find E, D, P,
and J, for z > 0.

Compute f; for each of the following materials: (a) fused quartz, (b) bakelite,
and (c) distilled water. Then compute for the imperfect dielectric range of
frequencies the values of &, f3, v,, 4, and 7 for each material.

For uniform plane wave propagation in fresh water (¢ = 103 mho/m,
€ = 80€y, U = Uy), find &, B, v,, A, and 7 for two frequencies: (a) 100 MHz,
and (b) 10 kHz.

Show that for a given material, the ratio of the attenuation constant for the
good conductor range of frequencies to the attenuation constant for the
imperfect dielectric range of frequencies is equal to »/2we/o where @ is in
the good conductor range of frequencies.

For a 25-kHz wave propagating in sea water, find the Doppler shift observed
by an observer, moving with a velocity 10 m/s along the direction of propaga-
tion of the wave.



EGo TRANSMISSION
LINES

In Chap. 4 we studied the principles of uniform plane wave propagation in
free space. In Chap. 5 we extended the study of wave propagation to material
medja. In both chapters we were concerned with propagation in unbounded
media. In this and the next chapters we shall consider guided wave propaga-
tion, that is, propagation of waves between boundaries. The boundaries are
generally provided by conductors, whereas the media between the boundaries
are generally dielectrics. There are two kinds of waveguiding systems. These
are transmission lines and waveguides. A transmission line consists of two
or more parallel conductors, whereas a waveguide is generally made up of
one conductor. Our goal in particular in this chapter is to learn the prin-
ciples of transmission lines.

We shall introduce the transmission line by considering a uniform plane
wave and placing two parallel plane, perfect conductors such that the fields
remain unaltered by satisfying the “boundary conditions” on the perfect
conductor surfaces, which we will derive at the outset. The wave is then guided
between and parallel to the conductors, thus leading to the parallel-plate
line. We shall learn to represent a line by the “distributed” parameter equiv-
alent circuit and discuss wave propagation on the line in terms of voltage
and current. We shall learn to compute the circuit parameters for the parallel-
plate line and then extend the computation to the general case of a line of
arbitrary cross section. We shall discuss the “standing wave” phenomenon
by considering the short-circuited line and reflection and transmission of
waves at the junction between two lines in cascade.

197



6.1 BOUNDARY CONDITIONS ON
A PERFECT CONDUCTOR SURFACE

In Sec. 5.6 we learned that the fields inside a perfect conductor are zero,
as illustrated in Fig. 6.1. In this section we shall use this property to derive
the “boundary conditions” for the fields on the surface of a perfect conductor.

Perfect
Conductor

Figure 6.1. Showing that the fields inside a perfect conductor are zero.

Boundary conditions are simply a set of relationships relating the field com-
ponents at a point adjacent to and on one side of the boundary between two
different media to the field components at a corresponding point adjacent to
and on the other side of the boundary. These relationships arise from the
fact that Maxwell’s equations in integral form involve closed paths and sur-
faces and they must be satisfied for all possible closed paths and surfaces
whether they lie entirely in one medium or encompass a portion of the bound-
ary between two different media. In the latter case, Maxwell’s equations in
integral form must be satisfied collectively by the fields on either side of the
boundary, thereby resulting in the boundary conditions. To derive these
boundary conditions, we recall that Maxwell’s equations in integral form are
given by

d
Eedl=—2% | B.ds (6.12)
§C dr | .
§H-dl=fJ-dS+diJ.D-dS (6.1b)
c s ¢
jﬁ D.dszfpdv (6.1¢)
S 14
ff;B-dS:O (6.1d)
5

We shall apply these equations, one at a time, to a closed path or a closed
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surface encompassing the surface of a perfect conductor and derive the
corresponding boundary conditions.

Considering Faraday’s law in integral form, that is, (6.1a) first and apply-
ing it to an infinitesimal rectangular closed path abeda chosen such that ab
and cd are very close to and on either side of the perfect conductor surface
as shown in Fig. 6.2, we have

or

b ¢ d 3
fE-d1+fE.d1+fE-dl+fE.d1:~E B.dS (6.2
a b ¢ d

abed

Figure 6.2. For deriving the boundary condition for the tangential com-
ponent of E on a perfect conductor surface.

But [/E « dl = 0 since E is zero inside the perfect conductor. If we now
let ad and bc — 0 by making ab and cd almost touch each other but remain-
ing on either side of the boundary, the quantities [{ E - dl, [E«dl, and
Jusea B * dS all tend to zero, leaving us

L” E«dl—0 (6.3)

Since ab is infinitesimal in size, we can write (6.3) as
E,(ab) =0 6.4)
where E,, is the component of E on the perfect conductor surface along the
line ab. Thus we obtain
E,—=0 6.5
Since we can choose the rectangle abcda with any orientation, it follows that
E,, is zero for any orientation of ab. Hence we obtain the first boundary

condition that “the tangential component of E at a point on a perfect con-
ductor surface is equal to zero.” We can express this statement concisely in
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vector form as
i,xE=0 (6.6)

on the perfect conductor surface where i, is the unit normal vector to the con-
ductor surface, as shown in Fig. 6.2,

Considering next Ampere’s circuital law in integral form, that is, (6.1b),
and applying it to the rectangular path abcda of Fig. 6.2, we have

H-dl:f J-dS—{—diJ D.dSs
abed t

abeda abed

or

b ¢ d a
fH-dl—l—fH-dl—l—fH-dl—l—fH-dl
a b ¢ d

— | 7.as+2( p.as ©.7)

abed abed

But [{H « d1 = 0 since H is zero inside the perfect conductor. If we now let
ad and bc — 0 as before, the quantities [* H + dl, [fH .« dl,and [, ,D + dS
all tend to zero, but [,, . J + dS does not necessarily tend to zero since there
can be a surface current enclosed by the area abcd although the area abced
tends to zero, as shown in Fig. 6.3(a). If & is the angle between the surface

(a)

(b)

Figure 6.3. For deriving the boundary condition for the tangential com-
ponent of H on a perfect conductor surface.

current density vector Jg and the unit normal vector iy to the area abcd,
directed in the right-hand sense, as shown in Fig. 6.3(b), then

J « dS = Jg(ab cos &) (6.8)

abed
Thus we obtain

b
f H « dl = Jg(ab cos &)
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or
H ,(ab) = Js(ab cos )

H, = Jscosua (6.9)

The maximum value of H,,, that is, the tangential component H, of H on
the conductor surface is obtained for o equal to zero, that is, when ab is
oriented perpendicular to Jg and then

H, =Js (6.10)

Hence we obtain the second boundary condition that “the tangential com-
ponent of H at a point on a perfect conductor surface is perpendicular (in
the right-hand sense) to the surface current density at that point and is equal
in magnitude to the surface current density.” We can express this statement
concisely in vector form as

i x H=1J (6.11)

on the perfect conductor surface where i, is again the unit normal vector to
the conductor surface pointing out of the conductor, as shown in Fig. 6.3(a).

Considering now Gauss’ law for the electric field in integral form, that
is, (6.1¢), and applying it to an infinitesimal rectangular box abedefgh chosen
such that the surfaces abed and efgh are very close to and on either side of the
perfect conductor surface, as shown in Fig. 6.4, we have

Al L

volume
of the of the
box box
or
D.dS + D - dS + D-dszj pdv  (6.12)
abed side efgh volume

surfaces of the
box

Figure 6.4. For deriving the boundary conditions for the normal com-
ponents of D and B on a perfect conductor surface.
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But {,. . D« dS = 0 since D is zero inside the perfect conductor. If we now
let the side surfaces — 0 by making abed and efgh almost touch each other
but remaining on either side of the boundary, [, D . dS tends to zero
and J.volume

surfaces
p dv tends to the surface charge enclosed by the box. If the
of the box
surface charge density is pg, then the surface charge enclosed by the box is
ps(abed). Thus we obtain

D« dS = pilabed)
or
Dn(ade) = pS
Dn = Ps (6'13)

where D, is the normal component of D. Hence we obtain the third boundary
condition that “the normal component of D at a point on a perfect conductor
surface is equal to the surface charge density at that point.” We can express
this statement concisely in vector form as

i, D= pg (6.14)

on the perfect conductor surface.

Considering finally Gauss’ law for the magnetic field in integral form,
that is, (6.1d), and applying it to the rectangular box abcdefgh of Fig. 6.4,
we have

3€f B.dS=0

of the
box

or

B.dS+ B.dS+ [ B.dsS=0 (6.15)
aed :Ldr?aces bl

But {,.., B« dS =0 since B is zero inside the perfect conductor surface.
If we now let the side surfaces — 0 as before, j B « dS tends to zero.

side
surfaces

Thus we obtain

B.4d4S=0
abed
or
B,(abed) = 0
B,=0 (6.16)

where B, is the normal component of B. Hence we obtain the fourth boundary
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condition that “the normal component of B at a point on a perfect conductor
surface is equal to zero.” We can express this statement concisely in vector
form as

i,  B=20 6.17)

on the perfect conductor surface.
Summarizing the four boundary conditions for the field components ona
perfect conductor surface, we have

i, xE=0
i, x H=Jg
i, D= ps
i,»B=20

where i, is the unit normal vector pointing out of the conductor, Jg is the
surface current density, and pj is the surface charge density on the conductor
surface.

Example 6.1. Let us consider a perfect dielectric medium z <0 bounded
by a perfect conductor z > 0, as shown in Fig. 6.5. Let the fields in the dielec-
tric medium be given by the superposition of (4) and (—) uniform plane
waves propagating normal to the conductor surface, that is,

E = E, cos (0t — B2)i, + E, cos (ot + f2)i,

H= %cos (ot — B2)i, — %cos (ot + B2)1,

where f = wa/p€ and 5 = ./ ufe. We wish to investigate the relationship
between E, and E;.

z<0 z>0
Perfect . Perfect
Dielectric : Conductor
T :
x
z
y

Figure 6.5. A perfect dielectric medium bounded by a perfect conductor.
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Since E, is tangential to the perfect conductor surface, the boundary
condition for the tangential component of E given by (6.6) requires that

[Ex]z=0 s 0
or

[E, cos (wt — fz) + E, cos (wf + f2)],-, = 0
E, coswt + E,coswt =0 for all ¢

Thus we obtain the required relationship to be
Ez . _El

Proceeding further, we obtain the total electric field in the dielectric as
given by
E = E, cos (ot — fz)i, — E, cos (wt + B2) i,

= 2E1 sin wt sin fz 1,

and the total magnetic field in the dielectric as given by

H= % cos (wt — fz)i, +=Lcos (wt + B2)1i,

2
2B} cos oot cos fiz i,

These expressions for E and H correspond to standing waves. We shall discuss
the standing wave phenomenon in Sec. 6.4.

Now, from the boundary condition for the tangential component of H
given by (6.11), we obtain

Jsl-o =1, X [H],., = —i, x [H],-,

==, x%cosa)tiy

_2E
“cosoti, -

6.2 PARALLEL-PLATE TRANSMISSION LINE

In the previous section we introduced the boundary conditions for the
field components on the surface of a perfect conductor. We learned that the
tangential component of the electric field intensity and the normal component
of the magnetic field intensity are zero on the perfect conductor surface. Let
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us now consider the uniform plane electromagnetic wave propagating in the
z direction and having an x component only of the electric field and a y
component only of the magnetic field, that is,

E=E/(z,1)i,
H=H/z 1],

and place perfectly conducting sheets in two planes x = 0 and x = d, as
shown in Fig. 6.6. Since the electric field is completely normal and the magne-
tic field is completely tangential to the sheets, the two boundary conditions
referred to above are satisfied, and hence the wave will simply propagate,
as though the sheets were not present, being guided by the sheets. We then
have a simple case of transmission line, namely, the parallel-plate transmis-
sion line.

x=0

xH | x | x | x|x|x]|x| x| x X

P 3 iZ

X X x | x|x|x|x]| x X X
e

X X x | x[x|x| x| x X X

YE \ 4 Y Y Y 1L Y VY Y Y Y
x=d

Figure 6.6. Uniform plane electromagnetic wave propagating between two
perfectly conducting sheets.

According to the remaining two boundary conditions, there must be
charges and currents on the conductors. The charge densities on the two
plates are

[pS]x=0 - [in * D]x=0 e ix N 6Exix =l fEx (6.183.)
[pS]x=d i [in N D]x=d 5 _ix . EExix e _eEx (6'18b)

where ¢ is the permittivity of the medium between the two plates. The current
densities on the two plates are

Feloo = [i, x Hl,oo = i, x H,i, = H,j, (6.19)
[JS]x=d = [in X H]x=d — _ix X Hyiy - _Hyiz (6'19b)

In addition, there is conduction current in the medium between the plates
flowing from one plate to the other with density given by

J.=0oE =0FE,i, (6.20)
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where ¢ is the conductivity of the medium. In (6.18)~(6.20) it is understood
that the charge and current densities are functions of z and ¢ as E, and H,
are. Thus the wave propagation along the transmission line is supported by
charges and currents on the plates, varying with time and distance along the
line, as shown in Fig. 6.7.

Figure 6.7. Charges and currents on the plates of a parallel-plate trans-
mission line,

Let us now consider finitely sized plates having width w in the y direction,
as shown in Fig. 6.8(a), and neglect fringing of the fields at the edges or
assume that the structure is part of a much larger-sized configuration. By
considering a constant z plane, that is, a plane “transverse” to the direction
of propagation of the wave, as shown in Fig. 6.8(b), we can find the voltage
between the two conductors in terms of the line integral of the electric field
intensity evaluated along any path in that plane between the two conductors.
Since the electric field is directed in the x direction and since it is uniform in
that plane, this voltage is given by

Viz, t) = j"a Ez, 0 dx = E(z, 1) jdo dx — dE(z,1)  (6.21a)

Thus each transverse plane is characterized by a voltage between the two
conductors which is related simply to the electric field as given by (6.21a).
Each transverse plane is also characterized by a current I flowing in the
positive z direction on the upper conductor and in the negative z direction
on the lower conductor. From Fig. 6.8(b), we can see that this current is
given by

I(z, 1) = J.”;O Js(z, ) dy = f:o Hyz, i = Hyz 1) J.io dy
— wH(z, 1) (6.21b)

since H, is uniform in the cross-sectional plane. Thus the current crossing



SEC. 6.2 PARALLEL-PLATE TRANSMISSION LINE 207

[IX

x=0
e, 06 0 ,0,0 0 0 0, 06<—]
Zz
0) > H g
EJ,
.| - _,}_ SN U N Y PN
ARRRARRRARCE ) ¥

\

w

F 3

Figure 6.8. (a) Parallel-plate transmission line, (b) A transverse plane of
the parallel-plate transmission line,

a given transverse plane is related simply to the magnetic field in that plane
as given by (6.21b).

Proceeding further, we can find the power flow down the line by evaluat-
ing the surface integral of the Poynting vector over a given transverse plane.
Thus

P(z,1) =| (E x H) + dS

transverse
plane

d w
= [ [ BB dxdyi,
x=0 Jy=0

g Y V(z, ) Iz, 1)
s e

= V(z, )I(z, D) (6.22)

which is the familiar relationship employed in circuit theory.
We now recall from Sec. 5.4 that E, and H, satisfy the two differential
equations

JE, B, 0H,
gz~ ot Har (6268)
oH, aD, JE,
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From (6.21a) and (6.21b), however, we have
(6.24a)
(6.24b)

Substituting for E, and H, in (6.23a) and (6.23b) from (6.24a) and (6.24b),
respectively, we now obtain two differential equations for voltage and cur-
rent along the line as

25)- -3 =
Rt I

or
‘;_’z/ _ _</‘7d) ‘Z_{ (6.262)

These equations are known as the “transmission-line equations.” They
characterize the wave propagation along the line in terms of line voltage
and line current instead of in terms of the fields.

We now define three quantities familiarly known as the “circuit parame-
ters.” These are the inductance, the capacitance, and the conductance (reci-
procal of resistance) per unit length of the transmission line in the z direction
and are denoted by the symbols £, @, and G, respectively. The inductance per
unit length, having the units henries per meter (H/m), is defined as the ratio
of the magnetic flux per unit length at any value of z to the line current at
that value of z. Noting from Fig. 6.8 that the cross-sectional area normal to
the magnetic field lines and per unit length in the z direction is (d)(1) or d,
we find the magnetic flux per unit length to be B,d or uH,d. Since the line
current is H,w, we then have

£— %H_vyvd _ %’ (6.272)
y

The capacitance per unit length, having the units farads per meter (F/m), is
defined as the ratio of the charge per unit length on either plate at any value
of z to the line voltage at that value of z. Noting from Fig. 6.8 that the cross-
sectional area normal to the electric field lines and per unit length in the z
direction is (w)(1) or w, we find the charge per unit length to be pgw or
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€E.w. Since the line voltage is E.d, we then have

e EEw _ ew (6.27b)

The conductance per unit length, having the units mhos per meter (U/m),
is defined as the ratio of the conduction current per unit length flowing from
one plate to the other at any value of z to the line voltage at that value of z.
Noting from Fig. 6.8 that the cross-sectional area normal to the conduction
current flow and per unit length in the z direction is (w)(1) or w, we find the
conduction current per unit length to be J_w or ¢ E,w. We then have

g 9Ew _ ow (6.27¢)

We note that £, €, and § are purely dependent on the dimensions of the line
and are independent of E, and H,. We further note that

(6.28a)

[
=
™

(6.28b)

~|Q

We now recognize the quantities in parentheses in (6.26a) and (6.26b)
to be £, G, and €, respectively, of the line. Thus we obtain the transmission-
line equations in terms of these parameters as

14 oI

5= L (6.292)
oI v
= —grv—e ' (6.29b)

These equations permit us to discuss wave propagation along the line in
terms of circuit quantities instead of in terms of field quantities. It should,
however, not be forgotten that the actual phenomenon is one of electromag-
netic waves guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit
equivalent, derived from the transmission-line equations (6.29a) and (6.29b).
To do this, let us consider a section of infinitesimal length Az along the line
between z and z -+ Az. From (6.29a), we then have

Lim V(iz + Az, ) — V(z,t) _ e (91‘(92; t)

Az—0 AZ
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or, for Az— 0,
V(z-F Az, 1) — V(z, 1) — —& Az 01((;—2,’0 (6.30)
This equation can be represented by the circuit equivalent shown in Fig.

6.9(a) since it satisfies Kirchhoff’s voltage law written around the loop abcda.
Similarly, from (6.29b), we have

Lim Iz + Az, 1) — I(z, 1) _ Lim [—QV(Z LA —e vV (z+ Az, t)—)

Az—0 Z Az—0 dt

or, for Az — 0,

Izt Az f) — Iz, £) = —G Az V(z -+ Az, 1) — € Az "V(—ZEAZ—”) (6.31)

b £Az o Iz, t) [(z+Az1) £4z
—_— 2 2 +o #
I 1(z, 8) +T T : |
L | |
1 : ) | |
= ) gary L | '
= : | I
i |
Y- - = l I
O e O O & O <> - ‘#’

a d d o

(a) (b) (¢ ZTAz

Figure 6.9. Development of circuit equivalent for an infinitesimal length
Az of a transmission line.

This equation can be represented by the circuit equivalent shown in Fig. 6.9(b)
since it satisfies Kirchhoff’s current law written for node ¢. Combining the
two equations, we then obtain the equivalent circuit shown in Fig. 6.9(c)
for a section Az of the line. It then follows that the circuit representation for
a portion of length / of the line consists of an infinite number of such sections
in cascade, as shown in Fig. 6.10. Such a circuit is known as a “distributed
circuit” as opposed to the “lumped circuits” that are familiar in circuit theory.
The distributed circuit notion arises from the fact that the inductance, capac-
itance, and conductance are distributed uniformly and overlappingly along
the line.

A more physical interpretation of the distributed circuit concept follows
from energy considerations. We know that the uniform plane wave propaga-
tion between the conductors of the line is characterized by energy storage
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LAz LAz LAz
Y Y Y\ *— —
CAz CAz CAz oo
cAz gAz gAz -

Figure 6.10. Distributed circuit representation of a transmission line.

in the electric and magnetic fields and power dissipation due to the conduc-
tion current flow. If we consider a section Az of the line, the energy stored in
the electric field in this section is given by

W, = %fEi‘ (volume) = %eEi(a’w Az)
—r By Az = —e Az V? (6:32)

The energy stored in the magnetic field in that section is given by

W % UH? (volume) = uH 2 (dw Az)
_ L rdg e A — L 2
=5 (Hw)* Az = 3 LAz (6.33)

The power dissipated due to conduction current flow in that section is given
by

P, = oE2 (volume) = oE2 (dw Az)
= E}(Exd)z Az =GAzV? (6.34)

Thus we note that £, @, and G are elements associated with energy storage in
the magnetic field, energy storage in the electric field, and power dissipation
due to the conduction current flow in the dielectric, respectively, for a given
infinitesimal section of the line. Since these phenomena occur continuously
and since they overlap, the inductance, capacitance, and conductance must
be distributed uniformly and overlappingly along the line. In actual practice,
the conductors of the transmission line are imperfect, resulting in slight
penetration of the fields into the conductors, in accordance with the skin
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effect phenomenon. This gives rise to power dissipation and magnetic field
energy storage in the conductors, which are taken into account by including
a resistance and additional inductance in the series branch of the transmis-
sion-line equivalent circuit (see Problem 6.9).

6.3 TRANSMISSION LINE WITH AN
ARBITRARY CROSS SECTION

In the previous section we considered the parallel-plate transmission line
made up of perfectly conducting sheets lying in the planes x = 0 and x = d
so that the boundary conditions of zero tangential component of the electric
field and zero normal component of the magnetic field are satisfied by the
uniform plane wave characterized by the fields

E=E(z0i,
H=H/z0ni,

thereby leading to the situation in which the uniform plane wave i1s guided
by the conductors of the transmission line. In the general case, however, the
conductors of the transmission line have arbitrary cross sections and the
fields consist of both x and y components and are dependent on x and y
coordinates in addition to the z coordinate. Thus the fields between the con-
ductors are given by

E=E@(yz i, + E(x¥yz i,
H=H.(x.p,z,0)i,+ H/(x,», 2, 1)1,

These fields are no longer uniform in x and y but are directed entirely trans-
verse to the direction of propagation, that is, the z axis, which is the axis of
the transmission line. Hence they are known as “transverse electromagnetic
waves,” or “TEM waves.” The uniform plane waves are simply a special case
of the transverse electromagnetic waves.

To extend the computation of the transmission line parameters £, €, and
G to the general case, let us consider a transmission line made up of parallel,
perfect conductors of arbitrary cross sections, as shown by the cross-sectional
view in Fig. 6.11(a). Let us assume that the inner conductor is positive with
respect to the outer conductor and that the current flows along the positive
z direction (into the page) on the inner conductor and along the negative z
direction (out of the page) on the outer conductor. We can then draw a
“field map,” that is, a graphical skeich of the direction lines of the fields
between the conductors, from the following considerations: (a) The electric
field lines must originate on the inner conductor and be normal to it and
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must terminate on the outer conductor and be normal to it since the tangential
component of the electric field on a perfect conductor surface must be zero.
(b) The magnetic field lines must be everywhere perpendicular to the electric
field lines; although this can be shown by a rigorous mathematical proof, it is

intuitively obvious since, first, the magnetic field lines must be tangential
near the conductor surfaces and, second, at any arbitrary point the fields

Conductors

(a)

H line

(@)

(e) ()

Figure 6.11, Construction of a transmission line field map consisting of
curvilinear rectangles.
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correspond to those of a locally uniform plane wave. Thus suppose that we
start with the inner conductor and draw several lines normal to it at several
points on the surface as shown in Fig. 6.11(b). We can then draw a curved
line displaced from the conductor surface and such that it is perpendicular
everywhere to the electric field lines of Fig. 6.11(b), as shown in Fig. 6.11(c).
This contour represents a magnetic field line and forms the basis for further
extension of the electric field lines, as shown in Fig. 6.11(d). A second mag-
netic field line can then be drawn so that it is everywhere perpendicular to
the extended electric field lines, as shown in Fig. 6.11(e). This procedure is
continued until the entire cross section between the conductors is filled with
two sets of orthogonal contours, as shown in Fig. 6.11(f), thereby resulting
in a field map made up of curvilinear rectangles.

By drawing the field lines with very small spacings, we can make the
rectangles so small that each of them can be considered to be the cross section
of a parallel-plate line. In fact, by choosing the spacings appropriately, we
can even make them a set of squares. If we now replace the magnetic field
lines by perfect conductors, since it does not violate any boundary condition,
it can be seen that the arrangement can be viewed as the parallel combination,
in the angular direction, of m number of series combinations of # number of
parallel-plate lines in the radial direction, where m is the number of squares
in the angular direction, that is, along a magnetic field line, and # is the num-
ber of squares in the radial direction, that is, along an electric field line. We
can then find simple expressions for £, €, and G of the line in the following
manner.

Let us for simplicity consider the field map of Fig. 6.12, consisting of
eight segments 1,2, ..., 8 in the angular direction and two segments ¢ and
b in the radial direction. The arrangement is then a parallel combination, in
the angular direction, of eight series combinations of two lines in the radial
direction, each having a curvilinear rectangular cross section. Let I, I, . . .,
I; be the currents associated with the segments 1, 2, .. ., 8, respectively, and
let w, and y, be the magnetic fluxes per unit length in the z direction associ-
ated with the segments a and b, respectively. Then the inductance per unit
length of the transmission line is given by

oY _ Wa ¥,
I &Y., T1,
! 1
= eIy
L L I, L 1 Iy
%+%+“% %+mm+%
1 1
= A — T (6.35)

| 1
s.te, T Ty, Ete, Tt
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y
Figure 6.12. For deriving the expressions for the transmission-line para-
meters from the field map.
Let Q,, Q,, ..., Qs be the charges per unit length in the z direction associ-

ated with the segments 1,2, ..., 8, respectively, and let ¥, and V, be the
voltages associated with the segments a and b, respectively. Then the capaci-

tance per unit length of the transmission line is given by

e=Q Q0+ +0

V,+ V,,
. 1 1 1
AN U AR A
0, "0 0. Q. Qs (s
- 1 1 1
—1+L+1+1Jr TTT 635
ela elb e?.a eZb esa esb
Let I, Ly, . . -, Ly be the conduction currents per unit length in the z direc-
tion associated with the segments 1, 2, ..., 8, respectively. Then the con-

ductance per unit length of the transmission line is given by
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SZLZ_ICI +_102+-'_'+108
vV V,+V,
I 1 1
T Rt mt et m
‘,::1 Icl 1:2 lc! !:B Jrcs
1 1 1
PSS s e S o (6.35¢0)
gla glh 9211 gzb gBa gﬂb

Generalizing the expressions (6.35a), (6.35b), and (6.35¢c) to m segments
in the angular direction and n segments in the radial direction, we obtain

. i
=TT (6.360)
=] oc”
n |
C=XTT (6.36b)
j=1 eij
g=31_1_
AL 1 (6.36¢)
J=1 g:‘j

where £;;, €;;, and G,; are the inductance, capacitance, and conductance per
unit length corresponding to the rectangle ij. If the map consists of curvil-
inear squares, then £,;, €,;, and G, are equal to u, €, and o, respectively,
according to (6.27a), (6.27b), and (6.27c), respectively, since the width w
of the plates is equal to the spacing d of the plates for each square. Thus we

obtain simple expressions for £, €, and § as given by

—un

S=u (6.37a)
Gze% (6.37b)
9:0% (6.37¢)

The computation of £, €, and G then consists of sketching a field map con-
sisting of curvilinear squares, counting the number of squares in each direc-
tion, and substituting these values in (6.37a), (6.37b), and (6.37c). Note that
once again

£

S
e

@

(6.38a)

®
m

(6.38b)

a|Q
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We shall now consider an example of the application of the curvilinear squares
technique.

Example 6.2. The coaxial cable is a transmission line made up of parallel,
coaxial, cylindrical conductors. Let the radius of the inner conductor be a
and that of the outer conductor be b. We wish to find expressions for £, @,
and G of the coaxial cable by using the curvilinear squares technique.

Figure 6.13 shows the cross-sectional view of the coaxial cable and the
field map. In view of the symmetry associated with the conductor configura-
tion, the construction of the field map is simplified in this case. The electric
field lines are radial lines from one conductor to the other, and the magnetic
field lines are circles concentric with the conductors, as shown in the figure.

Figure 6.13. Field map consisting of curvilinear squares for a coaxial cable.

Let the number of curvilinear squares in the angular direction be m. Then
to find the number of curvilinear squares in the radial direction, we note that
the angle subtended at the center of the conductors by adjacent pairs of
electric field lines is equal to 2z/m. Hence at any arbitrary radius » between
the two conductors, the side of the curvilinear square is equal to r(2z/m).
The number of squares in an infinitesimal distance dr in the radial direction
is then equal to _dr_ orﬂﬂ. The total number of squares in the radial
rQr/m) 2w r
direction from the inner to the outer conductor is given by

" mdr_ m, b

n=| " umha
The required expressions for £, @, and G are then given by

_ P _HEpb
L= By = In B (6.39a)
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m 2ne

C = 67 = I () (6.39b)
m 2rno

§=0 n I (b/a) (6.390)

These expressions are exact. We have been able to obtain exact expressions
in this case because of the geometry involved. When the geometry is not so
simple, we can only obtain approximate values for £, €, and G. m

We have just discussed an example of the determination of the transmis-
sion-line parameters £, @, and G for a coaxial cable. There are other con-
figurations having different cross sections for which one can obtain the
parameters either by the curvilinear squares technique or by other analytical
or experimental techniques. We shall, however, not pursue the discussion of
these techniques any further. With the understanding that different transims-
sion lines are characterized by different values of £, @, and G, which can be
computed from the formulas, we now recall that the voltage and current on
the line are governed by the transmission-line equations

v 24

=% (6.40a)
oI v
5= —gy—e fr (6.40b)

For the sinusoidally time-varying case, the corresponding differential equa-
tions for the phasor voltage ¥ and phasor current / are given by

O — —joci (6.41a)
0l _ _op _ jpei — e 6.41bp
g, — 9V —JjotV = —(§ + jwC) (6.41by

Combining (6.41a) and (6.41b) by eliminating I, we obtain the wave
equation for V as

277 [ -
O = —joe% = joc@ + joe)?

yv (6.42)

where
7 = JJo&(G + jot) (6.43)
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is the propagation constant associated with the wave propagation on the line.
The solution for V is given by

V(z) = Ae 7" + Be™ (6.44)

where 4 and B are arbitrary constants to be determined by the boundary
conditions. The corresponding solution for [ is then given by

1(z) = “jwfdz = _jco£( §Ae 7 -+ §Be™)
G+ J0C, 15 e
= 08 (de™?* — Be'?)
1,7, =
— = (de? — Be* 6.45
Zo( e e’’) (6.45)
where
Z, =] A8 (6.46)

G - jot

is known as the “characteristic impedance” of the transmission line.

The solutions for the line voltage and line current given by (6.44) and
(6.45), respectively, represent the superposition of (+) and (—) waves, that
is, waves propagating in the positive z and negative z directions, respectively.
They are completely analogous to the solutions for the electric and magnetic
fields in the medium between the conductors of the line. In fact, the propaga-
tion constant given by (6.43) is the same as the propagation constant
~/jou(e 1 jwe), as it should be. The characteristic impedance of the line is
analogous to (but not equal to) the intrinsic impedance of the material me-
dium between the conductors of the line. We note that for a perfect dielectric
medium between the conductors, that is, for ¢ = 0, § = 0 and

7, iz = 4/% (6.47)

is purely real. For example, for the coaxial cable of Example 6.2, with a
perfect dielectric between the conductors,

4/ = ’\/27z / lnz(’lzja)

1 /u, b
E¢?ln7 (6.43)
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For u = u,, € = 2.25¢,, and bja = 3.67, the characteristic impedance of the
coaxial cable is approximately 52 ohms.

6.4 SHORT-CIRCUITED TRANSMISSION LINE

In the previous section we found the general solutions for the complex
voltage and complex current ¥ and I, respectively, on a transmission line.
For a “lossless line,” that is, for a line consisting of a perfect dielectric medium
between the conductors, § = 0, and

F=o+ jB = /oL joC = jo./LC (6.49)

Thus the attenuation constant ¢ is equal to zero, which is to be expected, and
the phase constant § is equal to w./£€. We can then write the solutions
for V and I as

V(z) = Ae~'Pz - Belt: (6.502)

i(z) = ZLO(Je-fﬂz — Berry (6.50b)

where Z, = ./£/€ as given by (6.47).

Let us now consider a lossless line short circuited at the far end z = 0,
as shown in Fig. 6.14(a), in which the double-ruled lines represent the con-
ductors of the transmission line. Tn actuality, the arrangement may consist,
for example, of a perfectly conducting rectangular sheet joining the two con-
ductors of a parallel-plate line as in Fig. 6.14(b) or a perfectly conducting
ring-shaped sheet joining the two conductors of a coaxial cable as in Fig.
6.14(c). We shall assume that the line is driven by a voltage generator of
frequency o at the left end z = —/ so that waves are set up on the line. The
short circuit at z = 0 requires that the tangential electric field on the surface
of the conductor comprising the short circuit be zero. Since the voltage
between the conductors of the line is proportional to this electric field which
is transverse to them, it follows that the voltage across the short circuit has
to be zero. Thus we have

7(0) = 0 (6.51)

Applying the boundary condition given by (6.51) to the general solution
for V" given by (6.50a), we have

V(0) = Ae~/8® | Bel#® — (
or

B= -4 (6.52)
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1(z)
——
[y 3—
+
7(2)
L y—
z=—/ —_— z=0
()

Figure 6.14. Transmission line short-circuited at the far end.

Thus we find that the short circuit gives rise to a (—) or reflected wave whose
voltage is exactly the negative of the (+4) or incident wave voltage, at the
short circuit. Substituting this result in (6.50a) and (6.50b), we get the par-
ticular solutions for the complex voltage and current on the short-circuited
line to be

V(z) = Ae~ 18 — Ae’?* = —2jd sin fz (6.53a)

i) = ZLO(A'e—fﬂz 1 Aoty = 27“(1) cos Bz (6.53b)

The real voltage and current are then given by

V(z, ) = Re[V(2)e’*] = Re(2e~/"2 4e’® sin Bz /")
= 24 sin Bz sin (et + 0) (6.54a)

I(z, 1) = Re[l(z)e] = Re[ZiAe” cos fz e’“":l
o

= 2Z—A cos Bz cos (wt + 6) (6.54b)
0
where we have replaced A by Ae’® and —j by e~/*%, The instantaneous power
flow down the line is given by
P(z, 1) = V(z,)I(z, 1)

= % sin fz cos Bz sin (et + 6) cos (wt + 6)
0

— &% sin 22 sin 2ot - 6) (6.54c)
0
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These results for the voltage, current, and power flow on the short-
circuited line given by (6.54a), (6.54b), and (6.54c), respectively, are illus-
trated in Fig. 6.15, which shows the variation of each of these quantities with
distance from the short circuit for several values of time. The numbers
1,2,3,...,9 beside the curves in Fig. 6.15 represent the order of the curves

NAH

224

[=)
Voltage

424

(@) ' b2y

.

(b) 24
2,6

by
™

1,3,5,7,9

4,8
| | 1

5y - IE
4 4

N> =
Al
(o]

Figure 6.15. Time variations of voltage, current, and power flow asso-
ciated with standing waves on a short-circuited transmission line,
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corresponding to values of (wt + @) equal to 0, z/4, /2, . . ., 2z, It can be
seen that the phenomenon is one in which the voltage, current, and power
flow oscillate sinusoidally with time with different amplitudes at different
locations on the line, unlike in the case of traveling waves in which a given
point on the waveform progresses in distance with time. These waves are
therefore known as “standing waves.” In particular, they represent “complete
standing waves” in view of the zero amplitudes of the voltage, current, and
power flow at certain locations on the line, as shown by Fig. 6.15.

The line voltage amplitude is zero for values of z given by sin fz =0
or fz=—mr,m=1,2,3,...,0orz= —mAf2,m=1,2,3,...,thatisat
multiples of A/2 from the short circuit. The line current amplitude is zero
for values of z given by cos fz = 0 or fz = —(@2m + Dn/2, m =0, 1,2, 3,
c..,0or z=—Cm -+ Di4, m=0,1,2,3,...,that is, at odd multiples
of A/4 from the short circuit. The power flow amplitude is zero for values of
z given by sin 28z =0 or fz= —mn/2, m=1,2,3,...,01r z = —ml/4,
m=1,2,3,...,thatis, at multiples of 1/4 from the short circuit. Proceed-
ing further, we find that the time-average power flow down the line, that is,
power flow averaged over one period of the source voltage, is

T 2n/w

w
Pz,tdtz—-f P(z, ) dt
PG odi=g | PG

=

1
®=7 |
' 2 2w

D 2 sin2p: f sin 2(t + 0) dt — 0 (6.55)
0

t=0

Thus the time average power flow down the line is zero at all points on the
line. This is characteristic of complete standing waves.

From (6.53a) and (6.53b) or (6.54a) and (6.54b), or from Figs. 6.15(a)
and 6.15(b), we find that the amplitudes of the sinusoidal time-variations of
the line voltage and line current as functions of distance along the line are

|7(2)| = 24| sin Bz| = 24sin ZT"z (6.562)

)| = 24 _ 24| o 2
II(z)l—Zlcos Bz = Zo{cos R (6.56b)

Sketches of these quantities versus z are shown in Fig. 6.16. These are known
as the “standing wave patterns.” They are the patterns of line voltage and
line current one would obtain by connecting an a.c. voltmeter between the
conductors of the line and an a.c. ammeter in series with one of the conduc-
tors of the line and observing their readings at various points along the line.
Alternatively, one can sample the electric and magnetic fields by means of
probes.



224 CH. 6 TRANSMISSION LINES
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Figure 6.16. Standing wave patterns for voltage and current on a short-
circuited line.

Returning now to the solutions for ¥(z) and I(z) given by (6.53a) and
(6.53b), respectively, we can find the input impedance of the short-circuited
line of length / by taking the ratio of the complex line voltage to the complex

line current at the input z = —/. Thus
5 V(=D _ —2jdsin p(=1)
L)) 24 cos B(—1)
Z,

= jZ, tan Bl = jZ, tan 277:1

— jZ, tan 2] (6.57)
,Up

We note from (6.57) that the input impedance of the short-circuited line is
purely reactive. As the frequency is varied from a low value upward, the
input reactance changes from inductive to capacitive and back to inductive,
and so on, as illustrated in Fig. 6.17. The input reactance is zero for values
of frequency equal to multiples of v,/2/. These are the frequencies for which
! is equal to multiples of 4/2 so that the line voltage is zero at the input and
hence the input sees a short circuit. The input reactance is infinity for values
of frequency equal to odd multiples of v,/4l. These are the frequencies for
which /is equal to odd multiples of 1/4 so that the line current is zero at the
input and hence the input sees an open circuit.

Example 6.3. From the foregoing discussion of the input reactance of the
short-circuited line, we note that as the frequency of the generator is varied
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Figure 6.17. Variation of the input reactance of a short-circuited trans-
mission line with frequency.

continuously upward, the current drawn from it undergoes alternatively
maxima and minima corresponding to zero input reactance and infinite input
reactance conditions, respectively. This behavior can be utilized for deter-
mining the location of a short circuit in the line.

Since the difference between a pair of consecutive frequencies for which
the input reactance values are zero and infinity is v,/4/, as can be seen from
Fig. 6.17, it follows that the difference between successive frequencies for
which the currents drawn from the generator are maxima and minima is
v,/4l. As a numerical example, if for an air dielectric line, it is found that
as the frequency is varied from 50 MHz upward, the current reaches a mini-
mum for 50.01 MHz and then a maximum for 50.04 MHz, then the distance
! of the short circuit from the generator is given by

21’7:(5004—5001)>< 106 = 0.03 x 10° = 3 x 10¢

Since v, = 3 X 10° m/s, it follows that

3x10° _ 9500m — 2.5 km

I=ix3x10° =

Example 6.4. We found that the input impedance of a short-circuited line
of length / is given by

Z,. = jZ, tan Bl

Let us investigate the low-frequency behavior of this input impedance.
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First, we note that for any arbitrary value of 8/,
tan BI = I + 4 (B + (B + ...

. 2n A v
For g/« 1, 1.e.,Tl<<10rl<<2—z orf<<ﬁ’

tan fl =~ fl
Zin ~jZfl = jA/%coﬂ/,G—Gl = jobl
Thus for frequencies ' < v,/2z/, the short-circuited line as seen from its input

behaves essentially like a single inductor of value £/, the total inductance of
the line, as shown in Fig. 6.18(a).

£1
£/
O Y Y Y O
1
§el
(a) (b)

Figure 6.18. Equivalent circuits for the input behavior of a short-circuited
transmission line.

Proceeding further, we observe that if the frequency is slightly beyond
the range for which the above approximation is valid, then

tan Bl ~ Bl + L (1)’
_ 1 pars
Zu ~ 2o (Bl + 5 B°P)
J—] E CE 1 3 03/203/2]3
—J E(wJ£GI+Tw £e l)
= jco£1<1 A %wZDBGlZ)
1

)7 (1 + ?aﬂmﬂ)'l
1
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Thus for frequencies somewhat above those for which the approximation
f< v,[2al is valid, the short-circuited line as seen from its input behaves

like an inductor of value £/ in parallel with a capacitance of value iGI, as

3
shown in Fig. 6.18(b).

These findings illustrate that a physical structure that can be considered
as an inductor at low frequencies f< v,/2nl no longer behaves like an
inductor if the frequency is increased beyond that range. In fact, it has a
“stray” capacitance associated with it. As the frequency is still increased, the
equivalent circuit becomes further complicated. Thus conventional circuit
theory considerations of physical structures are strictly valid only for
<K v,/2nl, or | K 4/2m. -

6.5 BOUNDARY CONDITIONS AT
A DIELECTRIC DISCONTINUITY

In Sec. 6.1 we derived the boundary conditions for the field components
at a perfect conductor surface by applying Maxwell’s equations in integral
form to infinitesimal closed paths and closed surfaces encompassing the
boundary and by using the fact that the fields inside the perfect conductor
are zero. In this section we shall derive the boundary conditions at an inter-
face between two different perfect dielectric media by similarly considering
the Maxwell’s equations in integral form one at a time. We shall note, how-
ever, that fields exist on either side of the boundary and that there cannot
be any surface charge or surface current on the boundary in view of the per-
fect dielectric nature of the two media. We shall then use these boundary
conditions in the following section to study reflection and transmission at
the junction of two transmission lines having different dielectrics.

Thus let us consider a plane boundary between two different dielectric
media 1 and 2 characterized by €,, , and €,, i, respectively, as shown in
Fig. 6.19. Then, applying Faraday’s law in integral form (6.1a) to the infini-
tesimal rectangular path abeda as shown in Fig. 6.19, we have

b c d a
fE-dl+fE-dl+fE-dl+fE-dl:—;t B+ dS
a b c d abed
(6.58)
In the limit that ad and bc — 0, we obtain
E,(ab) + E.fcd) =0
E,(ab) — E;(cd)=0 or E, = Ey; (6.59)

Since this is true for any orientation of the rectangle, it follows that “the tan-
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gential component of E is continuous at the dielectric interface.” Thus
E,=E, o i,x(E, —E,)=0 (6.60)

where the subscript ¢ denotes “tangential” and i, is the unit normal vector
to the boundary, as shown in Fig. 6.19.

Medium 2
€: iy

|
|
IDnZ’B

1n2

Figure 6.19. For deriving the boundary conditions at the interface between
two perfect dielectric media.

Similarly, applying Ampere’s circuital law in integral form (6.1b) to the
rectangular path abcda, we have

LbH~dl+ L°H-d1+f:H- dl-+ ["H- dl

= J-dS—I—%f D . dS (6.61)

abed abed
In the limit that ad and b¢c — 0 and noting that there is no current enclosed
by abed, we obtain
H,y(ab) + H y(cd) =0
H,(ab) — H;(cd)=0 or H,=H, (6.62)

Since this is true for any orientation of the rectangle, it follows that “the
tangential component of H is continuous at the dielectric interface.” Thus

Hy=H, or i,x(H, —H,) =0 (6.63)

Considering next Gauss’ law for the electric field in integral form (6.1¢c)
and applying it to the infinitesimal rectangular box abcdefgh, as shown in
Fig. 6.19, we have
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j D . dS + D.dS+ D-dS:J‘ pdv  (6.64)
abecd volume

side efgh
surfaces & of the
box

In the limit that the side surfaces — 0 and noting that there is no charge
enclosed by the box, we obtain

D, (abed) — D,,(efghy =0 or D, = D, (6.65)

where the subscript # denotes “normal,” and D, and D,, are both directed
into medium 1. Thus “the normal component of D is continuous at the dielec-
tric interface.” In vector form, we have

i,+(MD, —D,)=0 (6.66)

Similarly, applying Gauss’ law for the magnetic field in integral form
(6.1d) to the rectangular box abcdefgh, we have

B.dS -+ B-.dS+ B.dS=0 (6.67)
fhes :iudrefaces Es

In the limit that the side surfaces — 0, we obtain
B,,(abed) — B,,(efgh) =0 or B, = B, (6.68)

Thus “the normal component of B is continuous at the dielectric interface.”
In vector form, we have

i, (B, —B,) =0 (6.69)

Summarizing the boundary conditions for the field components at a
dielectric interface, we have

i,x((E, —E)=0
i, x (H; —H,;) =0
i,+D; —D;)=0
in'(Bl—BZ):O
Example 6.5. At a particular instant of time the fields at point 1 in Fig. 6.20

are given by
El = E0(3ix + iz)

H, = H,y(2i,)

where E, and H, are constants. Let us find the fields at point 2, lying adjacent
to point 1 and on the other side of the interface between media 1 and 2.
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Medium 1
€o» Ky
1 ®
x=0 : 2
2% Medium 2 : Y
3ey, 2p0

Figure 6.20. For illustrating the application of boundary conditions at
the interface between two perfect dielectric media.

From (6.66), we have

D,, = D\, = €,(3E,;) = 3¢,E,

_ Dy 3e,Ey
2% 360 3e, Eo
From (6.60), we get
E,,=E,=0
E22 - Elz - EO

From (6.69), we obtain
Bax =B, = U(0) =0
_ Bax _
Hzx = 2”0 B 0
From (6.63), we find

H,,= H,, — 2H,

Thus we obtain the rqeuired fields at point 2 to be

E2 = EO(ix + iz)
H, = H,(2i,) =

6.6 TRANSMISSION-LINE DISCONTINUITY

Let us now consider the case of two transmission lines 1 and 2 having
different characteristic impedances Z,, and Z,,, respectively, and phase con-
stants #, and f,, respectively, connected in cascade and driven by a generator
at the left end of line 1, as shown in Fig. 6.21(a). Physically, the arrangement
may, for example, consist of two parallel-plate lines or two coaxial cables of



SEC. 6.6 TRANSMISSION-LINE DISCONTINUITY 231

|
Line 1 — : (+) Line 2
Z,, B, | — Zgib, —="=l (@)
S |
(@]
! —_—
z=0

#llel

(b) (c)

Figure 6.21. Two transmission lines connected in cascade.

different dielectrics in cascade, as shown in Figs. 6.21(b) and 6.21(c),
respectively. In view of the discontinuity at the junction z = 0 between the two
lines, the incident (4) wave on the junction sets up a reflected (—) wave in
line 1 and a transmitted (4) wave in line 2. We shall assume that line 2 is
infinitely long so that there is no (—) wave in that line.

We can now write the solutions for the complex voltage and complex
current in line 1 as

7.(2) = Piep + Vit (6.702)
i) = Trern 1. Frem
= - (Fre-trs — Viems) (6.70b)
01

where 7, 71, I}, and I} are the (++) and (—) wave voltages and currents at
z — 0— in line 1, that is, just to the left of the junction. The solutions for
the complex voltage and current in line 2 are

Vi(z) = Vie It (6.71a)

L) = ;e it = — Ve P (6.71b)

1
ZOZ
where V; and I; are the (<) wave voltage and current at z = 0-+ in line 2,
that is, just to the right of the junction.

At the junction the boundary conditions (6.60) and (6.63) require that
the components of E and H tangential to the dielectric interface be contin-
wous, as shown, for example, for the parallel-plate arrangement in Fig.
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(a) (b)

Figure 6.22. Application of boundary conditions at the junction between
two transmission lines.

6.22(a). These are, in fact, the only components present since the transmission
line fields are entirely transverse to the direction of propagation. Now, since
the line voltage and current are related to these electric and magnetic fields,
respectively, it then follows that the line voltage and line current be con-
tinuous at the junction, as shown in Fig. 6.22(b). Thus we obtain the bound-
ary conditions at the junction in terms of line voltage and line current as

Viloo- = [Valezos (6.72a)
Uilemo- = [Dlomos (6.72b)

Applying these boundary conditions to the solutions given by (6.70a) and
(6.70b), we obtain

Vi+Vi=V; (6.73a)
_ 1y
ZOI(V1 Vl)—Z—OZVz (6.73b)

Eliminating ¥ ; from (6.73a) and (6.73b), we get

= 1 1 = 1 []
Pz = 20) iz ) <O
Zos Loy + i Zoz_l_zol
or

(6.74)

We now define the voltage reflection coefficient at the junction, Iy, as
the ratio of the reflected wave voltage (V'7) at the junction to the incident wave
voltage (V1) at the junction. Thus
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Vl_ ZOZ _ZOI

= 6.75
Vi Zey + Zy, (e

The current reflection coefficient at the junction, T*;, which is the ratio of the
reflected wave current (I7) at the junction to the incident wave current (1)
at the junction is then given by

F,=£=__V1_—/Z‘”=—§=—Fy (6.76)

If VilZo, Vi

We also define the voltage transmission coefficient at the junction, 7, as the
ratio of the transmitted wave voltage (V1) at the junction to the incident wave
voltage (V1) at the junction. Thus

PR Y AW IR AR R (6.77)

The current transmission coefficient at the junction, 7, which is the ratio of
the transmitted wave current (I3) at the junction to the incident wave current
(I7) at the junction is given by

4 + — -
,IZQZL_LL:“F%: . o (6.78)
1

We note that for Z,, = Zy,, I'y = 0, T'; = 0, 1, = 1, and 7; = 1. Thus the
incident wave is entirely transmitted as we may expect since there is no
discontinuity at the junction.

Example 6.6. Let us consider the junction of two lines having characteristic
impedances Z,; = 50 ohms and Z,, = 75 ohms, as shown in Fig. 6.23, and
compute the various quantities.

|
[®]

|

Line | |[ Line 2

Zm = 50 ohms l Z02 =75 ohms
|
|
|

(@]

Figure 6.23. For the computation of several quantities pertinent to
reflection and transmission at the junction between two transmission lines.
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From (6.75)-(6.78), we have

r,=—1“y——%, I_T:_%ir
G=1+Ty=l+g=2; Vi=37t
y=1-Ty=1—g=" It=2If

The fact that the transmitted wave voltage is greater than the incident wave
voltage should not be of concern since it is the power balance that must be
satisfied at the junction. We can verify this by noting that if the incident
power on the junction is P;, then

1

reflected power, P, = Iy T/ P, = — 75

P,

24

255

transmitted power, P, = 7,T,P;, =

Recognizing that the minus sign for P, signifies power flow in the negative z
direction, we find that power balance is indeed satisfied at the junction. u

Returning now to the solutions for the voltage and current in line 1 given
by (6.70a) and (6.70b), respectively, we obtain by replacing V1 by I,V {,

Vi(z) = Vie it 4 T, Viet=

_ 1+ ,p,z(l 4T eﬂﬂn’) (6793)
1@ = g-(Prems — TP te)
Vi
~ Zu,

01

e=Ihe(] — Tyel2h) (6.79b)

The amplitudes of the sinusoidal time-variations of the line voltage and line
current as functions of distance along the line are then given by

II;1(Z)| = |I71+ e8| 1 + T'yel28|

= |V ||1 + Tycos 2B,z + jTy sin 28,z|
= |V |/TFTZ+ 2Ly cos 2B,z (6.80a)
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- +
| 1,(2)| = Zol | le=7#:2 || 1 — Tye/2P#|

P

= l;” [l — Ty cos2f,z— jTysin2f,z|
01

_ l;” JTFTT =T, cos 28,2 (6.80b)
01

From (6.80a) and (6.80b), we note the following:

1. The line voltage amplitude undergoes alternate maxima and minima
equal to |7;|(1 + |T]) and |P{|(1 — |Ty|), respectively. The line
voltage amplitude at z = 0 is a maximum or minimum depending on
whether T, is positive or negative. The distance between a voltage
maximum and the adjacent voltage minimum is 7/2f8, or 4;/4.

2. The line current amplitude undergoes alternate maxima and minima

Vi |7i] : ;
equal to Lot1(1 + |, ]) and L2241 (1 — [Ty |), respectively. The line
ZOI ZOI

current amplitude at z = 0 is a minimum or maximum depending on
whether T, is positive or negative. The distance between a current
maximum and the adjacent current minimum is z/2, or 4,/4.

Knowing these properties of the line voltage and current amplitudes, we now
sketch the voltage and current standing wave patterns, as shown in Fig. 6.24,
assuming I, > 0. Since these standing wave patterns do not contain perfect
nulls, as in the case of the short-circuited line of Sec. 6.4, these are said to
correspond to “partial standing waves.”

We now define a quantity known as the “standing wave ratio” (SWR) as
the ratio of the maximum voltage, V.., to the minimum voltage, V., of the
standing wave pattern. Thus we find that

SWR = Vmax — |IZI+|(1 + erl) — 1 + |FV|
Vmin IV1+|(1_|FVD I—Ier

(6.81)

The SWR is an important parameter in transmission-line matching. It is an
indicator of the degree of the existence of standing waves on the line. We
shall, however, not pursue the topic here any further. Finally, we note that
for the case of Example 6.6, the SWR in line 1 is (1 -+ —é—)/(l — %) or
1.5. The SWR in line 2 is, of course, equal to 1 since there is no reflected

wave in that line.
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A Voltage
|VI|(1 +1r,n
It -1r,n
1 1 1 1 1 1 L |
_m B 5N 3N A 0
4 4 4 3
Current
v+
15530 +1r, )
Zy i
7] a-ir,n
Zyy g
| | ] 1 1 1 ! |
=27, _Eﬁ - A 0
T2

Figure 6.24. Standing wave patterns for voltage and current on a trans-
mission line terminated by another transmission line.

6.7 SUMMARY

In this chapter we studied the principles of transmission lines by extend-
ing our knowledge of uniform plane wave propagation gained in the previous
two chapters. To introduce the transmission line, we first derived the bound-
ary conditions required to be satisfied by the field components at a perfect
conductor surface. These boundary conditions, which follow from the appli-
cation of Maxwell’s equations in integral form to infinitesimal closed paths
and surfaces straddling the boundary and from the property that the fields
inside a perfect conductor are zero, are given in vector form by

i,xE=0 (6.82a)
i, x H=Jg (6.82b)
i, D= pg (6.82¢)
i, B=0 (6.824d)

where i, is the unit normal vector to the conductor surface and directed into
the field region. Equations (6.82a) and (6.82d) state that the electric field be



SEC. 6.7 SUMMARY 237

completely normal and that the magnetic field be completely tangential at
a point on the conductor surface. The normal displacement flux density and
the tangential magnetic field intensity are then related to the surface charge
density and the surface current density as given by (6.82c) and (6.82b),
respectively.

We used the boundary conditions (6.82a)-(6.82d) to illustrate that the
placing of perfect conductors in planes normal to the electric field and hence
tangential to the magnetic field of a uniform plane wave does not alter the
field distribution and the wave is simply guided between and parallel to the
conductors supported by the charges and currents on the conductors, as
though they were not present, thereby constituting a parallel-plate transmis-
sion line. We then showed that wave propagation on a transmission line can
be discussed in terms of voltage and current, which are related to the electric
and magnetic fields, respectively, by deriving the “transmission-line equa-
tions”

oV al
0l av
= =—gr—eZl (6.83b)

which then led us to the concept of the distributed circuit.

The parameters £, €, and G in (6.83a) and (6.83b) are the inductance,
capacitance, and conductance per unit length of line, which differ from one
line to another. For the parallel-plate line having width w of the plates and
spacing d between the plates, they are given by

e — 4

w
_ &
=
_ow
§=7

where 4, €, and ¢ are the material parameters of the medium between the
plates, and fringing of the fields is neglected. We learned how to compute
£, @, and G for a line of arbitrary cross section by constructing a field map
of the transverse electromagnetic wave fields, consisting of curvilinear squares
in the cross-sectional plane of the line. If m is the number of squares tangential
to the conductors and #» is the number of squares normal to the conductors,
then

£:,u%
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e

I
m

5

Il
Q

By applying this technique to the coaxial cable, we found that for a cable of
inner radius a and outer radius b,

_Hpb
= 2n n a
_ 2me

= In(b/a)
2no
S =t @)

The general solutions to the transmission-line equations (6.83a) and
(6.83b), expressed in phasor form, that is,

g_‘z’ — jofl (6.842)
%:—gﬁ—p@7 (6.84b)
are given by _ _ _
7(z) = Ae* 4 Ber (6.852)
f(z) = Z_L(A'e-fz — Ber) (6.85b)

0
where

P = njo&(§ + jo®)  [= A/jouo + jwe)]

5 _ JoL Jou ]
Zo=4gT jue [i 7T joe

are the propagation constant and the characteristic impedance, respectively,
of the line. For a lossless line (§ = 0), these reduce to

P =Jo/EC (= jos/ p1e)
Z-o = \/ % (# A/ ufe)
The solutions given by (6.85a) and (6.85b) represent the superposition

of (-+) and (—) waves propagating in the medium between the conductors
of the line, expressed in terms of the line voltage and current instead of in
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terms of the electric and magnetic fields. By applying these general solutions
to the case of a lossless line short circuited at the far end and obtaining the
particular solutions for that case, we discussed the standing wave pheno-
menon and the standing wave patterns resulting from the complete reflection
of waves by the short circuit. We also examined the frequency behavior of
the input impedance of a short-circuited line of length /, given by

Ziw = jZ, tan Bl

and (a) illustrated its application in a technique for the location of short
circuit in a line, and (b) learned that for a circuit element to behave as
assumed by conventional (lumped) circuit theory, its dimensions must be a
small fraction of the wavelength corresponding to the frequency of operation.
To extend the discussion of the reflection phenomenon to one of partial
reflection and transmission, we first derived the boundary conditions at the
interface between two dielectric media. These are given in vector form by

i x (E, —E)=0 (6.862)
i x (H, —H) =0 (6.86b)
i (D, —D,)=0 (6.860)
i (B, —B,)=0 (6.86d)

where i, is the unit normal vector to the interface and directed into the
medium having the subscript 1 for the fields. These boundary conditions
point to the continuity of the tangential component of E, the tangential
component of H, the normal component of D, and the normal component
of B, at a point on the interface.

We used the boundary conditions (6.86a)—(6.86d) to investigate reflection
and transmission of waves at a junction between two lossless lines. By apply-
ing them to the general solutions for the line voltage and current on either
side of the junction, we deduced the ratio of the reflected wave voltage to
the incident wave voltage, that is, the voltage reflection coefficient, to be

I“V - ZOZ _ ZOI

ZOZ + ZOI
where Z,, is the characteristic impedance of the line from which the wave is
incident and Z,, is the characteristic impedance of the line on which the wave
is incident. The ratio of the transmitted wave voltage to the incident wave
voltage, that is, the voltage transmission coefficient, is given by

T, =1+T%
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The current reflection and transmission coefficients are given by

F):_FV
7,=1—-T,

Finally, we discussed the standing wave pattern resulting from the partial
reflection of the wave at the junction and defined a quantity known as the
standing wave ratio (SWR), which is a measure of the reflection phenomenon.
In terms of T, it is given by

_ 1+ [Ty
SWR = T—T,|
In retrospect, it can be seen that the discussion of the standing wave
phenomenon and reflection and transmission at the junction of two lines is
equally applicable to the solution of analogous uniform plane wave problems
involving media unbounded in the two dimensions normal to the direction
of propagation of the wave.

REVIEW QUESTIONS

6.1. What is a boundary condition? How do boundary conditions arise ?

6.2. State the boundary conditions for the electric field components at the surface
of a perfect conductor.

6.3. State the boundary conditions for the magnetic field components at the sur-
face of a perfect conductor.

6.4. Summarize in vector form the boundary conditions at a perfect conductor
surface, indicating correspondingly the Maxwell’s equations in integral form
from which they are derived.

6.5. Discuss the guiding of a uniform plane wave by a pair of parallel-plane, per-
fectly conducting sheets.

6.6. How is the voltage between the two conductors in a given cross-sectional
plane of a parallel-plate transmission line related to the electric field in that
plane?

6.7. How is the current flowing on the plates across a given cross-sectional plane
of a parallel-plate transmission line related to the magnetic field in that plane ?

6.8. What are transmission-line equations ? How are they obtained from Maxwell’s
equations ?

6.9. How is £, the inductance per unit length of a transmission line, defined ? What
is it equal to for a parallel-plate transmission line ?

6.10. How is €, the capacitance per unit length of a transmission line, defined ? What
is it equal to for a parallel-plate transmission line?
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6.11.

6.12.

6.13.

6.14.

6.15.

6.16.
6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

How is G, the conductance per unit length of a transmission line, defined ?
What is it equal to for a parallel-plate transmission line ?

Are the three quantities £, €, and G independent ? If not, how are they depen-
dent on ecach other?

Draw the transmission-line equivalent circuit. How is it derived from the
transmission-line equations ?

Discuss the concept of the distributed circuit and compare it to a lumped
circuit.

Discuss the physical phenomena associated with each of the elements in the
transmission-line equivalent circuit.

What is a transverse electromagnetic wave?

What is a field map ? Describe the procedure for drawing the field map for a
transmission line of arbitrary cross section.

Draw a rough sketch of the field map for a line made up of two identical par-
allel cylindrical conductors with their axes separated by four times their radii.

Describe the procedure for computing the transmission line parameters £,
@, and § from the field map.

How does a field map consisting of curvilinear squares simplify the computa-
tion of the line parameters?

Discuss the determination of £, @, and G for a coaxial cable by using the cur-
vilinear squares technique.

By consulting an appropriate reference book, prepare a list of the expressions
for £, @, and G for two or more transmission lines other than the parallel-
plate and coaxial lines.

Discuss your understanding of the characteristic impedance of a transmis-
sion line. Why is it not equal to the intrinsic impedance of the medium between
the conductors of the line?

What is the boundary condition to be satisfied at a short circuit on a line?

For an open-circuited line, what would be the boundary condition to be satis-
fied at the open circuit ?

What is a standing wave? How do complete standing waves arise ? Discuss
their characteristics and give an example in mechanics.

What is a standing wave pattern? Discuss the voltage and current standing
wave patterns for the short-circuited line.

What would be the voltage and current standing wave patterns for an open-
circuited line?

Discuss the variation with frequency of the input reactance of a short-circuited
line and its application in the determination of the location of a short circuit.

Can you suggest an alternative procedure to that described in Example 6.3 to
locate a short circuit in a transmission line ?
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6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.
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Under what condition do circuit elements behave as assumed by conventional
(lumped) circuit theory?

State the boundary conditions for the electric field components at the inter-
face between two dielectric media.

State the boundary conditions for the magnetic field components at the inter-
face between two dielectric media.

Summarize in vector form the boundary conditions at the interface between
two dielectric media, indicating correspondingly the Maxwell’s equations in
integral form from which they are derived.

What are the boundary conditions for the voltage and current at the junction
between two transmission lines ?

What is the voltage reflection coefficient at the junction between two trans-
mission lines ? How are the current reflection coefficient and the voltage and
current transmission coefficients related to the voltage reflection coefficient ?

What is the voltage reflection coefficient at the short circuit for a short-cir-
cuited line?

Can the transmitted wave current at the junction between two transmission
lines be greater than the incident wave current ? Explain.

What is a partial standing wave ? Discuss the standing wave patterns corres-
ponding to partial standing waves.

Define standing wave ratio (SWR). What are the standing wave ratios for (a)
an infinitely long line, (b) a short-circuited line, (c) an open-circuited line, and
(d) a line terminated by its characteristic impedance?

PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

The plane x 4 2y + 3z = 5 defines the surface of a perfect conductor. Find
the possible direction(s) of the electric field intensity at a point on the con-
ductor surface.

Given E = yi, -+ xi,, determine if a perfect conductor can be placed in the
surface xy = 2 without disturbing the field.

A perfect conductor occupies the region x 4+ 2y < 2. Find the suface cur-
rent density at a point on the conductor at which H = Hoi,.

The displacement flux density at a point on the surface of a perfect conductor
is given by D = Dg(i, + /31, + 24/31i,). Find the magnitude of the sur-
face charge density at that point.

It is known that at a point on the surface of a perfect conductor D =
Do(i, + 2i, + 2i,), H = Hy(2i, — 2i, + i;), and ps is positive. Find ps and
Js at that point.
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6.6. Two infinite plane conducting sheets occupy the planes x = 0and x = 0.1 m.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

An electric field given by
E = E; sin 107mx cos 3w X 10%¢1,

where E, is a constant, exists in the region between the plates, which is free
space. (a) Show that E satisfies the boundary condition on the sheets. (b)
Obtain H associated with the given E. (¢) Find the surface current densities on
the two sheets,

A parallel-plate transmission line is made up of perfect conductors of width
w = 0.1 m and lying in the planes x = 0 and x = 0.02 m. The medium be-
tween the conductors is a perfect dielectric of 4 = uo. For a uniform plane
wave having the electric field

E = 1007 cos (21 x 106¢ — 0.0272) i, V/m

propagating between the conductors, find (a) the voltage between the conduc-
tors, (b) the current along the conductors, and (c) the power flow along the
line.

A parallel-plate transmission line made up of perfect conductors has £ equal
to 1077 H/m. If the medium between the plates is characterized by o =
10~1! mho/m, € = 6€,, and g = p,, find © and § of the line.

If the conductors of a transmission line are imperfect, then the transmission-
line equivalent circuit contains a resistance and additional inductance in the
series branch. Assuming that the thickness of the (imperfect) conductors of
a parallel-plate line is several skin depths at the frequency of interest, show
from considerations of skin effect phenomenon in a good conductor medium
that the resistance and inductance per unit length along the conductors are
2/o 0w and 2/wao 0w, respectively, where o, is the conductivity of the (imper-
fect) conductors, w is the width and § is the skin depth. The factor 2 arises
because of two conductors.

Show that for a transverse electromagnetic wave, the voltage between the
conductors and the current along the conductors in a given transverse plane
are uniquely defined in terms of the electric and magnetic fields, respectively,
in that plane.

By constructing a field map consisting of curvilinear squares for a coaxial
cable having b/a = 3.5, obtain the approximate values of the line parameters
&£, @, and G in terms of u, €, and @ of the dielectric. Compare the approximate
values with the exact values given by expressions derived in Example 6.2.

Figure 6.25 shows the cross section of a parallel-wire line, that is, a line having
two cylindrical conductors of radii a and with their axes separated by 2d. For
dfa = 2, construct a field map consisting of curvilinear squares and obtain
approximate values for the line parameters £, €, and §. Compare the
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6.13.

6.14.

6.15,

6.16.

6.17.
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- 2d o

Figure 6.25. For Problem 6.12.

approximate values with the exact values given by expressions available from
Sec. 10.6.

For a transmission line of arbitrary cross section and with the medium be-
tween the conductors characterized by 0 = 10716 mho/m, € = 2.5€,, and
M = Mo, it is known that € = 10719 F/m, (a) Find £ and G. (b) Find Z, for
f=10¢ Hz.

For a coaxial cable employing air dielectric, find the ratio of the outer to the
inner radii for which the characteristic impedance of the cable is 75 ohms.

Show that for the parallel-plate line, the characteristic impedance is d/w
times the intrinsic impedance of the medium between the conductors of the
line.

The strip line, employed in microwave integrated circuits, consists of a center
conductor photoetched on the inner faces of two substrates sandwiched be-
tween two conductors, as shown by the cross-sectional view in Fig. 6.26. For
the dimensions shown in the figure, construct a field map consisting of curvi-
linear squares and compute £, @, and Z,, considering the substrate to be a
perfect dielectric having € = 9€y and u = Ho. Assume for simplicity that the
field is confined to the substrate region.

14———7 0.1 in.

Figure 6.26. For Problem 6.16.

Consider a transmission-line equivalent circuit having impedance Z dz in the
series branch and admittance Y dz in the shunt branch. (a) Write the trans-
mission-line equations. (b) Show that § = »/ZY and Z, = +/Z[Y. ) If Z
is the impedance of an inductor £; and ¢Y is the admittance of the parallel
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6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

combination of an inductor £, and a capacitor €, find ¥ and discuss the
propagation characteristics along the line.

Using the general solutions for the complex line voltage and current on a
lossless line given by (6.50a) and (6.50b), respectively, obtain the particular
solutions for the complex voltage and current on an open-circuited line. Then
find the input impedance of an open-circuited line of length 1.

Solve Example 6.3 by considering the standing wave patterns between the
short circuit and the generator for the two frequencies of interest and by
deducing the number of wavelengths at one of the two frequencies.

For an air dielectric short-circuited line of characteristic impedance 50 ohms,
find the minimum values of the length for which its input impedance is equiva-
lent to that of (a) an inductor of value 0.25 x 10-6 H at 100 MHz and (b) a
capacitor of value 10-1° F at 100 MHz.

A transmission line of length 2 m having a nonmagnetic (% = u,) perfect
dielectric is short-circuited at the far end. A variable-frequency generator is
connected at its input and the current drawn is monitored. It is found that the
current reaches a maximum for /= 500 MHz and then a minimum for f =
525 MHz. Find the permittivity of the dielectric.

A voltage generator is connected to the input of a lossless line short circuited
at the far end. The frequency of the generator is varied and the line voltage and
line current at the input terminals are monitored. It is found that the voltage
reaches a maximum value of 10 V at 405 MHz and the current reaches a maxi-
mum value of 0.2 amp at 410 MHz. (a) Find the characteristic impedance of
the line. (b) Find the voltage and current values at 407 MHz.

Assuming that the criterion f < v,/27%l is satisfied for frequencies less than
0.1 v,/27l, compute the maximum length of an air dielectric short-circuited
line for which the input impedance is approximately that of an inductor of
value equal to the total inductance of the line for f = 100 MHz.

A lossless transmission line of length 2 m and having £ = 0.54, and € =
18€, is short circuited at the far end. (a) Find the phase velocity, v,. (b) Find
the wavelength, the length of the line in terms of the number of wavelengths,
and the input impedance of the line for each of the following frequencies:
100 Hz; 100 MHz; and 12.5 MHz.

In Fig. 6.20, assume that medium 1 is characterized by € = 126, and u =
21, and that medium 2 is characterized by € = 9€, and u = po. If E; =
Ey(3i, -+ 2i, — 6i,) and if H; = Hy(2i, — 3i,), find E, and H,.

In Fig. 6.20, assume that medium 1 is characterized by € = 4€pand u = 34,
and that medium 2 is characterized by € =166, and u =9u,. If
D, = Dy(i, — 2i, + i;) and if B; = By(i, + 2i, + 3i,), find D, and B,.

Region 1 defined by x -+ 2y < 2 is free space and region 2 defined by x 4 2y
> 2 is a perfect dielectric medium having € = 6€, and g = 2,. Determine if

the fields Ey = Egl, and H, = Ho, and the fields E; = 5°(—i, +,) and
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6.28.
6.29.

6.30.

6.31.

6.32.

CH. 6 TRANSMISSION LINES

H, = H,i, at points 1 and 2, respectively, lying adjacent to and on either side
of the boundary, satisfy the boundary conditions.

Repeat Example 6.6 with the values of Zy; and Z,, interchanged.

In the transmission-line system shown in Fig. 6.27, a power P, is incident on
the junction from line 1. Find (a) the power reflected into line 1, (b) the power
transmitted into line 2, and (c) the power transmitted into line 3.

1 S
0@ WS
\,\‘/‘ © o
T /
Line 1 P /
Z,, = 50 ohms {
7
803 s e
25
%%,
g

Figure 6.27. For Problem 6.29.

Show that the voltage minima of the standing wave pattern of Fig. 6.24 are
sharper than the voltage maxima by computing the voltage amplitude halfway
between the locations of voltage maxima and minima.

A line assumed to be infinitely long and of unknown characteristic impedance
is connected to a line of characteristic impedance 50 ohms on which standing
wave measurements are made. It is found that the standing wave ratio is 3 and
that two consecutive voltage minima exist at 15 cm and 25 cm from the junc-
tion of the two lines. Find the unknown characteristic impedance.

A line assumed to be infinitely long and of unknown characteristic impedance
when connected to a line of characteristic impedance 50 ohms produces a
standing wave ratio of value 2 in the 50-ohm line. The same line when con-
nected to a line of characteristic impedance 150 ohms produces a standing
wave ratio of value 1.5 in the 150-ohm line. Find the unknown characteristic
impedance.
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In Chap. 6 we studied the principles of transmission lines, one of the two
kinds of waveguiding systems. We learned that transmission lines are made
up of two (or more) parallel conductors. The second kind of waveguiding
system, namely, waveguides, generally consists of a single conductor. Guiding
of waves in a waveguide is accomplished by the bouncing of the waves
obliquely between the walls of the guide, as compared to the case of a
transmission line in which the waves slide parallel to the conductors of the
line. It is our goal in this chapter to learn the principles of waveguides.

We shall introduce the principle of waveguides by first considering a
parallel-plate waveguide, that is, a waveguide consisting of two parallel, plane
conductors and then extend it to the rectangular waveguide, which is a hollow
metallic pipe of rectangular cross section, a common form of waveguide. We
shall learn that waveguides are characterized by cutoff, which is the phenome-
non of no propagation in a certain range of frequencies, and dispersion, which
is the phenomenon of propagating waves of different frequencies possessing
different phase velocities along the waveguide. In connection with the latter
characteristic, we shall introduce the concept of group velocity. We shall also
discuss the principles of cavity resonators, the microwave counterparts of
resonant circuits, and of optical waveguides. To introduce the parallel-plate
waveguide, we shall make use of the superposition of two uniform plane
waves propagating at an angle to each other. Hence we shall begin the
chapter with the discussion of uniform plane wave propagation in an arbitrary
direction relative to the coordinate axes.
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71 UNIFORM PLANE WAVE PROPAGATION
IN AN ARBITRARY DIRECTION

In Chap. 4 we introduced the uniform plane wave propagating in the z
direction by considering an infinite plane current sheet lying in the xy plane.
If the current sheet lies in a plane making an angle to the xy plane, the
uniform plane wave would then propagate in a direction different from the z
direction. Thus let us consider a uniform plane wave propagating in the z’
direction making an angle @ with the negative x axis as shown in Fig. 7.1. Let
the electric field of the wave be entirely in the y direction. The magnetic field
would then be directed as shown in the figure so that E x H points in the z’
direction.

B\
\ l\
\ \
\ \ z'
€ K \ \
\ \
\ \A
\ RO
(0] b P 7 v z
o\ C\\ _
H \ \
\ \ x
\ \
E \ \
\ \
Wrx \

Figure 7.1. Uniform plane wave propagating in the z’ direction lying in the
xz plane and making an angle 8 with the negative x axis.

We can write the expression for the electric field of the wave as
E = E, cos (0t — pz))i, 7.1)

where f# = w./ue€ is the phase constant, that is, the rate of change of phase
with distance along the z' direction for a fixed value of time. From the
construction of Fig. 7.2(a), we, however, have
z = —xcosf + zsin 6 (7.2)
so that
E = E, cos [wt — B(—x cos § + zsin )] i,
= E, cos [wt — (— f cos @)x — (B sin §)z] i,
= E, cos (wt — f.x — B.2)1i, (7.3)
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v;___._._% ————— !(x,z)
—x \\ L9 |
\ |
y |
>z
\—,~ cos @
‘}x
(2) (b)

Figure 7.2. Constructions pertinent to the formulation of the expressions
for the fields of the uniform plane wave of Fig. 7.1.

where f, = —fcosf and B, = fsin@ are the phase constants in the
positive x and positive z directions, respectively.

We note that | .| and | .| are less than f, the phase constant along the
direction of propagation of the wave. This can also be seen from Fig. 7.1 in
which two constant phase surfaces are shown by dashed lines passing through
the points O and 4 on the z’ axis. Since the distance along the x direction
between the two constant phase surfaces, that is, the distance OB is equal to
OA/cos 8, the rate of change of phase with distance along the x direction is
equal to

o4 o4 _
'BO—B " Odfcos6 B cosd

The minus sign for f, simply signifies the fact that insofar as the x axis is
concerned, the wave is progressing in the negative x direction. Similarly,
since the distance along the z direction between the two constant phase sur-
faces, that is, the distance OC is equal to O4/sin 8, the rate of change of phase
with distance along the z direction is equal to

04 POA)  ,.
Boc=04jsm0 — Bsind

Since the wave is progressing along the positive z direction, §, is positive. We
further note that

p% + B2 = (—pcos ) + (B sin0)* = p? (7.4)
and that
—cos @i, +sinfi, =i, (1.5

where i, is the unit vector directed along z’ direction, as shown in Fig. 7.2(b).
Thus the vector

B = (—B cosO)i, + (BsinO)i, = B, + B.i. (7.6)



250 CH.7 WAVEGUIDES

defines completely the direction of propagation and the phase constant along
the direction of propagation. Hence the vector B is known as the “propagation
vector.”

The expression for the magnetic field of the wave can be written as

H = H, cos (0t — fz') (7.7

where

H,| = Lo — (7.8)

CJule n

since the ratio of the electric field intensity to the magnetic field intensity of a
uniform plane wave is equal to the intrinsic impedance of the medium. From
the construction in Fig. 7.2(b), we observe that

H, = Hy(—sinfi, —cos@i,) (7.9
Thus using (7.9) and substituting for z’ from (7.2), we obtain
H = H/(—sin#i, — cos 81i,) cos [wt — Bf(—x cos @ + zsin §)]
— B %(Sin @i, + cos01i,) cos [wr — f.x — B.z] (1.10)

Generalizing the foregoing treatment to the case of a uniform plane wave
propagating in a completely arbitrary direction in three dimensions, as shown
in Fig. 7.3, and characterized by phase constants §,, f,, and §, in the x, y,
and z directions, respectively, we can write the expression for the electric
field as

E =E; cos (wt — f.x — B,y — B.z + ¢o)
e EO Cos [(Dt - (ﬁxix + ﬂyiy + ﬂziz) ¢ (Xix + yiy _I— Ziz) —I_ ¢0]
=E,cos(wt —B+1+ ¢) (7.11)

where

B = B.i. + B, + B.i. (7.12)
is the propagation vector,
r = xi, + yi, + zi, (7.13)

is the position vector, and ¢, is the phase at the origin at ¢ = 0. The position
vector is the vector drawn from the origin to the point (x, y, z) and hence has
components x, y, and z along the x, y, and z axes, respectively. The expression
for the magnetic field of the wave is then given by
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H = H, cos (wt — P +r+ ) (7.14)
where
1, = Bl (7.15)

Since E, H, and the direction of propagation are mutually perpendicular to
each other, it follows that

E,-p=0 (7.162)
H,.p=0 (7.16b)
E, H, =0 (1.16¢c)

In particular, E x H should be directed along the propagation vector B as
illustrated in Fig. 7.3 so that B x E, is directed along H,. We can therefore
combine the facts (7.16) and (7.15) to obtain

H _igxE, i, X Ey _ o/ puei; X E

0 =

n ule o
_BisxE, _BxE (7.17)
U ou
xjr
§

4_—>‘
=

4 — Constant Phase Surface
Phase = ¢ — 27

Constant Phase Surface
Phase = ¢

Figure 7.3. The various quantities associated with a uniform plane wave
propagating in an arbitrary direction.
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where iy is the unit vector along B. Thus
_ 1
H= w—ﬂﬂ x E (7.18)

Returning to Fig. 7.3, we can define several quantities pertinent to the
uniform plane wave propagation in an arbitrary direction. The apparent
wavelengths 4,, 1,, and A, along the coordinate axes x, y, and z, respectively,
are the distances measured along those respective axes between two con-
secutive constant phase surfaces between which the phase difference is 27, as
shown in the figure, at a fixed time. From the interpretations of g,, f,, and
B. as being the phase constants along the x, y, and z axes, respectively, we
have

1 ;—” (7.19)

=2 (7.19b)
Sl

A= i,—” (7.19)

We note that the wavelength A along the direction of propagation is related
to 4., 4,, and 4, in the manner

1_ 1 _ g _ B+ 8+ 8
22 QupY: 4nt 472
1 1 1
:A—i+l_§+l_§ (7.20)

The apparent phase velocities v,,, v,,, and v,, along the x, y, and z axes,
respectively, are the velocities with which the phase of the wave progresses
with time along the respective axes. Thus

Y, = ﬂﬂ (7.21a)

v, = ﬂﬂ (7.21b)
¥

v, =2 7.21¢c

==, =0

The phase velocity v, along the direction of propagation is related to v,,,

v,,, and v, in the manner
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1 _ 1 _p_B+B+E
- £

l

2 (0/f)} ®*
1 1 1
o S T 4 o (7.22)

The apparent wavelengths and phase velocities along the coordinate axes
are greater than the actual wavelength and phase velocity, respectively, along
the direction of propagation of the wave. This fact can be understood
physically by considering, for example, water waves in an ocean striking the
shore at an angle. The distance along the shoreline between two successive
crests is greater than the distance between the same two crests measured along
a line normal to the orientation of the crests. Also, an observer has to run
faster along the shoreline in order to keep pace with a particular crest than he
has to do in a direction normal to the orientation of the crests. We shall now
consider an example.

Example 7.1. Let us consider a 30 MHz uniform plane wave propagating in
free space and given by the electric field vector

E = 5(i, + o/ 31,) cos [6m X 107t — 0.052(3x — A/ 3y + 22)] V/m

Then comparing with the general expression for E given by (7.11), we have

E, = 50, + 4/31)
Ber=0.0523x — o/ 3y + 22)
= 0.057(3i, — o/ 3, + 2i,)  (xi, + i, + zi,)
B = 0.057(3i, — /31, + 2i,)
B« E, = 0.057(3i, — A/ 31, + 2i,) « 50, + +/31,)
=02573 —3) =0

Hence (7.16a) is satisfied; E, is perpendicular to B.

B — |B| = 0057 |3i, — A/3i, -+ 2i,| = 0.057,/9 + 3+ 4= 0.2z

_2n _ 2m _
1_?_0.2n_10m

3 x 108
10
The direction of propagation is along the unit vector

C_ B _%,—/Fh42 3, /3 1y
| v oy S S S A A

This does correspond to a frequency of Hz or 30 MHz in free space.
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From (7.17),

H, = B xE,

w/‘o

— 0.05z X 5 s . ) . '
=GR 107 X 4z X 107700 — &/ 3h + 20) x (i + /3

1 . )
= 75 (—~/ 31, +1, 4+ 2/31)
Thus
= zg;—,,(—«/ 3i, + i, + 24/31,) cos [6m X 1072
— 0.052(3x — A/ 3y + 2z) amp/m

To verify the expression for H just derived, we note that

Ho + B = | g5z (—/ i+ b+ 2/31) |+ 10,0570k, — /T, + 20)
_0?35( 33 — /3 +4/3)=0
E, « Hy = 5@, + 4/ 31,) » 8( A 341, 4 2./31,)

487t —/I+3)=0

Eo| _ Sliz t /33 5V/TF3
[H,[ ~ @/8r)[—/ 31, +1,+ 2./315,]  (1/48m)/3 + 1+ 12

10 _ _
= iz = 1207 = 7,

Hence (7.16b), (7.16¢), and (7.15) are satisfied.
Proceeding further, we find that
B.=0.05z x 3=0.15%

B, = —0.05z X /3 = —0.05,/3=
B:=0057 X 2=0.1z
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We then obtain
2r 27t 40

b= = e = 3 m=13333m
2= Ii”zl :o.os%n:%m:mmm
’1-’:/23_7,5:02.—?7::20’“

Ve Z,‘l 676>1<510 =4 x 108 m/s

o 6mx 107
2B, T 005/ 3%
w 6 X 107

— e et S 8
v‘"_ﬂz_ 0% =6 X 10®* m/s

Finally, to verify (7.20) and (7.22), we note that

=4,/3 X 108 m/s = 6.928 X 10® m/s

1 1 1
RN U <40/3>2 i (40/«/_)2 + 2
4 1 1
= 7605 - 600 * 600 = T00

and
o + e e
vz + = @x 108)2 @73 % 1092 T (6 X 10°

1 1 1
=16 x 10 + 38 x 107 36 x 107

I T 1 _pilx
TOXI0F @B x 10° 2 -

7.2 TRANSVERSE ELECTRIC WAVES
IN A PARALLEL-PLATE WAVEGUIDE

Let us now consider the superposition of two uniform plane waves
propagating symmetrically with respect to the z axis as shown in Fig. 7.4 and
having the electric fields

E, = E,cos(wt — B, - D1,

= E, cos (wt - Bxcosf = fzsinf)i, (7.23a)
E,= —E;cos (wt — B, * 1) i,

= —E, cos (wt — fxcos@ — PfzsinB)i, (7.23b)
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>z Y z
. 616
1 E x

E FZ

Y x 2

Figure 7.4. Superposition of two uniform plane waves propagating sym-
metrically with respect to the z axis.

where f = w./ €, with € and u being the permittivity and the permeability,
respectively, of the medium. The corresponding magnetic fields are given by

H, = %(—Sin 0i, —cosfi,)cos(wt + Bxcosd — Bzsinf) (7.24a)
H, = %(Sin fi, — cos8i,)cos (wt — fxcos§ — Bz sin @) (7.24b)
where # = ./u/e. The electric and magnetic fields of the superposition of the

two waves are given by

E—E, +E,

= E,[cos (wt — Bz sin @ + Bx cos §)

— cos (wr — fzsin  — fx cos O)]i,

= —2E, sin (fx cos ) sin (cot — fzsin 0) i, (7.252)
H=H, +H,

= —% sin 0 [cos (wt — Bz sin @ + Bx cos B)
— cos (wt — fzsin § — Bx cos O)]i,
—% cos & [cos (wt — Bz sin 8 + Bx cos 6)
+ cos (wr — Pz sin @ — Bx cos D],
2E,

=t sin @ sin (Bx cos 0) sin (ot — Bz sin ) i,

— %cos 8 cos (fx cos B) cos (wt — PfzsinB)i, (7.25b)
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In view of the factors sin (Bx cos §) and cos (8 cos 8) for the x depen-
dence and the factors sin (wt — Bz sin ) and cos (w¢ — Pz sin @) for the z
dependence, the composite fields have standing wave character in the x
direction and traveling wave character in the z direction. Thus we have
standing waves in the x direction moving bodily in the z direction, as illus-
trated in Fig. 7.5, by considering the electric field for two different tirnes. In
fact, we find that the Poynting vector is given by

P=ExH=E, x (H,, + H,i,)
— —E,H, + EH,i,
4E°s1n 6 sin? (Bx cos 8) sin? (wt — fzsin ) i,
-+ ]i" cos 0 sin (2f8x cos 0) sin 2(wt — Pz sin 0) i, (7.26)
The time-average Poynting vector is given by
4E0 - PP
P> = sin 0 sin? (Bx cos 0) {sin? (wt — Bz sin O)) i,
+ E—’;" cos 8 sin (2B cos ) {sin 2(wt — Pz sin B)) i,

25" sin @ sin® (fx cos 0) i, (7.27)

Thus the time-average power flow is entirely in the z direction, thereby
verifying our interpretation of the field expressions. Since the composite
electric field is directed entirely transverse to the z direction, that is, the
direction of time-average power flow, whereas the composite magnetic field
is not, the composite wave is known as the “transverse electric,” or TE wave.

From the expressions for the fields for the TE wave given by (7.25a) and
(7.25b), we note that the electric field is zero for sin (fx cos #) equal to zero,
or

pxcosf = +mn, m=20,1,2,3,...

/3’::1(:;0 J—rzcr:’:ie’ m=0,1,2,3,... (7.28)

where
2= 2n _2r 1
o uE  f ue

Thus if we place perfectly conducting sheets in these planes, the waves will
propagate undisturbed, that is, as though the sheets were not present since the



Figure 7.5. Standing waves in the x direction moving bodily in the z
direction.
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boundary condition that the tangential component of the electric field be zero
on the surface of a perfect conductor is satisfied in these planes. The boundary
condition that the normal component of the magnetic field be zero on the
surface of a perfect conductor is also satisfied since H,, is zero in these planes.

If we consider any two adjacent sheets, the situation is actvally one of
uniform plane waves bouncing obliquely between the sheets, as illustrated in
Fig. 7.6 for two sheets in the planes x = 0 and x = 1/(2 cos ), thereby guiding

A
2cosf

x =

Figure 7.6. Uniform plane waves bouncing obliquely between two
parallel plane perfectly conducting sheets.

the wave and hence the energy in the z direction, parallel to the plates. Thus
we have a “parallel-plate waveguide,” as compared to the parallel-plate
transmission line in which the uniform plane wave slides parallel to the plates.
We note from the constant phase surfaces of the obliquely bouncing wave
shown in Fig. 7.6 that 1/(2 cos 8) is simply one-half of the apparent wavelength
of that wave in the x direction, that is, normal to the plates. Thus the fields
have one-half apparent wavelength in the x direction. If we place the perfectly
conducting sheets in the planes x = 0 and x = mAl/(2 cos ), the fields will then
have m number of one-half apparent wavelengths in the x direction between
the plates. The fields have no variations in the y direction. Thus the fields are
said to correspond to “TE,, , modes™ where the subscript m refers to the x
direction, denoting m number of one-half apparent wavelengths in that
direction and the subscript 0 refers to the y direction, denoting zero number of
one-half apparent wavelengths in that direction.

Let us now consider a parallel-plate waveguide with perfectly conducting
plates situated in the planes x = 0 and x = g, that is, having a fixed spacing
a between them, as shown in Fig. 7.7(a). Then, for TE,, , waves guided by the
plates, we have from (7.28),

__mh
2cos @
or

cost9~&1=2ﬂ

7.29
I/ e e

('h
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(a) (b)

/'/\

(©) ()

(e) )

Figure 7.7. For illustrating the phenomenon of cutoff in a parallel-plate
waveguide.

Thus waves of different wavelengths (or frequencies) bounce obliquely
between the plates at different values of the angle §. For very small wave-
lengths (very high frequencies), mA/2a is small, cos § =~ 0, § =~ 90°, and the
waves simply slide between the plates as in the case of the transmission line,
as shown in Fig. 7.7(b). As 1 increases (f decreases), mAi/2a increases, 0
decreases, and the waves bounce more and more obliquely, as shown in
Fig. 7.7(c)—(e), until A becomes equal to 2a/m for which cos =1, § = 0°,
and the waves simply bounce back and forth normally to the plates, as shown
in Fig. 7.7(f), without any feeling of being guided parallel to the plates. For
A > 2a/m, mA[2a > 1, cos @ > 1, and @ has no real solution, indicating that
propagation does not occur for these wavelengths in the waveguide mode.
This condition is known as the “cutoff” condition.
The cutoff wavelength, denoted by the symbol 4,, is given by

2a
Ae = = (7.30)

This is simply the wavelength for which the spacing a is equal to m number of
one-half wavelengths. Propagation of a particular mode is possible only if 4 is
less than the value of A, for that mode. The cutoff frequency is given by

. om
fe= SPNUTT: (7.31)

Propagation of a particular mode is possible only if fis greater than the value
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of f, for that mode. Consequently, waves of a given frequency f'can propagate
in all modes for which the cutoff wavelengths are greater than the wavelength
or the cutoff frequencies are less than the frequency.

Substituting 4, for 2a/m in (7.29), we have

cosf = -ii = J} (7.32a)

sin @ = /T — cos? 0 — \/1 = (11_) = ,\/1 — (fT_)‘ (7.32b)

_2mA _2n_mz
ﬂcose—Tﬂ—c =1 =2 (7.32)

Bsing =2 1= (f_); (7.32d)

We see from (7.32d) that the phase constant along the z direction, that is,
B sin §, is real for 4 < A, and imaginary for 2 > 4, thereby explaining once
again the cutoff phenomenon. We now define the guide wavelength, A,, to be
the wavelength in the z direction, that is, along the guide. This is given by

L2 _ A _ A
£ Bsin® L JT—Q@JA)Y 11— )P

This is simply the apparent wavelength, in the z direction, of the obliquely
bouncing uniform plane waves. The phase velocity along the guide axis,
which is simply the apparent phase velocity, in the z direction, of the obliquely
bouncing uniform plane waves, is

(7.33)

(4] v v

D J— r — vF
Y= Fsin0 sl ST — AR JT—Tr

Finally, substituting (7.32a)—(7.32d) in the field expressions (7.25a) and
(7.25b), we obtain

(7.34)

= . (mExN 2z \.
E = —2E;sin (_a ) sin (cot 7 z) i, (7.35a)
H—2E 4 sin (m__nx) sin (a)t iy ) i,
n A a Ae
2B L g (M) o (o — 22
n A cos ( 7 ) o8 w! 7 z) i, (7.35b)

These expressions for the TE,, , mode fields in the parallel-plate waveguide do
not contain the angle 8. They clearly indicate the standing wave character of
the fields in the x direction, having m one-half sinusoidal variations between
the plates. We shall now consider an example.
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Example 7.2. Let us assume the spacing a between the plates of a paraliel-
plate waveguide to be 5 cm and investigate the propagating TE,, , modes for
f = 10,000 MHz.

From (7.30), the cutoff wavelengths for TE,, , modes are given by

This result is independent of the dielectric between the plates. If the medium
between the plates is free space, then the cutoff frequencies for the TE, ,
modes are

£ 3x100 3 10
A  01/m

= 3m X 10° Hz

For f= 10,000 MHz = 10?° Hz, the propagating modes are TE, ,(f, =
3 x 10° Hz), TE, ((f, = 6 x 10° Hz), and TE, ,(f, = 9 x 10° Hz).

For each propagating mode, we can find 4, 4,, and »,, by using (7.32a),
(7.33), and (7.34), respectively. Values of these quantities are listed in the
following:

Mode Ac, CM fey MHz 8, deg Ag, cm Vpz, MfS

TE1,0 10 3000 72.54 3.145 3.145 x 108
TE;z, 0 5 6000 53.13 3.75 3.75 x 108
TE3,0 3.33 9000 25.84 6.882 6.882 x 108

7.3 PARALLEL-PLATE WAVEGUIDE DISCONTINUITY

In the previous section we introduced TE, , waves in a parallel-plate
waveguide. Let us now consider reflection and transmission at a dielectric
discontinuity in a parallel-plate guide, as shown in Fig. 7.8. Ifa TE, , wave is
incident on the junction from section 1, then it will set up a reflected wave into

x=0

Section 1

€, 1y

Figure 7.8. For consideration of reflection and transmission at a dielectric
discontinuity in a parallel-plate waveguide.
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section 1 and a transmitted wave into section 2, provided that mode propa-
gates in that section. The fields corresponding to these incident, reflected, and
transmitted waves must satisfy the boundary conditions at the dielectric
discontinuity. These boundary conditions were derived in Sec. 6.5. Denoting
the incident, reflected, and transmitted wave fields by the subscripts Z, #, and
t, respectively, we have from the continuity of the tangential component of E
at a dielectric discontinuity,

E,+ E,=E,atz=0 (7.36)

and from the continuity of the tangential component of H at a dielectric
discontinuity,

H,+H,=H,atz=0 (7.37)

We now define the guide impedance, #,,, of section 1 as

Her = _EI'J; A (7.38)

Recognizing that i, x (—i,) = i,, we note that #,, is simply the ratio of the
transverse components of the electric and magnetic fields of the TE,, , wave
which give rise to time-average power flow down the guide. From (7.35a) and
(7.35b) applied to section 1, we have

Agy N1 /B
=5 = . (7.39)
Tot =My = T= Gy T—(Falf?
The guide impedance is analogous to the characteristic impedance of a
transmission line, if we recognize that E,; and —H,,, are analogous to V'* and
I+, respectively. In terms of the reflected wave fields, it then follows that

E,, E,
flor — — (—ﬁz ) — £ (7.40)
This result can also be seen from the fact that for the reflected wave, the power
flow is in the negative z direction and since i, x i, = —i,, #,, is equal to
E, /H,,. For the transmitted wave fields, we have

= s (7.41)
where

(7.42)

ez = ﬂz@ - e - -
&l }.2 ,\/]. — (lz/}.c)z /\/1 - (f;:Z/f)z

is the guide impedance of section 2.
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Using (7.38), (7.40), and (7.41), (7.37) can be written as

Ey By _ By

”gl ”gl ﬂgz
Solving (7.36) and (7.43), we get
E(I_M) E,(l @>:0
N Het + b 5 Her

or the reflection coefficient at the junction is given by

rz&:ﬂn—ﬂu

E, Mg+ gy

and the transmission coefficient at the junction is given by

E E, + E
TZJ: yi yr=1+1"
E, E,

(7.43)

(7.44)

(7.45)

These expressions for I and 7 are similar to those obtained in Sec. 6.6 for
reflection and transmission at a transmission-line discontinuity. Hence
insofar as reflection and transmission at the junction are concerned, we can
replace the waveguide sections by transmission lines having characteristic
impedances equal to the guide impedances, as shown in Fig. 7.9. It should be
noted that unlike the characteristic impedance of a lossless line, which is a
constant independent of frequency, the guide impedance of the lossless

M1

[IJ
|
|

Line 1 I Line 2
| g2
|
[§]

|
z=0

Figure 7.9. Transmission-line equivalent of parallel-plate waveguide

discontinuity.

waveguide is a function of the frequency. We shall now consider an example.

Example 7.3. Let us consider the parallel-plate waveguide discontinuity
shown in Fig. 7.10. For TE, , waves of frequency /' = 5000 MHz, incident on
the junction from the free space side, we wish to find the reflection and

transmission coefficients.
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€ps Mo

lt——— 5 cm ——

z=0

Figure 7.10. For illustrating the computation of reflection and transmis-
sion coefficients at a parallel-plate waveguide discontinuity.

For the TE, , mode, 4, = 2a = 10 cm, independent of the diclectric. For
f = 5000 MHz,

1, = wavelength on the free space side = 3x10° _ 6em
' 5% 10°

A, = wavelength on the dielectric side = _ 3x10° 6 _sem
g VI X5x10° 3

Since 4 < A, in both sections, TE,,, mode propagates in both sections. Thus

. /3 . 1207 _ 471.24 oh
Mot = T Gala TGO o
= 1 _ 1205 40 _ 128250h
Her = ,\/l - (lz’f‘l‘)z - /\/1 — (2’“0)2 /\/1 —0.04 . ohms
 fey — Mgy 12825 —471.24
[ = o =T T anizd — O
t=14+T=1-—0.572=0428
For f = 4000 MHz. we would obtain I' = —0.629 and 7 = 0.371. -

7.4 DISPERSION AND GROUP VELOCITY*

In Sec. 7.2 we learned that for the propagating range of frequencies, the
phase velocity and the wavelength along the axis of the parallel-plate wave-
guide are given by

— Y 7.46
Ve = T G (7.46)

and

A
. — 7.47
e = TT= G0 (7.47)

*This section may be omitted without loss of continuity.
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where v, = 1/./p€, A = v,/f = 1/f s/ 1€, and f, is the cutoff frequency. We
note that for a particular mode, the phase velocity of propagation along the
guide axis varies with the frequency. As a consequence of this characteristic
of the guided wave propagation, the field patterns of the different frequency
components of a signal comprising a band of frequencies do not maintain the
same phase relationships as they propagate down the guide. This phenomenon
is known as “dispersion,” so termed after the phenomenon of dispersion of
colors by a prism.

To discuss dispersion, let us consider a simple example of two infinitely
long trains 4 and B traveling in parallel, one below the other, with each train
made up of boxcars of identical size and having wavy tops, as shown in Fig.
7.11. Let the spacings between the peaks (centers) of successive boxcars be
50 m and 90 m, and let the speeds of the trains be 20 m/s and 30 m/s, for
trains 4 and B, respectively. Let the peaks of the cars numbered 0 for the two
trains be aligned at time ¢ = 0, as shown in Fig. 7.11(a). Now, as time
progresses, the two peaks get out of alignment as shown, for example, for
t = 1sin Fig, 7.11(b), since train B is traveling faster than train 4. But at the
same time, the gap between the peaks of cars numbered —1 decreases. This
continues until at ¢ = 4 s, the peak of car “—1” of train 4 having moved by a
distance of 80 m aligns with the peak of car “—1” of train B, which will have
moved by a distance of 120 m, as shown in Fig. 7.11(c). For an observer
following the movement of the two trains as a group, the group appears to
have moved by a distance of 30 m although the individual trains will have
moved by 80 m and 120 m, respectively. Thus we can talk of a “group
velocity,” that is, the velocity with which the group as a whole is moving. In
this case, the group velocity is 30 m/4 s or 7.5 m/s.

The situation in the case of the guided wave propagation of two different
frequencies in the parallel-plate waveguide is exactly similar to the two-train
example just discussed. The distance between the peaks of two successive cars
is analogous to the guide wavelength, and the speed of the train is analogous
to the phase velocity along the guide axis. Thus let us consider the field
patterns corresponding to two waves of frequencies f, and f, propagating in
the same mode, having guide wavelengths ,, and A,,, and phase velocities
along the guide axis v,,, and v, respectively, as shown, for example, for the
electric field of the TE, , mode in Fig. 7.12. Let the positive peaks numbered 0
of the two patterns be aligned at t = 0, as shown in Fig. 7.12(a). As the indi-
vidual waves travel with their respective phase velocities along the guide,
these two peaks get out of alignment but some time later, say At, the positive
peaks numbered —1 will align at some distance, say Az, from the location of
the alignment of the “0” peaks, as shown in Fig. 7.12(b). Since the “—1”th
peak of wave 4 will have traveled a distance 4,, + Az with a phase velocity
v,,4 and the “—1”th peak of wave B will have traveled a distance Aes + Az
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Figure 7.11. For illustrating the concept of group velocity.
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Figure 7.12. For illustrating the concept of group velocity for guided wave
propagation,.
with a phase velocity v,,, in this time Az, we have
},gA 4+ Az = Vpzd At (7.48a)
hen+ Az =, At (7.48b)
Solving (7.48a) and (7.48b) for At and Az, we obtain
At — tea— Aen (1.49a)

'vpzA = Usz

268
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and

Az — Pedpsn = Aes¥p:s (7.49b)

'vpzA - Usz

The group velocity, v,, is then given by

v, = Az Ag¥psn — Ags¥pea _ Agihenfs — AgnAgafu

Ar J.:-«: — An L 1\
heshen(12 = 70)
- So —Jfa _ Qp — Wy
L - L ﬂzﬂ ol ﬁzA (7'50)
lgB lgA

where f8,,and B, are the phase constants along the guide axis, corresponding
to f,, and f5, respectively. Thus the group velocity of a signal comprised of two
frequencies is the ratio of the difference between the two radian frequencies to
the difference between the corresponding phase constants along the guide
axis.

If we now have a signal comprised of a number of frequencies, then a
value of group velocity can be obtained for each pair of these frequencies in
accordance with (7.50). In general, these values of group velocity will all be
different. In fact, this is the case for wave propagation in the parallel-plate
guide, as can be seen from Fig. 7.13, which is a plot of w versus §, corre-
sponding to the parallel-plate guide for which

e S R

Such a plot is known as the “w—f, diagram” or the “dispersion diagram.”

w}l

621 ﬁ22 ﬁ23

Figure 7.13. Dispersion diagram for the parallel-plate waveguide.
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The phase velocity, w/8,, for a particular frequency is given by the slope of
the line drawn from the origin to the point, on the dispersion curve, corre-
sponding to that frequency as shown in the figure for the three frequencies
@1, @,, and ;. The group velocity for a particular pair of frequencies is given
by the slope of the line joining the two points, on the curve, corresponding to
the two frequencies as shown in the figure for the two pairs w,, w, and w,, ;.
Since the curve is nonlinear, it can be seen that the two group velocities are
not equal. We cannot then attribute a particular value of group velocity for
the group of the three frequencies w;, w,, and w,.

If, however, the three frequencies are very close, as in the case of a
narrow-band signal, it is meaningful to assign a group velocity to the entire
group having a value equal to the slope of the tangent to the dispersion curve
at the center frequency. Thus the group velocity corresponding to a narrow
band of frequencies centered around a predominant frequency  is given by

v, = ij (1.52)

For the parallel-plate waveguide under consideration, we have from (7.51),
: I (O
B ue1 = (B) +ovie (15"
— i fi, o f2 ﬁ)‘” 2
—W‘f( P )5
1/2
— 1 te
= (1 - 5)

and

= d/)’ «/ﬂf*/ L == \/l - (%)2 a2e)

As a numerical example, for the case of Example 7.2, the group velocities for
S = 10,000 MHz for the three propagating modes TE, ,, TE, ,, and TE, ,
are 2.862 x 10%® m/s, 2.40 X 10® m/s, and 1.308 x 10%® m/s, respectively.
From (7.46) and (7.53), we note that

U,V = U} (7.54)

An example of a narrow-band signal is an amplitude modulated signal,
having a carrier frequency w modulated by a low frequency Aw < w as given
by

E.(t) = E,,(1 + mcos Aw-t) cos mt (7.55)

where m is the percentage modulation. Such a signal is actually equivalent to
a superposition of unmodulated signals of three frequencies w — Aw, @, and
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@ + Aw, as can be seen by expanding the right side of (7.55). Thus
E.(t) = E,, cos wt + mE,, cos wt cos Aw-t

= E,, cos ¢t + % [cos (w — Aw)t + cos (w + Aw)t] (7.56)

The frequencies w — Aw and @ + Aw are the side frequencies. When the
amplitude modulated signal propagaies in a dispersive channel such as the
parallel-plate waveguide under consideration, the different frequency com-
ponents undergo phase changes in accordance with their respective phase
constants. Thus if f, — AB,, B,, and §, 4+ Ap, are the phase constants
corresponding to @ — Aw, », and o -+ Aw, respectively, assuming linearity
of the dispersion curve within the narrow band, the amplitude modulated
wave is given by

E(z,1) = E, cos (wt — f.2)
+ %{m [(@ — Aw)t — (8. — ABz]
+ cos [(w -+ Aw)t — (B, + AB)z]}

= E,, cos (wt — f£,2)

mE.,

+ 2 O{COS [(Cl)t_ﬂ_.Z)—(Aa).t— Aﬁz-Z)]
+ cos [(@t — B.2) + (Awt — AB,-2)]}
= E,, cos (ot — f,2) + mE,q cos (wt — f.z) cos (Aw-t — Af,-2)
= E 1 -+ mcos (Aw-t — AB,-2)] cos (wt — f.2) (1.57)
This indicates that although the carrier frequency phase changes in accor-

dance with the phase constant §,, the modulation envelope and hence the
information travels with the group velocity Aw/Af,, as shown in Fig. 7.14, In

Aw

AT T T

=|e

LY

Figure 7.14. For illustrating that the modulation envelope travels with the
group velocity.
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view of this and since v, is less than v,, the fact that v, is greater than v, is
not a violation of the theory of relativity. Since it is always necessary to use
some modulation technique to convey information from one point to
another, the information always takes more time to reach from one point to
another in a dispersive channel than in the corresponding nondispersive
medium.

7.5 RECTANGULAR WAVEGUIDE
AND CAVITY RESONATOR

Thus far, we have restricted our discussion to TE,, , wave propagation in
a parallel-plate waveguide. From Sec. 7.2, we recall that the parallel-plate
waveguide is made up of two perfectly conducting sheets in the planes
x = 0 and x = « and that the electric field of the TE,, , mode has only a y
component with m number of one-half sinusoidal variations in the x direction
and no variations in the y direction. If we now introduce two perfectly
conducting sheets in two constant y planes, say, y = 0 and y = b, the field
distribution will remain unaltered since the electric field is entirely normal to
the plates, and hence the boundary condition of zero tangential electric field is
satisfied for both sheets. We then have a metallic pipe with rectangular cross
section in the xy plane, as shown in Fig. 7.15. Such a structure is known as the
“rectangular waveguide” and is, in fact, a common form of waveguide.

x=0

&
¥

Ny

xY

Neme Nyeg

Figure 7.15. A rectangular waveguide,

Since the TE, , mode field expressions derived for the parallel-plate
waveguide satisfy the boundary conditions for the rectangular waveguide,
those expressions as well as the entire discussion of the parallel-plate wave-
guide case hold also for TE, , mode propagation in the rectangular wave-
guide case. We learned that the TE, ; modes can be interpreted as due to
uniform plane waves having electric field in the y direction and bouncing
obliquely between the conducting walls x = 0 and x = g, and with the
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associated cutoff condition characterized by bouncing of the waves back and
forth normally to these walls, as shown in Fig. 7.16(a). For the cutoff condi-
tion, the dimension « is equal to m number of one-half wavelengths such that

[AdrE,.. = L (7.58)

m

In a similar manner. we can have uniform plane waves having electric
field in the x direction and bouncing obliquely between the walls y = 0 and
y = b, and with the associated cutoff condition characterized by bouncing of
the waves back and forth normally to these walls, as shown in Fig. 7.16(b),
thereby resulting in TE, , modes having no variations in the x direction and
n number of one-half sinusoidal variations in the y direction. For the cutoff

y
7 ot
xY A
\
(@)
Y A
| z g—>
%
xY M.——' xY
//_ _________________ -
”
(b)
Yy
z -

xY

()

Figure 7.16. Propagation and cutoff of (a) TEp, o, (b) TEg, , and (c) TEp, »
modes in a rectangular waveguide.
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condition, the dimension b is equal to » number of one-half wavelengths such
that

[}'c]TEo,n == %

= (7.59)

We can even have TE,, , modes having m number of one-half sinusoidal
variations in the x direction and n» number of one-half sinusoidal variations in
the y direction due to uniform plane waves having both x and y components
of the electric field and bouncing obliquely between all four walls of the guide
and with the associated cutoff condition characterized by bouncing of the
waves back and forth obliquely between the four walls as shown, for
example, in Fig. 7.16(c). For the cutoff condition, the dimension a must be
equal to m number of one-half apparent wavelengths in the x direction and the
dimension b must be equal to » number of one-half apparent wavelengths in
the y direction such that

A,  Qamy? t Gy (7.60)
or
— 1
[lC]TEm,n . /\/(m/za)z + (n/2b)2 (761)

*wnm At this point, it may be of interest to obtain the field expressions
for the TE,, , modes. To do this, we shall first show, by making use of the
expansions for the Maxwell’s curl equations in Cartesian coordinates given by
(3.12a)—(3.12c) and (3.26a)—(3.26¢), that all transverse (x and y) field com-
ponents are derivable from the longitudinal field component H.,. It is con-
venient to use the phasor forms of the field components and the differential
equations. Since all components of the fields are then dependent on ¢ and z in
the manner e/l@~ (/497 we can replace d/d¢ by jo and d/dz by —j(2xn/4,).
Furthermore, E, = 0 in view of TE modes and J,, J,, and J, are all zero since
the medium inside the waveguide is a perfect dielectric. Thus the phasor
forms of (3.12a)—(3.12¢) and (3.26a)—(3.26¢) pertinent to the discussion here
are

ji_"Ey — —joul, (7.622)
4
2% A
~IEE, = —jou, (7.62)
‘% _ 00% — joud, (7.62c)

*The portion between the symbols wnwi may be omitted without loss of continuity.
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"g 1 2, = joeE, (7.62d)

~2 0, — e — joeE, (7.62¢)
8

"0’? _ "gx —0 (7.626)

Solving (7.62a), (7.62b), (7.62d), and (7.62¢), for E,, E,, H,, and H, in
terms of H,, we obtain

7o Jou _ IH,

b = iy — o oy S
- _](Dﬂ oﬁz

= " @min)T— othe ox e
. 27t/ 0H, (7.63¢)

" :J(2n//1g)2 — @?ue 0x

= . 27/A, dH,
Hy - 1(27[/1?)2 = Cozﬂ_f 6y (7.63(1)

Furthermore by substituting (7.63a) and (7.63b) into (7.62¢) and rearranging,
we obtain a differential equation for H, as given by

et St [ (B) +oue] =0 (7.64)

When the differential equation (7.64) is solved by using the separation of
variables technique and subject to appropriate boundary conditions, the
solution for H, is obtained, which can then be put into (7.63a)—(7.63d) to
obtain the transverse field components. We shall, however, not pursue this
approach but shall write the solution for H, from our knowledge of H, for
TE,, , modes and the subsequent discussion of TE,,, and TE, , modes. To
do this, we first note from (7.35b) that for TE,, , modes,

H,= H, cos (mnx) cos (cot — %t-z) (7.65a)

a g

where we have replaced the amplitude factor by H,. The expression for H,
for TE, , modes can then be obtained by letting x — y, m — n, anda— b
in (7.65a). Thus for TE,, , modes

H, = H, cos (ﬂ’;—y) cos (cot — %%) (7.65b)
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Combining (7.65a) and (7.65b), we have for TE,, , modes,

H, = Hcos ( nx) cos (nby>cos (cot - 2{—2) (7.66)

Note that (7.66) reduces to (7.65a) for » = 0 and to (7.65b) for m = 0.
Writing H, in phasor form, that is,

H, = H, cos (m;t ) cos <n;:y> e/ (2n/iz (7.67)
and substituting into (7.64), we obtain
21\ A nm\?
() +otue= () + ()
— | ot + Ty
(2afm)* * (2b/m)*

_ (i_”)z (7.68)

Substituting (7.68) and (7.67) into (7.63a)-(7.63d), we finally obtain the
expressions for the transverse field components:

E, — JC‘Z/;% th A (m;zx) e (nbﬂ) PRI EE (7.69a)
E = 1021/71{} WZIHO (m;rx) o (%) oI (2a/Az (7.69b)
Hy— j% n—Z—IHO sin (%) cos (n_;)tz) e~/ (7.69¢)
H, _]2;5 nanU cos ( Zx) sin ("bﬂ> g~ iAoz (7.69d)

Note that the sine terms in these field expressions satisfy the boundary
conditions of zero tangential electric field and zero normal magnetic field at
the walls of the waveguide. mum

The entire treatment of guided waves in Sec. 7.2 can be repeated starting
with the superposition of two uniform plane waves having their magnetic
fields entirely in the y direction, thereby leading to “transverse magnetic
waves,” or “TM waves,” so termed because the magnetic field for these
waves has no z component, whereas the electric field has. Insofar as the cutoff
phenomenon is concerned, these modes are obviously governed by the same
condition as the corresponding TE modes. There cannot, however, be any
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TM,, , or TM, , modes in a rectangular waveguide since the z component of
the electric field, being tangential to all four walls of the guide, requires
sinusoidal variations in both x and y directions in order that the boundary
condition of zero tangential component of electric field is satisfied on all four
walls. Thus for TM,, , modes in a rectangular waveguide, both m and n
must be nonzero and the cutoff wavelengths are the same as for the TE,, ,
modes, that is,

1

N ~m2a): -+ (n]2b)? (7.70)

(A,

The foregoing discussion of the modes of propagation in a rectangular
waveguide points out that a signal of given frequency can propagate in
several modes, namely, all modes for which the cutoff frequencies are less
than the signal frequency or the cutoff wavelengths are greater than the
signal wavelength. Waveguides are, however, designed so that only one mode,
the mode with the lowest cutoff frequency (or the largest cutoff wavelength),
propagates. This is known as the “dominant mode.” From (7.58), (7.59),
(7.61), and (7.70), we can see that the dominant mode is the TE, , mode or the
TE,, ; mode, depending on whether the dimension a or the dimension b is the
larger of the two. By convention, the larger dimension is designated to be 4,
and hence the TE, , mode is the dominant mode. We shall now consider an
example.

Example 7.4. 1t is desired to determine the lowest four cutoff frequencies
referred to the cutoff frequency of the dominant mode for three cases of
rectangular waveguide dimensions: (i) b/a = 1, (ii) b/a = 1/2, and (iii)
bj/a = 1/3. Given a = 3 cm, it is then desired to find the propagating mode(s)
for f = 9000 MHz for each of the three cases.

From (7.61) and (7.70), the expression for the cutoff wavelength for a
TE,, , mode wherem =0, 1,2, 3, . .. andn=20,1,2,3,...butnot both m
and » equal to zero and for a TM,, , mode where m = 1, 2,3,...and n =
1,2, 3,...1s given by

B 1
Y 77 e T

The corresponding expression for the cutoff frequency is
_ Y L«a)z (1)2
fc_lc—\/ﬂe 2a) T \2p
- G2
2a./ ue b
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The cutoff frequency of the dominant mode TE, , is 1/2a./u€e. Hence

[_f%;a =/ m? + (n%)z

By assigning different pairs of values for m and n, the lowest four values of
/L f-Jez, , can be computed for each of the three specified values of /a. These
computéd values and the corresponding modes are shown in Fig. 7.17.

For a = 3 cm, and assuming free space for the dielectric in the waveguide,

1 3% 108
[fIJ]TEl'o e 20,\/% = 7% 0.03 = 5000 MHz

Hence for a signal of frequency f = 9000 MHz, all the modes for which
Sollfe,, is less than 1.8 propagate. From Fig. 7.17, these are

TE, 4, TE, ;, TM, ,, TE,, forbja=1
TE,,q for bja = 1/2
TE,,, for bja = 1/3

It can be seen from Fig. 7.17 that for b/a < 1/2, the second lowest cutoff

™, ,
™, ,
TEI,O TMI,1 TE2’0 TE2'1
TEO,I TEl,l TE0,2 TE1,2
2 =1 # ¢ ¢ # | 1 1 - fc
a 1 \/E 2 \/g 3 4 5 [fc]TEIO
TEO’1 TEl,l TEZ,1
TEI,O TE2,0 TMl,l TMZ,I
b 1 * ¢ + ¢ L L L fe
a 2 1 2 V5 N 4 5 [fc]TElo
TE3’0 TMI_1
TEI.O TEZ.O TEO.I TEl,l
_lz: l ‘ # + ¢ 1 1 > fc
a 3 | 2 3V10 4 5 [fc]TE10

Figure 7.17. Lowest four cutoff frequencies referred to the cutoff frequency
of the dominant mode for three cases of rectangular waveguide dimensions.



SEC. 7.5 RECTANGULAR WAVEGUIDE AND CAVITY RESONATOR 279

frequency that corresponds to that of the TE, , mode is twice the cutoff
frequency of the dominant mode TE, ,. For this reason, the dimension b of
a rectangular waveguide is generally chosen to be less than or equal to /2 in
order to achieve single-mode transmission over a complete octave (factor of
two) range of frequencies. -

Let us now consider guided waves of equal magnitude propagating in the
positive z and negative z directions in a rectangular waveguide. This can be
achieved by terminating the guide by a perfectly conducting sheet in a
constant z plane, that is, a transverse plane of the guide. Due to perfect
reflection from the sheet, the fields will then be characterized by standing wave
nature along the guide axis, that is, in the z direction, in addition to the
standing wave nature in the x and y directions. The standing wave pattern
along the guide axis will have nulls of transverse electric field on the termi-
nating sheet and in planes parallel to it at distances of integer multiples of
A,/2 from that sheet. Placing of perfect conductors in these planes will not
disturb the fields since the boundary condition of zero tangential electric field
is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant z
planes separated by a distance d, then, in order for the boundary conditions
to be satisfied, d must be equal to an integer multiple of 1,/2. We then have a
rectangular box of dimensions g, b, and d in the x, y, and z directions, res-
pectively, as shown in Fig. 7.18. Such a structure is known as a “cavity

-

Ax
N

Figure 7.18. A rectangular cavity resonator.

resonator” and is the counterpart of the low-frequency lumped parameter
resonant circuit at microwave frequencies since it supports oscillations at
frequencies for which the above condition, that is,

d:l%, —1,2,3,... .71

is satisfied. Recalling that A, is simply the apparent wavelength of the
obliquely bouncing uniform plane wave along the z direction, we find that the
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wavelength corresponding to the mode of oscillation for which the fields have
m number of one-half sinusoidal variations in the x direction, #» number of
one-half sinusoidal variations in the y direction, and / number of one-half
sinusoidal variations in the z direction is given by

1 i 1 1
1%, QRalm): + (2b/n)? + @djh? (1.72)

or
Fose = : (7.73)

~(m2a)* & (n2b)* + (I]2d)*

The expression for the frequency of oscillation is then given by

e . (S

The modes are designated by three subscripts in the manner TE, ,, and
TM,, ... Since m, n, and / can assume combinations of integer values, an
infinite number of frequencies of oscillation are possible for a given set of
dimensions for the cavity resonator. We shall now consider an example.

Example 7.5. The dimensions of a rectangular cavity resonator with air
dielectric are a = 4 cm, b = 2 cm, and d = 4 cm. It is desired to determine
the three lowest frequencies of oscillation and specify the mode(s) of oscilla-
tion, transverse with respect to the z direction, for each frequency.

By substituting 4 = u,, € = €,, and the given dimensions for a, b, and d
in (7.74), we obtain

Jose =3 X 108\/(TH$§)2+<ﬁ)2—|—<6£—8>2

= 3750./m? + 4n* 4+ [* MHz

By assigning combinations of integer values for m, n, and / and recalling that
both m and # must be nonzero for TM modes, we obtain the three lowest
frequencies of oscillation to be

3750 x ./ 2 = 5303 MHz for TE, , ; mode

3750 x /5 = 8385 MHz for TE, , , TE, ,,, and TE, , , modes

3750 X /6 = 9186 MHz for TE, , , and TM, , ; modes -

7.6 OPTICAL WAVEGUIDES

Thus far we have been concerned with waveguides that have conductors as
boundaries. In this section we shall briefly consider another class of wave-
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guides. These waveguides, having dielectrics as their boundaries, form the
basis for waveguiding at optical frequencies. The principle of optical wave-
guides suggests itself from the phenomenon of guiding of waves by means of
oblique reflections at the boundaries of the guide. Thus let us consider a
uniform plane wave incident obliquely on a plane boundary between two
different perfect dielectric media at an angle of incidence 8, to the normal to
the boundary, as shown in Fig. 7.19. To satisfy the boundary conditions at

Medium 2
€ My

Transmitted
Wave

l
|
|
|
|
0

t

Medium 1
€, Ky

Reflected
Wave

Incident
Wave

Figure 7.19. Reflection and transmission of an obliquely incident unitorm
plane wave on a plane boundary between two different perfect dielectric
media.

the interface between the two media, a reflected wave and a transmitted wave
will be set up. Let 8, be the angle of reflection and 6, be the angle of transmis-
sion. Then without writing the expressions for the fields, we can find the
relationship between 8,, §,, and @, by noting that in order for the incident,
reflected, and transmitted waves to be in step at the boundary, their apparent
phase velocities parallel to the boundary must be equal, that is

U1 _ Y1 _ Um
sin 0;‘ T sin 0,. sin 0: (775)

where v,, (= 1/2/11€,) and v,, (= 1/3/11,€,) are the phase velocities along
the directions of propagation of the waves in medium 1 and medium 2,
respectively.

From (7.75), we have

sin 8, = sin 6, (7.76a)
sin 0, = 222 5in @, = ,/ #4161 4in G, (7.76b)
Up1 Ha€2
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or

0, =86, (7.77a)
—in-t (L BaEa 7.77b
#, = sin (W//lzfz sin 0,) ( )

Equation (7.77a) is known as the “law of reflection” and (7.77b) is known as
the “law of refraction,” or “Snell’s law.” Snell’s law is commonly cast in terms
of the refractive index, denoted by the symbol # and defined as the ratio of the
velocity of light in free space to the phase velocity in the medium. Thus if
n, (= ¢/v,,) and n, (= c/v,,) are the refractive indices for media 1 and 2,
respectively, then

9, — sin~! (% sin 0,.) (1.78)

2

Assuming that g, = u, = U,, which is generally the case, we note from
(7.76b) that for €, > €, sin @, < sin @, and 6, < @, so that the transmitted
wave is refracted toward the normal to the boundary. For €, < €, sin8, >
sin @, and @, > 0, so that the transmitted wave is refracted away from the
normal to the boundary. Hence for this case there exists a value of @, for
which 6, = 90°. Denoting this “critical angle” of incidence to be §,, we have
from (7.76b).

Jﬁ sin @, = sin 90° = 1
€,
or

9, = sin? x/ﬁ —sint 22 (1.79)
€y ny

For 6, > 0,, there is no real solution for #, and “total internal reflection”
occurs, that is, the incident wave is entirely reflected. Hence if we have a
dielectric slab of permittivity €,, sandwiched between two dielectric media of
permittivity €, < €, then by launching waves at an angle of incidence
greater than the critical angle, it is possible to achieve guided wave propaga-
tion, as shown in Fig. 7.20. This is the principle of optical waveguides. As in
the case of metallic waveguides, a given frequency signal may propagate in
several modes for which the cutoff frequencies are less than the wave fre-
quency. We shall, however, not pursue a discussion of these modes; instead,
we shall conclude this section with a brief description of an optical fiber,

which is a common form of optical waveguide.
An optical fiber, so termed because of its filamentary appearance, consists
typically of a core and a cladding, having cylindrical cross sections as shown
in Fig. 7.21(a). The core is made up of a material of permittivity greater than
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u0,62<61

\/ \/

By, €, <é

Figure 7.20. Total internal reflection in a dielectric slab waveguide.

Cladding Cladding €, <e
@ Core €
Cladding €, <¢€;

(a) (b)

Figure 7.21. (a) Transverse and (b) longitudinal cross sections of an
optical fiber,

that of the cladding so that a critical angle exists for waves inside the core
incident on the interface between the core and the cladding, and hence
waveguiding is made possible in the core by total internal reflection. The
phenomenon may be visualized by considering a longitudinal cross section of
the fiber through its axis, shown in Fig. 7.21(b), and comparing it with that of
the slab waveguide shown in Fig. 7.20. Although the cladding is not essential
for the purpose of waveguiding in the core since the permittivity of the core
material is greater than that of free space, the cladding serves two useful
purposes: (a) It avoids scattering and field distortion by the supporting
structure of the fiber since the field decays exponentially outside the core and
hence is negligible outside the cladding. (b) It allows single-mode propagation
for a larger value of the radius of the core than permitted in the absence of the
cladding.

77 SUMMARY

In this chapter we studied the principles of waveguides. To introduce the
waveguiding phenomenon, we first learned how to write the expressions for
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the electric and magnetic fields of a uniform plane wave propagating in an
arbitrary direction with respect to the coordinate axes. These expressions are
given by
E=E;cos(wt—PB+r+ ¢,
H=H,cos(wt —f 1+ ¢)

where B and r are the propagation and position vectors given by

ﬁ = ﬂxix ST ﬂyiy i ﬂziz
r = xi, + yi, + zi,

and ¢, is the phase of the wave at the origin at t+ = 0. The magnitude of B is
equal to w./ue€, the phase constant along the direction of propagation of the
wave. The direction of B is the direction of propagation of the wave. We
learned that

E,-p=0
Hy«p=0
E,-H, =0

that is, E;, Hy, and B are mutually perpendicular, and that

|E,| _ _«/z
H,  ~ 7T~V

Also, since E x H should be directed along the propagation vector B, it then
follows that

1
H=— E
cou'$><

The quantities 8., §8,, and B, are the phase constants along the x, y, and z
axes, respectively. The apparent wavelengths and the apparent phase veloc-
ities along the coordinate axes are given, respectively, by

2z "
j,,-:-——, L=X),Z
B
vpi:%a i:xsy5z

By considering the superposition of two uniform plane waves propagating
at an angle to each other and placing two perfect conductors in appropriate
planes such that the boundary condition of zero tangential electric field is
satisfied, we introduced the parallel-plate waveguide. We learned that the
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composite wave is a transverse electric, or TE wave since the electric field is
entirely transverse to the direction of time-average power flow, that is, the
guide axis, but the magnetic field is not. In terms of the uniform plane wave
propagation, the phenomenon is one of waves bouncing obliquely between the
conductors as they progress down the guide. For a fixed spacing a between the
conductors of the guide, waves of different frequencies bounce obliquely at
different angles such that the spacing a is equal to an integer, say, 7 number
of one-half apparent wavelengths normal to the plates and hence the fields
have m number of one-half-sinusoidal variations normal to the plates. These
are said to correspond to TE, , modes where the subscript 0 implies no
variations of the fields in the direction parallel to the plates and transverse to
the guide axis. When the frequency is such that the spacing a is equal to m
one-half wavelengths, the waves bounce normally to the plates without the
feeling of being guided along the axis, thercby leading to the cutoff condition.
Thus the cutoff wavelengths corresponding to TE,, , modes are given by

and the cutoff frequencies are given by

v

f — Y _ m
= = ——
A, 2a./ue

A given frequency signal can propagate in all modes for which 4 < 4, or
f> f.. For the propagating range of frequencies, the wavelength along the
guide axis, that is, the guide wavelength, and the phase velocity along the
guide axis are given, respectively, by

1= gl . A
VT =@ ST =LY
v v

R w7 RV =

We discussed the solution of problems involving reflection and transmis-
sion at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line
whose characteristic impedance is equal to the guide impedance and then
computing the reflection and transmission coefficients as in the transmission-
line case. The guide impedance, #,, which is the ratio of the transverse
electric field to the transverse magnetic field, is given for the TE modes by

7, = ] = n
M= N = ()?



286 CH.7 WAVEGUIDES

We discussed the phenomenon of dispersion arising from the frequency
dependence of the phase velocity along the guide axis, and we introduced the
concept of group velocity. Group velocity is the velocity with which the
envelope of a narrow-band modulated signal travels in the dispersive channel
and hence it is the velocity with which the information is transmitted. It is
given by

)

where f, is the phase constant along the guide axis.

We extended the treatment of the parallel-plate waveguide to the rectan-
gular waveguide, which is a metallic pipe of rectangular cross section. By
considering a rectangular waveguide of cross-sectional dimensions a and b, we
discussed transverse electric or TE modes as well as transverse magnetic or
TM modes, and learned that while TE,, , modes can include values of m or n
equal to zero, TM,, , modes require that both m and » be nonzero, where m
and n refer to the number of one-half sinusoidal variations of the fields along
the dimensions a and b, respectively. The cutoff wavelengths for the TE,, , or
TM,,,, modes are given by

o 1
be = Ty T T

The mode that has the largest cutoff wavelength or the lowest cutoff frequency
is the dominant mode, which here is the TE, , mode. Waveguides are
generally designed to transmit only the dominant mode.

By placing perfect conductors in two transverse planes of a rectangular
waveguide separated by an integer multiple of one-half the guide wavelength,
we introduced the cavity resonator, which is the microwave counterpart of
the lumped parameter resonant circuit encountered in low-frequency circuit
theory. For a rectangular cavity resonator having dimensions «, b, and d, the
frequencies of oscillation for the TE,, ,; or TM,, ,, modes are given by

o= 7l Ge) + (@) +32)

where [ refers to the number of one-half sinusoidal variations of the fields
along the dimension d.

Finally, we discussed the principle of optical waveguides. By considering
a uniform plane wave incident at an angle §, from medium 1 of permittivity
€, and permeability x, onto medium 2 of permittivity €, and permeability z,,
we derived Snell’s law of refraction

0, = sin™! (\/& sin 9.-)
M€,
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where 6, is the angle of transmission into medium 2. For g, = u, and for
€, < €,, there exists a critical angle of incidence 6, given by

6, = sin™! «/ﬁ
€

above which total internal reflection of the wave occurs into medium 1. Thus
optical waveguides consist of a dielectric medium sandwiched between two
dielectric media of lesser permittivity so as to permit waveguiding by means
of total internal reflection.

REVIEW QUESTIONS

7.1. What is the propagation vector? Interpret the significance of its magnitude
and direction.

7.2. Discuss how the phase constants along the coordinate axes are less than the
phase constant along the direction of propagation of a uniform plane wave
propagating in an arbitrary direction.

Write the expressions for the electric and magnetic fields of a uniform plane
wave propagating in an arbitrary direction and list all the conditions to be
satisfied by the electric field, magnetic field, and propagation vectors.

7.4. What are apparent wavelengths? Why are they longer than the wavelength
along the direction of propagation?

7.5. What are apparent phase velocities? Why are they greater than the phase
velocity along the direction of propagation?

7.3

7.6. Discuss how the superposition of two uniform plane waves propagating at an
angle to each other gives rise to a composite wave consisting of standing waves
traveling bodily transverse to the standing waves.

7.7. What is a transverse electric wave ? Discuss the reasoning behind the nomen-
clature TE,,, o modes.

7.8. How would you characterize a transverse magnetic wave?

7.9. Compare the phenomenon of guiding of uniform plane waves in a parallel-
plate waveguide with that in a parallel-plate transmission line.

7.10. Discuss how the cutoff condition arises in a waveguide.

7.11. Explain the relationship between the cutoff wavelength and the spacing be-
tween the plates of a parallel-plate waveguide based on the phenomenon at
cutoff.

7.12. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the
cutoff frequency dependent on the dielectric in the waveguide ?

7.13. What is guide wavelength ?
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7.14.

7.15.
7.16.

7.17.

7.18.
7.19.
7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

CH.7 WAVEGUIDES

Provide a physical explanation for the frequency dependence of the phase
velocity along the guide axis.

Define guide impedance.

Discuss the use of the transmission-line analogy for solving problems involv-
ing reflection and transmission at a waveguide discontinuity.

Why are the reflection and transmission coefficients for a given mode at a
lossless waveguide discontinuity dependent on frequency whereas the reflec-
tion and transmission coefficients at the junction of two lossless lines are
independent of frequency ?

Discuss the phenomenon of dispersion.
Discuss the concept of group velocity with the aid of an example.

What is a dispersion diagram? Explain how the phase and group velocities
can be determined from a dispersion diagram.

When is it meaningful to attribute a group velocity to a signal comprised of
more than two frequencies? Why ?

Discuss the propagation of a narrow-band amplitude modulated signal in a
dispersive channel.

Discuss the nomenclature associated with the modes of propagation in a rec-
tangular waveguide.

Explain the relationship between the cutofl wavelength and the dimensions of
a rectangular waveguide based on the phenomesnon at cutoff.

Discuss the reasoning behind the formulation of the expression for H, for
TE,,,, modes in a rectangular waveguide.

Briefly outline the procedure for deriving the transverse ficld components in
a rectangular waveguide from the longitudinal field component.

Why can there be no transverse magnetic modes having no variations for the
fields along one of the dimensions of a rectangular waveguide ?

What is meant by the dominant mode ? Why are waveguides designed so that
they propagate only the dominant mode?

Why is the dimension b of a rectangular waveguide generally chosen to be less
than or equal to one-half the dimension a?

Explain why, when driving through a mountain tunnel or under a road bridge,
you are able to receive signals in the FM band but not in the AM band of an
AM-FM radio.

What is a cavity resonator?

How do the dimensions of a rectangular cavity resonator determine the fre-
quencies of oscillation of the resonator?

Discuss the condition required to be satisfied by the incident, reflected, and
transmitted waves at the interface between two diclectric media.

What is Snell’s law ?
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7.35. What is total internal reflection ? What are the requirements for total internal
reflection ?

7.36. Discuss the principle of optical waveguides.

7.37. Compare the phenomenon at cutoff in a metallic waveguide with that at cutoff
in an optical waveguide.

7.38. Provide a brief description of an optical fiber.

PROBLEMS

7.1. Assuming the x and y axes to be directed eastward and northward, respec-
tively, find the expression for the propagation vector of a uniform plane wave
of frequency 15 MHz in free space propagating in the direction 30° north of
cast.

7.2. The propagation vector of a uniform plane wave in a perfect dielectric medium

having € = 4.5€9 and g = U, is given by

.

B = 2nr(3i,. + 4i, + 5i,)

Find (a) the apparent wavelengths and (b) the apparent phase velocities, along
the coordinate axes.

7.3. For a uniform plane wave propagating in free space, the apparent phase
velocities along the x and y directions are found to be 6,/2 X 10% m/s and
2./3 % 108 m/s, respectively. Find the direction of propagation of the wave.

7.4. The electric field vector of a uniform plane wave propagating in a perfect
dielectric medium having € = 9€, and u = U, is given by

E = 10(—ix — 24/ 31, + 4/ 31i,) cos [167 x 105¢
— 0.04n(,/ 3 x — 2y — 32)]
Find (2) the frequency, (b) the direction of propagation, (c) the wavelength

along the direction of propagation, (d) the apparent wavelengths along the x,
y, and z axes, and (¢) the apparent phase velocities along the x, y, and z axes.

7.5. Given
E = 10i, cos [6m x 107t — 0.1n(y + /3 2)]
(a) Determine if the given E represents the electric field of a uniform plane

wave propagating in free space. (b) If the answer to part (a) is “yes,” find the
corresponding magnetic field vector H.

7.6. Given
E = (i, — 2i, — /3 i,) cos [157 x 105¢ — 0.057(,/ 3 x + 2)]

H = gi(ix -+ 2i, — o/F1) cos [157 x 105 — 0.057(y/ 3 x + 2]
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7.8.

79.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.
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(a) Perform all the necessary tests and determine if these fields represent a
uniform plane wave propagating in a perfect dielectric medium. (b) Find the
permittivity and the permeability of the medium.

Two equal-amplitude uniform plane waves of frequency 25 MHz and having
their electric fields along the y direction propagate along the directions i, and
3G/ 3i, + i.) in free space. (a) Find the direction of propagation of the com-
posite wave. (b) Find the wavelength along the direction of propagation and
the wavelength transverse to the direction of propagation of the composite
wave.

Show that {sin2 (wt — fzsin §)> and <sin 2(wt — Bzsin B)> are equal to
zero and 1/2, respectively.

Find the spacing a for a parallel-plate waveguide having a dielectric of € = 9¢,
and u = K, such that 6000 MHz is 20 percent above the cutoff frequency of
the dominant mode, that is, the mode with the lowest cutoff frequency.

The dimension a of a parallel-plate waveguide filled with a dielectric having
€ = 4€, and u = Y, is 4 cm. Determine the propagating TE,, , modes for a
wave of frequency 6000 MHz. For each propagating mode, find f,, §, and 4,.

The spacing a between the plates of a parallel-plate waveguide is equal to 5 cm.
The dielectric between the plates is free space. If a generator of fundamental
frequency 1800 MHz and rich in harmonics excites the waveguide, find all
frequencies that propagate in TE,,, mode only.

The electric and magnetic fields of the composite wave resulting from the
superposition of two uniform plane waves are given by

E = E., cos fB,x cos (0t — B,2) 1.
+ E,osin f.x sin (ot — B.2) 1,
H = H,; cos f.xcos (0t — f.2) 1,

(a) Find the time-average Poynting vector. (b) Discuss the nature of the
composite wave.

Transverse electric modes are excited in an air dielectric parallel-plate wave-
guide of dimension a = 5 cm by setting up at its mouth a field distribution
having

E = 10(sin 207tx + 0.5 sin 607x) sin 1017z i,

Determine the propagating mode(s) and obtain the expression for the electric
field of the propagating wave.

For the parallel-plate waveguide discontinuity of Example 7.3, find the reflec-
tion and transmission coeflicients for f = 7500 MHz propagating in (a)
TE;, mode and (b) TE,,, mode.

The left half of a parallel-plate waveguide of dimension ¢ = 4 cm is filled with
a dielectric of € = 4€, and u = ,. The right half is filled with a dielectric of
€ = 9¢g and u = p,o. For TE,,, wave of frequency 2500 MHz incident on the
discontinuity from the left, find the reflection and transmission coefficients.
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7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

Assume that the permittivity of the dielectric to the right side of the parallel-
plate waveguide discontinuity of Fig. 7.10 is unknown. If the reflection coef-
ficient for TE,,, waves of frequency 5000 MHz incident on the junction from
the free space side is —0.2643, find the permittivity of the dielectric.

For the two-train example of Fig. 7.11, find the group velocity if the speed of
train numbered B is (a) 36 m/s and (b) 40 m/s, instead of 30 m/s. Discuss your
results with the aid of sketches.

Find the velocity with which the group of two frequencies 2400 MHz and
2500 MHz travels in a parallel-plate waveguide of dimension a = 2.5 cm and
having a perfect dielectric of € = 9¢, and x4 = U,.

For a narrow-band amplitude modulated signal having the carrier frequency
5000 MHz propagating in an air dielectric parallel-plate waveguide of dimen-
sion @ = 5 cm, find the velocity with which the modulation envelope travels.

For an @ — f, relationship given by
0 =, + kf?

where @, and k are positive constants, find the phase and group velocities for
(a) @ = 1.5m,, (b) @ = 2m,, and (c) @ = 3@,.

By considering the parallel-plate waveguide, show that a point on the obli-
quely bouncing wavefront, traveling with the phase velocity along the oblique
direction, progresses parallel to the guide axis with the group velocity.

Write the expression for E, for TM modes in a rectangular waveguide. Then
obtain the transverse field components by following a procedure similar to that
used in the text for TE modes.

For an air dielectric rectangular waveguide of dimensions ¢ = 3 cm and
b = 1.5 cm, find all propagating modes for f = 12,000 MHz.

For a rectangular waveguide of dimensions @ = 5 cm and b = 5/3 cm, and
having a dielectric of € = 9¢, and u — U, find all propagating modes for
S = 2500 MHz.

For f — 3000 MHz, find the dimensions a and b of an air dielectric rectangular
waveguide such that TE;,, mode propagates with a 30 percent safety factor
(f = 1.30£,) but also such that the frequency is 30 percent below the cutoff
frequency of the next higher order mode.

For an air dielectric rectangular cavity resonator having the dimensions a =
2.5cm, b =2 cm, and d = 5 cm, find the five lowest frequencies of oscilla-
tion. Identify the mode(s) for each frequency.

For a rectangular cavity resonator having the dimensions a = b = d = 2 cm,
and filled with a dielectric of € = 9€¢, and y = U, find the three lowest fre-
quencies of oscillation. Identify the mode(s) for each frequency.

In Flg 719, let € = 460, €y = 960, and Wty = Uz = Lo (a) For 05 = 300,
find §,. (b) Is there a critical angle of incidence for which G, = 90°?
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7.29. In Fig. 7.19, let €, = 4€, €; = 2.25€¢, and x4y = pfty = py. (a) For 8, = 30°,
find @,. (b) Find the value of the critical angle of incidence 0., for which
g, = 90°.

7.30. A thin-film waveguide employed in integrated optics circuits consists of a sub-
strate upon which a thin film of refractive index greater than that of the sub-
strate is deposited. The medium above the thin film is air. For refractive
indices of the substrate and the film equal to 1.51 and 1.53, respectively, find
the minimum bouncing angle of the total internally reflected waves in the film.



&, ANTENNAS

In the preceding four chapters we studied the principles of propagation
and transmission of electromagnetic waves. The remaining important topic
pertinent to electromangetic wave phenomena is radiation of electromagnetic
waves. We have, in fact, touched on the principle of radiation of electro-
magnetic waves in Chap. 4 when we derived the electromagnetic field due
to the infinite plane sheet of sinusoidally time-varying, spatially uniform
current density. We learned that the current sheet gives rise to uniform plane
waves “radiating” away from the sheet to either side of it. We pointed out
at that time that the infinite plane current sheet is, however, an idealized,
hypothetical source. With the experience gained thus far in our study of the
elements of engineering electromagnetics, we are now in a position to learn
the principles of radiation from physical antennas, which is our goal in this
chapter.

We shall begin the chapter with the derivation of the electromagnetic
field due to an elemental wire antenna, known as the “Hertzian dipole.”
After studying the radiation characteristics of the Hertzian dipole, we shall
consider the example of a half-wave dipole to illustrate the use of super-
position to represent an arbitrary wire antenna as a series of Hertzian dipoles
in order to determine its radiation fields. We shall also discuss the principles
of arrays of physical antennas and the concept of image antennas to take
into account ground effects. Finally, we shall briefly consider the receiving
properties of antennas and learn of their reciprocity with the radiating prop-
erties.
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8.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesi-
mally long piece of wire carrying an alternating current I(¢), as shown in Fig.
8.1. To maintain the current flow in the wire, we postulate two point charges
Q,(t) and Q,(z) terminating the wire at its two ends, so that the law of con-
servation of charge is satisfied. Thus if

I(t) = I, cos wt 8.1)

then
dd_Qtl — K1) = I, cos oot (8.2a)
%Qt_z — —Kf) = —1I, cos ot (8.2b)

and
0.() = % sin wt (8.3)
0. = —% sin of = —0,(1) (8.3b)

0,
dl NG

0,(1)=-0, (1)
Figure 8.1. Hertzian dipole.

The time variations of 7, Q,, and @,, given by (8.1), (8.3a) and (8.3b),
respectively, are illustrated by the curves and the series of sketches for the
dipoles in Fig. 8.2, corresponding to one complete period. The different sizes
of the arrows associated with the dipoles denote the different strengths of
the current whereas the number of the plus or minus signs is indicative of
the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we
shall employ an intuitive approach based upon the knowledge gained in the
previous chapters as follows: From the application of what we have learned
in Chap. 1, we can obtain the expressions for the electric and magnetic fields

294
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Figure 8.2. Time variations of charges and current associated with the
Hertzian dipole.

due to the point charges and the current element, respectively, associated with
the Hertzian dipole, assuming that the fields follow exactly the time-varia-
tions of the charges and the current. These expressions do not, however,
take into account the fact that time-varying electric and magnetic fields give
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rise to wave propagation. Hence we shall extend them from considerations
of our knowledge of wave propagation and then check if the resulting solu-
tions satisfy Maxwell’s equations. If they do not, we will then have to modify
them so that they do satisfy Maxwell’s equations and at the same time reduce
to the originally derived expressions in the region where wave propagation
effects are small, that is, at distances from the dipole small compared to a
wavelength.

To follow the approach outlined in the preceding paragraph, we locate
the dipole at the origin with the current directed along the z axis, as shown
in Fig. 8.3, and derive first the expressions for the fields by applying the sim-
ple laws learned in Secs. 1.5 and 1.6. The symmetry associated with the prob-
lem is such that it is simpler to use a spherical coordinate system. Hence if
the reader is not already familiar with the spherical coordinate system, it is
suggested that Appendix A be read at this stage. To review briefly, a point in
the spherical coordinate system is defined by the intersection of a sphere cen-
tered at the origin, a cone having its apex at the origin and its surface sym-
metrical about the z axis, and a plane containing the z axis. Thus the
coordinates for a given point, say P, are r, the radial distance from the origin,
8, the angle which the radial line from the origin to the point makes with the
z axis, and ¢, the angle which the line drawn from the origin to the projec-
tion of the point onto the xy plane makes with the x axis, as shown in Fig.
8.3. A vector drawn at a given point is represented in terms of the unit vectors

2
A ¢ j

Figure 8.3. For the determination of the electromagnetic field due to the
Hertzian dipole.
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i,» iy, and i, directed in the increasing r, 8, and ¢ directions respectively, at
that point. It is important to note that all three of these unit vectors are not
uniform unlike the unit vectors i,, i,, and i, in the Cartesian coordinate sys-
tem.

Now using the expression for the electric field due to a point charge given
by (1.52), we can write the electric field at point P due to the arrangement of
the two point charges O, and — 0, in Fig. 8.3 to be

E= 9 — Qi (8.4)

T dmertt dmeri "

where r, and r, are the distances from @, to P and Q, (= —Q,) to P,
respectively, and i,, and i,, are unit vectors dirccted along the lines from @,
to P and Q, to P, respectively, as shown in Fig. 8.3. Noting that

i, =cosa i, +sinw, i (8.5a)

i, =cosa,i, —sina, iy (8.5b)

we obtain the r and @ components of the electric field at P to be

0os 0 o0
= (5 - o) 50
_ &(sin o, , sin oc2>
Eo dme\ r? + ri (8.6b)

For infinitesimal value of the length d! of the current element, that is,
fordigr,

(cos &;  cos ocz) ~ 1 1
r: re

,("2*r1)(’z+r1)x(dlcoso)2r

rir2 rt
2dlcos @
_ rcao_s (8.7a)
and
sino, , sin®,\ __ 2sin &,
( A ) T
~ dl sin 8 (8.7b)

where we have also used the approximations that for d/ < r, (r, — ry) =

dl cos B and sin of; =~ M These are, of course, exact in the limit that
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dl — 0. Substituting (8.7a) and (8.7b) in (8.6a) and (8.6b), respectively, we
obtain the electric field at point P due to the arrangement of the two point
charges to be given by

E=219%0c0s0i, + sin ) (8.8)

Note that Q, dl is the electric dipole moment associated with the Hertzian
dipole.
Using the Biot-Savart law given by (1.68), we can write the magnetic
field at point P due to the infinitesimal current element in Fig. 8.3 to be
_ B Idli,xi,
H=="am

dur (®.9)

To extend the expressions for E and H given by (8.8) and (8.9), respec-
tively, we observe that when the charges and current vary with time, the fields
also vary with time giving rise to wave propagation. The effect of a given
time-variation of the source quantity is therefore felt at a point in space not
instantaneously but only after a time lag. This time lag is equal to the time
it takes for the wave to propagate from the source point to the observation
point, that is, 7/v,, or Br/w, where v, (= 1//u€) and (= w./ue€) are the
phase velocity and the phase constant, respectively. Thus for

0, = % sin ot (8.10)
I = I, cos wt 8.11)

we would intuitively expect the fields at point P to be given by

E= [(Io/w) sin (,O(t _ ,Br/w)] dl (2 cos @ i, + sin /] ig)

dmer?
Ly disin (ot — fr) i +sindi
—hdisin(@t = )3 co591, + sinbip (8.122)
H = o cos ot — Brim)]dl . o,
4nr? ¢
_ Jodlcos (@ — fr) g g4, (8.12b)

4mr?

There is, however, one thing wrong with our intuitive expectation of the
fields due to the Hertzian dipole! The fields do not satisfy Maxwell’s curl
equations
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_ _dB_ _¢H
VxE=—5=—uS0 (8.132)
.. dD__ _9E
VxH=J+5 =5 (8.13b)

(where we have set J = 0 in view of the perfect dielectric medium). For exam-
ple, let us try the curl equation for H. First we note from Appendix B that
the expansion for the curl of a vector in spherical coordinates is

VxA= rsilﬂ[g_o(A°’ sin ) — %_,:; i,
+ 55 — e )i
+ %B’—r (r0) — S i, 8.14)
Thus
VxH= . silnB(;iGl:IO dlcozftc’f)zt — B sin? 9]i,
- % (% L dl cos4 Stcgt — pr sin 0] i,

_ 1L dl cozy(tc;)at - ﬂ")(z cos B i, 4 sin 8 iy)

__ B, dlsin (0t — Br) sin 8 i,

4mr
JE 1, dl si t — L oT
=€ar — BL, Sl‘?n(g B Gin g i
JE
ok n (8.15)

The reason behind the discrepancy associated with the expressions for
the fields due to the Hertzian dipole can be understood by recalling that in
Sec. 4.6 we learned from considerations of the Poynting vector that the
fields far from a physical antenna vary inversely with the radial distance away
from the antenna. The expressions we have derived do not contain inverse
distance dependent terms and hence they are not complete, thereby causing
the discrepancy. The complete field expressions must contain terms involving
1/r in addition to those in (8.12a) and (8.12b). Since for small r, I/r K
1/r? & 1/r?, the addition of terms involving 1/r and containing sin @ to (8.12a)
and (8.12b) would still maintain the fields in the region close to the dipole
to be predominantly the same as those given by (8.12a) and (8.12b), while
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making the 1/r terms predominant for large r since for large r, 1/r > 1/r?
> 1/,

Thus let us modify the expression for H given by (8.12b) by adding a
second term containing 1/r in the manner

H— I, dlsin@ [cos (a)t ﬁr) A cos (cot pr + J)jl

- i (8.16)

where 4 and J are constants to be determined. Then from Maxwell’s curl
equation for H, given by (8.13b), we have

JE 1 d . 5 1 0 .
W_Vx e —G(H,,Slno)l,—TW(er,)lo

_ 2L dl cos O cos (cot Br) | Acos(wt — fr+ )7,
. 4 |: »? + r? :|l’

+ I, dl sin 9[005 (cor pr) _ B sin (ot — fr)
dx r r?

_ ABsin (ot — pr -+ 9)7; (8.17)
r .

dnew e

F— 21, dl cos O[Sin (wt — fr) 4 A sin (ot ;-: pr+ 5)] i

+ I dl sin @[ sin (et — fr) + B cos (et — fr)
dnew rd r*

. AP cos (mrr— pr+ 6)] L (8.18)

Now, from Maxwell’s curl equation for E given by (8.13a), we have

u‘%{= _VxE— —i[i(rEg) —‘9_Er i

_ Iy dlsin 0[2ﬂ cos (wt — fpr)  2Asin (wt — Br + J)

dmew r? r

_ Bsin (gt — Br) _ AB*sin (wt — fr -+ 5)},,, (8.19)
H- b dl sin 02 sin (wt — fr) a 24 cos (wt — Br 4 9)
4 pre pr?
4 cos (cortz— Br) n A cos (wt r— pr+ 5)] i, (8.20)

We, however, have to rule out the 1/r* terms in (8.20) since for small r, these
terms are more predominant than the 1/#2 dependence required by (8.12b).
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Equation (8.20) will then also be conmsistent with (8.16) from which we
derived (8.18) and then (8.20). Thus we set

2sin (ot — Br) | 2Acos (wt — fr +0) _
5 + o= =0 (8.21)

which gives us
.
0= 5 (8.22a)
A= (8.22b)

Substituting (8.22a) and (8.22b) in (8.18) and (8.20), we then have

21, dl cos 8 sin (ot — Br) | B cos (wt — Br)];
= 04715660 r? i r? }’

I, dl sin 07 sin (wt — Br) , B cos(wt — Br)
+ 047!660 r + re

= w]ig (8.232)

’

Bl di;me cos (cort Br) _ Bsin (wt ﬁ’)] (8.23b)

These expressions for E and H satisfy both of Maxwell’s curl equations,
reduce to (8.12a) and (8.12b), respectively, for small r (fr < 1), and they
vary inversely with r for large r (8r > 1). They represent the complete elec-
tromagnetic field due to the Hertzian dipole.

8.2 RADIATION RESISTANCE
AND DIRECTIVITY

In the previous section we derived the expressions for the complete elec-
tromagnetic field due to the Hertzian dipole. These expressions look very
complicated. Fortunately, it is seldom necessary to work with the complete
field expressions because one is often interested in the field far from the
dipole which is governed predominantly by the terms involving 1/r. We,
however, had to derive the complete field in order to obtain the amplitude
and phase of these 1/r terms relative to the amplitude and phase of the cur-
rent in the Hertzian dipole, since these terms alone do not satisfy Maxwell’s
equations. Furthermore, by going through the exercise, we learned how to
solve a difficult problem through intuitive extension and reasoning based on
previously gained knowledge.
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Thus from (8.23a) and (8.23b), we find that for a Hertzian dipole of
length d/ oriented along the z axis and carrying current

I = I, cos wt (8.24)

the electric and magnetic fields at values of # far from the dipole are given by

s
E— _ﬁ%il_;lrne sin (@t — B i,

= —ﬂ/”°—4‘ft’rsm—9 sin (@t — Br) iy (8.252)
H—— /”—ff;i—no sin (ot — Br)i, (8.25b)

These fields are known as the “radiation fields,” since they are the compo-
nents of the total fields that contribute to the time-average radiated power
away from the dipole (see Problem 8.6). Before we discuss the nature of
these fields, let us find out quantitatively what we mean by “far from the
dipole.” To do this, we look at the expression for the complete magnetic field
given by (8.23b) and note that the ratio of the amplitudes of the 1/r2 and 1/r
terms is equal to 1/Br. Hence for fr>> 1, or r>> A/2x, the 1/r* term is neg-
ligible compared to the 1/r term. Thus even at a distance of a few wavelengths
from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (8.25a)
and (8.25b), we note that at any given point, (a) the electric field (£,), the
magnetic field (H,), and the direction of propagation (r) are mutually per-
pendicular and (b) the ratio of E, to H, is equal to 7, the intrinsic impedance
of the medium, which are characteristic of uniform plane waves. The phase
of the field, however, is uniform over the surfaces r = constant, that is,
spherical surfaces centered at the dipole, whereas the amplitude of the field
is uniform over surfaces (sin 8)/r = constant. Hence the fields are only
locally uniform plane waves, that is, over any infinitesimal area normal to
the r direction at a given point.

The Poynting vector due to the radiation fields is given by

P=ExH
= Egio X H¢i¢ = Eng,i,-
_ np2Ii(dl)? sin? § sin? (@t — Br)1i, (8.26)

167212

By evaluating the surface integral of the Poynting vector over any surface
enclosing the dipole, we can find the power flow out of that surface, that is,
the power “radiated” by the dipole. For convenience in evaluating the
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Figure 8.4. For computing the power radiated by the Hertzian dipole.

surface integral, we choose the spherical surface of radius r and centered at
the dipole, as shown in Fig. 8.4. Thus noting that the differential surface
area on the spherical surface is (r d8)(r sin 8 d) i, or r? sinf df d¢ i,, we
obtain the instantaneous power radiated to be
n 2n
. SWy2a] .
Prad_J;oJ;g OP r Sln0d0d¢lr
- f f NI Si0° 8 oo (r — pr) i dp
=0 Jg=0
272 L
= ﬂﬂ—é"@ sin? (cot — fr) f sin® 8 df
7 6=0

= ___nﬂ216§7§a’l)2 sin? (wt — fr)

= 2l b (-‘i—’)z sin? (0t — Br) (8.27)

The time-average power radiated by the dipole, that is, the average of P,,4
over one period of the current variation, is

(P> = Z(F]) Gsin @t — B>

At

- 5% [273”1(37) ] (8.28)
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We now define a quantity known as the “radiation resistance” of the
antenna, denoted by the symbol R_,4, as the value of a fictitious resistor that
dissipates the same amount of time-average power as that radiated by the
antenna when a current of the same peak amplitude as that in the antenna
is passed through it. Recalling that the average power dissipated in a resistor

R when a current 1, cos cot is passed through it is %I%R, we note from (8.28)

that the radiation resistance of the Hertzian dipole is

Riy — Egﬂ(%)z ohms (8.29)

For free space, # = #, = 120z ohms, and

Ry — 80n2<%>2 onE (8.30)

As a numerical example, for (d//A) equal to 0.01, R, = 8072(0.01)% =
0.08 ohms. Thus for a current of peak amplitude 1 amp, the time-average
radiated power is equal to 0.04 W, This indicates that a Hertzian dipole of
length 0.011 is not a very effective radiator.

We note from (8.29) that the radiation resistance and hence the radiated
power are proportional to the square of the electrical length, that is, the
physical length expressed in terms of wavelength, of the dipole. The result
given by (8.29) is, however, valid only for small values of dl/A since if dl/A
is not small, the amplitude of the current along the antenna can no longer
be uniform and its variation must be taken into account in deriving the
radiation fields and hence the radiation resistance. We shall do this in the
following section for a half-wave dipole, that is, for a dipole of length equal
to /2.

Let us now examine the directional characteristics of the radiation from
the Hertzian dipole. We note from (8.25a) and (8.25b) that, for a constant ,
the amplitude of the fields is proportional to sin . Similarly, we note from
(8.26) that, for a constant r, the power density is proportional to sin2 §. Thus
an observer wandering on the surface of an imaginary sphere centered at
the dipole views different amplitudes of the fields and of the power density
at different points on the surface. The situation is illustrated in Fig. 8.5(a)
for the power density by attaching to different points on the spherical surface
vectors having lengths proportional to the Poynting vectors at those points.
It can be seen that the power density is largest for 8 = #/2, that is, in the
plane normal to the axis of the dipole, and decreases continuously toward
the axis of the dipole, becoming zero along the axis.

It is customary to depict the radiation characteristic by means of a
“radiation pattern,” as shown in Fig. 8.5(b), which can be imagined to be
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Figure 8.5. The directional characteristics of radiation from the Hertzian
dipole.

obtained by shrinking the radius of the spherical surface in Fig. 8.5(a) to
zero with the Poynting vectors attached to it and then joining the tips of
the Poynting vectors. Thus the distance from the dipole point to a point on
the radiation pattern is proportional to the power density in the direction
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of that point. Similarly, the radiation pattern for the fields can be drawn
as shown in Fig. 8.5(c), based upon the sin @ dependence of the fields. In
view of the independence of the fields from ¢, the patterns of Fig. 8.5(b)—(c)
are valid for any plane containing the axis of the dipole. In fact, the three-
dimensional radiation patterns can be imagined to be the figures obtained by
revolving these patterns about the dipole axis. For a general case, the radia-
tion may also depend on ¢ and hence it will be necessary to draw a radiation
pattern for the § = n/2 plane. Here, this pattern is merely a circle centered
at the dipole.

We now define a parameter known as the “directivity” of the antenna,
denoted by the symbol D, as the ratio of the maximum power density radiated
by the antenna to the average power density. To elaborate on the definition
of D, imagine that we take the power radiated by the antenna and distribute
it equally in all directions by shortening some of the vectors in Fig. 8.5(a)
and lengthening the others so that they all have equal lengths. The pattern
then becomes nondirectional and the power density, which is the same in all
directions, will be less than the maximum power density of the original
pattern. Obviously, the more directional the radiation pattern of an antenna
is, the greater is the directivity.

From (8.26), we obtain the maximum power density radiated by the
Hertzian dipole to be

272 2ot 2
[P Yo = TSI Bl 12 (o —

2
_ —”/3126’7;%?2 sin? (wf — Br) (8.31)

By dividing the radiated power given by (8.27) by the surface area 4zr? of
the sphere of radius r, we obtain the average power density to be

. Prad . "ﬂzlg(dl)z 2 -
[Plev = 5225 = 154022 sin® (@t — Br) (8.32)

Thus the directivity of the Hertzian dipole is given by

e [Pr]max j— b
D = lrgteas — 1.5 (8.33)

8.3 HALF-WAVE DIPOLE
In the previous section we found the radiation fields due to a Hertzian

dipole, which is an elemental antenna of infinitesimal length. If we now have
an antenna of any length having a specified current distribution, we can
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divide it into a series of Hertzian dipoles and by applying superposition we
can find the radiation fields for that antenna. We shall illustrate this procedure
in this section by considering the half-wave dipole, which is a commonly
used form of antenna.

The half-wave dipole is a center-fed, straight wire antenna of length L
equal to 4/2 and having the current distribution

I(z) = I, cos nfz coset  for — % <z< % (8.34)

where the dipole is assumed to be oriented along the z axis with its center
at the origin, as shown in Fig. 8.6(a). As can be seen from Fig. 8.6(a), the
amplitude of the current distribution varies cosinusoidally along the antenna
with zeros at the ends and maximum at the center. To see how this distribu-
tion comes about, the half-wave dipole may be imagined to be the evolution
of an open-circuited transmission line with the conductors folded perpendicu-
larly to the line at points A/4 from the end of the line. The current standing
wave pattern for an open-circuited line is shown in Fig. 8.6(b). It consists of
zero current at the open circuit and maximum current at A/4 from the open
circuit, that is, at points @ and a’. Hence it can be seen that when the con-
ductors are folded perpendicularly to the line at @ and a’, the half-wave dipole
shown in Fig. 8.6(a) results.

Amplitude .
of Current 7 2
Distribution /,
[/
/A
/ i i T .
- e
1’ = i i .
b g, ®=0 e .
\ S~ N
\ A7 4
A
\ L
=2
2
(a) (b)

Figure 8.6. (a) Half-wave dipole. (b) Open-circuited transmission line for
illustrating the evolution of the half-wave dipole.

Now to find the radiation field due to the half-wave dipole, we divide it
into a number of Hertzian dipoles, each of length dz’ as shown in Fig. 8.7.
If we consider one of these dipoles situated at distance z’ from the origin,
then from (8.34) the current in this dipole is 1, cos (nz'/L) cos cwt. From (8.25a)
and (8.25b), the radiation fields due to this dipole at point P situated at dis-
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L

2

Figure 8.7. For the determination of the radiation field due to the half-
wave dipole.

tance r’' from it are given by

dE = — nB1, cos (nz'/L) dz' sin 0’
4mr’

JH — — Blo cos (mz'/L) dz” sin '
dmr’

sin (et — fr) iy (8.35a)

sin (ot — fBri) i, (8.35b)

where 8’ is the angle between the z axis and the line from the current element
to the point P and i, is the unit vector perpendicular to that line, as shown in
Fig. 8.7. The fields due to the entire current distribution of the half-wave
dipole are then given by

L/2
E = dE
2’==L/2
L/2 7 . ’ ’
_ _f np1, cos (nz /L,.) sin 0" dz’ . (@f — Bryiy  (8.36a)
= s 4z
/2
H=— j‘ dH
z’=—L/2

L/2 ’ . ’ '
_ _f BI, cos (rnz'[L) sin §' dz sin (@ — Br)i, (8.36b)

r
oS dnr

where ¢, 6’ and i, are functions of z’.
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For radiation fields, ' is at least equal to several wavelengths and hence
> L. We can therefore set i, = i, and 8’ = 0 since they do not vary signifi-
cantly for —L/2 < z’ < L/2. We can also set ' = r in the amplitude factors
for the same reason, but for #’ in the phase factors we substitute » — z’ cos 8
since sin (ot — Br’) = sin (wt — mr’/L) can vary appreciably over the range
—LJ2 < 2/ < L/2. Thus we have

E — Ej4i,
where
L2 12 .
B ~f 11y cos (nz'/L) sin 0 sin (wt — Br + B2 cos 8) dz’
z'=~L/2 nr
_ n(m/L)I, sin 6 nz' . ( _ n ) :
S e T wt ol + 72 cos 6) dz
1y cos [(=/2) cos O] . ( _n )
== sn® sin | ot T’ (8.37a)
Similarly,
H = H,j,
where
_ 1y cosl(mj2)cos @] . _ T )
H, — — o €08 (2203 0] gin (cot ~r (8.37b)

The Poynting vector due to the radiation fields of the half-wave dipole
is given by
P=E x H= EH,,

_ nl% cos?[(m)2) cos 0]
T 4m2r? sin? @

sin? (cot —

N2

i, (8.38)
The power radiated by the half-wave dipole is given by

4 2n
Prad:J f P.r2sinfdfddi,
0=0 Jg=0

. f L k, COS cos” [(/2) cos 0] 2 (cot — —Z—r) do d¢

T sinf6

111 2 _m 2 cos? [(m/2) cos 6]
sin (a)t T r) J;=0 ——an® do

0.609913 . , __7;_)
= 20 gin (a)t Lr (8.39)
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The time-average radiated power is

B 0.609111%,< -, ( oz >>
{Praa) = = (sin® (of — Fr

gy 0.60911>
= 10(—n (8.40)

Thus the radiation resistance of the half-wave dipole is

0.6099

Rrad = T

ohms 8.41)

For free space, # = 5, = 120z ohms, and
R4 = 0.609 X 120 = 73 ohms (8.42)

Turning our attention now to the directional characteristics of the half-
wave dipole, we note from (8.37a) and (8.37b) that the radiation pattern for

the fields is [cos (—725— cos 0)]/ sin # whereas for the power density, it is

[cos2 (% cos 0)] / sin? §. These patterns, which are sketched in Fig. 8.8(a)-(b),

are slightly more directional than the corresponding patterns for the Hertzian
dipole. To find the directivity of the half-wave dipole, we note from (8.38)

(a)

(&)

Figure 8.8. Radiation patterns for (a) the fields and (b) the power density
due to the half-wave dipole.
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that the maximum power density is

[Pl — nl? {cos2 [(r/2) cos 0]}max sin? (cot - 1'_)

dn?r? sin? 6 L
2
= gl sin® (r — ) (8.43)

The average power density obtained by dividing P,,q by 4nr? is

2
[Py = 222118 i (coz -z ) (8.44)

Thus the directivity of the half-wave dipole is given by

. [Pr]mnx . 1 -
D = s — (g — 1642 (8.45)

8.4 ANTENNA ARRAYS

In Scc. 4.5 we illustrated the principle of an antenna array by considering
an array of two parallel, infinite plane current sheets of uniform densities.
We learned that by appropriately choosing the spacing between the current
sheets and the amplitudes and phases of the current densities, a desired radia-
tion characteristic can be obtained. The infinite plane current sheet is, how-
ever, a hypothetical antenna for which the fields are truly uniform plane
waves propagating in the one dimension normal to the sheet. Now that we
have gained some knowledge of physical antennas, in this section we shall
consider arrays of such antennas.

The simplest array we can consider consists of two Hertzian dipoles,
oriented parallel to the z axis and situated at points on the x axis on either
side of and equidistant from the origin, as shown in Fig. 8.9. We shall con-
sider the amplitudes of the currents in the two dipoles to be equal, but we
shall allow a phase difference o between them. Thus if J,(#) and /,(¢) are the
currents in the dipoles situated at (d/2, 0, 0) and (—d/2, 0, 0), respectively,
then

I, = I, cos (cot + %) (8.462)
1, = I, cos (cot = %) (8.46b)

For simplicity, we shall consider a point P in the xz plane and compute the
field at that point due to the array of the two dipoles. To do this, we note
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Figure 8.9. For computing the radiation field due to an array of two
Hertzian dipoles.

from (8.25a) that the electric field intensities at the point P due to the indivi-
dual dipoles are given by

_ _yBlydlsing, . - oc).

E, = 12k gin (cot pri+ %, (8.472)
__nBldlsin, . ( . _oc>.

E, = amr, sin (@t — fir, 5 ) o (8.47b)

where 0., 8,, ri, r,, i5,, and i,, are as shown in Fig. 8.9.

For r>> d, that is, for points far from the array, which is the region of
interest, we can set 8, =~ 8, = @ and i, & is, = i,. Also, we can set r; = r,
=~ r in the amplitude factors, but for r, and r, in the phase factors, we
substitute

raRr— % cos ¥ (8.48a)
d
ry==r+ 5 cosy (8.48b)

where y is the angle made by the line form the origin to P with the axis of
the array, that is, the x axis, as shown in Fig. 8.9. Thus we obtain the resul-
tant field to be
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E=E, +E,
__nﬁlodlsinO[- ( . i} oo)
= =~ | S0 ot — fr+ 5 cosy + 5
-+ sin (a)t — pr— ﬂTdcos W — %)ilio

- _2’7513!;1’{ sin ¢ cos (ﬁd 0052'/’ + “) sin (wt — fr)i,  (8.49)

Comparing (8.49) with the expression for the electric field at P due
to a single dipole situated at the origin, we note that the resultant field of
the array is simply equal to the single dipole field multiplied by the factor

2 cos (ﬁdc4032|//_—l—_oc), known as the “array factor.” Thus the radiation pattern

of the resultant field is given by the product of sin 8, which is the radiation
cos( dcoszy/ T “) , which is the

radiation pattern of the array if the antennas were isotropic. We shall call
these three patterns the “resultant pattern,” the “unit pattern,” and the
“group pattern,” respectively. It is apparent that the group pattern is inde-
pendent of the nature of the individual antennas as long as they have the same
spacing and carry currents having the same relative amplitudes and phase
differences. It can also be seen that the group pattern is the same in any plane
containing the axis of the array. In other words, the three-dimensional group
pattern is simply the pattern obtained by revolving the group pattern in the
xz plane about the x axis, that is, the axis of the array.

pattern of the single dipole field, and

Example 8.1. For the array of two antennas carrying currents having equal
amplitudes, let us consider several pairs of d and o and investigate the group
patterns.

Case 1: d = A2, « = 0. The group pattern is

cos (% cos l//)‘ = o8 (—g— cos l//)

This is shown sketched in Fig. 8.10(a). It has maxima perpendicular to the
axis of the array and nulls along the axis of the array. Such a pattern is known
as a “broadside pattern.”

Case 2: d = A2, & = m. The group pattern is

}cos (ﬁcosvl—l—%)}z

)

sin (1 cos )
3 v

This is shown sketched in Fig. 8.10(b). It has maxima along the axis of the
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array and nulls perpendicular to the axis of the array. Such a pattern is
known as an “endfire pattern.”
Case 3: d = 1/4, o = —mn/2. The group pattern is

COos (ﬁ—;COSW—%M:cos <%cost//—%)

This is shown sketched in Fig. 8.10(c). It has a maximum along y = 0 and
null along w = =. Again, this is an endfire pattern, but directed to one side.
This case is the same as the one considered in Sec. 4.5.

3 OO O

(b)

Figure 8.10. Group patterns for an array of two antennas carrying currents
of equal amplitude for (a) d = 1/2,a = 0,(b)d = A/2, ¢ = =, (c)d = A/4,
o= —n/2,and (d)d =2, 0 = 0.

Case 4: d = A, o = 0. The group pattern is

cos (% cos !//) ’ = |cos (7 cos ) |

This is shown sketched in Fig. 8.10(d). It has maxima along w = 0°, 90°,
180°, and 270° and nulls along w = 60°, 120°, 240°, and 300°.

Proceeding further, we can obtain the resultant pattern for an array of
two Hertzian dipoles by multiplying the unit pattern by the group pattern.
Thus recalling that the unit pattern for the Hertzian dipole is sin @ in the
plane of the dipole and considering values of 4/2 and 0 for d and @, respec-
tively, for which the group pattern is given in Fig. 8.10(a), we obtain the
resultant pattern in the xz plane, as shown in Fig. 8.11(a). In the xy plane,
that is, the plane normal to the axis of the dipole, the unit pattern is a circle
and hence the resultant pattern is the same as the group pattern, as illustrated
in Fig. 8.11(b). -

Example 8.2. The procedure of multiplication of the unit and group pat-
terns to obtain the resultant pattern illustrated in Example 8.1 can be extended
to an array containing any number of antennas. Let us, for example, consider
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O X 8 : 8 ’
Figure 8.11. Determination of the resultant pattern of an antenna array
by multiplication of unit and group patterns.

a linear array of four isotropic antennas spaced 1/2 apart and fed in phase,
as shown in Fig. 8.12(a), and obtain the resultant pattern.

To obtain the resultant pattern of the four-element array, we replace it
by a two-element array of spacing 1, as shown in Fig. 8.12(b), in which each
element forms a unit representing a two-element array of spacing A/2. The

A A A
.<—E—>0<-—§—>0<—5—>0 (a)

He—A—>D (b)
X = (c)

Figure 8.12. Determination of the resultant pattern for a linear array of
four isotropic antennas.
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unit pattern is then the pattern shown in Fig. 8.10(a). The group pattern,
which is the pattern of two isotropic radiators having d = A and & = 0,
is the pattern given in Fig. 8.10(d). The resultant pattern of the four-element
array is the product of these two patterns, as illustrated in Fig. 8.12(c). If
the individual elements of the four-element array are not isotropic, then this
pattern becomes the group pattern for the determination of the new resul-
tant pattern. |

8.5 IMAGE ANTENNAS

Thus far we have considered the antennas to be situated in an unbounded
medium so that the waves radiate in all directions from the antenna without
giving rise to reflections from any obstacles. In practice, however, we have to
consider the effect of the ground even if no other obstacles are present. To
do this, it is reasonable to assume that the ground is a perfect conductor.
Hence in this section we shall consider antennas situated above an infinite
plane, perfect conductor surface and introduce the concept of image sources,
a technique that is also useful in solving static field problems.

Thus let us consider a Hertzian dipole oriented vertically and located at
a height 4 above a plane, perfect conductor surface, as shown in Fig. 8.13(a).
Since no waves can penetrate into the perfect conductor, as we learned in
Sec. 5.6, the waves radiated from the dipole onto the conductor give rise to
reflected waves, as shown in Fig. 8.13(a) for two directions of incidence. For
a given incident wave onto the conductor surface, the angle of reflection is
equal to the angle of incidence, as can be seen intuitively from the following
reasons: (a) the reflected wave must propagate away from the conductor
surface, (b) the apparent wavelengths of the incident and reflected waves
parallel to the conductor surface must be equal, and (¢) the tangential com-
ponent of the resultant electric field on the conductor surface must be zero,
which also determines the polarity of the reflected wave electric field.

If we now produce the directions of propagation of the two reflected
waves backward, they meet at a point which is directly beneath the dipole
and at the same distance 4 below the conductor surface as the dipole is above
it. Thus the reflected waves appear to be originating from an antenna, which
is the “image” of the actual antenna about the conductor surface. This image
antenna must also be a vertical antenna since in order for the boundary con-
dition of zero tangential electric field to be satisfied at all points on the con-
ductor surface, the image antenna must have the same radiation pattern as
that of the actual antenna, as shown in Fig. 8.13(a). In particular, the current
in the image antenna must be directed in the same sense as that in the actual
antenna to be consistent with the polarity of the reflected wave electric field.
It can therefore be seen that the charges associated with the image dipole
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Figure 8.13. For illustrating the concept of image antennas. (a) Vertical
Hertzian dipole and (b) horizontal Hertzian dipole above a plane perfect-
conductor surface.

have signs opposite to those of the corresponding charges associated with
the actual dipole.

A similar reasoning can be applied to the case of a horizontal dipole above
a perfect conductor surface, as shown in Fig. 8.13(b). Here it can be seen
that the current in the image antenna is directed in the opposite sense to
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that in the actual antenna. This again results in charges associated with
the image dipole having signs opposite to those of the corresponding charges
associated with the actual dipole. In fact, this is always the case.

From the foregoing discussion it can be seen that the field due to an
antenna in the presence of the conductor is the same as the resultant field of
the array formed by the actual antenna and the image antenna. There is,
of course, no field inside the conductor. The image antenna is only a virtual
antenna that seves to simplify the field determination outside the conductor.
The simplicity arises from the fact that we can use the knowledge gained on
antenna arrays in the previous section to determine the radiation pattern.
Thus, for example, for a vertical Hertzian dipole at a height of 1/2 above
the conductor surface, the radiation pattern in the vertical plane is the product
of the unit pattern, which is the radiation pattern of the single dipole in the
plane of its axis, and the group pattern corresponding to an array of two iso-
tropic radiators spaced A apart and fed in phase. This multiplication and
the resultant pattern are illustrated in Fig. 8.14. The radiation patterns
for the case of the horizontal dipole can be obtained in a similar manner.

X - L%T
\\~_—‘, I"\ ‘:*.._”' L
AR =

1/ o

Figure 8.14. Determination of radiation pattern in the vertical plane for a
vertical Hertzian dipole above a plane perfect-conductor surface.

8.6 RECEIVING ANTENNAS

Thus far we have considered the radiating, or transmitting, properties
of antennas. Fortunately, it is not necessary to repeat all the derivations for
the discussion of the receiving properties of antennas since reciprocity dictates
that the receiving pattern of an antenna be the same as its transmitting
pattern. To illustrate this in simple terms without going through the general
proof of reciprocity, let us consider a Hertzian dipole situated at the origin
and directed along the z axis, as shown in Fig. 8.15. We know that the radia-
tion pattern is then given by sin @ and that the polarization of the radiated
field is such that the electric field is in the plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume
that it is situated in the radiation field of a second antenna so that the incom-
ing waves are essentia]ly[uniform plane waves. Thus let us consider a uni-
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di )

X

Figure 8.15. For investigating the receiving properties of a Hertzian dipole.

form plane wave with its electric field E in the plane of the dipole and incident
on the dipole at an angle @ with its axis, as shown in Fig. 8.15. Then the com-
ponent of the incident electric field parallel to the dipole is E sin 0. Since the
dipole is infinitesimal in length. the voltage induced in the dipole, which is
the line integral of the electric field intensity along the length of the dipole,
is simply equal to (E sin @) d! or to E dl sin . This indicates that for a given
amplitude of the incident wave field, the induced voltage in the dipole is
proportional to sin@. Furthermore, for an incident uniform plane wave
having its electric field normal to the dipole axis, the voltage induced in the
dipole is zero, that is, the dipole does not respond to polarization with elec-
tric ficld normal to the plane of its axis. These properties are reciprocal to
the transmitting properties of the dipole. Since an arbitrary antenna can be
decomposed into a series of Hertzian dipoles, it then follows that reciprocity
holds for an arbitrary antenna. Thus any transmitting antenna can be used
as a receiving antenna and vice versa.

We shall now briefly consider the loop antenna, a common type of
receiving antenna. A simple form of loop antenna consists of a circular
loop of wire with a pair of terminals. We shall orient the circular loop antenna
with its axis aligned with the z axis, as shown in Fig. 8.16, and we shall assume
that it is electrically short, that is, its dimensions are small compared to the
wavelength of the incident wave, so that the spatial variation of the field
over the area of the loop is negligible. For a uniform plane wave incident on
the loop, we can find the voltage induced in the loop, that is, the line integral
of the electric field intensity around the loop, by using Faraday’s law. Thus
if H is the magnetic field intensity associated with the wave, the magnitude
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Figure 8.16. A circular loop antenna.

of the induced voltage is given by

—|_4 .
IVl_\_EJ;reaofB ds‘
the loop

d :

™ ’ #-d—t area of H | dSlZ
the loop
dH,

_ /lAI 2 (8.50)

where A is the area of the loop. Hence the loop does not respond to a wave
having its magnetic field entirely parallel to the plane of the loop, that is,
normal to the axis of the loop.

For a wave having its magnetic field in the plane of the axis of the loop,
and incident on the loop at an angle § with its axis, as shown in Fig. 8.16,
H, = H sin § and hence the induced voltage has a magnitude

V= uA’%—If sin 0 (8.51)

Thus the receiving pattern of the loop antenna is given by sin 8, same as that
of a Hertzian dipole aligned with the axis of the loop antenna. The loop
antenna, however, responds best to polarization with magnetic field in the
plane of its axis, whereas the Hertzian dipole responds best to polarization
with electric field in the plane of its axis.
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Example 8.3. The directional properties of a receiving antenna can be
used to locate the source of an incident signal. To illustrate the principle,
let us consider two vertical loop antennas, numbered 1 and 2, situated on the
x axis at x = 0 m and x = 200 m, respectively. By rotating the loop antennas
about the vertical (z axis), it is found that no (or minimum) signal is induced
in antenna 1 when it is in the xz plane and in antenna 2 when it is in a
plane making an angle of 5° with the axis, as shown by the top view in Fig.
8.17. Let us find the location of the source of the signal.

\ 200 m

Figure 8.17. Top view of two loop antennas used to locate the source of an
incident signal.

Since the receiving properties of a loop antenna are such that no signal
is induced for a wave arriving along its axis, the source of the signal is located
at the intersection of the axes of the two loops when they are oriented so as
to receive no (or minimum) signal. From simple geometrical considerations,
the source of the signal is therefore located on the y axis at y = 200/tan 5°
or 2.286 km. -

8.7 SUMMARY

In this chapter we studied the principles of antennas. We first introduced
the Hertzian dipole, which is an elemental wire antenna, and derived the
complete electromagnetic field due to the Hertzian dipole by employing an
intuitive approach based on the knowledge gained in the previous chapters.
For a Hertzian dipole of length d/, oriented along the z axis at the origin,
and carrying current

I(t) = I, cos wt

we found the complete electromagnetic field to be given by
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| — 24 dl cos B sin (co:a— Bry | Bcos (C,"f — /fr)] il

drew
I, dl sin O sin (wt — Br) , B cos(wt — Br)
+ 0471:660 [ r’ * r
_ B?sin (ot — Br)].
e ],

H— I, d‘l‘ 7stin 6 [cos (co:z— fr)  Bsin (0t — ﬂr)] i,

r

where f = w./u€ is the phase constant.

For fr>> 1 or for r>> 1/2x, the only important terms in the complete
field expressions are the 1/r terms since the remaining terms are negligible
compared to these terms. Thus for » > 1/2x, the Hertzian dipole fields are
given by

E — _’ﬂb‘&lrﬂsin(wt — i,
H— _Wsm (w1 — Br)i,

where n = ./ u/e is the intrinsic impedance of the medium. These fields,
known as the radiation fields, correspond to locally uniform plane waves
radiating away from the dipole and, in fact, are the only components of the
complete fields contributing to the time-average radiated power. We found
the time-average power radiated by the Hertzian dipole to be given by

o= {2

and identified the quantity inside the brackets to be its radiation resistance.
The radiation resistance, R,,4, of an antenna is the value of a fictitious resistor
that will dissipate the same amount of time-average power as that radiated
by the antenna when a current of the same peak amplitude as that in the
antenna is passed through it. Thus for the Hertzian dipole,

_ 2an (dl\*
an _T(}»>

We then examined the directional characteristics of the radiation fields of
the Hertzian dipole, as indicated by the factor sin @ in the field expressions
and hence by the factor sin2 @ for the power density. We discussed the radia-
tion patterns and introduced the concept of the directivity of an antenna.
The directivity, D, of an antenna is defined as the ratio of the maximum power
density radiated by the antenna to the average power density. For the
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Hertzian dipole,
D=15

As an illustration of obtaining the radiation fields due to a wire antenna
of arbitrary length and arbitrary current distribution by representing it as a
series of Hertzian dipoles and using superposition, we considered the example
of a half-wave dipole and derived its radiation fields. We found that for a
center-fed half-wave dipole of length L (= 1/2), oriented along the z axis
with its center at the origin, and having the current distribution given by

a nz _L L
I(z) = I, cos 7 €08 wt for 5 <z< 5

the radiation fields are

_ _nl, cos[(m/2) cos 9] . ( _m )

E . sng S wt )
_ 1y cos[(m/2)cos 0] . _n >

L 2mr sin @ e <cot L")Y

From these, we sketched the radiation patterns and computed the radiation

resistance and the directivity of the half-wave dipole to be

R,,s = 73 ohms for free space
D = 1.642

We discussed antenna arrays and introduced the technique of obtaining
the resultant radiation pattern of an array by multiplication of the unit and
the group patterns. For an array of two antennas having the spacing d and
fed with currents of equal amplitude but differing in phase by &, we found

the group pattern for the fields to be COSMOST—M , where y is the

angle measured from the axis of the array, and we investigated the group
patterns for several pairs of values of 4 and a. For example, for d = A/2
and o = 0, the pattern corresponds to maximum radiation broadside to the
axis of the array, whereas for d = 1/2 and & = =, the pattern corresponds to
maximum radiation endfire to the axis of the array.

To take into account the effect of ground on antennas, we introduced the
concept of an image antenna in a perfect conductor and discussed the applica-
tion of the array techniques in conjunction with the actual and the image
antennas to obtain the radiation pattern of the actual antenna in the presence
of the ground.

Finally, we discussed the reciprocity between the receiving and radiating
properties of an antenna by considering the simple case of the Hertziandipole.
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We introduced the loop antenna and illustrated the application of its direc-
tional properties for locating the source of an incident signal.

REVIEW QUESTIONS

8.1.
8.2

8.3.
8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.
8.11.
8.12.
8.13.

8.14.
8.15.
8.16.
8.17.

8.18.

8.19.

What is a Hertzian dipole?

Discuss the time-variations of the current and charges associated with the
Hertzian dipole.

Briefly describe the spherical coordinate system.

Explain why it is simpler to use the spherical coordinate system to find the
fields due to the Hertzian dipole.

Discuss the reasoning associated with the intuitive extension of the fields due
to the time-varying current and charges of the Hertzian dipole based on time-
varying electromagnetic phenomena.

Explain the reason for the inconsistency with Maxwell’s equations of the intui-
tively derived fields due to the time-varying current and charges of the Hert-
zian dipole.

Briefly outline the reasoning used for the removal of the inconsistency with
Maxwell’s equations of the intuitively derived fields due to the Hertzian
dipole.

Discuss the characteristics of the complete electromagnetic field due to the
Hertzian dipole.

Consult an appropriate reference book and compare the procedure used for
obtaining the electromagnetic field due to the Hertzian dipole with the pro-
cedure used here.

What are radiation fields ? Why are they important ?
Discuss the characteristics of the radiation fields.
Define the radiation resistance of an antenna.

Why is the expression for the radiation resistance of a Hertzian dipole not
valid for a linear antenna of any length?

Explain why power lines are not effective radiators.
What is a radiation pattern?
Discuss the radiation pattern for the power density due to the Hertzian dipole.

Define the directivity of an antenna. What is the directivity of a Hertzian
dipole?

What is the directivity of a fictitious antenna that radiates equally in all direc-
tions into one hemisphere ?

How do you find the radiation fields due to an antenna of arbitrary length and
arbitrary current distribution ?
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8.20.

8.21.

8.22,

8.23.

8.24.

8.25.

8.26.

8.27.

8.28.
8.29.

8.30.

8.31.

8.32.

8.33.

8.34.

8.35.

8.36.

Discuss the evolution of the half-wave dipole from an open-circuited trans-
mission line.

Justify the approximations involved in evaluating the integrals in the deter-
mination of the radiation fields due to the half-wave dipole.

What are the values of the radiation resistance and the directivity for a half-
wave dipole?

What is an antenna array?

Justify the approximations involved in the determination of the resultant
field of an array of two antennas.

Why is it that the distances r; and r, in the phase factors in Eqgs. (8.47a) and
(8.47b) cannot be set equal to r, but the same quantities in the amplitude
factors can be set equal to r?

What is an array factor ? Provide a physical explanation for the array factor.

Discuss the concept of unit and group patterns and their multiplication to
obtain the resultant pattern of an array.

Distinguish between broadside and endfire radiation patterns.

Discuss the concept of an image antenna to find the field of an antenna in the
vicinity of a perfect conductor.

What determines the sense of the current flow in an image antenna relative to
that in the actual antenna?

How does the concept of an image antenna simplify the determination of the
radiation pattern of an antenna above a perfect conductor surface?

Discuss the reciprocity associated with the transmitting and receiving proper-
ties of an antenna. Can you think of a situation in which reciprocity does not
hold?

What is the receiving pattern of a loop antenna?

How should you orient a loop antenna to receive (a) a maximum signal and
(b) a minimum signal ?

Discuss the application of the directional receiving properties of a loop
antenna in the location of the source of a radio signal.

How would you determine the direction of arrival of a radio signal by employ-
ing an array of two antennas located in the plane of incidence of the signal?

PROBLEMS

8.1.

The electric dipole moment associated with a Hertzian dipole of length 0.1 m
is given by

p = 10"?sin 27z X 107¢i, C-m

Find the current in the dipole.
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8.2

8.3.

84.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.13

8.14

CH. 8 ANTENNAS

Evaluate the curl of E given by Eq. (8.12a) and show that it is not equal to
——y%—l;l where H is given by Eq. (8.12b).

Show that in the limit @ — 0, the complete field expressions given by Egs.
(8.23a) and (8.23b) tend to Egs. (8.12a) and (8.12b), respectively.

Show that the radiation fields given by Egs. (8.25a) and (8.25b) do not by
themselves satisfy both of Maxwell’s curl equations.

Find the value of r at which the amplitude of the radiation field term in Eq.
(8.23a) is equal to the resultant amplitude of the remaining two terms in the
6 component.

Obtain the Poynting vector corresponding to the complete electromagnetic
field duc to the Hertzian dipole and show that the 1/r3 and 1/r2 terms do not
contribute to the time-average power flow from the dipole.

A straight wire of length 1 m situated in free space carries a uniform current
10 cos 4 x 106¢ amp. (a) Calculate the amplitude of the electric field intensity
at a distance of 10 km in a direction at right angle to the wire. (b) Calculate
the radiation resistance and the time-average power radiated by the wire.

Compute the radiation resistance per kilometer length of a straight power-line
wire. Comment on the effectiveness of the power line as a radiator.

Find the time-average power required to be radiated by a Hertzian dipole in
order to produce an electric field intensity of peak amplitude 0.01 V/m at a
distance of 1 km broadside to the dipole.

A Hertzian dipole situated at the origin and oriented along the x axis carries
a current I; = I cos wt. A second Hertzian dipole, having the same length
and also situated at the origin but oriented along the z axis, carries a current
I, = I, sin ot. Find the polarization of the radiated electric field at (a) a point
on the x axis, (b) a point on the z axis, (¢) a point on the y axis, and (d) a point
on the line x =y, z =0.

Find the ratio of the currents in two antennas having directivities D, and D,
and radiation resistances R;,q ; and R;,q , for which the maximum radiated
power densities are equal.

The radiation pattern for the power density of an antenna located at the origin
is dependent on @ in the manner sin* . Find the directivity of the antenna.

. The radiation pattern for the power density of an antenna located at the
origin is dependent on @ in the manner sin? 8 cos? #. Find the directivity of
the antenna.

. In Fig. 8.7, let L = 2 m, and investigate the variations of r* and zr’/L for
—L/2 < z’ < L/2 for (a) a point in the xy plane at r = 1 km and (b) a point
on the z axis at r = 1 km.

8.15. By dividing the interval 0 < @ < 7/2 into nine equal parts, numerically com-



CH. 8 PROBLEMS 327

8.16.
8.17.

8.18

8.19.

8.20.

8.21.

8.22.

8.23.

8.24

8.25.

8.26.

pute the value of

"2 cos? [(/2) cos 0] 40
i sin @

Complete the missing steps in the evaluation of the integral in Eq. (8.37a).

Find the time-average power required to be radiated by a half-wave dipole
in order to produce an electric ficld intensity of pcak amplitude 0.01 V/m at
a distance of 1 km broadside to the dipole.

Compare the correct value of the radiation resistance of the half-wave dipole
with the incorrect value that would result from using the expression for the
radiation resistance of the Hertzian dipole.

A short dipole is a center-fed straight wire antenna having a length small
compared to a wavelength, The amplitude of the current distribution can then
be approximated as decreasing linearly from a maximum at the center to zero
at the ends. Thus for a short dipole of length L lying along the z axis between
z = —L/2 and z = L/2, the current distribution is given by

Io(l—l—zfz)cosa)t for—%<z<0
I(z) =

22) L
I"(]_f cos Wt for0<z<-2—

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation
resistance and the directivity of the short dipole.

For the array of two antennas of Example 8.1, find and sketch the group pat-
terns for (@) d = A/4, ¢ = /2 and (b) d = 24, & = 0.

For the array of two antennas of Example 8.1, having d = /4, find the value
of & for which the maxima of the group pattern are directed along ¥ = +60°,
and then sketch the group pattern.

Obtain the resultant pattern for a linear array of eight isotropic antennas,
spaced A/2 apart, carrying equal currents, and fed in phase.

Obtain the resultant pattern for a linear array of three isotropic antennas,
spaced A/2 apart, carrying unequal currents in the ratio 1:2:1, and fed in
phase.

For the array of two Hertzian dipoles of Fig. 8.9, find and sketch the resultant
pattern in the xz plane for d = A/2 and & = 7.

For the array of two Hertzian dipoles of Fig. 8.9, find and sketch the resultant
pattern in the xz plane for d = A/4 and & = —m/2.

For a horizontal Hertzian dipole at a height 1/4 above a plane, perfect con-
ductor surface, find and sketch the radiation pattern in (a) the vertical plane
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8.27.

8.28.

8.29.

8.30.

8.31.

8.32.
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perpendicular to the axis of the antenna and (b) the vertical plane containing
the axis of the antenna.

For a vertical antenna of length A/4 above a plane, perfect conductor surface,
find (a) the radiation pattern in the vertical plane and (b) the directivity.

A Hertzian dipole is situated parallel to a corner reflector, which is an arrange-
ment of two plane, perfect conductors at right angles to each other, as shown
by the cross-sectional view in Fig. 8.18. (a) Locate the image antennas required
to satisfy the boundary conditions on the corner reflector surface. (b) Find
and sketch the radiation pattern in the cross-sectional plane.

Hertzian

A
4 ? Dipole
A
1

Figure 8.18. For Problem 8.28,

If the Hertzian dipole in Fig. 8.18 is situated at a distance A/2 from the corner
and equidistant from the two planes, find the ratio of the radiation field at a
point broadside to the dipole and away from the corner to the radiation field
in the absence of the corner reflector.

An arrangement of two identical Hertzian dipoles situated at the origin and
oriented along the x and y axes, known as the turnstile antenna, is used for
receiving circularly polarized signals arriving along the z axis. Determine how
you would combine the voltages induced in the two dipoles so that the turn-
stile antenna is responsive to circular polarization rotating in the clockwise
sense as viewed by the antenna but not to that of the counterclockwise sense
of rotation.

A vertical loop antenna of area 1 m? is situated at a distance of 10 km from a
vertical wire antenna of length A/4 above a perfectly conducting ground
(directivity = 3.28; see Problem 8.27) radiating at 2 MHz. The loop antenna
is oriented so as to maximize the signal induced in it. For a time-average
radiated power of 10 kW, find the amplitude of the voltage induced in the
loop antenna.

An interferometer consists of an array of two identical antennas with spacing
d. Show that for a uniform plane wave incident on the array at an angle ¥ to
the axis of the array, as shown in Fig. 8.19, the phase difference A¢ between
the voltage induced in antenna 1 and the voltage induced in antenna 2 is
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Figure 8.19. For Problem 8.32,

%dr:os ¥, where A is the wavelength of the incident wave. For d = 24 and
for A¢p = 30°, find all possible values of . Take into account the fact that the

phase measurement is ambiguous by the amount -+2n7 where 2 is an integer.
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In the preceding five chapters we studied the principles of propagation,
transmission, and radiation of electromagnetic waves. These phenomena are
based upon the interaction between the time-varying electric and magnetic
fields as indicated by Maxwell’s equations that we introduced in Chaps. 2 and
3. To conclude our study of the elements of engineering electromagnetics, we
shall devote this chapter to static fields, that is, fields independent of time,
and quasistatic fields, which are low-frequency extensions of static fields.
Since we have already built up many of the concepts and tools of engineering
clectromagnetics in the previous chapters, our goal in this chapter will be to
start with Maxwell’s equations, set the time variations equal to zero, and
proceed with a logical development of the topics.

Perhaps the most important quantity in the study of static fields is the
electric potential, a scalar that is related to the static electric field intensity
through a vector operation known as the “gradient.” We shall introduce the
gradient and the electric potential at the outset and illustrate the computation
of the static electric field through the use of the potential concept. We shall
then consider the solution of two important differential equations involving
the potential, known as “Poisson’s equation” and “Laplace’s equation,”
which have applications in electronic devices, among others. We shall then
extend our study to the quasistatic case, illustrating the determination of
low-frequency behavior of physical structures via the quasistatic field
approach, and we shall finally conclude the chapter with a discussion of
magnetic circuits.

kX |



9.1 GRADIENT AND ELECTRIC POTENTIAL

For static fields, 8/d¢ = 0, and Maxwell’s curl equations given for time-
varying fields by
JB

VxE= —37 9.1)
VxH=1J+3D (9.2)
reduce to
VxE=0 9.3
VxH=1J 9.4)

respectively. Equation (9.3) states that the curl of the static electric field is
equal to zero. If the curl of a vector is zero, then that vector can be expressed
as the “gradient” of a scalar, since the curl of the gradient of a scalar is
identically equal to zero. The gradient of a scalar, say @, denoted V@ (del @)
is given in Cartesian coordinates by

_fs 0 . @ .0
Vo = (I"d’_)—c - ly@ - 1,E)(I>
_ 00,  dD., L dD.
—Wlx—f—wly-l-wl, 9.5)
The curl of V& is then given by
i, i, i,
d d d

(V®). (V@), (VD).

S T
9 9 9
=|dx dy 0z
io 90 o0
dx dy 0z
=0 9.6)

To discuss the physical interpretation of the gradient, we note that
(0D, , 0D. , 0D, 5 5 A
V(I)-dl—(ﬁlx—kwly—l—ﬁl,) (dxi, 4 dyi, +dzi,)

[
= d® 0.7

_ 0D J® o]
—de—l-wdy—l——zdz
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Let us consider a surface on which @ is equal to a constant, say ®@,, and a
point P on that surface as shown in Fig. 9.1(a). If we now consider another
point Q, on the same surface and an infinitesimal distance away from P, d®
between these two points is zero since @ is constant on the surface. Thus for
the vector dl, drawn from P to Q,, [V®], » dl;, = 0 and hence [V®], is
perpendicular to dl,. Since this is true for all points Q,, @5, @5, ... on the

(a)

Figure 9.1. For discussing the physical interpretation of the gradient of
a scalar function,

constant @ surface, it follows that [V®], must be normal to all possible
infinitesimal displacement vectors dl,, dl,, dl;, ... drawn at P and hence is
normal to the surface. Denoting i, to be the unit normal vector to the surface
at P, we then have

VO], = |V® |- i, 9.8)
Let us now consider two surfaces on which @ is constant, having values
®, and @, + d®, as shown in Fig. 9.1(b). Let P and Q be points on the

®d = ®, and ® = @, + d® surfaces, respectively, and dl be the vector
drawn from P to Q. Then from (9.7) and (9.8),

d® = [V®]; - dl
= |V®@|p i, « dl
= |V®|pdlcos 9.9)

where o is the angle between i, at P and dl. Thus

_dd
VO |, = A cosa (9.10)
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Since dl cos o is the distance between the two surfaces along i, and hence is
the shortest distance between them, it follows that | V@ |, is the maximum rate
of increase of @ at the point P. Thus the gradient of a scalar function @ at a
point is a vector having magnitude equal to the maximum rate of increase of
® at that point and is directed along the direction of the maximum rate of
increase, which is normal to the constant @ surface passing through that
point. This concept of the gradient of a scalar function is often utilized to find
a unit vector normal to a given surface. We shall illustrate this by means of an
example.

Example 9.1. Let us find the unit vector normal to the surface y = x?* at the
point (2, 4, 1) by using the concept of the gradient of a scalar.
Writing the equation for the surface as
x2—y=20
we note that the scalar function that is constant on the surface is given by
(I)(X,y, Z) = x?— y

The gradient of the scalar function is then given by

VO = V(x2 —y)

_ 0 =y 02—y 4 0 —p);
- Ix i, + ay l_v+ Jz I

= 2xi, — i,

The value of the gradient at the point (2, 4, 1) is 2(2)i, — i, = 4i, — i,. Thus
the required unit vector is

4i,

|—4.—_Ti(f f) -

Returning to Maxwell’s curl equation for the static electric field given by
(9.3), we can now express E as the gradient of a scalar function, say, ®. The
question then arises as to what this scalar function is. To obtain the answer,
let us consider a region of static electric field. Then we can draw a set of
surfaces orthogonal everywhere to the field lines, as shown in Fig. 9.2. These
surfaces correspond to the constant @ surfaces. Since on any such surface
E « d1 = 0, no work is involved in the movement of a test charge from one
point to another on the surface. Such surfaces are known as the “equipoten-
tial surfaces.” Since they are orthogonal to the field lines, they may physically
be occupied by conductors without affecting the field distribution.
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Equipotential
Surfaces

Figure 9.2. A set of equipotential surfaces in a region of static electric
field.

Movement of a test charge from a point, say 4, on one equipotential
surface to a point, say B, on another equipotential surface involves an amount

of work per unit charge equal to JB E ¢ dl to be done by the field. This
A

quantity is known as the “electric potential difference” between the points 4
and B and is denoted by the symbol [V]2. It has the units of volts. There is a
potential drop from 4 to B if work is done by the field and a potential rise if
work is done against the field by an external agent. The situation is similar to
that in the earth’s gravitational field for which there is a potential drop
associated with the movement of a mass from a point of higher elevation to a
point of lower elevation and a potential rise for just the opposite case.

It is convenient to define an “electric potential” associated with each point.
The potential at point A4, denoted V,, is simply the potential difference
between point A and a reference point, say O. It is the amount of work per
unit charge done by the field in connection with the movement of a test
charge from 4 to O, or the amount of work per unit charge done against the
field by an external agent in moving the test charge from O to 4. Thus

Vo= LOE-dlz —f:E-dl ©.11)
and
[V]ﬁ:ij-dl:j:E.lerj:E.dl
:LoE-dl—J;E-dl
— V=V, 9.12)
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If we now consider points A and B to be separated by infinitesimal length
dl from A to B, then the incremental potential drop from A to BisE, « dl, or
the incremental potential rise 4V along the length 4l is given by

dV=—E,.dl 9.13)
Writing
dv=1[VV],.dl 9.14)

in accordance with (9.7), we then have
[VV],«dl= —E, . dl 9.15)
Since (9.15) is true at any point 4 in the static electric field, it follows that
E=-VV (9.16)

Thus we have obtained the result that the static electric field is the negative of
the gradient of the electric potential.

Before proceeding further we note that the potential difference we have
defined here has the same meaning as the voltage between two points, defined
in Sec. 2.1. We, however, recall that the voltage between two points 4 and B
in a time-varying field is in general dependent on the path followed from A4 to

B
B to evaluate J E « dl since according to Faraday’s law
A

§Eodl=—% B.dS ©.17)
C S

is not in general equal to zero. On the other hand, the potential difference (or
voltage) between two points 4 and B in a static electric field is independent of

the path followed from A4 to B to evaluate F E . dl since for static fields,
A
d/dt = 0, and (9.17) reduces to

3€ E.dl=0 (9.18)

Thus the potential difference between two points in a static electric field has a
unique value. Fields for which the line integral around a closed path is zero
are known as “conservative” fields. The static electric field is a conservative
field. The earth’s gravitational field is another example of a conservative field
since the work done in moving a mass around a closed path is equal to zero.

Returning now to the discussion of electric potential, let us consider the
electric field of a point charge and investigate the electric potential due to the
point charge. To do this, we recall from Sec. 1.5 that the electric field intensity
due to a point charge Q is directed radially away from the point charge and
its magnitude is Q/4me,R? where R is the radial distance from the point
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charge. Since the equipotential surfaces are everywhere orthogonal to the
field lines, it then follows that they are spherical surfaces centered at the point
charge, as shown by the cross-sectional view in Fig. 9.3. If we now consider
two equipotential surfaces of radii R and R + dR, the potential drop from

the surface of radius R to the surface of radius R + dR is 47z€Q 7 dR or, the
0
incremental potential rise dV is given by
. Y )
= d<4MOR +C (9.19)
where C is a constant. Thus
VR) =2+ ¢ (9.20)

4ze,

A

Figure 9.3. Cross-sectional view of equipotentiai surfaces and eleciric
field lines for a point charge.

We can conveniently set C equal to zero by noting that it is equal to ¥(cc) and
by choosing R = oo for the reference point. Thus we obtain the electric
potential due to a point charge Q to be

__9
V= ek 9.21)
We note that the potential drops off inversely with the radial distance away
from the point charge.
Equation (9.21) is often the starting point for the computation of the
potential field due to static charge distributions and the subsequent deter-
mination of the electric field by using (9.16). We shall illustrate this by



338 CH. 9 StATIC AND QUASISTATIC FIELDS

considering the case of the electric dipole in the following example and we
shall include a few other cases in the problems.

Example 9.2. As we have learned in Sec. 5.2, the electric dipole consists of
two equal and opposite point charges. Let us consider a static electric dipole
consisting of point charges Q and — Q situated on the z axis at z = d/2 and
z = —dJ2, respectively, as shown in Fig. 9.4(a) and find the potential and
hence the electric field at distances far from the dipole.

ZA
P(r,0,9) Equipotentials
-7
/
7
LS
r]/// Fya |
" /// | Direction
// rs 7 | Lines
oy 4 |
aks 1 |
2y A -
7 I
g ye} \‘\‘\ l
27-0 S~ |
x | “'"‘-\\ |
| ~
|
|
|
|
(a) (b)

Figure 9.4. (a) Geometry pertinent to the determination of the electric field
due to an electric dipole. (b) Cross sections of equipotential surfaces and
direction lines of the electric field for the electric dipole.

First we note that in view of the symmetry associated with the dipole
around the z axis, it is convenient to use the spherical coordinate system. As
discussed in Appendix A, the spherical coordinates of a point P are the
distance * from the origin O to the point P, the angle § which the line OP
makes with the z axis, and the angle ¢ which the line from the origin to the
projection of P onto the xy plane makes with the x axis as shown in Fig.
9.4(a). Denoting the distance from the point charge Q to P to be r, and the
distance from the point charge — Q to P to be r,, we write the expression for
the electric potential at P due to the electric dipole as

V — Q —Q

T 4meqr, iy 4reyr,

- 47?50(% B "iz)
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For a point P far from the dipole, that is, for » >> d, the lines drawn from
the two charges to the point are almost parallel. Hence

d
rlkr—Tcose

r2&r+%0050
and

1 I _rp—ry _dcosf

7y Fy  PiFy r2

so that

VdecosB _ P
4re,r? 4meyr?

where p = Qdi, is the dipole moment of the electric dipole. Thus the potential
field of the electric dipole drops off inversely with the square of the distance
from the dipole.

Now, from (9.16) and noting from Appendix B that the gradient of a
scalar in spherical coordinates is given by

_ 0D, 190, 1 00,
Ve ="t d0" " rsing 9g "

we obtain the electric field intensity due to the dipole to be

_ w0 (Qdcos@\. 1 0 (Qdcosb\.
B -V = 0r(4neor2 )l’ r o0 (41!60r2 )le

= ‘%(2 cos 0 i, + sin 8 iy)
We note that this result agrees with the one obtained directly in (8.8) in
Sec. 8.1.

Finally, a sketch of the direction lines of the electric field and of the cross
sections of the equipotential surfaces (cos §/r? = constant) is shown in Fig.
9.4(b). Although it is possible to derive the equation for the direction lines, it
is not essential to do so since they can be sketched by recognizing that (a) they
must originate from the positive charge and end on the negative charge and
(b) they must be everywhere perpendicular to the equipotential surfaces. m

9.2 POISSON'S EQUATION

In the previous section we learned that for the static electric field, V x E

is equal to zero, and hence
E=—-VV
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Substituting this result into Maxwell’s divergence equation for D, and
assuming € to be uniform, we obtain

V:D=V.cE=¢V.E
=€V (—=VV)=p
or

V.vr=-—£
€
The quantity V « VV is known as the “Laplacian” of V, denoted V2F (del
squared V). Thus we have

V2 — _% 9.22)

This equation is known as “Poisson’s equation.” It governs the relationship
between the volume charge density p in a region and the potential in that
region. In Cartesian coordinates,

ViV =V .VV
AR BN B A S LA 4
_<1xﬁ+1y@—|—1z£> <Wlx—|—W1y+WIZ>

02V | d*V | 9

=3 Tt 0:23)
and Poisson’s equation becomes
v | 9V, WV _  p (9.24)

gt tar= ¢

For the one-dimensional case in which ¥ varies with x only, d2¥/dy? and
02V/dz? are both equal to zero, and (9.24) reduces to . '
0V 4w p
T =dr = ¢ 9.25)
To illustrate an example of the application of (9.25), let us consider the
space charge layer in a p-n junction semiconductor with zero bias, as shown
in Fig. 9.5(a), in which the region x < 0 is doped p-type and the region
x > 0 is doped n-type. To review briefly the formation of the space charge
layer, we note that since the density of the holes on the p side is larger than
that on the » side, there is a tendency for the holes to diffuse to the # side and
recombine with the electrons. Similarly, there is a tendency for the electrons
on the n side to diffuse to the p side and recombine with the holes. The
diffusion of holes leaves behind negatively charged acceptor atoms and the



Space Charge

L \
@ © ' \ PPN
Hole @ @ @ @ @ @ @ @ @
@ ® e p— © _© _0O Electron
O 6 OE0|® 6 6
Acceptor/g)@ ®@ @ @ @ @ ®e®5\l)onor
lon lon
x <0, p-type x=0 x > U, n-type
(a)
[ ¥
eNp,
0 d, -
—eNA
(b)
ExJL
: ! X
-dp 0 d,
eN,d,
T e
(c)
Ny AV
2 +dndp)‘/
t’NAdE
2e
! P X
—dp 0 d,

(d)

Figure 9.5. For illustrating the application of Poisson’s equation for the

determination of the potential distribution for a p—n junction semiconduc-
tor.
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diffusion of electrons leaves behind positively charged donor atoms. Since
these acceptor and donor atoms are immobile, a space charge layer, also
known as the “depletion layer,” is formed in the region of the junction with
negative charges on the p side and positive charges on the # side. This space
charge gives rise to an electric field directed from the # side of the junction to
the p side so that it opposes diffusion of the mobile carriers across the
junction thereby resulting in an equilibrium.

For simplicity, let us consider an abrupt junction, that is, a junction in
which the impurity concentration is constant on either side of the junction.
Let N, and N, be the acceptor and donor ion concentrations, respectively,
and d, and d, be the widths in the p and n regions, respectively, of the deple-
tion layer. The space charge density p is then given by

p— {—eNA for —d, <x <0 9.26)

eN, for 0<x<d,
as shown in Fig. 9.5(b), where e is the electronic charge. Since the semiconduc-

tor is electrically neutral, the total acceptor charge must be equal to the total
donor charge, that is,

eN,d, = eNyd, (9.27)
Substituting (9.26) into (9.25), we obtain

" eTNA for —d, <x <0
Z_‘Z’ — (9.28)
* _% for 0<x<d,

This equation governs the potential distribution in the depletion layer.
To solve (9.28) for V, we integrate it once and obtain

eN, .
av Tx-FC1 for —d, <x <0
4z —efﬂx + C, for O0<x<d,

where C, and C, are constants of integration. To evaluate C, and C,, we note
that since E = —VV = —(@V/dx)i,, dV/dx is simply equal to —E,. Since
the electric field lines begin on the positive charges and end on the negative
charges, the field and hence 0V/dx must vanish at x = —d, and x = d,,
giving us

%(x +d,) for—d,<x<0
Z_V — (9.29)
x —e—Jg—D(x —d) for O0<x<d,
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The field intensity, that is, —(dV/dx), may now be sketched as a function of x
as shown in Fig. 9.5(c).
Proceeding further, we integrate (9.29) and obtain

Nix +d)y+C, for—d,<x<0

+ C, ioi 0 < x<d,
where C, and C, are constants of integration. To evaluate C; and C,, we first
set the potential at x = —d,, arbitrarily equal to zero to obtain C, equal to

zero. Then we make use of the condition that the potential be continuous at
x = 0, since the discontinuity in dV/dx at x = 0 is finite, to obtain

eN, ;, eNp 5,
2Ed =~ 5 d: + C,
or

Co =5 (Nydj + Ny d})

Substituting this value for C, and setting C; equal to zero in the expression for
V, we get the required solution

eNA(x + d,)? for —d, <x <0
V= (9.30)
eND(x — 2% d,,)-|—eN"d2 for 0<x<d,

The variation of potential with x as given by (9.30) is shown in Fig. 9.5(d).

We can proceed further and find the width d = d, + d, of the depletion
layer by setting 7(d,) equal to the contact potential, ¥, that is, the potential
difference across the depletion layer resulting from the electric field in the
layer. Thus

Vo= Vd) =2 az + L2 a

_ £ ND(NA+ND)d2_|_ e NA(NA_I—ND)dZ
2 N,+ N, 2¢ Ns+ Np ?
NCIE, 7
" 26N, Np
_ e NN, d2
2¢e Ny+ Np

(d} +d; +2d,d,)

where we have used (9.27). Finally, we obtain the result that

TeVo( L _i_)
e (NA—l—ND
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which tells us that the depletion layer width is smaller the heavier the doping
is. This property is used in tunnel diodes to achieve layer widths on the order
of 10~¢ cm by heavy doping as compared to widths on the order of 1074 cm
in ordinary p—# junctions.

We have just illustrated an example of the application of Poisson’s
equation involving the solution for the potential distribution for a given
charge distribution. Poisson’s equation is even more useful for the solution of
problems in which the charge distribution is the quantity to be determined
given the functional dependence of the charge density on the potential. We
shall, however, not pursue this topic any further.

9.3 LAPLACE'S EQUATION

In the previous section we derived Poisson’s equation

Vi = L
€

If the charge density in a region is zero, then Poisson’s equation reduces to
ViV =10 (9.31)

This equation is known as “Laplace’s equation.” It governs the behavior of
the potential in a charge-free region. In Cartesian coordinates, it is given by

axv . 0V | 9V
g T g T =0 ©-32)

Laplace’s equation is also satisfied by the potential in conductors under
steady current condition. For the steady current condition, dp/dt = 0 and
the continuity equation given for the time-varying case by

reduces to
V:J.=0 (9.33)

Replacing J, by 6E = —oVV where o is the conductivity of the conductor
and assuming ¢ to be constant, we obtain

VeogE=6¢V:E=—0¢V.VV=—0aVV=0
or
V2V =0
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The problems for which Laplace’s equation is applicable consist of
finding the potential distribution in the region between two conductors given
the charge distribution on the surfaces of the conductors or the potentials of
the conductors or a combination of the two. The procedure involves the
solving of Laplace’s equation subject to the boundary conditions on the sur-
faces of the conductors. The electric field intensity between the conductors is
then found by using E = —VV, from which the conduction current density
is obtained by using J, = oE, if the medium is a conductor. We shall illustrate
this by means of an example involving variation of ¥ in one dimension.

Example 9.3. Let us consider two infinite, plane, parallel, perfectly con-
ducting plates occupying the planes x = 0 and x = d and kept at potentials
¥V = 0 and ¥V = V,, respectively, as shown by the cross-sectional view in Fig.
9.6, and find the solution for Laplace’s equation in the region between the
plates. The arrangement may be considered an idealization of two parallel
plates having dimensions very large compared to the spacing between them.

+ H lt -

x=0, V=0

Figure 9.6. For illustrating the solution of Laplace’s equation in one
dimension.

The potential is obviously a function of x only and hence (9.32) reduces to

9w _ 4 _
9x% — dx*

Integrating this equation twice, we obtain
V(x) = Ax + B

where A and B are constants of integration. To determine the values of 4 and
B, we make use of the boundary conditions for V, that is,

V=20 forx =20
V=V, forx=4d
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giving us

0= A4(0) +- B or B=0
Vo—=AWd)+B=Ad or A=Yo

Thus the required solution for the potential is given by
_V
V= =% for0<x<d

which tells us that the equipotentials are planes parallel to the conductors, as
shown in Fig. 9.6.
Proceeding further, we obtain

E=-vw=-39 - _Yoi  ftoro<x<d
dx d
This field is uniform and directed from the higher potential plate to the lower
potential plate, as shown in Fig. 9.6. The surface charge densities on the two
plates are given by

[pslemo = Dlwy » iy = — 00, v, = — o
[Psleea = [Dlawy + (—i) = =104, » (i) — o

The magnitude of the surface charge per unit area on either plate is Q =
| ps|(1) = €V,/d, and the capacitance per unit area of the plates, that is, the
ratio of Q to V,, is equal to €/d.

If the medium between the plates is a conductor, then the conduction
current density is given by

_aV,
d

J,=0E = i,
The conduction current from the higher potential plate to the lower potential

plate per unit area of the plates is I, = |J,[(1) = ¢V,/d, and the conductance
per unit area of the plates, that is, the ratio of I, to ¥, isequal too/d. m

We have just illustrated the solution of Laplace’s equation by considering
an example involving the variation of ¥ in one dimension only. Before going
on to the solution of Laplace’s equation in two dimensions, a brief discussion
of the applicability of Laplace’s equation in the determination of transmission-
line parameters and field maps is in order. To do this, we recall that a trans-
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mission line is characterized by fields that are entirely transverse to its axis.
Hence in any given transverse plane, that is, cross-sectional plane, if E.dl
c

= 0 and E possesses the same spatial characteristics in the transverse dimen-
sions as those of a static field although it is time-varying. Thus by solving
Laplace’s equation in the cross-sectional plane, subject to the boundary
conditions at the conductors of the line, we can obtain the field map consisting
of equipotential “lines” and electric field lines. The equipotential lines, being
everywhere orthogonal to the electric field lines, are identical to the magnetic
field lines. Conversely, the graphical field mapping technique discussed in
Sec. 6.3 is equally applicable to the solution of Laplace’s equation if we
recognize that the magnetic field lines are equivalent to equipotential lines.
A comparison of the results of Example 9.3 with the parallel-plate transmis-
sion line case in Sec. 6.2 serves as an example for this discussion.

Returning to the solution of Laplace’s equation, we now consider its
solution in two dimensions, say x and y. The potential, being independent of
z, then satisfies the equation

2 2
3712’ I %7‘2/ _0 (9.34)

Equation (9.34) is a partial differential equation in two dimensions. As we
have already discussed in Sec. 4.4, the technique by means of which it is
solved is the “separation of variables” technique. It consists of assuming that
the solution for the potential is the product of two functions, one of which is a
function of x only and the second is a function of y only. Denoting these
functions to be X and Y, respectively, we have

Vix,y) = X(x) Y(») (9.35)
Substituting this assumed solution into the differential equation, we obtain

d*X

W

a2y
+ Xz =0

Dividing both sides by XY and rearranging, we get

1 d*X 1 d*Y
Xde~ Y& ©:36)
The left side of (9.36) is a function of x only; the right side is a function of

y only. Thus (9.36) states that a function of x only is equal to a function of y
only. A function of x only other than a constant cannot be equal to a function
of y only other than the same constant for all values of x and y. For example,
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2x is equal to 4y for only those pairs of values of x and y for which x = 2y.
Since we are seeking a solution that is good for all pairs of x and y, the only
solution that satisfies (9.36) is that for which each side of (9.36) is equal to a
constant, Denoting this constant to be 2, we have

d2X

and
‘57{ — _a?Y (9.37b)

Thus we have obtained two ordinary differential equations involving sepa-
rately the variables x and y, starting with the partial differential equation
involving both of the variables x and y. It is for this reason that the method is
known as the separation of variables technique.

The solutions for (9.37a) and (9.37b) are given by

A ox B —oax f 0
X(x) = { e + Be DHEES (9.382)
Aox + B, fora =0

where A4, B, A,, and B, are arbitrary constants, and

Ccosay + Dsinay fora #0

{9.38b)
Coy + D, fora =0

Y(y) = {

where C, D, C,, and D, are arbitrary constants. Substituting (9.38a) and
(9.38b) into (9.35), we obtain

(de** + Be **)(C cosay + Dsinay)  fore #0

(9.39)
(4ox + B)(Coy + Dy) foree =0

Y, y) = {

Equation (9.39) is the general solution for Laplace’s equation in the two
dimensions x and y. The arbitrary constants are evaluated from the boundary
conditions specified for a given problem. We shall now consider two
examples.

Example 9.4. Let us consider an infinitely long rectangular slot cut in a
semi-infinite plane conducting slab held at zero potential, as shown by the
cross-sectional view, transverse to the slot, in Fig. 9.7. With reference to the
coordinate system shown in the figure, assume that a potential distribution
V = V, sin (ny/b), where V, is a constant, is created at the mouth x = a of
the slot by the application of a potential to an appropriately shaped conductor
away from the mouth of the slot not shown in the figure. We wish to find the
potential distribution in the slot.
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x=a
A my
V="V, sin B
y=0 y=b
a V=0 Slot V=0 Conductor
1’ x
P L
z y x=0,V=0
L (') L

Figure 9.7. Cross-sectional view of a rectangular slot cut in a semi-infinite
plane conducting slab at zero potential. The potential at the mouth of the
slot is Vo sin (my/b) volts.

Since the slot is infinitely long in the z direction with uniform cross section,
the problem is two dimensional in x and y and the general solution for V given
by (9.39) is applicable. The boundary conditions are

V=20 fory=0,0<x<a (9.40a)
V=20 fory—»50<x<a (9.40b)
V=20 forx=0,0<y<b (9.40¢)
V=Vosin72—y forx=a,0<y<b (9.40d)

The solution corresponding to & = 0 does not fit the boundary conditions

since V is required to be zero for two values of y and in the range 0 < x < a.

Hence we can ignore that solution and consider only the solution for & = 0.
Applying the boundary condition (9.40a), we have

0 = (de** 4+ Be~**)(C) for0<x<a

The only way of satisfying this equation for a range of values of x is by
setting C = 0. Next, applying the boundary condition (9.40c), we have

0=(4 -+ B)Dsinay forO<y<bd

This requires that (4 + B)D = 0, which can be satisfied by either 4 +- B = 0
or D = 0. We, however, rule out D = 0 since it results in a trivial solution of
zero for the potential. Hence we set

A+B=0 or B=—4
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Thus the solution for V reduces to

V(x,y) = (de** — Ae=**)D sin oy

= A’ sinh ax sin oy 9.41)
where A’ = 24D.
Next, applying boundary condition (9.40b) to (9.41), we obtain

0 = A’ sinh ox sin ab for0<x<a

To satisfy this equation without obtaining a trivial solution of zero for the
potential, we set
sinab =0
or
b = nzn n=1273,...

ocz’%" n=1,2,3,...

Since several values of ¢ satisfy the boundary condition, several solutions are
possible for the potential. To take this into account, we write the solution as
the superposition of all these solutions multiplied by different arbitrary
constants. In this manner, we obtain

Vix,y) = _li A,sinh ™ sin TV foro<y<b (942

Finally, applying the boundary condition (9.40d) to (9.42), we get

Vosin® = S Asinh™4n™  for0<y<b  (9.43)
b n=1,79,... b b

On the right side of (9.43) we have an infinite series of sine terms in y, but on
the left side we have only one sine term in y, Equating the coefficients of the
sine terms having the same arguments, we obtain ‘

Yl sinhw _ Vo forn=1
" b 0 forn 1

or
¥
' ™ sinh (na/b)

4,=0 forn=1

Substituting this result in (9.42), we obtain the required solution for ¥ as

__ 1, sinh(@x/b) . my
V(x, y) = Vo W sin ? (9.44)



SEC. 9.3 LAPLACE’s EQUATION 351

We may now compute the potential at any point inside the slot given the
values of @, b, and V. For example, for a = b, that is, for a square slot, (9.44)
gives the potential at the center of the slot to be 0.1993V. ™

Example 9.5. Let us assume that the rectangular slot of Fig. 9.7 is covered
at the mouth x = a by a conducting plate that is kept at a potential V' = V,
making sure that the edges touching the corners of the slot are insulated, as
shown in Fig. 9.8(a), and find the solution for the potential in the slot for this
new boundary condition.

x=a, V=V, V="V,
y=0 y=b
V=0 =
V=0 V=0 V=0
\
XA r
) S
z y x=0, V=0 V=0
(a) (b)

Figure 9.8. (a) Cross-sectional view of a rectangular slot in a semi-infinite
plane conducting slab at zero potential and covered at the mouth by a
conducting plate kept at a potential V. (b) Equipotentials and direction
lines of electric field in the slot for the case bja = 1.

Since the boundary conditions (9.40a)-(9.40c) remain the same, all we
need to do to find the required solution for the potential is to substitute the
new boundary condition

V="V, forx=a,0<y<bd

in (9.42) and evaluate the coefficients 4;. Thus we have

Vo= 3 A,sinhTsin TF for0<y<b (945
n=1,2,3,...

In this equation we have an infinite series on the right side, but the left side is a
constant. Thus we cannot hope to obtain A/, by simply comparing the
coefficients of the sine terms having like arguments as in Example 9.4. If we
do so, we get the ridiculous answer of ¥, = 0 and all 4], = 0 since there is no
constant term on the right side and there are no sine terms on the left side.
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The way out of the dilemma is to make use of the so-called orthogonality
property of sine functions, given by

» 0 n#=m
f sinwsinr—nﬂdyz p
y=0 D p —2— n=m

where m and n are integers. Multiplying both sides of (9.45) by sin —= mny dy

and integrating between the limits 0 and b, we have

b b =
V, sin bydy—f Y A4, sinh 74 b 2 sin n;)zy sin ydy
y=0 y=0 n=1,2,3,...

The integration and summation on the right side can be interchanged, giving
us

b = b
f V, sin by dy = IZ Al sinh n;t_a f sin ? sin m;)t_y dy
¥ 25000 y=0

- s,
or

Vobq _ _ (4 sinh @\ b
m—nl cosmn)-(A,,, sinh b )2

av, 1
y {m—n ERGmaD) oo

0 for m even

Substituting this result in (9.42), we obtain the required solution for the
potential inside the slot as

& 4V sinh (nrx/b)

= n=15%,... nw sinh (nma/b)

sin 2% (9.46)

The numerical values of potentials may now be computed for points inside
the slot for given values of g, b, and ¥, and equipotentials may be sketched by
joining points having approximately the same potential values. The electric
field lines can then be drawn orthogonal to the equipotentials. The resulting
sketches for a square slot are shown in Fig. 9.8(b). =

9.4 COMPUTER SOLUTION OF LAPLACE’S EQUATION*

In the previous section we illustrated the solution of the two-dimensional
Laplace’s equation in Cartesian coordinates x and y. In this section we shall
discuss the approximate solution of the two-dimensional Laplace’s equation

*This section may be omitted without loss of continuity.



SEC. 9.4 COMPUTER SOLUTION OF LAPLACE’S EQUATION 353

which forms the basis for adaptation to digital computers. To illustrate the
principle behind the approximate solution, let us suppose that we know the
potentials V', ¥, V3, and ¥, at four points equidistant from a point P(0, 0, 0)
and lying on mutually perpendicular axes, which we call x and y, passing
through P as shown in Fig. 9.9. We wish to find the potential V, at P in terms
of Vi, V,, V3, and V.

XA

V,9{a,0,0)

>y
0)

a nJS

P Vs
4,0

(0,4, 0) (0,0,0) (0,

V,$(a,0,0)

Figure 9.9. For illustrating the principle behind the approximate solution
of Laplace’s equation in two dimensions.

Assuming no variation of ¥ in the z direction, we require that

V2V, = 0 LA A lo . (9.47)

To solve this equation approximately for ¥y, we note that

l:aZV (0,0,0) - l:aix(a—V)il(o,o,o)
7{[0%' (a/2,0,0) \:% (—a/2,0,0) }

i{[V](a 9,0) [V](o,o.o) __ [V](o.o.o) —_ [V](—a,O,O)}

a a a

%[(Vl — Vo) — (Vo — V)

Similarly,

2
[‘9 4 ~ Lo+ vi—2v0 (9.48b)
(0,0,0)
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Substituting (9.48a) and (9.48b) into (9.47) and rearranging, we obtain
Vor Vit Va o+ Vi V) (9.49)

Thus the potential at P is approximately equal to the average of the potentials
at the four equidistant points lying along mutually perpendicular axes through
P. The result becomes more and more accurate as the spacing a becomes less
and less.

Equation (9.49) forms the basis for the computer solution of Laplace’s
equation. To illustrate the technique, let us consider the problem of Example
9.4 and assume @ = b, that is, a square slot. We can then divide the area of the
slot into a 4 x 4 grid of squares, as shown in Fig. 9.10. If we assume ¥, to be
100 V, then the potentials at the five grid points along the mouth of the slot
are 100 sin 0, 100 sin =, 100 sin % 100 sin %, and 100sinz or 0, 70.71,
100, 70.71, and O V, respectively, as shown in the figure. The potentials at the
grid points along the remaining three sides of the slot are all zero. The exact
values of potentials at the grid points inside the slot computed from the

70.71 100.00 70.71

0.————— -——————, ————— 0——-———-10
j | |
|
A
i |
1% 14
0 r_____lll .____.__'2_;__.____114 _____ 0
| 3201 | 45.27 [ 32.01
[33.10 | 46.84 | 33.10
|33.18 | 46.92 33.18
|33.18 | 46.93 33.18
. V2113228 Vil 4565 Vnlaag o
| 14.09 19.93 14.09
| 15.01 |21.26 I 15.01
| 15.08 [21.33 | 15.08
| 15.09 | 21.34 | 15.09
. Val1a30 V302023 Vaal 1430 8
e e e e e T—'_'___—T—'_”__'_' — et e e et
7 .
| 5.32 | 7:52 | 532
[ 5.79 | 8.21 I 5.79
| 5.83 | 8.25 | 5.83
| 5.84 | 8.25 | 5.84
| 5.42 | 7.67 | 5.42
0 " i /| 0
0 0 0

Figure 9.10. For illustrating the computer solution of Laplace’s equation
in two dimensions.



SEC. 9.4 COMPUTER SOLUTION OF LAPLACE’S EQUATION 355

analytical solution given by (9.44) are shown by the upper rows of numbers
beside the grid points for later comparison with those obtained by the com-
puter solution technique.

The computer solution consists of finding the potentials at the nine grid
points inside the slot from the given values at the grid points on the boundaries
of the slot. Irrespective of how this is achieved, we must obtain a final set of
values such that the potential at each grid point inside the slot is the average
of the potentials at the neighboring four grid points, or the sum of the four
neighboring potentials is equal to four times the potential at the grid point, in
accordance with (9.49). The simplest technique adaptable to computer
solution is to start with values of zero for all unknown potentials. Each
unknown potential is then replaced by the average of the four neighboring
potentials by traversing the grid in a systematic manner and by replacing in
this process old values with new values as they are computed, until a set of
values satisfying (9.49) at each grid point, to within a specified error, is
obtained. Any symmetry associated with the problem, as in the present case,
can be utilized to advantage for achieving a reduction in the number of
computations.

The method we just discussed is known as the “iteration” technique since
it involves the iterative process of converging an initially assumed solution to
a final one consistent with Laplace’s equation in the approximate sense given
by (9.49). There are scveral variations of the iteration technique. For example,
by empioying an initial guess other than zeros, a [asler convergence may be
achieved. The end result will, however, still be only to within the specified
accuracy.

The values of potentials obtained by the iteration technique for a specified
maximum allowable value of 0.1 V for the error

A:[Vo —%(Vx + VvV, -+ Vs + V4)]

are shown by the second rows of numbers beside the grid points in Fig. 9.10.
When the specified maximum error is decreased to 0.01 V, thereby demanding
a more accurate solution, the values of potentials obtained are shown by the
third rows of numbers beside the grid points in Fig. 9.10. When these two
rows are compared with the upper rows, it appears that the specification of a
greater required accuracy in the iteration leads to a less accurate end result.
This is, however, not the case since the iteration method can only converge
to a solution that is consistent with (9.49) and not to the analytical solution.

Hence let us find the exact values of the unknown potentials consistent
with (9.49). To do this, we write a set of simultaneous equations for these
potentials by applying (9.49) at each grid point inside the slot. Thus denoting
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the unknown potentials to be V,;, i,j = 1,2, 3, as shown in Fig. 9.10, we
obtain a set of nine equations given in matrix form by

~ 4 -1 0, -1 0 0! 0 0 O ¥Vu] [ 70717
]
-1 4 -1) 0 -1 0! 0 0 0|V 100.00
0 -1 41 0 017 0 0 0¥ 70.71
_____________ by o e i e . v . i s ] i . e e e 0 - -
—1 0 0 4 -1 0l -1 0 0¥y 0
0 -1 01 -1 4 —1 0 -1 0|V |=| o0 (9.50)
00—150—14:00_1 Vs 0
|
_____________ R (S | .
0005-10 L4 =1 0| Va 0
|
0 0 01! 0 -1 01! —1 4 —1]||[Wa 0
]
Lo o o! o o 11 o -1 4wl |_ o _

The matrix equation (9.50) can be inverted directly, since it involves only
a9 X 9 matrix. Imagine, however, the situation if the number of grid points
is large. For example, even for a 16 x 16 grid of squares, it will be necessary
to invert a 225 X 225 matrix! Fortunately, however, it is not necessary to
directly invert the matrix. To illustrate this we see from the partitionings in
(9.50) that it can be written in compact form as

] M - U 0 V] V*

—U M —U||V,|=]|0 9.51)
0 —-U M ||V, 0
where
4 —1 0
M=|—1 4 —1 (9.52a)
0 —1 4
1 00
U=|(0 1 0 (9.52b)
0 01
Vi
Vi=|Vy i=1,2,3 (9.52¢)
Vis
70.71
v, = | 100.00 (9.52d)

70.71
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From (9.51), we can write the following equations successively:
—UV, + MV, =0

Vv, = MV, (9.53a)
— UV, + MV, — UV, =0
V, = MV, — UV, = (M* — U)V; (9.53b)

MVI . UVZ . Vg
(M3 — 2M)V, =V,
V,=(M?*—2M)'V, (9.53¢)

Substituting for M and ¥, in (9.53c) from (9.52a) and (9.52d), respectively,
and simplifying, we get

Vi 68 —48 1271 70.71
Vi | =] —48 80 —48 100.00 (9.54)
Vs 12 —48 68| | 70.71

Thus, we have simplified the problem into one of inversion of a 3 x 3 matrix.
Inverting the 3 X 3 matrix and performing the matrix multiplication on the
right side of (9.54), we obtain the values of ¥y, V32, and ¥,5. The remaining
values can then be found from (9.53a) and (9.53b). The results are shown hy
the fourth rows of numbers beside the grid points in Fig. 9.10.

It can now be seen by comparing the second and third rows of values with
the fourth rows of values that the iteration method does converge closer to
the exact solution consistent with (9.49) as the specified allowable error is
decreased. To obtain a solution closer to the exact analytical solution, we
must decrease the spacing between the grid points. For example, foran8 x 8
grid of squares, the solution obtained by the iteration method for a specified
maximum error of 0.01 V is shown by the set of numbers in the last rows in
Fig. 9.10.

9.5 LOW-FREQUENCY BEHAVIOR VIA QUASISTATICS

In Example 6.4 in Sec. 6.4 we illustrated the determination of the low-
frequency behavior of a physical structure from its input impedance by
considering the example of the short-circuited line. We expressed the input
impedance of the short-circuited line as an infinite series involving powers of
the frequency o and by considering the term proportional to & we found that
for a line of length /, the input impedance is equivalent to that of a single
inductor for frequencies low enough such that / < 4, the wavelength corre-
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sponding to the frequency. In this section we shall illustrate the determination
of the low-frequency behavior by a quasistatic extension of the static field
existing in the structure when the frequency of the source driving the structure
is zero. The quasistatic extension consists of starting with a time-varying field
having the same spatial characteristics as that of the static field and obtaining
the field solutions containing terms up to and including the first power in .

To introduce the quasistatic field approach, we shall first consider the
same physical structure as a short-circuited parallel-plate line, that is, an
arrangement of two parallel, plane, perfect conductors joined at one end by
another perfectly conducting sheet, as shown in Fig. 9.11(a). We shall neglect
fringing of the fields by assuming that the spacing d between the plates is very
small compared to the dimensions of the plates or that the structure is part of
a structure of much larger extent in the y and z directions. For a constant
current source of value I, driving the structure at the end z = —/, as shown
in the figure, such that the surface current densities on the two plates are
given by

zﬂi: forx =10
o (9.55)
_doi forx—a
W
|
|
|
w 1
____________ J
Vs
s
/
// )
y )
P
d / z
/
/
z=0 X (a)

aT‘ X X X X X X

¥ z
I(A) ¥ X x XHX X X
py XXX XX X I

z=-1 z=0 (b)

Figure 9.11. (a) A parallel-plate structure short-circuited at one end and
driven by a current source at the other end. (b) Magnetic field between the
plates for a constant current source.
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the medium between the plates is characterized by a uniform y-directed
magnetic field as shown by the cross-sectional view in Fig. 9.11(b). The field is
zero outside the plates. From the boundary condition for the tangential
magnetic field intensity at the surface of a perfect conductor, the magnitude
of this field is I,/w. Thus we obtain the static magnetic field intensity between
the plates to be

I .

H= o for0<x<d (9.56)

¥y
The corresponding magnetic flux density is given by
B:qu%I"iy for0<x<d 9.57)

The magnetic flux y linking the current is simply the flux crossing the cross-
sectional plane of the structure. Since B is uniform in the cross-sectional plane
and normal to it,

v =B, =44, (9.58)

The ratio of this magnetic flux to the current, that is, the inductance of the
structure, is

L— _Z_ — /‘7‘” (9.59)

To discuss the quasistatic behavior of the structure, we now let the current
source be varying sinusoidally with time at a frequency w and assume that the
magnetic field between the plates varies accordingly. Thus for

I(t) = I, cos wt (9.60)
we have

H, = o cos ot 9.61)
where the subscript O denotes that the field is of the zeroth power in . In
terms of phasor notation, we have for

I=1I, (9.62)

L
H, = = (9.63)
The time-varying magnetic field (9.61) gives rise to an electric field in

accordance with Maxwell’s curl equation for E. Expansion of the curl equa-
tion for the case under consideration gives

OE, _ 0B, _ _,0H,
9z ot - Ha
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or, in phasor form

X

E,
dz

= —jwﬂﬁyo (9.64)

Substituting for H,, from (9.63), we have

dE, . I,
az Oy
or
E = —jcoﬂ{v&z s (9.65)

The constant € is, however, equal to zero since [E,],_, = O to satisfy the
boundary condition of zero tangential electric field on the perfect conductor
surface. Thus we obtain the quasistatic electric field in the structure to be

E, = —jco%zfo (9.66)

where the subscript 1 denotes that the field is of the first power in .
The voltage developed across the current source is now given by

= b e
7= [ 1Bl dx

_ jptdly
——_]COWIO

= joLl, (9.67)

Thus the quasistatic extension of the static field in the structure of Fig. 9.11
illustrates that its input behavior for low frequencies is equivalent to that of a
single inductor as we found in Example 6.4.

Example 9.6, Let us consider the case of two parallel perfectly conducting
plates separated by a lossy medium characterized by conductivity ¢, permit-
tivity €, and permeability g and driven by a voltage source at one end, as
shown in Fig. 9.12(a). We wish to determine its low-frequency behavior by
using the quasistatic field approach.

Assuming the voltage source to be a constant voltage source, we first
obtain the static electric field in the medium between the plates to be

= Yo
E= 7k

following the procedure of Example 9.3. The conduction current density in
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a
7a |
Vﬁfx !
| W
P
7/7/ I
ks
7 L ol
& i__/’x=0 y
- /
71t 0,6 u 4 3
7
L/ x=d
z=—1 l} z=0 X ()
R X
X X X
v(®) |x x| x X H € Ina
x x| X X ElJ,
»Y Y
1 X
z=-1 z=0 (b)

Figure 9.12. (a) A parallel-plate structure with lossy medium between the
plates and driven by a voltage source. (b) Electric and magnetic fields
between the plates for a constant voltage source.

the medium is then given by

J. = oE =07V0ix

The conduction current gives rise to a static magnetic field in accordance with
Maxwell’s curl equation for H given for static fields by

VxH=J, =0E

For the case under consideration, this reduces to
giving us

The constant C, is, however, equal to zero since [H,},-, = 0 in view of the
boundary condition that the surface current density on the plates must be
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zero at z = 0. Thus the static magnetic field in the medium between the plates
is given by

H— —GZOZiy

The static electric and magnetic field distributions are shown by the cross-
sectional view of the structure in Fig. 9.12(b).

To determine the quasistatic behavior of the structure, we now let the
voltage source be varying sinusoidally with time at a frequency o and assume
that the electric and magnetic fields vary with time accordingly. Thus for

V =V, coswt

we have
V, .
E, = 7 08 ot i, (9.68a)
H, = — V0% cos ot i (9.68b)
5 g cosoti, .

where the subscript 0 denotes that the fields are of the zeroth power in w. In
terms of phasor notation, we have for V' = V,,

E,=Ye (9.692)

Hy= 20t (9.69b)

The time-varying electric field (9.68a) gives rise to a magnetic field in
accordance with

_dD, 0E,
VXH—W_GW

and the time-varying magnetic field (9.68b) gives rise to an electric field in
accordance with

_ _90B,_ _0H,
VEgE= o - Ha

For the case under consideration and using phasor notation, these equations
reduce to

0ﬁy__- 5 _ . €V,
9z = jweE,, = Jo==
0E, _ . = . ugVz
7 i JouH =Jo=—7>=
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giving us

ﬁyl . _waI;OZ + é7.
— 2 —_—
B, =ja>£“’2—‘2°z— + &,

where the subscript 1 denotes that the fields are of the first power in co. The
constant C, is, however, equal to zero in view of the boundary condition that
the surface current density on the plates must be zero at z = 0. To evaluate
the constant C,, we note that [E,,],._; = O since the boundary condition
at the source end, that is,

- b
V= [ (B rdx
is satisfied by E,, alone. Thus we have
wHVo (=D L & g

Jo—
or

5 . peVyl?
C, jeo >d

Substituting for G, and C, in the expressions for E,, and H,,, respectively,
we get

B, = jo#VZ =1 (9.702)
2d
H, = ]cof—l;"z

The result for H,, is, however, not complete since E,, gives rise to a conduc-
tion current of density proportional to @ which in turn provides an additional
contribution to H,,. Denoting this contribution to be Hy,, we have

0H; L uatV(z2 — %)

5 = OB = 0T
= 2 3 __ 2 -
Hy = —jo?l V°(Z6d g,

The constant C, is zero for the same reason that C, is zero. Hence setting C,
equal to zero and addmg the resulting expression for H;1 to the rlght side of
the expression for H,,, we obtain the complete expression for H,, as

, = —jole — jw”"zVo(f,;— 3:1%) (9.70b)
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The total field components correct to the first power in o are then given by
E—x = E_xO + E.xl

_ Vo o i HOYe@— 1)
=g + jo 5d (9.71a)

ﬁ.v = ﬁyo + Eyl
 aVer . eVoz . uoV(z — 3zl
Y Y B 6d

(9.71b)

The current drawn from the voltage source is
I- = w[ﬁy]z=—l
20573\ —
(a:ivl _|_Jw6wl qua wl >V ©9.72)

3d

Finally, the input admittance of the structure is given by
7 i o owl Nk
A ( —J0T3 )

ewl 1

= jo— p, +ail( +Jw”§l)

ewl 1
Ot T udl ok
owl 3w
1

=/oCt R GaLp) =l

where C = ewl/d is the capacitance of the structure if the material is a perfect
dielectric, R = djowl is the d.c. resistance (reciprocal of the conductance) of
the structure, and L = ud!/w is the inductance of the structure if the material
is lossless and the two plates are short-circuited at z = 0. The equivalent
circuit corresponding to (9.73) consists of capacitance C in parallel with the

series combination of resistance R and inductance L/3, as shown in Fig. 9.13.
|

Figure 9.13. Equivalent circuit for the low-frequency input behavior of the
structure of Fig. 9.12.



9.6 MAGNETIC CIRCUITS

In this section we shall introduce the principle of magnetic circuits.
A simple example of magnetic circuit is the toroidal magnetic core of uni-
form permeability x4 and having a uniform, circular cross-sectional area A
and mean circumference /, as shown in Fig. 9.14. A current /; amp is passed
through a filamentary wire of N turns wound around the toroid. Because of
this current, a magnetic field is established in the core in the direction of
advance of a right-hand screw as it is turned in the sense of the current, as
shown in Fig. 9.14.

Figure 9.14. A toroidal magnetic circuit.

If the permeability of the core material is very large compared to the
permeability of the surrounding medium, which is free space, the magnetic
flux is confined almost entirely to the core in a manner similar to conduction
current flow in wires or fluid flow in pipes. To illustrate this, let us consider
lines of magnetic flux density on either side of a plane interface between a
magnetic material of z >> u, and free space, as shown in Fig. 9.15. Then from
the boundary conditions for the magnetic field components, we have

B, sing, = B, sina, (9.74a)
H, cos o, = H, cos d, (9.74b)
Dividing (9.74a) by (9.74b), we get
B, — 5
H, tan o, H, tan o,

Uy tan o, = U, tan o,

tana, _ Ky _ Mo
tano, MUy My
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i
I Magnetic Material

B, > iy
\\[\I
o)
I\
l
: Free Space
By T Hy

A%
|

Figure 9.15. Lines of magnetic flux density at the boundary between free
space and a magnetic material of u > uo.

Thus o, < «,, and
B, _ sina, <1

B, sina,

For example, if the values of x4, and a, are 1000 u, and 5°, respectively, then
o, = 89.35°and B,/B, = 0.087. Fora; = 3°, &, = 88.9°and B,/B, = 0.052.
The magnetic flux is for all practical purposes confined entirely to the core
and very little flux appears as leakage flux outside the core.

If we assume that the magnetic flux y over the cross-sectional area of the
toroid is equal to the flux density B,, at the mean radius of the toroid times the
cross-sectional area of the toroid, we can then write

B,=¥ 9.75)
H,=72n_-Y¥ (9.76)

From Ampere’s circuital law, the magnetomotive force around the closed path
C along the mean circumference of the toroid is equal to the current enclosed
by that path. This current is equal to NI, since the filamentary wire penetrates
the surface bounded by the path N times. Thus

§ H. dl = NI,
c

H_l= NI, 9.77)
Substituting for H,, from (9.76) and rearranging, we obtain

uNI A

l
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We now define the “reluctance” of the magnetic circuit, denoted by the
symbol ®, as the ratio of the ampere turns NI, applied to the magnetic circuit
to the magnetic flux w. Thus

NI, I

®R - 7 (9.78)
The reluctance of the magnetic circuit is analogous to the electric circuit
quantity resistance and has the units of ampere turns per weber. We note from
(9.78) that for a given magnetic material, the reluctance appears tobe purely a
function of the dimensions of the circuit. This is, however, not true since for
the ferromagnetic materials used for the cores, y is a function of the magnetic
flux density in the material, as we learned in Sec. 5.3.

As a numerical example of computations involving the magnetic circuit of
Fig. 9.14, let us consider a core of cross-sectional area 2 cm? and mean
circumference 20 cm. Let the material of the core be annealed sheet steel for
which the B versus H relationship is shown by the curve of Fig. 9.16. Then to
establish a magnetic flux of 3 X 10~* Wb in the core, the mean flux density
must be (3 x 1074)/(2 x 107%) or 1.5 Wb/m?. From Fig. 9.16, the corre-
sponding value of H is 1000 amp/m. The number of ampere turns required
to establish the flux is then equal to 1000 x 20 X 10-2%, or, 200, and the
reluctance of the core is 200/(3 x 10-%), or (2/3) x 10° amp-turns/Wb. We
shall now consider a more detailed example.

2.0
LS
o~
g /
S 10
=
[2-]
08
0 500 1000 1500 2000 2500 3000

H, amp/m
Figure 9.16. B versus H curve for annealed sheet steel.

Example 9.7. A magnetic circuit containing three legs and with an air gap
in the right leg is shown in Fig. 9.17(a). A filamentary wire of N turns carrying
current I is wound around the center leg. The core material is annealed sheet
steel, for which the B versus H relationship is shown in Fig. 9.16. The dimen-
sions of the magnetic circuit are

A, = A, =3cm?, A, = 6 cm?

l[,=1,=20cm, I, =10 cm, I, =0.2mm
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f“"w':‘:_’+<_ _____ %_i -4,
A=l E
1 ‘\/i‘://‘ |:b\2 e /_/ ’
T 1] 7 i 1, (X
| BPE: 4
I
I | / & L~
: [~ % % k (b)
| ! A | Actual Effective
| g | X
1N o ] R A
I e —+—F | | /
: | : -4
b — —— s/ e J|
(c)

(a)

Figure 9.17. (a) A magnetic circuit. (b) Fringing of magnetic flux in the air
gap of the magnetic circuit. (¢) Effective and actual cross sections for the

air gap.

Let us determine the value of NI required to establish a magnetic flux of
4 x 10~* Wb in the air gap.

The current in the winding establishes a magnetic flux in the center leg
which divides between the right and left legs. Fringing of the flux occurs in
the air gap, as shown in Fig. 9.17(b). This is taken into account by using an
effective cross section larger than the actual cross section, as shown in Fig.
9.17(c). Using subscripts 1, 2, 3, and g for the quantities associated with the
left, center, and right legs, and the air gap, respectively, we can write

Vs =V,
V=W, TV,

Also, applying Ampere’s circuital law to the right and left loops of the
magnetic circuit, we obtain, respectively,

NI = Hyl, + H,l, + H,I,
NI = H,l, + H,l,

It follows from these two equations that

H,l, = H,l, + H,I,
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which can also be written directly from a consideration of the outer loop of
the magnetic circuit.

Noting from Fig. 9.17(c) that the effective cross section of the air gap is
(W3 - 1)* = 3.07 cm?, we find the required magnetic flux density in the air
gap to be
W, 4 x 1074

Be =) ~ 307 % 10

— 1.303 Wb/m?

The magnetic field intensity in the air gap is

B, 1303 ,
H, = ﬂ_: = 10 0.1037 x 107 amp/m
The flux density in leg 3 is

4% 10
BRI

3

B, =

_ Y, _ 2
= A: 1.333 Wb/m

S

From Fig. 9.16, the value of H, is 475 amp/m.
Knowing the values of H, and H;, we then obtain

H,l, = H,l, + H,I,
= 475 x 0.2 + 0.1037 x 107 x 0.2 x 1072
= 302.4 amp

_ 3024

H; = %5~ = 1512 amp/m

From Fig. 9.16, the value of B, is 1.56 Wb/m? and hence the flux in leg 1 is

w, — B4, =156 X 3 X 107% — 4.68 x 107* Wb
Thus
Yo=Y+ ¥s
= 4.68 X 107* 4 4 X 1074 = 8.68 X 10* Wb

_ w, 868 x 10

_ 2
BZ—A_Z_ 510 1.447 Wb/m

From Fig. 9.16, the value of H, is 750 amp/m. Finally, we obtain the required
number of ampere turns to be

NI = H,l, 4+ H,/,
=750 x 0.2 -+ 302.4
= 452.4 -



9.7 SUMMARY

In this chapter we learned that Maxwell’s equations for static fields are
given by

VxE=0 (9.79a)
VxH=1J (9.79b)
V-D=yp (9.79¢)
V.B=0 (9.79d)

whereas the continuity equation is
V:J=0 (9.80)

These equations together with the constitutive relations

D =¢E (9.81a)
B

== 9.81b

7 (9.81b)

J=1J,=0¢E (9.81¢)

govern the behavior of static fields.

First we learned from (9.79a) that, since the curl of the gradient of a scalar
function is identically zero, E can be expressed as the gradient of a scalar
function. The gradient of a scalar function @ is given in Cartesian coordinates
by

_dd, 00 . ifoR
V(I)—Elx—l—a—yly—{—%lz

The magnitude of V@ at a given point is the maximum rate of increase of @ at
that point, and its direction is the direction in which the maximum rate of
increase occurs, that is, normal to the constant @ surface passing through that
point.

From considerations of work associated with the movement of a test
charge in the static electric field, we found that

E= —VV (9.82)

where V is the electric potential. The electric potential ¥, at a point 4 is the
amount of work per unit charge done by the field in the movement of a test
charge from the point 4 to a reference point O. It is the potential difference
between 4 and O. Thus

370
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n:wm:ﬁmm:-ﬂmm

The potential difference between two points has the same physical meaning as
the voltage between the two points. The voltage is, however, not a unique
quantity since it depends on the path employed for evaluating it, whereas the
potential difference, being independent of the path, has a unique value.

We considered the potential field of a point charge and found that for the
point charge

__0
V_47t€R

where R is the radial distance away from the point charge. The equipotential
surfaces for the point charge are thus spherical surfaces centered at the point
charge. We illustrated the application of the potential concept in the deter-
mination of electric field due to charge distributions by considering the
example of an electric dipole.

Substituting (9.82) into (9.79c), we derived Poisson’s equation

WVz—% (9.83)
which states that the Laplacian of the electric potential at a point is equal to
—1/e times the volume charge density at that point. In Cartesian coor-

dinates,

9w | 9, 9
VV =5zt g7 T

For the one-dimensional case in which the charge density is a function of x
only, (9.83) reduces to
a2V _ 4w _  p

Ix* ~ dx* €
We illustrated the solution of this equation by considering the example of a

p-n junction diode.
If p = 0, Poisson’s equation reduces to Laplace’s equation

VY =0 (9.84)

This equation is applicable for a charge-free dielectric region as well as for a
- conducting medium. We illustrated the solution of the one-dimensional
Laplace’s equation
v _dv _
Ox?  dx*

by considering a parallel-plate arrangement. By using the separation of
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variables technique, we obtained the general solution to Laplace’s equation
in two dimensions

vy, 9V _

g T2 =0

and illustrated its application by considering two examples. We also discussed
the applicability of Laplace’s equation for the determination of transmission-
line parameters and field maps.

To illustrate the computer solution of Laplace’s equation, we derived the
approximate solution to Laplace’s equation in two dimensions. This solution
states that the potential ¥, at a point P is given by

Vy %(V1 LV, LV, V) (9.85)

where V,, V,, Vs, and V, are the potentials at four equidistant points lying
along mutually perpendicular axes through P. By means of an example, we
discussed the iteration technique of computer solution based on the repeated
application of (9.85) to a set of grid points in the region of interest until a
solution that converges to within a specified error is obtained. We also
discussed the direct solution for the potentials at the grid points consistent
with (9.85) using matrix inversion techniques.

After having considered the solution of static field problems, we then
turned to the quasistatic extension of the static field solution as a means of
obtaining the low-frequency behavior of a physical structure. The quasistatic
field approach involves starting with a time-varying field having the same
spatial characteristics as the static field in the physical structure and then
obtaining field solutions containing terms up to and including the first power
in frequency by using Maxwell’s curl equations for time-varying fields. We
illustrated this approach by considering two examples, one of them involving
a lossy medium.

Finally, we introduced the magnetic circuit, which is essentially an
arrangement of closed paths for magnetic flux to flow around just as current
in electric circuits. The closed paths are provided by ferromagnetic cores
which because of their high permeability relative to that of the surrounding
medium confine the flux almost entirely to within the core regions. We
illustrated the analysis of magnetic circuits by considering two examples, one
of them including an air gap in one of the legs.

REVIEW QUESTIONS

9.1, State Maxwell’s curl equations for static fields.

9.2. What is the expansion for the gradient of a scalar in Cartesian coordinates ?
When can a vector be expressed as the gradient of a scalar?
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9.3.
94.

9.5.

9.6.

9.7.

9.8.
9.9.
9.10.

9.11.

9.12.
9.13.

9.14.
9.15.
9.16.
9.17.

9.18.

9.19

9.20.
9.21.
9.22.
9.23.
9.24.

9.25.

Discuss the physical interpretation for the gradient of a scalar function,

Discuss the application of the gradient concept for the determination of unit
vector normal to a surface.

How would you find the rate of increase of a scalar function along a specified
direction by using the gradient concept ?

Define electric potential. What is its relationship to the static electric field
intensity ?

Distinguish between voltage, as applied to time-varying fields, and potential
difference.

What is a conservative field ? Give two examples of conservative fields.
Describe the equipotential surfaces for a point charge.

Discuss the determination of the electric field intensity due to a charge dis-
tribution by using the potential concept.

What is the Laplacian of a scalar ? What is its expansion in Cartesian coordi-
nates?

State Poisson’s equation.

Outline the solution of Poisson’s equation for the potential in a region of
known charge density varying in one dimension.

State Laplace’s equation. In what regions is it valid?
Discuss the application of Laplace’s equation for a conducting medium.
Outline the solution of Laplace’s equation in one dimension.

Why is Laplace’s equation applicable to the determination of transmission-
line parameters and field maps ?

Outline the solution of Laplace’s equation in two dimensions by the separa-
tion of variables technique.

What is the principle behind the approximate solution of Laplace’s equation
in two dimensions ?

Discuss the iteration technique for the computer solution of Laplace’s equa-
tion in two dimensions.

By consulting appropriate reference books, discuss two variations of the
iteration technique for the computer solution of Laplace’s equation.

How would you apply the iteration technique for the computer solution of
Laplace’s equation in three dimensions ?

What is meant by the quasistatic extension of the static field in a physical struc-
ture?

Outline the steps involved in the determination of the quasistatic electric field
in a parallel-plate structure short circuited at one end.

Why must the surface current density on the plates of the structure of Fig.
9.12 be zero at z = 0?7
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9.26.
9.27.

9.28.

9.29.

9.30.
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Discuss the quasistatic behavior of the structure of Fig. 9.12 for ¢ = 0.

What is a magnetic circuit? Why is the magnetic flux in a magnetic circuit
confined almost entirely to the core?

Define the reluctance of a magnetic circuit. What is the analogous electric
circuit quantity ?

Why is the reluctance for a given set of dimensions of a magnetic circuit not a
constant?

How is the fringing of the magnetic flux in an air gap in a magnetic circuit
taken into account?

PROBLEMS

9.1.

9.2.

9.3.

94.
9.5.

9.6.

9.7.

9.8

9.9.

9.10.
9.11.

Find the gradients of the following scalar functions: (&) /X2 + y? + z%;
(b) xyz.

Determine which of the following vectors can be expressed as the gradient of
a scalar function: (a) yi, — xi,; (b) xi, + yi, + zi,; (c) 2xy3zi, 4 3x2y2zi,
+ x2ydi,.

Find the unit vector normal to the plane surface 5x -+ 2y + 4z = 20.

Find a unit vector normal to the surface x2 — y2 = 5 at the point (3, 2, 1).

Find the rate of increase of the scalar function x2y at the point (1, 2, 1) in the
direction of the vector i, — i,.

For the static electric field given by E = yi, + xi,, find the potential differ-
ence between points A(1, 1, 1) and B(2, 2, 2).

For a point charge Q situated at the point (1, 2, 0), find the potential differ-
ence between the point 4(3, 4, 1) and the point B(5, 5, 0).

An arrangement of point charges known as the linear quadrupole consists of
point charges Q, —20, and Q at the points (0, 0, d), (0, 0, 0), and (0, 0, —d), .
respectively. Obtain the expression for the electric potential and hence for the
electric field intensity at distances from the quadrupole large compared to d.

For a line charge of uniform density 10~3 C/m situated along the z axis be-
tween (0,0, —1) and (0, 0, 1), obtain the series expression for the electric
potential at the point (0, y, 0) by dividing the line charge into 100 equal seg-
ments and considering the charge in each segment to be a point charge located
at the center of the segment. Then find the series expression for the electric
field intensity at the point (0, 1, 0).

Repeat Problem 9.9, assuming the line charge density to be 1072 | z| C/m.

The potential distribution in a simplified model of a vacuum diode consisting
of cathode in the plane x = 0 and anode in the plane x = d and held at a
potential ¥, relative to the cathode is given by

x

4/3
V=V0(7) for0<x<d
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9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18

9.19.

(a) Find the space charge density distribution in the region 0 < x <d.
(b) Find the surface charge densities on the cathode and the anode.

Show that for the p—# junction diode of Fig. 9.5(a), the boundary condition of
the continuity of the normal component of displacement flux density at x = 0
is automatically satisfied by Eq. (9.29).

Assume that the impurity concentration for the p-u junction diode of Fig.

9.5(a) is a linear function of distance across the junction. The space charge
density distribution is then given by

p=kx for —df2 < x < dJ2

where d is the width of the space charge region and k is the proportionality
constant. Find the solution for the potential in the space charge region.

Two infinitely long cylindrical conductors having radii « and b and coaxial
with the z axis are held at a potential difference of V,. Using the cylindrical
coordinate system, obtain the solution for the potential and hence for the elec-
tric field intensity in the charge-free dielectric region between the cylinders.
Find the expression for the capacitance per unit length of the cylinders.

The region between the two plates of Fig. 9.6 is filled with two perfect dielec-
tric media having permittivities €, for 0 < x < ¢ and €, for t <x < d.
(a) Find the solutions for the potentials in the two regions 0 < x < ¢ and
t < x < d. (b) Find the potential at the interface x = r.

Repeal Problem 9.15 if the (wo media are imperfect dieleclrics having conduc-
tivities 4 and &,.

The potential distribution at the mouth of the slot of Fig. 9.7 is given by

_ yosin®2 4 Ly gin 302
V—V051nb—|—3Vosmb

(2) Find the solution for the potential distribution inside the slot. (b) Com-
pute the value of the potential at the center of the slot, assuming the slot to be
square.
Repeat Problem 9.17 for the potential distribution at the mouth of the slot
given by

V = V, sin? n_b_y

Assume that the rectangular slot of Fig. 9.7 is covered at the mouth by con-
ducting plates such that the potential distribution is given by

0 for 0 <y <bld
V=3V for b/4 <y < 3b/4
0 for 3b/4 <y < b

Find the solution for the potential inside the slot.
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9.20.

9.21.

9.22.

9.23.

9.24.

9.25.
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For the rectangular slot of Example 9.4, (a) find the expression for the electric
field intensity inside the slot and (b) find the electric field intensity at the
center of the slot, assuming the slot to be square.

For the slot of Example 9.4, assume a = b and the potential distribution at
the mouth to be 100 sin3 (zy/b) V. Compute the value of the potential at the
center of the slot by (a) applying the iteration method to a 4 x 4 grid of
squares, (b) using the 4 x 4 grid of squares to obtain the exact solution con-
sistent with Eq. (9.49), and (c) applying the iteration method to an 8 x 8 grid
of squares. Compare the results with the exact value given by the analytical
solution found in Problem 9.18. Use a value of A = 0.01 V for the iteration
methods.

For the example of Fig. 9.10, divide the slot into a 16 x 16 grid of squares and
by computing the potentials at the grid points surrounding the center of the
slot by using the iteration technique and A = 0.01 V, estimate the value of
the electric field intensity at the center of the slot. Compare the estimated
value with the exact value obtained in Problem 9.20.

The cross section of a structure that repeats endlessly in the plane of the paper
is shown in Fig. 9.18. For the grid of points shown in the figure, compute the
exact value of the potential at point A4 consistent with Eq. (9.49).

Figure 9.18. For Problem 9.23.

By considering Laplace’s equation in three dimensions, show that the poten-
tial at a given point P in a charge-free region is approximately equal to the
average of the potentials at the six equidistant points lying along mutually
perpendicular axes through P. Then compute by the iteration method the
potential at the center of the cubical box shown in Fig. 9.19 in which the top
face is kept at 100 V relative to the other five faces. Usea 4 x 4 X 4 grid of
cubes and a value of 0.01 V for A.

For the structure of Fig. 9.11, assume that the medium between the plates is
an imperfect dielectric of conductivity o. (a) Show that the input impedance
correct to the first power in @ is the same as if @ were zero. (b) Obtain the
input impedance correct to the second power in @ and determine the equiva-
lent circuit.
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9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

9.32.

Figure 9.19. For problem 9.24,

For the structure of Fig. 9.11, continue the analysis beyond the quasistatic
extension and obtain the input impedance correct to the third power in .
Determine the equivalent circuit.

For the structure of Fig. 9.12, assume ¢ = 0 and continue the analysis beyond
the quasistatic extension to obtain the input admittance correct to the third
power in @. Determine the equivalent circuit.

Find the condition(s) under which the quasistatic input behavior of the struc-
ture of Fig. 9.12 is essentially equivalent to (a) a capacitor in parallel with a
resistor and (b) a resistor in series with an inductor.

For the toroidal magnetic circuit of Fig. 9.14, assume A = 5 cm?, [ = 20 cm,
and annealed sheet steel for the material of the core. Find the reluctance of
the circuit for an applied NI equal to 400 amp-turns.

For the magnetic circuit of Fig. 9.17, assume the air gap to be in the center
leg. Find the required NI to establish a magnetic flux of 9 X 1074 Wb in the
air gap.

For the magnetic circuit of Fig. 9.17, assume (hat there is no air gap. Tind the
magnetic flux established in the center leg for an applied NI equal to 180 amp-
turns.

For the magnetic circuit of Fig. 9.17, assume no air gapand 4y =5 cm? with
all other dimensions remaining as specified in Example 9.7. Find the magnetic
flux density in the center leg for an applied NI equal to 150 amp-turns.



1dPo SPECIAL
TOPICS

In Chap. 1 we learned the basic mathematical tools and physical concepts
of vectors and fields. In Chaps. 2 and 3 we learned the fundamental laws of
electromagnetics, namely, Maxwell’s equations, first in integral form and
then in differential form. Then in Chaps. 4 through 9 we studied the elements
of their engineering applications which comprised the topics of propagation,
transmission, and radiation of electromagnetic waves, and static and quasi-
static fields.

This final chapter is devoted to seven independent topics that are based on
Chaps. 4 through 9, in that order. The first six topics can be studied separately
following the respective chapters, The seventh topic can be studied following
Chaps. 8 and 9. These special topics, although independent of each other,
have the common goal of extending the knowledge gained in the correspond-
ing previous chapter for the purpose of illustrating a related phenomenon, or
application, or technique.
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10.1 WAVE PROPAGATION IN IONIZED MEDIUM

In Chap. 4 we studied uniform plane wave propagation in free space. In
this section we shall extend the discussion to wave propagation in ionized
medium. An example of ionized medium is the earth’s ionosphere which is a
region of the upper atmosphere extending from approximately 50 km to more
than 1000 km above the earth. In this region the constituent gases are ionized,
mostly because of ultraviolet radiation from the sun, thereby resulting in the
production of positive ions and electrons that are free to move under the
influence of the fields of a wave incident upon the medium. The positive ions
are, however, heavy compared to electrons and hence they are relatively
immobile. The electron motion produces a current that influences the wave
propagation.

In fact, in Sec. 1.5 we considered the motion of a cloud of electrons of
uniform density N under the influence of a time-varying electric field

E=E,coswti, (10.1)

and found that the resulting current density is given by
2
J=N¢p singri =N f E dt (10.2)
me m

where e and m are the electronic charge and mass, respectively. This result is
based on the mechanism of continuous acceleration of the electrons by the
force due to the applied electric field. In the case of the ionized medium, the
electron motion is, however, impeded by the collisions of the electrons with
the heavy particles and other electrons. We shall ignore these collisions as
well as the negligible influence of the magnetic field associated with the wave.

Considering uniform plane wave propagation in the z direction in an
unbounded ionized medium, and with the electric field oriented in the x
direction, we then have

dE, 0B, 9H,

I A T (10.32)
OH, dD,  Ne __JE,
G = e = —WIEX dt — € (10.3b)

Differentiating (10.3a) with respect to z and then substituting for dH,/dz
from (10.3b), we obtain the wave equation

380
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0’E, Ne?
L fE dr — e |

Ne? J*E,
— ﬂome E, + Uo€y e 37 (10.4)

Substituting
E = E, cos (wt — fz) (10.5)

corresponding to the uniform plane wave solution into (10.4) and simplifying,
we get

N 2
ﬁ7‘ = W€y — ﬂome
Ne?
_ a)"/toe'o(l - m_fow—z) (10.6)

Thus the phase constant for propagation in the ionized medium is given by

B = mq/ﬂofo(] e N—""ZZ) (10.7)

ME @

This result indicates that the ionized medium behaves as through the per-

mittivity of free space is modified by the multiplying factor (1 — m]Z e;z).
0

We may therefore write

B = o~/ Uo€ert (10.8)
where
= _ _Ne*
€utt = 60(1 - eowz) (10.9)

is the “cffective permittivity” of the ionized medium. We note that for
@ — 00, €,; — €, and the medium behaves just as free space. This is to be
expected since (10.2) indicates that for @ — oo, J — 0. As w decreases from
oo, €, becomes less and less until for @ equal to ~/ Net[me,, €, becomes
zero. Hence for @ > /NeZJme,, €. is positive, B is real, and the solution
for the electric field remains to be that of a propagating wave. For o <
/' NeZ[me,, €. is negative, f becomes imaginary, and the solution for the
electric field corresponds to no propagation.

Thus waves of frequency f> ./Ne?[4n’me, propagate in the ionized
medium and waves of frequency f < ./Ne/4n?me, do not propagate. The
quantity /Ne2[dnme, is known as the “plasma frequency” and is denoted
by the symbol, f},. Substituting values for ¢, m, and €,, we get

— ./80.6N Hz (10.10)
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where N is in electrons per meter cubed. We can now write €, as

€orr = 60(1 - %) (10.11)

Proceeding further, we obtain the phase velocity for the propagating range of
frequencies, that is, for f'> f,, to be

_ 1 _ 1
P N Ho€st A lo€o(1 — IS

v

- «/1?—6]"}:/? (10.12)

where ¢ = 1/.,/1,€, is the velocity of light in free space. From (10.12), we
observe that v, > ¢ and is a function of the wave frequency. The fact that
v, > ¢ is not a violation of the principle of relativity since the dispersive
nature of the medium resulting from the dependence of v, upon fensures that
information always travels with a velocity less than ¢ (see Sec. 7.4).

To apply what we have learned above concerning propagation in an
ionized medium to the case of the earth’s ionosphere, we first provide a brief
description of the ionosphere. A typical distribution of the ionospheric elec-
tron density versus height above the earth is shown in Fig. 10.1. The electron
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Figure 10.1. A typical distribution of ionospheric electron density versus
height above the earth.
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density exists in the form of several layers known as D, E, and F layers in
which the ionization changes with the hour of the day, the season, the sun-
spot cycle, and the geographic location. The nomenclature behind the desig-
nation of the letters for the layers is due to Appleton in England who in 1925
and at about the same time as Breit and Tuve in the United States demon-
strated experimentally the reflection of radio waves by the ionosphere. In his
early work, Appleton was accustomed to writing E for the electric field of the
wave reflected from the first layer he recognized. Later, when he recognized
a second layer, at a greater height, he wrote F for the field of the wave reflec-
ted from it. Still later he conjectured that there might be a third layer lower
from either of the first two and thus he decided to name the possible lower
layer D, thereby leaving earlier letters of the alphabet for other possible
undiscovered, still lower layers. Electrons were indeed detected later in the D
region.

The D region extends over the altitude range of about 50 km to about
90 km. Since collisions between electrons and heavy particles cannot be
neglected in this region, it is mainly an absorbing region. The E region ex-
tends from about 90 km to about 150 km. Diurnal and seasonal variations of
the E layer electron density are strongly correlated with the zenith angle of
the sun. In the F region the lower of the two strata is designated as the F1
layer and the higher, more intense ionized stratum is designated as the F 2
layer. The F1 ledge is usually located between 160 km and 200 km. Above
this region the F2 layer electron density increases with altitude, reaching a
peak at a height generally lying between 250 km and 400 km. Above this
peak the electron density decreases monotonically with altitude. The F1 ledge
is present only during the day. During the night the F1 and F2 layers are
identified as a single F layer. The F2 layer is the most important from the
point of view of radio communication since it contains the greatest concen-
tration of electrons. Paradoxically, it also exhibits several anomalies.

Wave propagation in the ionosphere is complicated by the presence of the
earth’s magnetic field. If we neglect the earth’s magnetic field, then for a wave
of frequency f incident vertically on the ionosphere from a transmitter on the
ground, it is evident from the propagation condition f > fy that the wave
propagates up to the height at which f = f,, and since it cannot propagate
beyond that height, it gets reflected at that height. Thus waves of frequencies
less than the maximum plasma frequency corresponding to the peak of the
F2 layer cannot penetrate the ionosphere. Hence for communication with
satellites orbiting above the peak of the ionosphere, frequencies greater than
this maximum plasma frequency, also known as the “critical frequency,”
must be employed. While this critical frequency is a function of the time of
day, the season, the sunspot cycle, and the geographic location, it is not
greater than about 15 MHz and can be as low as a few megahertz. For a wave
incident obliquely on the ionosphere, reflection is possible for frequencies
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greater than the critical frequency, up to about three times its value. Hence
for earth-to-satellite communication, frequencies generally exceeding about
40 MHz are employed. Lower frequencies permit long-distance, ground-to-
ground communication via reflections from the ionospheric layers. This mode
of propagation is familiarly known as the “sky wave mode” of propagation.
For very low frequencies of the order of several kilohertz and less, the lower
boundary of the ionosphere and the earth form a waveguide, thereby permit-
ting waveguide mode of propagation.

In Sec. 4.5 we learned that Doppler shift of frequency occurs when the
source or the observer is in motion. Doppler shift can also occur for the case
of fixed source and observer if the medium in which the wave propagates is
changing with time. The ionosphere provides an example of this phenomenon.
For simplicity, let us consider a hypothetical plane slab ionosphere of thick-
ness s and having uniform electron density N. Then for a uniform plane wave
of frequency w propagating normal to the slab, the phase shift undergone by
the wave in the thickness of the slab is given by

z
o=owt — fs=owt — m,‘/,uoeo(l — N—ez)s

cole B 80 6N (10.13)

If the electron density is now varying with time, the rate of change of phase
with time is given by

a'qS = _|_403cos<1 . 80.6N)‘”2 dN (10.14)

f? f? dt

Thus the Doppler shift in the frequency is

o — 403 cos(l B 80.6N>‘1"2d_N
D = 7 77 dt
or
_ 403s(, _ 80.6N\"'2 dN
fo="5 (1 = ) - (10.15)

The Doppler shift introduced by the changing ionosphere can be a source of
error in satellite navigational systems based on the Doppler shift due to the
moving satellite. It is, however, one of the tools for studying the ionosphere.

In this section we learned that in an ionized medium, wave propagation
occurs only for frequencies exceeding the plasma frequency corresponding to
the electron density. Applying this to the case of the earth’s ionosphere, we
found that this imposes a lower limit in frequency for communication with
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satellites. We also extended the discussion of Doppler shift to the case of a
time-varying propagation medium.

REVIEW QUESTIONS

10.1.

10.2.

10.3.
10.4.
10.5.

10.6.

What is an ionized medium ? What influences wave propagation in an ionized
medium ?

Provide physical explanation for the frequency dependence of the effective
permittivity of an ionized medium.

Discuss the condition for propagation in an ionized medium.
What is plasma frequency ? How is it related to the electron density ?

Provide a brief description of the earth’s ionosphere and discuss how it
affects communication.

Discuss the phenomenon of Doppler shift due to a time-varying medium.

PROBLEMS

10.1.

10.2.

10.3.

10.4.

Assume the ionosphere to be represented by a parabolic distribution of elec-
tron density as given by

1014 h — 300\2
N = m[l . (W) ] el/m®  for 200 < h < 400

where % is the height above the ground in kilometers. (a) Find the height at
which a vertically incident wave of frequency 8 MHz is reflected. (b) Find
the frequency of a vertically incident wave which gets reflected at a height of
220 km. (c) What is the lowest frequency below which communication is not
possible across the peak of the layer?

For a uniform plane wave of frequency 10 MHz propagating normal to a
slab of ionized medium of thickness 50 km and uniform plasma frequency
8 MHz, find (a) the phase velocity in the slab, (b) the wavelength in the slab,
and (c) the number of wavelengths undergone by the wave in the slab.

For a uniform plane wave propagating normal to a hypothetical slab iono-
sphere of thickness 100 km and uniform electron density (10'4/80.6) el/m3,
changing with time at the rate of 108 el/m3/s, find the Doppler shift in fre-
quency for (a) f = 10.1 MHz and (b) f = 40 MHz.

If you have studied Sec. 7.4, you should be able to show that the group veloc-
ity for propagation in the ionized medium is given by

B
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Show that for a hypothetical slab ionosphere of thickness s and uniform
plasma frequency fy, a narrow-band modulated signal of carrier frequency
> fy propagating normal to the slab undergoes a time delay in excess of
that of the free space value by the amount f3s/2¢f2.

10.2 WAVE PROPAGATION IN ANISOTROPIC
MEDIUM

In Sec. 5.2 we learned that for certain dielectric materials known as
“anisotropic dielectric materials,” D is not in general parallel to E and the
relationship between D and E is expressed by means of a permittivity tensor
consisting of a 3 x 3 matrix. Similarly, in Sec. 5.3 we learned of the an-
isotropic property of certain magnetic materials. There are several important
applications based on wave propagation in anisotropic materials. A general
treatment is, however, very complicated. Hence we shall consider two simple
cases.

For the first example, we consider an anisotropic dielectric medium
characterized by the D to E relationship given by

D, €. O 0 E,
0 E, (10.16)
0 0 €, E,

y

D

z

and having the permeability u,. This simple form of permittivity tensor can
be achieved in certain anisotropic liquids and crystals by an appropriate
choice of the coordinate system. It is easy to see that the characteristic polar-
izations for this case are all linear directed along the coordinate axes and
having the effective permittivities ¢,,, €,,, and ¢,, for the x-, y-, and z-directed
polarizations, respectively. Let us consider a uniform plane wave propagating
in the z direction. The wave will generally contain both x and y components
of the fields. It can be decomposed into two waves, one having an x-directed
electric field and the other having a y-directed electric field. These component
waves travel individually in the anisotropic medium as though it is isotropic
but with different phase velocities since the effective permittivities are differ-
ent. In view of this, the phase relationship between the two waves, and hence
the polarization of the composite wave, changes with distance along the direc-
tion of propagation.

To illustrate the foregoing discussion quantitatively, let us consider the
electric field of the wave to be linearly polarized at z = 0 as given by

E(0) = (E.oi, + E,i,) cos ot (10.17)

Then assuming (+) wave only, the electric field at an arbitrary value of z is
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given by
E(z) = E,, cos (ot — B,2) i, + E,, cos (wt — f,2) 1, (10.18)
where
B = o/ p€,, (10.19a)
B = o/ u€,, (10.190)

are the phase constants corresponding to the x-polarized and y-polarized
component waves, respectively. Thus the phase difference between the x and
y components of the field is given by

Ap = (B, — Bz

As the composite wave progresses along the z direction, A¢ changes from
zero at z = 0 to n/2 at z = n/2(B, — B,) tow at z = z/(f, — f,), and so on.
The polarization of the composite wave thus changes from linear at z = 0 to
elliptical for z > 0, becoming linear again at z = z/(§, — f,), but rotated by
an angle of 2 tan~! (E,o/E,,), as shown in Fig. 10.2. Thereafter, it becomes
elliptical again, returning back to the original linear polarization at z =
2n/(B, — B,), and so on.

(10.20)

. = s lfia
&l 272, - 6)) 256,86
x A x A x A
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Figure 10.2. The change in polarization of the field of a wave propagating
in the anisotropic dielectric medium characterized by Eq. (10.16).

For the second example, we consider propagation in a ferrite medium.
Ferrites are a class of magnetic materials which when subject to a d.c. mag-
netizing field exhibit anisotropic magnetic properties. Since there are phase
differences associated with the relationships between the components of B
and the components of H due to this anisotropy, it is convenient to use the
phasor notation and write the relationship in terms of the phasor components.
For an applied d.c. magnetic field along the direction of propagation of the
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wave, which we assume to be the z direction, this relationship is given by

5«: M _jx 0 Hx
B,|=|jx wu 0] 4, (10.21)

_‘Bx_ _0 0 ﬂﬂ_ _H:

where u and x depend upon the material, the strength of the d.c. magnetic
field, and the wave frequency.
To find the characteristic polarizations, we first note from (10.21) that

B, = pH, — jxH, (10.22a)
B,=jkH, + uH, (10.22b)

Setting B,/B, equal to H,/H,, we then have
pH, — jkH, H,
jkH, + uH, H,
which upon solution for H,/H, gives

A .
1, 10.23
7 102

This result corresponds to equal amplitudes of A, and H, and phase differ-
ence of +90°. Thus the characteristic polarizations are both circular, rotating
in opposite senses as viewed along the z direction.

The effective permeabilities of the ferrite medium corresponding to the
characteristic polarizations are

_E_x — luﬁx _ JICI?J'
H, H,
= U —jlc&
H, .
—uFk forﬁ = 4j (10.24)

¥y

The phase constants associated with the propagation of the characteristic
waves are

B: = /e(uF k) (10.25)

where the subscripts + and — referto H,/H, = -+j and H,/H, = —j, respec-
tively. We note from (10.25) that #, can become imaginary if (4 — x) < 0.
When this happens, wave propagation does not occur for that characteristic
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polarization. We shall hereafter assume that the wave frequency is such that
both characteristic waves propagate.

Let us now consider the magnetic field of the wave to be linearly polarized
in the x direction at z = 0, that is,

H(0) = H, cos wt i, (10.26)

Then we can express (10.26) as the superposition of two circularly polarized
fields having opposite senses of rotation in the xy plane in the manner

H) = ( 5 CO8 ot i, + % sin ot iy)

H, 2 s a9 )
+ ( 5 Cos ot i, 5 sin wti, (10.27)
The circularly polarized field inside the first pair of parentheses on the right
side of (10.27) corresponds to

Ho2 _
—JjH,/[2

H .
e +

T J

whereas that inside the second pair of parentheses corresponds to

H _H2 _
g, JH2

Assuming propagation in the positive z direction, the field at an arbitrary
value of z is then given by

H(z) = [Ho cos (@t — f.2)1, + T2 sin (@ — B2, |

[ He cos (@t — p2) 1. — li sin (@r — B2)1, |
LS B XY
B (o — Bt By B )]
[Hocos (o — By Bes 1 B B,
g (o B By B o))
_ l:Ho - <%z) i, - H,sin (ﬂ%ﬁ*z) iy]
- cos (cot - ﬁ;;—/&z) (10.28)
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The result given by (10.28) indicates that the x and y components of the
field are in phase at any given value of z. Hence the field is linearly polarized
for all values of z. The direction of polarization is, however, a function of z
since

&_Ho sin [(ﬂ——ﬁ+)/2]z_t B-— 8. 2
H.~ Hyoslf.—pom:="""2 - (0B

and hence the angle made by the field vector with the x axis is '[i‘;—ﬂ*z.

Thus the direction of polarization rotates linearly with z at a rate of '3‘;2'3*

This phenomenon is known as “Faraday rotation” and is illustrated with the
aid of the sketches in Fig. 10.3. The sketches in any given column correspond
to a fixed value of z whereas the sketches in a given row correspond to a
fixed value of ¢. At z = 0, the field is linearly polarized in the x direction and
is the superposition of two counter-rotating circularly polarized fields as
shown by the time series of sketches in the first column. If the medium is
isotropic, the two counter-rotating circularly polarized fields undergo the
same amount of phase lag with z and the field remains linearly polarized in
the x direction as shown by the dashed lines in the second and third columns.
For the case of the anisotropic medium, the two circularly polarized fields
undergo different amounts of phase lag with z. Hence their superposition
results in a linear polarization making an angle with the x direction and in-
creasing linearly with z as shown by the solid lines in the second and third
columns.

The phenomenon of Faraday rotation in a ferrite medium that we have
just discussed forms the basis for a number of devices in the microwave field.
The phenomenon itself is not restricted to ferrites. For example, an ionized
medium immersed in a d.c. magnetic field possesses anisotropic properties
which give rise to Faraday rotation of a linearly polarized wave propagating
along the d.c. magnetic field. A natural example of this is propagation along
the earth’s magnetic field in the ionosphere. A simple modern example of the
application of Faraday rotation is, however, illustrated by the magneto-
optical switch. In fact, Faraday rotation was originally discovered in the
optics regime.

The magneto-optical switch is a device for modulating a laser beam by
switching on and off an electric current. The electric current generates a mag-
netic field that rotates the magnetization vector in a magnetic iron-garnet
film on a substrate of garnet, in the plane of the film through which a light
wave passes. When it enters the film, the light wave field is linearly polarized
normal to the plane of the film. If the current in the electric circuit is off, the
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Figure 10.3. For illustrating the phenomenon of Faraday rotation,
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magnetization vector is normal to the direction of propagation of the wave
and the wave emerges out of the film without change of polarization, as
shown in Fig. 10.4(a). If the current in the electric circuit is on, the magnetiza-
tion vector is parallel to the direction of propagation of the wave, the light
wave undergoes Faraday rotation and emerges out of the film with its polar-
ization rotated by 90°, as shown in Fig. 10.4(b). After it emerges out of the
film, the light beam is passed through a polarizer which has the property of
absorbing light of the original polarization but passing through the light of

o

Polarization

Magnetization Light
Vector Beam
(a) Film
Polarization
Light Beam
M@
(b) Vector

Figure 10.4. For illustrating the principle of operation of a magneto-
optical switch.

the 90°-rotated polarization, Thus the beam is made to turn on and off by the
switching on and off of the current in the electric circuit. In this manner, any
coded message can be made to be carried by the light beam.

In this section we discussed wave propagation in an anisotropic medium,
In particular, we learned that in a ferrite medium, a linearly polarized wave
propagating along the direction of an applied d.c. magnetic field undergoes
Faraday rotation. We then briefly mentioned other examples of media in
which Faraday rotation takes place and finally discussed the operation of the
magneto-optical switch, a device employing Faraday rotation for modulating
a light beam.
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REVIEW QUESTIONS

10.7.

10.8.

10.9.

10.10.

10.11.

Discuss the principle behind wave propagation in an anisotropic medium
based on the decomposition of the wave into characteristic waves.

When does a wave propagate in an anisotropic medium without change in
polarization?

What is Faraday rotation? When does Faraday rotation take place in an
anisotropic medium ?

Consult appropriate reference books and list three applications of Faraday
rotation.

What is a magneto-optical switch ? Discuss its operation.

PROBLEMS

10.5.

10.6.

10.7.

10.8.

For the anisotropic medium characterized by the D to E relationship given
by Eq. (10.16), assume €,, = 4€,, €,, = %€, and €., = 2€,, and find the
distance in which the phase difference between the x and y components of a
plane wave of frequency 10° Hz propagating in the z direction changes by
the amount 7.

Show that for plane wave propagation in an anisotropic medium, the angle
between E and H is not in general equal to 90°. For the anisotropic dielectric
medium of Problem 10.5, find the angle between E and H for E linearly
polarized along the bisector of the angle between the x and y axes.

For a wave of frequency @, the quantities # and x in the permeability matrix
of Eq. (10.21) are given by

[OJN4)
b= a1+ ]

W pr
K= oot — @

where @y = Lo e|Ho/m, @y = phole|Mo/m, Hy is the d.c. magnetizing field,
M, is the magnetic dipole moment per unit volume in the material in the
absence of the wave, e is the charge of an electron, and m is the mass of
an electron. (a) Show that the effective permeabilities corresponding to
a—):o—:j':v[—w for Hx/Hy = :I:j
(b) Compute the Faraday rotation angle in degrees per centimeter along the
z direction for @ = 10! rad/s, if w, = 5 x 1010 rad/s, @, = 1.5 x 10'°
rad/s, and € = 9€,.

the characteristic polarizations are o [1 +

For the quantities defined in Problem 10.7 for the ferrite medium, show that
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for o < @ and w,, < @, the Faraday rotation per unit distance along the
z direction is C%N/W Compute its value in degrees per centimeter if

Wy = 5 X 101° rad/s and € = 9¢€,.

10.3 THE SMITH CHART

In Sec. 6.6 we studied reflection and transmission at the junction of two
transmission lines. We found that when a line of certain characteristic imped-
ance is terminated by another line of different characteristic impedance, as
shown in Fig. 10.5, standing waves result on the first line. The degree of exist-
ence of the standing waves was defined by the standing wave ratio (SWR)
which is the ratio of the voltage maximum to the voltage minimum of the
standing wave pattern. In this section we shall proceed further and introduce
the Smith Chart, which is a useful graphical aid in the solution of transmis-
sion-line and many other problems.

T T

Line 1 Line 2

|

|

I
201*61 | Zoz’ﬁz

|

|

1

z=0 P

Figure 10.5. A transmission line terminated by another infinitely long
transmission line.

First we define the line impedance Z(z) at a given value of z on the line as
the ratio of the complex line voltage to the complex line current at that value
of z, that is,

5(2) — V@)
Z(2) o (10.30)

From the solutions for the line voltage and line current on line 2 given by
(6.71a) and (6.71b), respectively, the line impedance in line 2 is given by

5 (1) = V(@) _
Z,(2) I_Z(z) Zy,

Thus the line impedance at all points on line 2 is simply equal to the charac-
teristic impedance of that line. This is because the line is infinitely long and
hence there is only a (+) wave on the line. From the solutions for the line
voltage and line current in line 1 given by (6.70a) and (6.70b), respectively,
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the line impedance for that line is given by

. % 7+ o—ifiz [/ — piBiz
Z(2) = Vi(2) . Zmlfle 4 Viel?

I,(2) Vie ihs — Vieif:
14 Tz)
=Zy—=2 10.31
o (1031)
where

. o f/-l—efﬁll - 120
I'y(z) = _—ije“”’" = I'(0)e’?# (10.32)
.0 = Vi _Zo—Zy (10.33)

Vi  Zyy + Zoy

The quantity I',(0) is the voltage reflection coefficient at the junction z =0
and T',(z) is the voltage reflection coefficient at any value of z.

To compute the line impedance at a particular value of z, we first compute
T,(0) from a knowledge of Z,, which is the terminating impedance to line 1.
We then compute I'(z) = I'(0)e/2#* which is a complex number having
the same magnitude as that of T',(0) but a phase angle equal to 2f,z plus the
phase angle of T',(0). The computed value of T',(z) is then substituted in
(10.31) to find Z,(z). All of this complex algebra is eliminated through the use
of the Smith Chart.

The Smith Chart is a mapping of the values of normalized line impedance
onto the reflection coefficient (I',) plane. The normalized line impedance
Z (2) is the ratio of the line impedance to the characteristic impedance of the
line. From (10.31), and omitting the subscript 1 for the sake of generality, we
have

7 - Z_(Z) 14 I_V(Z)
Z(N=2\%) __ 21 -] 10.34
A7) Z, 1 —TW2) . )
Conversely,
T —_— —}l(z) 1
r = Z——_ 10.35
(@) Z(z)+1 ( )

Writing Z, = r + jx and substituting into (10.35), we find that

r+jx—1:,\/(r—l)z—|—x2<1 fOI‘I"ZO

= -
|V| I'—|—_]x-|—1 ,\/(r+1)2—i—x2—

Thus, we note that all passive values of normalized line impedances, that is,
points in the right half of the complex Z, plane shown in Fig. 10.6(a) are
mapped onto the region within the circle of radius unity in the complex I,
plane shown in Fig. 10.6(b).
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Figure 10.6. For illustrating the development of the Smith Chart.

We can now assign values for Z,, compute the corresponding values of
T, and plot them on the T', plane but indicating the values of Z, instead of
the values of T, To do this in a systematic manner, we consider contours in
the Z, plane corresponding to constant values of 7, as shown for example
by the line marked a for r = 1, and corresponding to constant values of x,
as shown for example by the line marked b for x =  in Fig. 10.6(a).

By considering several points along line g, computing the corresponding
values of T',, plotting them on the I, plane, and joining them, we obtain the
contour marked a’ in Fig. 10.6(b). Although it can be shown analytically that
this contour is a circle of radius 4 and centered at (1/2, 0), it is a simple task to
write a computer program to perform this operation, including the plotting.
Similarly, by considering several points along line b and following the same
procedure, we obtain the contour marked &’ in Fig. 10.6(b). Again, it can be
shown analytically that this contour is a portion of a circle of radius 2 and
centered at (1, 2). We can now identify the points on contour a’ as corre-
sponding to r = 1 by placing the number 1 beside it and the points on con-
tour b’ as corresponding to x = } by placing the number 0.5 beside it. The
point of intersection of contours a’ and b’ then corresponds to Z, = 1 + j0.5.

‘When the procedure discussed above is applied to many lines of constant
r and constant x covering the entire right half of the Z, plane, we obtain the
Smith Chart. In a commercially available form shown in Fig. 10.7, the Smith
Chart contains contours of constant » and constant x at appropriate incre-
ments of r and x in the range 0 <r < co and —oo < x < oo so that .
interpolation between the contours can be carried out to a good degree of
accuracy.

Let us now consider the transmission line system shown in Fig. 10.8, ..



Figure 10.7. A commercially available form of the Smith Chart (copy-
righted by and reproduced with the permission of Kay Elemetrics Corp.,
Pine Brook, N.I.).

Linel Line 1 Line 2
z iB z

Figure 10.8. A transmission-line system for illustrating the computation
of several quantities by using the Smith Chart,
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which is the same as that in Fig. 10.5 except that a reactive element having
susceptance (reciprocal of reactance) B is connected in parallel with line | at
a distance / from the junction. Let us assume Z;, = 150 ohms, Z,, = 50
ohms, B = —0.003 mho, and /= 0.3754,, where 4, is the wavelength in
line 1 corresponding to the source frequency, and find the following quanti-
ties by using the Smith Chart, as shown in Fig. 10.9:

1. Z,, line impedance just to the right of jB: First we note that since line
2 is infinitely long, the load for line 1 is simply 50 ohms. Normalizing
this with respect to the characteristic impedance of line 1, we obtain
the normalized load impedance for line 1 to be

_ 50 _ 1

Z,0)= 150 3

Locating this on the Smith Chart at point 4 in Fig. 10.9 amounts to
computing the reflection coefficient at the junction, that is, I",(0). Now
the reflection coefficient at z = —/ = —0.3754,, being equal to
T, (0)e~72#4 = T"(0)e~"5*, can be located on the Smith Chart by
moving A4 such that the magnitude remains constant but the phase
angle decreases by 1.5z. This is equivalent to moving it on a circle with

08 0.125)

0.25A

—0.8 3752

Figure 10.9. For illustrating the use of the Smith Chart in the computa-
tion of several quantities for the transmission-line system of Fig. 10.8.
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its center at the center of the Smith Chart and in the clockwise direc-
tion by 1.5z or 270° so that point B is reached. Actually, it is not neces-
sary to compute this angle since the Smith Chart contains a distance
scale in terms of A along its periphery for movement from load toward
generator and vice versa, based on a complete revolution for one-half
wavelength. The normalized impedance at point B can now be read off
the chart and multiplied by the characteristic impedance of the line to
obtain the required impedance value. Thus

Z, = (0.6 — j0.8)150 = (90 — j120) ohms.

2. SWR on line 1 to the right of jB: From (6.81)

_ 140y 14Tyl
SWR = vi_ v 10.36
1 —Ty| 1—|T, e (10.36)

Comparing the right side of (10.36) with the expression for Z, given by
(10.34), we note that it is simply equal to Z, corresponding to phase
angle of I', equal to zero. Thus, to find the SWR, we locate the point
on the Smith Chart having the same | T, | as that for z = 0, but having
a phase angle equal to zero, that is, the point C in Fig. 10.9, and then
read off the normalized resistance value at that point. Here, it is equal
to 3 and hence the required SWR is equal to 3. In fact, the circle passing
through C and having its center at the center of the Smith Chart is
known as the “constant SWR (= 3) circle” since for any normalized
load impedance to line 1 lying on that circle, the SWR is the same (and
equal to 3).

3. Y, line admittance just to the right of jB: To find this, we note that
the normalized line admittance ¥, at any value of z, that is, the line
admittance normalized with respect to the line characteristic admit-
tance Y, (reciprocal of Z,) is given by

Yo _ Z, _ _1
Yo  Z() Z(2)
A= (2 14+ TDy(2)etr
14+T,z) 1 —Ty2esr

_ L4 Te2¥4 _ 14 Tz £ 4/4)

T 1 =Ty (@)etrvt 1 — Tz + A4

—Z (z + %) (10.37)

Y(2) =

Thus ¥, at a given value of z is equal to Z, at a value of z located 1/4
from it. On the Smith Chart this corresponds to the point on the con-
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stant SWR circle passing through B and diametrically opposite to it,
that is, the point D. Thus,

Y,, = 0.6 + ;0.8
and

— = 1 :
Yy = Yo, ¥, = 155(0.6 +0.8)
= (0.004 + j0.0053) mho

In fact, the Smith Chart can be used as an admittance chart instead of
as an impedance chart, that is, by knowing the line admittance at one
point on the line, the line admittance at another point on the line can
be found by proceeding in the same manner as for impedances. As an
example, to find ¥, we can first find the normalized line admittance at
z = 0 by locating the point C diametrically opposite to point 4 on the
constant SWR cirlce. Then we find ¥,, by simply going on the con-
stant SWR circle by the distance / (= 0.3754,) toward the generator.
This leads to point D, thereby giving us the same result for ¥, as found
above.

4. SWR on line 1 to the left of jB: To find this, we first locate the nor-
malized line admittance just to the left of jB, which then determines the
constant SWR circle corresponding to the portion of line 1 to the left
of jB. Thus, noting that ¥, = ¥, + jB, or ¥,, = ¥,, + jB/Y,,, and
hence

Re[Y,,] = Re[7,,] (10.382)
Im{¥,,] = Im[7,,] + 2 (10.38b)

we start at point D and go along the constant real part (conductance)
circle to reach point E for which the imaginary part differs from the
imaginary part at D by the amount B/Y,,, that is, —0.003 /1—§0’ or
—0.45. We then draw the constant SWR circle passing through E and
then read off the required SWR value at point F. This value is equal to

1.94.

The steps outlined above in part 4 can be applied in reverse to determine
the location and the value of the susceptance required to achieve an SWR of
unity to the left of it, that is, a condition of no standing waves. This procedure
is known as transmission-line “matching.” It is important from the point of
view of eliminating or minimizing certain undesirable effects of standing
waves in electromagnetic energy transmission.

To illustrate the solution to the matching problem, we first recognize that
an SWR of unity is represented by the center point of the Smith Chart. Hence _
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matching is achieved if ¥, falls at the center of the Smith Chart. Now since
the difference between ¥, and ¥,, is only in the imaginary part as indicated
by (10.38a) and (10.38b), ¥,, must lie on the constant conductance circle
passing through the center of the Smith Chart (this circle is known as the
“unit conductance circle” since it corresponds to normalized real part equal
to unity). ¥,, must also lie on the constant SWR circle corresponding to the
portion of the line to the right of jB. Hence it is given by the point(s) of inter-
section of this constant SWR circle and the unit conductance circle. There are
two such points G and H, as shown in Fig. 10.10, in which the points 4 and

0.136A

0.25)

0.304A

Figure 10.10. Solution of transmission-line matching problem by using the
Smith Chart.

C are repeated from Fig. 10.9. There are thus two solutions to the matching
problem. If we choose G to correspond to Y,,,, then since the distance from C
to G is (0.333 — 0.250)4,, or 0.0834,, jB must be located at z = —0.0834,.
To find the value of jB, we note that the normalized susceptance value cor-
responding to G is —1.16 and hence B/Y,, = 1.16, or jB = j1.16Y,; =
j0.00773 mho. If, however, we choose the point H to correspond to Y,,, then
we find in a similar manner that jB must be located at z = (0.250 4 0.167)4,
or 0.417), and its value must be —;j0.00773 mho.

The reactive element jB used to achieve the matching is commonly
realized by means of a short-circuited section of line, known as a “stub.” This
is based on the fact that the input impedance of a short-circuited line is purely
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Input Load
—»
/B Y=oo

(o3 L

-«——Toward Generator

Figure 10.11. A short-circuited stub,

reactive, as shown in Sec. 6.4. The length of the stub for a required input
susceptance can be found by considering the short circuit as the load, as
shown in Fig. 10.11, and using the Smith Chart. The admittance correspond-
ing to a short circuit is infinity and hence the load admittance normalized
with respect to the characteristic admittance of the stub is also equal to infin-
ity. This is located on the Smith Chart at point I in Fig. 10.10. We then go
along the constant SWR circle passing through I (the outermost circle)
toward the generator (input) until we reach the point corresponding to the
required input susceptance of the stub normalized with respect to the char-
acteristic admittance of the stub. Assuming the characteristic impedance of
the stub to be the same as that of the line, this quantity is here equal to j1.16
or —j1.16, depending on whether point G or point H is chosen for the loca-
tion of the stub. This leads us to point J or point K, and hence the stub
length is (0.25 + 0.136)4,, or 0.3864,, for jB = j1.16, and (0.364 — 0.25)4,,
or 0.1144,, for jB = —j1.16. The arrangement of the stub corresponding to
the solution for which the stub location is at z = —0.0834,, and the stub
length is 0.3864,, is shown in Fig. 10.12.

I-c—[),{)83>\l—>-|

Line 1 [ Line 1 | Line 2
SWR =1 f SWR = 3 I
| I
I Y 31 _?
Stub
0.386X,

Figure 10.12. A solution to the matching problem for the transmission-
line system of Fig. 10.5.
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In this section we introduced the Smith Chart, which is a graphical aid in
the solution of transmission-line problems. After first discussing the basis
behind the construction of the Smith Chart, we illustrated its use by consid-
ering a transmission-line system and computing several quantities of interest.
We concluded the section with the solution of a transmission-line matching
problem.

REVIEW QUESTIONS

10.12. Define line impedance. What is its value for an infinitely long line ?

10.13. What is the basis behind the construction of the Smith Chart? How does the
Smith Chart simplify the solution of transmission-line problems?

10.14. Brieﬁz discuss the mapping of the normalized line impedances from the com-
plex Z, plane onto the Smith Chart.

10.15. Why is a circle with its center at the center of the Smith Chart known as a
constant SWR circle? Where on the circle is the corresponding SWR value
marked ?

10.16. Using the Smith Chart, how do you find the normalized line admittance at a
point on the line given the normalized line impedance at that point?

10.17. Briefly discuss the solution of the transmission-line matching problem.

10.18. How is the length of a short-circuited stub for a required input susceptance
determined by using the Smith Chart?

PROBLEMS

10.9. With the aid of a computer program, compute values of T';- corresponding to
several points along linc 4 in Fig. 10.6(a) and show that the contour a’ in
Fig. 10.6(b) is a circle of radius { and centered at (1/2, 0).

10.10. With the aid of a computer program, compute values of ' corresponding to
several points along line b in Fig. 10.6(a) and show that the contour 4’ in
Fig. 10.6(b) is a portion of a circle of radius 2 and centered at (1, 2).

10.11. For the transmission-line system of Fig. 10.8, and for the values of Z,1, Z¢2,
and [ specified in the text, find the value of B which minimizes the SWR to
the left of jB. What is the minimum value of SWR ?

10.12. In Fig. 10.8 assume Z,; = 300 ohms, Z,, = 75 ohms, B = 0.002 mllo, and
1 = 0.145], and find (a) Z,, (b) SWR on line 1 to the right of /B, (c) Y, and
(d) SWR on line 1 to the left of jB.

10.13. A transmission line of characteristic impedance 50 ohms is terminated by
a load impedance of (73 + j0) ohms. Find the location and the length of a
short-circuited stub of characteristic impedance 50 ohms for achieving a
match between the line and the load.



104 REFLECTI_ON AND REFRACTION OF PLANE
WAVES

In Sec. 7.6 we considered oblique incidence of uniform plane waves upon
an interface between two dielectric media and found the relationships be-
tween the angles of incidence, reflection, and transmission. In this section we
shall consider the problem in more detail and derive the expressions for the
reflection and transmission coefficients at the boundary. To do this, we dis-
tinguish between two cases: (a) the electric field vector of the wave linearly
polarized parallel to the interface and (b) the magnetic field vector of the
wave linearly polarized parallel to the interface. The law of reflection and
Snell’s law derived in Sec. 7.6 hold for both cases since they result from the
fact that the apparent phase velocities of the incident, reflected, and trans-
mitted waves parallel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to
the interface is shown in Fig. 10.13 in which the interface is assumed to be in
the x = 0 plane, and the subscripts i, r, and ¢ associated with the field sym-
bols denote incident, reflected, and transmitted waves, respectively. The
plane of incidence, that is, the plane containing the normal to the interface
and the propagation vectors, is assumed to be in the xz plane so that the elec-
tric field vectors are entirely in the y direction. The corresponding magnetic
field vectors are then as shown in the figure so as to be consistent with the

Medium 1
€1ty

y z
Medium 2
€95 My X

I
l
|
I
|
|
|

0,

)
t
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|
|
I
I
I

Figure 10.13. For obtaining the reflection and transmission coefficients
for an obliquely incident uniform plane wave on a dielectric interface with
its electric field perpendicular to the plane of incidence.
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condition that E, H, and p form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are perpendicular to the plane of in-
cidence, this case is also said to correspond to perpendicular polarization. The
angle of incidence is assumed to be 8,. From the law of reflection (7.69a), the
angle of reflection is then also #,. The angle of transmission, assumed to be
0,, is related to @, by Snell’s law, given by (7.69b).

The boundary conditions to be satisfied at the interface x = 0 are that
(a) the tangential component of the electric field intensity be continuous and
(b) the tangential component of the magnetic field intensity be continuous.
Thus, we have at the interface x = 0

E,+ E, = E, (10.392)
H,+H, —H, (10.39b)

Expressing the quantities in (10.39a) and (10.39b) in terms of the total fields,
we obtain

E, + E, =E, (10.40a)
H,cos@, — H,cos 8, = H,cos 8, (10.40b)

We also know from one of the properties of uniform plane waves that

. T — = 1

Ei E 3 7, ”61 (10.41a)
E _ — Ho 10.41b
H= Hy = € (10.41b)

E — E, — £1.5%0 (10.42)

Solving (10.40a) and (10.42) for E; and E,, we have

__E, 1, cos 02)

E = 5 (1 + T cos 0. (10.432)
__E, 7, cos 02)

E =% (1 — et (10.43b)

We now define the reflection coefficient I', and the transmission coeffi-
cient 7, as

(10.44a)

(10.44b)
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where the subscript | refers to perpendicular polarization. From (10.43a)
and (10.43b), we then obtain

ﬂz COS 01 - ”1 COS 02
y,co8 6, + 7, cos b, (10.452)

— 21, cos 8,
L= /D) COSPl —+ 1, COS 02 (1045b)

Before we discuss the result given by (10.45a) and (10.45b), we shall
derive the corresponding expressions for the case in which the magnetic field
of the wave is parallel to the interface. The geometry pertinent to this case is
shown in Fig. 10.14. Here again the plane of incidence is chosen to be the xz
plane so that the magnetic field vectors are entirely in the y direction. The
corresponding electric field vectors are then as shown in the figure so as to be
consistent with the condition that E, H, and p form a right-handed mutually
orthogonal set of vectors. Since the electric field vectors are parallel to the
plane of incidence, this case is also said to correspond to parallel polarization.

Medium 1
€1a

y z
Medium 2
€y Ky
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Figure 10.14. For obtaining the reflection and transmission coefficients for
an obliquely incident uniform plane wave on a dielectric interface with
its electric field parallel to the plane of incidence.

Once again the boundary conditions to be satisfied at the interface x = 0
are that (a) the tangential component of the electric field intensity be con-
tinous and (b) the tangential component of the magnetic field intensity be
continuous. Thus we have at the interface x = 0,
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E,-+ E, =E, (10.46a)
H,+H, =H, (10.46b)

Expressing the quantities in (10.46a) and (10.46b) in terms of the total fields
and also using (10.41a) and (10.41b), we obtain

g _ peosf,
E —E = Ei g (10.472)
E +E = E,Z—‘ (10.47b)
2

Solving (10.47a) and (10.47b) for E, and E,, we have

. _E (n, | cos 02>
E =3 (112 + o0 (10.482)
_E (1, _ cos 0,
E, 2 (112 cos 01) ({d0x18h)

We now define the reflection coefficient I';; and the transmission coefli-
cient 7| as

_E, Ecosf, _ E,
Ty = E, —Ecos@, E (10.492)
v = Eu _ —Eicos0, _ E cosb, (10.49b)

E;cos @,

where the subscript || refers to parallel polarization. From (10.48a) and
(10.48b), we then obtain

_7yc088, — 1, cos b,
Ty 71, cos 0, + #, cos B, (f0585)

_ 21, cos 6,
T = Y, cos 8, + 7, cos 0, (0500)

We shall now discuss the results given by (10.45a), (10.45b), (10.50a), and
(10.50b) for the reflection and transmission coefficients for the two cases:

1. For 8, = 0, that is, for the case of normal incidence of the uniform
plane wave upon the interface, §, = 0 and

rlzﬂz_’h T _ N — 1

n. + 1 R NET
21, 21,
T, = 5 T =
170, +m A 1)
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Thus the reflection coefficients as well as the transmission coefficients
for the two cases become equal as they should since for normal in-
cidence, there is no difference between the two polarizations except
for rotation by 90° parallel to the interface.

., =1and I, = —1ifcos @, = 0, that is,

~1T—sin%6, =a4f1 — K€, sin?@, =0
ﬂl 2

or

sin 0, = /#4262 (10.51)
M€,y

where we have used Snell’s law given by (7:69b) to express sin 8, in
terms of sin §,. If we assume u, = y, = u, as is usually the case,
(10.51) has real solutions for 8, for €, < €,. Thus, for €, < €, that is,
for transmission from a dielectric medium of higher permittivity into
a dielectric medium of lower permittivity, there is a critical angle of

incidence 8, given by
0, —sin~1 4/ &2 (10.52)
€

for which 8, is equal to 90°, and |T", | = [I"};| = 1. For §, > @, sin 8,
becomes greater than 1, cos #, becomes imaginary, and |[I", | = ||
= 1. This is consistent with the phenomenon of “total internal reflec-
tion” for @, > 6,, which we discussed in Sec. 7.6.

. T, =0for#,cosd, =mn,cosd,, thatis

f2a/1 —sin? 0, = 4/ 1 Zlfl sin2 8,

or

n—ni _ g M — ui(€,/€1) 10.53
e lme) 2 BE—u (10.53)

Sin2 01 i -

For the usual case of transmission between two dielectric materials,
that is, for u, = u,, and €, % €,, this equation has no real solution
for @, and hence there is no angle of incidence for which the reflection
coefficient is zero for the case of perpendicular polarization.

4, T, = 0 for n, cos 8, = n, cos §,, that is,

Naa) 1 — Z;—z;sinzﬂl = /1 —sin? 6,
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or

m—n o (alp)e — 6
e ey -1 e—d (10.54)

Sin2 01 e

If we assume g, = u,, this equation reduces to

€,
€+ €

Sinz 01 =

which then gives
€4

2 o 12 —
cos2 @, =1 —sin% 0, =
1 1 61_1_62

and
€

tan 8, = r
1

Thus there exists a value of the angle of incidence 8, given by

9, = tan‘14/€—2 (10.55)
€4
for which the reflection coefficient is zero and hence there is complete
transmission for the case of parallel polarization.

5. In view of (3) and (4) above, for an elliptically polarized wave incident
on the interface at the angle 8,, the reflected wave will be linearly
polarized perpendicular to the plane of incidence. For this reason, the
angle @, is known as the “polarizing angle.” It is also known as the
“Brewster angle.” The phenomenon associated with the Brewster
angle has several applications. An example is in gas lasers in which the
discharge tube lying between the mirrors of a Fabry Perot resonator is
sealed by glass windows placed at the Brewster angle, as shown in Fig.
10.15, to minimize reflections tfrom the ends of the tube so that the
laser behavior is governed by the mirrors external to the tube.

/Gas Discharge Tube

Mirror Mirror

Glass Window Glass Window

Figure 10.15. For illustrating the application of the Brewster angle effect
in gas lasers,
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In this section we considered oblique incidence of a uniform plane wave
upon the boundary between two perfect dielectric media and derived the
expressions for the reflection and transmission coefficients for the cases of
perpendicular and parallel polarizations. An examination of these expres-
sions revealed that (a) for incidence from a dielectric medium of higher per-
mittivity onto one of lower permittivity, there is a critical angle of incidence
beyond which total internal reflection occurs, as we learned in Sec. 7.6, and
(b) for the case of parallel polarization, there is an angle of incidence, known
as the Brewster angle, for which the reflection coefficient is zero.

REVIEW QUESTIONS

10.19. What is meant by the plane of incidence ? Distinguish between the two dif-
ferent linear polarizations pertinent to the derivation of the reflection and
transmission coefficients for oblique incidence on a diclectric interface.

10.20. Briefly discuss the determination of the reflection and transmission coeffi-
cients for an obliquely incident wave on a dielectric interface.

10.21. What is the nature of the reflection coefficient for angle of incidence greater
than the critical angle for total internal reflection ?

10.22. What is the Brewester angle ? What is the polarization of the reflected wave
for an elliptically polarized wave incident on a dielectric interface at the
Brewster angle?

10.23. Discuss an application of the Brewster angle effect.

PROBLEMS

10.14. A uniform plane wave having the electric field given by
E = Ei, sin [67 X 10°¢ — 107(x + 4/ 3 2)]

is incident on the interface between free space and a dielectric of permit-
tivity 1.5€, as shown in Fig. 10.16. (a) Obtain the expression for the reflected
wave field. (b) Obtain the expression for the transmitted wave field.

Medium 1
€ Ko

1
l
l
|
!

60°

Medium 2

|
|
| 1.5¢€,, i, x

Figure 10.16. For Problem 10.14.
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10.15. Repeat Problem 10.14 for the uniform plane wave having the electric field
given by
E = E (% i, — Ti.) cos [67 x 10° — 10n(x + /3 2)]

10.16. Repeat Problem 10.14 for the uniform plane wave having the electric field
given by
3

E— E, (%ix - %1) cos [67 x 109 — 107(x + /T 2]

+ Eoi, sin [67 x 10%¢ — 107(x + A/ 3 2)]
Also discuss the polarizations of the incident, reflected, and transmitted
waves.

10.17. For the dielectric boundary in Fig. 10.16, determine the angle of incidence of
an elliptically polarized wave for the reflected wave to be linearly polarized.
In which plane is the reflected wave polarized then?

105 DESIGN OF A FREQUENCY-INDEPENDENT
ANTENNA

In Chap. 8 we studied the directional properties of antennas and antenna
arrays. These properties depend on the electrical dimensions of the antenna,
that is, the dimensions expressed in terms of the wavelength at the operating
frequency. Hence an antenna of fixed physical dimensions exhibits frequency-
dependent characteristics. This very fact suggests that for an antenna to be fre-
quency-independent, its electrical size must remain constant with frequency
and hence its physical size should increase proportionately to the wavelength.
Alternatively, for an antenna of fixed physical dimensions, the active region,
that is, the region responsible for the predominant radiation should vary
with frequency, that is, scale itself in such a manner that its electrical size
remains the same.

A simple illustration of the aforementioned property is provided by the
equiangular spiral antenna shown in Fig. 10.17 and so-termed because
the angle between the radius vector from the origin and the spiral remains the
same for all points on the curve. The equiangular spiral antenna was pro-
posed by Rumsey in 1954 during the early stages of research on frequency-
independent antennas at the University of Illinois. When this antenna is
excited at the origin, the current flows outward with small attenuation along
the spiral until an active region is reached from which essentially all of the
incident energy transmitted along the spiral arms is radiated. Since this active
region is of constant size in wavelengths, it moves toward the origin as the
operating wavelength decreases or the frequency increases. The size of the
effective radiating region thus adjusts automatically with the operating fre-
quency such that the antenna behaves the same at all frequencies except for
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o)
—

Figure 10.17. The equiangular spiral antenna,

——

a rotation of the radiated field about the antenna axis because of the spiraling
of the arms.

Another and more conventional example of a frequency-independent
antenna is the “log-periodic dipole array,” shown in Fig. 10.18. As the name
implies, it employs a number of dipoles. The dipole lengths and the spacings
between consecutive dipoles increase along the array by a constant scale
factor such that

-.N
I
A
A
T
A

=7 (10.56)

~
A

From the principle of scaling, it is evident that for this structure extending
from zero to infinity and energized at the apex, the properties repeat at fre-
quencies given by 1"f, where n takes integer values. When plotted on a loga-
rithmic scale, these frequencies are equally spaced at intervals of log 7. It is
for this reason that the structure is termed “log-periodic.”

The log-periodic dipole array is fed by a transmission line, as shown in
Fig. 10.18, such that a 180°-phase shift is introduced between successive ele-
ments in addition to that corresponding to the spacing between the elements.
The resulting radiation pattern is directed toward the apex, that is toward the
source. Almost all of the radiation takes place from those elements which
are in the vicinity of a half wavelength long. The operating band of fre-
quencies is therefore bounded on the low side by frequencies at which the
largest elements are approximately a half wavelength long and on the high ,
side by frequencies corresponding to the size of the smallest elements. As the
frequency is varied, the radiating or active region moves back and forth along
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Figure 10.18. Log-periodic dipole array.

the array. Since practically all of the input power is radiated by the active
region, the larger elements to the right of it are not excited. Furthermore,
because the radiation is toward the apex, these larger elements are essentially
in a field-free region and hence do not significantly influence the operation.
Although the shorter elements to the left of the active region are in the
antenna beam, they have small influence on the pattern because of their short
lengths, close spacings, and the 180°-phase shift.

We shall now discuss the design of a log-periodic dipole array. We shall
restrict the design to the computation of the lengths and spacings of the ele-
ments for a specified bandwidth of operation and directivity of the radiation
pattern. The design parameters are the scale factor 7 given by (10.56), the
half angle & subtended at the apex, and the ratio ¢ of the element spacing to
twice the length of the next larger element. Since the active region is not of
negligible length along the structure, the array is designed for a larger band-
width than the design specification. This larger bandwidth is known as the

- “bandwidth of the structure,” denoted B,. The ratio of B, to the design band-
width B is termed the “bandwidth of the active region,” B,, and is related to
o and 7.* We shall first present the relevant definitions and formulas, with

*The relationship between B,;, ¢ and 7 and other design curves have been obtained by
R. L. Carrell in a Ph.D. dissertation at the University of Illinois.
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reference to Fig. 10.18:

T = d“lj:‘ = I‘I—’:‘ = scale factor
g = g_; = relative spacing constant

o = half apex angle

L = boom length, that is, the distance between the shortest
and longest element

N = number of elements
B, = bandwidth of the structure

—4ns— pB (10.57)
B,, = bandwidth of the active region
= 1.1 + 7.7(1 — 7)* cot o (10.58)
Since
_ L=l _1—7
tana =-—r= =75
we obtain
1—1
— -1
o = tan o (10.59)
From
v
t =
L= Tl D — Gl ®
we have
[l 1
L= [_4_(1 B.,) cot oc] e (10.60)
From
Amin _ Iv — ov-1
A-max o 11 =
we obtain

log B, = (N — l)log%

_ log B,
N=1+ oz 075 (10.61)
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Let us now consider an example in which it is desired to design a log-
periodic dipole array for which the band of operation is from 12.5 MHz
to 30 MHz and the directivity is 9. In terms of decibels, the directivity is
20log,, 3, or 9.5 db. The design consists of the following steps:

1. Compute the design bandwidth B.

30
B = 55~ 24
2. Find 7 and ¢ to give the desired directivity. There exists an optimum o
for which the directivity is maximum for each value of 7 in the range
0.8 < v < 1.0. Plots of this optimum ¢ and the corresponding 7
versus the directivity are shown in Fig. 10.19. For the desired direc-
tivity of 9.5 db, we have from Fig. 10.19,

7 = 0.893
o = 0.163

1.00

Directivity, db

Figure 10.19. Plots of optimum ¢ and the corresponding 7 versus direc-
tivity for log-periodic dipole arrays.

3. Determine the half apex angle & from (10.59).

1 — 0.893

%0163 2

o, = tan™!

4. Determine the bandwidth of the active region B,, from (10.58).

B, = 1.1 + 7.7(1 — 0.893) cot 9.32° = 1.637
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5. Determine the bandwidth of the structure B, from (10.57).
B, =1.637 x 2.4 =3.929
6. Determine the boom length L from (10.60). Assuming the longest

element to be a half wavelength long at the low frequency end of the
specified band, A,,, = 24 m and,

iy 1 &
i [z(l m) cot 9.32 ]24 —2725m

7. Determine the number of elements N from (10.61).

log 3.929 3

N =1+ 15g (10,893 —

8. Determine the element lengths and spacings:

I, :’13"=274: 121m

I, = It =12 x 0.893 = 10.72 m
I, = Lt = 10.72 X 0.893 = 9.57 m

L =1,
2

d,=dt1=391x0893=349m
dy = d,t = 349 X 0.893 = 3.12m

d, = cotow = 0.64 cot 9.32° = 3.91'm

Values of the element lengths and spacings and the nearest frequen-
cies at which the elements are a half wavelength long are listed in Table
10.1.

In this section we introduced the concept of frequency-independent
antennas based upon the criterion that for the antenna characteristics to be
frequency-independent, the active region must vary with frequency such that
its electrical size remains approximately constant. We discussed in particular
the log-periodic dipole antenna array and illustrated by means of a numerical
example the computation of element lengths and spacings for desired operat-
ing bandwidth and directivity.
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TABLE 10.1. Computed Values of Log-Periodic Dipole
Array Element Parameters

Element Length Spacing Frequency
number (m) (m) (MHz)
1 12.00 .- 12.50
2 10.72 3.91 14.00
3 9.57 3.49 15.67
4 8.55 3.12 17.55
5 7.63 2.78 19.66
6 6.81 2.49 22.01
7 6.09 2.22 24.65
8 5.43 1.98 27.60
9 4.85 1.77 30.91
10 4.33 1.58 34.61
11 3.87 1.41 38.76
12 3.46 1.26 4341
13 3.09 1.13 48.61

REVIEW QUESTIONS

10.24. Discuss the criterion for an antenna of fixed physical size to be frequency-
independent.

10.25. Describe how the equiangular spiral antenna has frequency-independent
characteristics.

10.26. What is a log-periodic dipole array ? Briefly discuss its operation.

10.27. Why is a log-periodic dipole array designed for a larger bandwidth than the
design specification ?

10.28. Outline the steps in the design of a log-periodic dipole array.

PROBLEMS

10.18. Design a log-periodic dipole array for operation over the frequency band
from 54 MHz to 108 MHz (VHF TV channels 2 to 6 and FM band) and a
directivity of 10 db.

10.19. A log-periodic dipole array is to cover the frequency band from 50 MHz to
250 MHz. Find the boom length and the number of elements for directivity
of (a) 9.5 db and (b) 12 db.

10.6 CAPACITANCE OF A PARALLEL-WIRE LINE

In Sec. 9.3 we illustrated the solution of Laplace’s equation for the
parallel-plate case and discussed the applicability of the static field technique
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in the determination of transmission-line parameters. In this section we shall
use the technique to obtain an analytical expression for the capacitance of a
parallel-wire line, consisting of two infinitely long, straight, parallel, cylin-
drical wires.

Let us first consider an infinitely long, straight, line charge of uniform
density p,, C/m situated along the z axis, as shown in Fig. 10.20(a), and
obtain the electric potential due to the line charge. The symmetry of the prob-
lem indicates that the potential is dependent only on the cylindrical coordi-
nate #. Noting then from Appendix B that in cylindrical coordinates,

T, B _ 1 (rav
\% V—V-VV—To—r(rW>

we have from Laplace’s equation

10/ dV\ _
= W(rw> —=0 forr#0 (10.62)
Integrating twice, we obtain the solution for (10.62) to be

V=Alnr+ B (10.63)

where A and B are arbitrary constants. We can arbitrarily set the potential

Z A z A
L
\_'/
b
L&
f _ AN
>y L 2 r2 >y
//"““x / r\
x 7 \ x 1

T

Pro Pro
(a) (b)

Figure 10.20. (a) An infinitely long line charge of uniform density along
the z axis. (b) A pair of parallel, infinitely long line charges of equal and
opposite uniform densities.
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to be zero at a reference value r = r, giving us

O=Alnr,+ B or B= —Alnr,

and

V:Alnr—AlnrozAlan (10.64)

0

To evaluate the arbitrary constant 4 in (10.64), we find that the electric
field intensity due to the line charge is given by
av. A,
— =i

E:_VV: 0rr—_Tlr

The electric field is thus directed radial to the line charge. Let us now con-
sider a cylindrical box of radius r and length / coaxial with the line charge, as
shown in Fig. 10.20(a), and apply Gauss’ law for the electric field in integral
form to the surface of the box. For the cylindrical surface,

fD + ds = — A anrl)

For the top and bottom surfaces, [ D + dS = 0 since the field is parallel to
the surfaces. The charge enclosed by the box is p.,/. Thus we have

_¢4 = — —Pro
P Qarl) = prol or A= e

Substituting this result in (10.64) we obtain the potential field due to the line
charge to be

>

= —Ffrop T _Frgple 10.65
4 27t6nr0 Jne " r ( )

Let us now consider two infinitely long, straight, line charges of equal and
opposite uniform charge densities p;, C/m and — p,, C/m, parallel to the z
axis and passing through x = b and x = —b, respectively, as shown in Fig.
10.20(b). Applying superposition and using (10.65), we write the potential
due to the two line charges as

— Projptor _ Proqyloz
vV e In 7 = One In = (10.66)

where r, and r, are the distances of the point of interest from the line charges
and r,, and r,, are the distances to the reference point at which the potential
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is zero. By choosing the reference point to be equidistant from the two line
charges, that is, ro; = r,,, We get

—Prp’
y=£6nin (10.67)

rq

From (10.67), we note that the equipotential surfaces for the potential
field of the line-charge pair are given by

% = constant, say, k (10.68)
1

where k lies between 0 and oc. In terms of Cartesian coordinates, (10.68) can
be written as
() e o A 10.69
G—Brty ~ ()

Rearranging (10.69), we obtain

xt— bRt et 2t 52 =0

or

(v — i) 402 = (b)) (10.70)

Equation (10.70) represents cylinders having their axes along

k? 41
X = bﬁ’ y =0
and radii equal to bkzzi T The corresponding potentials are (p,/2n€) In k.

The cross sections of the equipotential surfaces are shown in Fig. 10.21.

We can now place perfectly conducting cylinders in any two equipotential
surfaces without disturbing the field configuration, as shown, for example, by
the thick circles in Fig. 10.21, thereby obtaining a parallel-wire line. Letting
the distance between their centers be 24 and their radii be a, we have

.2
td = b ] (10.712)

2k

a=bm—

(10.71b)
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Solving (10.71a) and (10.71b) for k and accepting only those solutions lying
between 0 and oo, we obtain

f{ — dtl:.‘ M’gz “n -‘Jz (10.72)

Figure 10.21. Cross sections of equipotential surfaces for the line-charge
pair of Fig. 10.20(a). Thick circles represent cross section of parallel-wire
line,

The potentials of the right (k > 1) and left (k < 1) conductors are then given,
respeciively, by

p,=Lupdts/T - (10.73a)
y.=fupd-—d—a
- 2me a
. "gTL; pd+ fd* — a «/aﬂ"-az (10.73b)

The potential difference between the two conductors is

Vo=V,—V_= % In d+ Jd* — a ng—az (10.74)
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Finally, to find the capacitance, we note that since the electric field lines
begin on the positive charge and end on the negative charge orthogonal to the
equipotentials, the magnitude of the charge on either conductor, which pro-
duces the same field as the line-charge pair, must be the same as the line charge
itself. Thus considering unit length of the line, we obtain the capacitance per
unit length of the parallel-wire line to be

@ P _ e
Vo In[(d+ o/d*— a%)/a]

e
— T (10.75)

In this section we obtained the electric potential field of two parallel, infi-
nitely long, straight, line charges of equal and opposite uniform charge densi-
ties and we showed that the equipotential surfaces are cylinders having their
axes parallel to the line charges. By placing conductors in two equipotential
surfaces, thereby forming a parallel-wire line, we obtained the expression for
the capacitance per unit length of the line.

REVIEW QUESTIONS

10.29. Discuss the applicability of static field techniques in the determination of
transmission-line parameters.

10.30. Briefly discuss the solution for the potential field of the infinitely long,
straight, line charge of uniform density.

10.31. Describe the equipotential surfaces for the potential field of two parallel,
infinitely long, straight, line charges of equal and opposite uniform densities.
What are the shapes of the direction lines of the electric field ?

10.32. Briefly discuss the determination of the capacitance of the parallel-wire line
from the potential field of the line-charge pair.

PROBLEMS

10.20. For the line-charge pair of Fig. 10.21, show that the direction lines of the
electric field are arcs of circles emanating from the positively charged line
and terminating on the negatively charged line.

10.21. For the parallel-wire line, show that for d > a, the capacitance per unit
B E 113 ) .
length of the line is I da) Find the value of d/a for which the exact value

of the capacitance per unit length is 1.1 times the value given by the approxi-
mate expression for d > a.
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10.22. Figure 10.22 shows the cross-sectional view of an arrangement of two infi-
nitely long, parallel, cylindrical conductors of radii a and b and with their
axes separated by distance 4. Show that the capacitance per unit length of
the arrangement is 2z€/cosh™! [(a? + b2 — d?)/2ab].

Figure 10.22. For Problem 10.22.

107 MAGNETIC VECTOR POTENTIAL

In Sec. 9.1 we learned that since
VxE=0

for the static electric field, E can be expressed as the gradient of a scalar
potential in the manner

E=-VV

We then proceeded with ihe discussion of ihe eleciric scalat poteiitial and its
application for the computation of static electric fields. In this section we
shall introduce a similar tool for the magnetic field computation, namely, the
magnetic vector potential. When extended to the time-varying case, the mag-
netic vector potential has useful application in the determination of fields
due to antennas.

To introduce the magnetic vector potential concept, we recall that the
divergence of the magnetic flux density vector, whether static or time-varying,
is equal to zero, that is,

V.B=0 (10.76)

If the divergence of a vector is zero, then that vector can be expressed as the
curl of another vector since the divergence of the curl of a vector is identically
equal to zero, as can be seen by expansion in Cartesian coordinates:
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YA . d .0 d a9 o
V'VXA—(IXEC—I—IJ,W—I—L&—Z—) T% e 0z
A, A, A,

9 9 0

dx dy 0z

—1a 8 8|=0
dx dy d:z
A, A, A

Thus the magnetic field vector B can be expressed as the curl of a vector A,
that is,

B—VxA (10.77)

The vector A is known as the magnetic vector potential in analogy with the
electric scalar potential for V.

If we can now find A due to an infinitesimal current element, we can then
find A for a given current distribution and determine B by using (10.77). Let
us therefore consider an infinitesimal current element of length d1 situated at
the origin and oriented along the z axis as shown in Fig. 10.23. Assuming
first that the current is constant, say, I amperes, we note from (1.68) that the
magnetic field at a point P due to the current element is given by

_ uldlxi,
R (10.78)
ZA

P
I
r I
I
0 |
|
dl .
~ | -y
S

¢ “\ah I

~

X

Figure 10.23. For finding the magnetic vector potential due to an infinitesi-
mal current element,
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where r is the distance from the current element to the point P and i, is the
unit vector directed from the element toward P. Expressing B as

.y _ylLl
B— Arax ( \% r) (10.79)

and using the vector identity

AXVV =VVxA—Vx(VA) (10.80)
we obtain
"] ﬂldl>
B——Alvxdlvx (47” (10.81)

Since dl is a constant, V x dl = 0, and (10.81) reduces to

B—Vx (“4;‘?) (10.82)

Comparing (10.82) with (10.77), we now see that the vector potential due to
the current element situated at the origin is simply given by

_ pldl
A = (10.83)

Thus it has a magnitude inversely proportional to the radial distance from the
clement (similar to the inverse distance dependence of the scalar potential
due to a point charge) and direction parallel to the element.

If the current in the element is now assumed to be time-varying in the
manner

I=1,cos wt

we would intuitively expect that the corresponding magnetic vector potential
would also be time-varying in the same manner but with a time-lag factor
included, as discussed in Sec. 8.1 in connection with the determination of the
clectromagnetic fields due to the time-varying current element (Hertzian
dipole). To verify our intuitive expectation, we note from (8.23b) that the
magnetic field due to the time-varying current element is given by

B — uH — 4l dl sin O cos (wt — fr) B sin (wt — ﬂr):\i
N 4 r? r ¢

_ ulydl {l:cos (0t — Br) B sin (ot — ﬂr)] ir}
r

47 r2

_ Eionl % {_V[cos (cotr— ﬂr)]}
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and proceed in the same manner as for the constant current case to obtain the

vector potential to be

ul, dl
4zr

Comparing (10.84) with (10.83), we find that our intuitive expectation is
indeed correct for the vector potential case unlike the case of the fields in
Sec. 8.1! The result given by (10.84) is familiarly known as the “retarded”
vector potential in view of the phase-lag factor fr contained in it.

To illustrate an example of the application of (10.84), we now consider a
circular loop antenna having circumference small compared to the wave-
length so that it is an electrically small antenna. Under this condition, the
current flowing in the Ioop can be assumed to be uniform around the loop.
Let us assume the loop to be in the xy plane with its center at the origin, as
shown in Fig. 10.24, and the loop current to be I = I, cos et in the ¢ direc-
tion. In view of the circular symmetry around the z axis, we can consider a
point P in the xz plane without loss of generality to find the vector potential.
To do this, we divide the loop into a series of infinitesimal elements. Consid-
ering one such current element dl = a do (—sin & i, + cos & i,), as shown in
Fig. 10.24, and using (10.84) we obtain the vector potential at P due to that
current element to be

A=

cos (ot — fr) (10.84)

dA = Bhada(—sinai.+ cosab) oo — prY  (10.85)

4R
where
R = [(rsin@ — acosa)? + (asin a)? -} (r cos )]/
= [r? 4 a* — 2ar sin @ cos a)]!/2 (10.86)
ZA
P

|

|

[

| r

|

N

| i

: doe f

1 dl

|

X

Figure 10.24. For finding the magnetic vector potential due to a small
circular loop antenna.
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The vector potential at point P due to the entire current loop is then
given by

2r
A— L:O dA
2r .
_ ulya sin o do . i
_ [L:o R cos (axt ﬂR):l I,
N > ulya cos o da cos(wt#ﬂR)'i (10.87)
s 4nR ’ .

The first integral on the right side of (10.87) is, however, zero since the con-
tributions to it due to elements situated symmetrically about the xz plane
cancel. Replacing i, in the second term by i, to generalize the result to an
arbitrary point P(r, 6, ¢), we then obtain

2r
A= [ f HM%MCOS (ot — ,BR)] i, (10.88)
=0

Although the evaluation of the integral in (10.88) is complicated, some
approximations can be made for obtaining the “radiation fields.” For these
fields, we can set the quantity R in the amplitude factor of the integrand equal
to r. For R in the phase factor of the integrand, we write

a* 2a

1/2
R = r[l + = ——sinGcosoz]
¥ 2
=~ r[l — % sin @ cos oc:\ (10.89)

Thus for the radiation fields,
2 yl,a cos o do |
A= |:f b% cos (et — Br + Pasin 6 cos OL)J iy (10.90)
o=0
Now, since 2rna < 4, or fla < 1, we can write

cos (wt — Br + Pasin G cos &)
~ cos (wt — Br) — Pasin @ cos a sin (wt — fr) (10.91)

Substituting (10.91) into (10.90) and evaluating the integral, we obtain

A= — MLﬁgsi_nﬁ sin (@ — fr) i, (10.92)

Having obtained the required magnetic vector potential, we can now
determine the radiation fields. Thus from (10.77),
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H=B _lyxa
7 u

ur ar (rA,,,)le
. Lma*f*sin @ -
= g cos (ot — Br)i, (10.93)
aD JE
FromV x H = 27 = €g;0 Ve have
JE 1 19 ]
W =5 ?V xH= 6—"0—"-("He)l¢
Liwa?B?sin @ . _ .
—T sin (CO[ ﬂr) 1y
I,wa*f? sin 0 . .
Tioer OO (wt — fir)i,
Iyma*fi* sin 6 cos (@r — pr)i (10.94)
4mr # '

Comparing (10.94) and (10.93) with (8.25a) and (8.25b), respectively, we note
that a duality exists between the radiation fields of the small current loop and
those of the infinitesimal current element aligned along the axis of the current
loop.

Proceeding further, we can find the Poynting vector, the instantaneous
radiated power and the time-average radiated power due to the loop antenna
by following steps similar to those employed for the Hertzian dipole in Sec.
8.2. Thus

P =E x H= Eji, X Hiy = —EH,i,

ﬁ4IO7r a*sin?0

. _ .
622 cos? (wt — Br)i,

Paa=|" ["P-rsingdgdgi,
=0 Jg=0

9=0 /¢
= f f nf T a’ sin’ 8 cose (ot — pr) df dg
6=0 Jp=0 g

_ nB*lin*at
6n

Praay = ﬂ‘?—”za—a {cos® (@t — Br)>

=+ 154(7)’]

cos? (wt — Br)
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We now identify the radiation resistance of the small loop antenna to be

_8mq(a)!
Rrad I 3 (l) (10.95)

For free space, # = #, = 120z ohms, and

R,,, = 3207 (%)4 . 207:2(@;)4 (10.96)

Comparing this result with the radiation resistance of the Hertzian dipole
given by (8.30), we note that the radiation resistance of the small loop antenna
is proportional to the fourth power of its electrical size (circumference/wave-
length) whereas that of the Hertzian dipole is proportional to the square of
its electrical size (length/wavelength). The directivity of the small loop anten-
na is, however, the same as that of the Hertzian dipole, that is, 1.5, as given by
(8.33), in view of the proportionality of the Poynting vectors to sin? @ in both
cases.

In this section we introduced the magnetic vector potential as a tool for
computing the magnetic fields due to current distributions. In particular, we
derived the expression for the retarded magnetic vector potential for a
Hertzian dipole and illustrated its application by considering the case of a
small circular loop antenna. We derived the radiation fields for the loop
antenna and compared its characteristics with those of the Hertzian dipole.

REVIEW QUESTIONS

10.33. Why can the magnetic flux density vector be expressed as the curl of another
vector?

10.34. Discuss the analogy between the magnetic vector potential due to an infini-
tesimal current element and the electric scalar potential due to a point
charge.

10.35. What does the word “retarded” in the terminology “retarded magnetic vector
potential” refer to? Explain.

10.36. Discuss the application of the magnetic vector potential in the determination
of the electromagnetic fields due to an antenna.

10.37. Discuss the duality between the radiation fields of a small circular loop
antenna with those of a Hertzian dipole at the center of the loop and aligned
with its axis.

10.38. Compare the radiation resistance and directivity of a small circular loop
antenna with those of a Hertzian dipole.
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PROBLEMS

10.23. By expansion in Cartesian coordinates, show that

AXVV=VVXA—-VX(VA).

10.24. For the half-wave dipole of Sec. 8.3, determine the magnetic vector potential
for the radiation fields. Verify your result by finding the radiation fields and
comparing with the results of Sec. 8.3.

10.25. A circular loop antenna of radius 1 m in free space carries a uniform current
10 cos 4 x 106t amp. (a) Calculate the amplitude of the electric field inten-
sity at a distance of 10 km in the plane of the loop. (b) Calculate the radia-
tion resistance and the time-average power radiated by the loop.

10.26. Find the length of a Hertzian dipole that would radiate the same time-
average power as the loop antenna of Problem 10.25 for the same current and
frequency as in Problem 10.25.
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A e CYLINDRICAL
AND
SPHERICAL
COORDINATE
SYSTEMS

In Sec. 1.2 we learned that the Cartesian coordinate system is defined by
a set of three mutually orthogonal surfaces, all of which are planes. The
cylindrical and spherical coordinate systems also involve sets of three mu-
tually orthogonal surfaces. For the cylindrical coordinate system, the three
surfaces are a cylinder and two planes, as shown in Fig. A.1(a). One of these
planes is the same as the z = constant plane in the Cartesian coordinate
system. The second plane contains the z axis and makes an angle ¢ with a
reference plane, conveniently chosen to be the xz plane of the Cartesian
coordinate system. This plane is therefore defined by ¢ = constant. The
cylindrical surface has the z axis as its axis. Since the radial distance r from
the z axis to points on the cylindrical surface is a constant, this surface is
defined by r = constant. Thus the three orthogonal surfaces defining the
cylindrical coordinates of a point are r = constant, ¢ — constant, and z =
constant., Only two of these coordinates (r and z) are distances; the third
coordinate (@) is an angle. We note that the entire space is spanned by varying
r from 0 to oo, ¢ from 0 to 2z, and z from —oo to oo,

The origin is given by r = 0, ¢ = 0, and z = 0. Any other point in space is
given by the intersection of three mutually orthogonal surfaces obtained by
incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces r = 2, ¢ = n/4, and z = 3 defines the point
A(2, /4, 3), as shown in Fig. A.1(a). These three orthogonal surfaces define
three curves that are mutually perpendicular. Two of these are straight lines
and the third is a circle. We draw unit vectors, i,, iy, and i, tangential to these

433
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zh

N

(a) ()]

Figure A.1. Cylindrical coordinate system. (a) Orthogonal surfaces and
unit vectors, (b) Differential volume formed by incrementing the coordi-
nates,

curves at the point 4 and directed toward increasing values of r, ¢, and z,
respectively. These three unit vectors form a set of mutually orthogonal unit
vectors in terms of which vectors drawn at A can be described. In a similar
manner, we can draw unit vectors at any other point in the cylindrical coor-
dinate system, as shown, for example, for point B(1, 3z/4, 5) in Fig. A.1(a).
It can now be seen that the unit vectors i, and i, at point B are not parallel to
the corresponding unit vectors at point 4. Thus unlike in the Cartesian
coordinate system, the unit vectors i, and i, in the cylindrical coordinate
system do not have the same directions everywhere, that is, they are not
uniform. Only the unit vector i,, which is the same as in the Cartesian coor-
dinate system, is uniform. Finally, we note that for the choice of ¢ as in Fig,
A.1(a), that is, increasing from the positive x axis toward the positive y axis,
the coordinate system is right-handed, that is, i, x i, = i,.

To obtain expressions for the differential lengths, surfaces, and volume in
the cylindrical coordinate system, we now consider two points P(r, ¢, z) and
O(r + dr, ¢ -+ d¢, z + dz) where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. A.1(b). The three
orthogonal surfaces intersecting at P and the three orthogonal surfaces
intersecting at Q define a box which can be considered to be rectangular since
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dr, dd, and dz are infinitesimally small. The three differential length elements
forming the contiguous sides of this box are dr i,, ¥ d¢ i, and dz i,. The differ-
ential length vector d1 from P to Q is thus given by

dl=dri, +-rddi, + dzi, (A.])

The differential surfaces formed by pairs of the differential length elements
are

+dSi, = +£(d) (rdp)i, = Ldri, x rddi, (A.2a)
+:dSi, = £(rdd) (dz)i, = Lrddi, x dzi, (A.2b)
+dSiy = 4-(dz) (dr)i, = +dzi, x dri, (A.2¢)

Finally, the differential volume dv formed by the three differential lengths is
simply the volume of the box, that is,

dv = (dr) (r dd) (dz) = r dr d¢ dz (A.3)
For the spherical coordinate system, the three mutually orthogonal
surfaces are a sphere, a cone, and a plane, as shown in Fig. A.2(a). The plane

is the same as the ¢ = constant plane in the cylindrical coordinate system.

ZA ZA

A :
/ f
— i \ r=3 ¥ sin

(a) (b)

Figure A.2, Spherical coordinate system. (a) Orthogonal surfaces and unit
vectors. (b) Differential volume formed by incrementing the coordinates.



436 APP. A CYLINDRICAL AND SPHERICAL COORDINATE SYSTEMS

The sphere has the origin as its center. Since the radial distance r from the
origin to points on the spherical surface is a constant, this surface is defined
by ¥ = constant. The spherical coordinate » should not be confused with the
cylindrical coordinate r. When these two coordinates appear in the same
expression, we shall use the subscripts ¢ and s to distinguish between cylin-
drical and spherical. The cone has its vertex at the origin and its surface is
symmetrical about the z axis. Since the angle § is the angle that the conical
surface makes with the z axis, this surface is defined by @ = constant. Thus
the three orthogonal surfaces defining the spherical coordinates of a point
are r = constant, # = constant, and ¢ = constant. Only one of these
coordinates (r) is distance; the other two coordinates (f and ¢) are angles.
We note that the entire space is spanned by varying » from 0 to co, # from 0 to
7, and ¢ from O to 2z.

The origin is given by r = 0, 8 = 0, and ¢ = 0. Any other point in space
is given by the intersection of three mutually orthogonal surfaces obtained by
incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces r = 3, 8 = #/6, and ¢ = n/3 defines the
point A(3, ©/6, n/3) as shown in Fig. A.2(a). These three orthogonal surfaces
define three curves that are mutually perpendicular. One of these is a straight
line and the other two are circles. We draw unit vectors i,, i5, and i, tangential
to these curves at point 4 and directed toward increasing values of r, 8, and ¢,
respectively. These three unit vectors form a set of mutually orthogonal unit
vectors in terms of which vectors drawn at 4 can be described. In a similar
manner, we can draw unit vectors at any other point in the spherical coordi-
nate system, as shown, for example, for point B(1, n/2, 0) in Fig. A.2(a). It
can now be seen that these unit vectors at point B are not parallel to the
corresponding unit vectors at point 4. Thus in the spherical coordinate system
all three unit vectors i,, iy, and i, do not have the same directions everywhere,
that is, they are not uniform. Finally, we note that for the choice of 8 as in
Fig. A.2(a), that is, increasing from the positive z axis toward the xy plane, the
coordinate system is right-handed, that is, i, x i, = i,.

To obtain expressions for the differential lengths, surfaces, and volume in
the spherical coordinate system, we now consider two points P(r, 8, ¢) and
Q(r + dr,0 + df, ¢ + d¢) where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. A.2(b). The three
orthogonal surfaces intersecting at P and the three orthogonal surfaces
intersecting at Q define a box that can be considered to be rectangular since
dr, df, and d¢ are infinitesimally small. The three differential length elements
forming the contiguous sides of this box are dr i,, r df i,, and r sin 8 d¢ i,. The *
differential length vector dl from P to Q is thus given by

dl = dri, + rdfi, + rsin8 dd i, (A4
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The differential surfaces formed by pairs of the differential length elements
are

+dSiy, = +(dr) (r df) i, = Ldri, x rdl i, (A.5a)
+dSi, = +(rdf) (rsinf dp) i, = &rdfi, x rsinfdg i, (A.5b)
+dSi, = +(rsin § dd) (dr) iy = 4-rsinf do i, x dri, (A.5¢)

Finally, the differential volume dv formed by the three differential lengths is
simply the volume of the box, that is,

dv = (dr) (r d8) (r sin 0 d¢p) = r? sin 8 dr df d¢ (A.6)

In the study of electromagnetics it is sometimes useful to be able to
convert the coordinates of a point and vectors drawn at a point from one
coordinate system to another, particularly from the Cartesian system to the
cylindrical system and vice versa, and from the Cartesian system to the spher-
ical system and vice versa. To derive first the relationships for the conver-
sion of the coordinates, let us consider Fig. A.3(a) which illustrates the
geometry pertinent to the coordinates of a point P in the three different
coordinate systems. Thus from simple geometrical considerations, we have

x=r,cos¢ y =r,sin¢g z=1z AN

X — r,sin @ cos ¢ ¥ — r,sin @ sin ¢ z—=r,cos8 (A.8)
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Figure A.3. (a) For conversion of coordinates of a point from one coordi-
nate system to another. (b) and (c) For expressing unit vectors in cylindrical
and spherical coordinate systems, respectively, in terms of unit vectors in
the Cartesian coordinate system.
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Conversely, we have

r,=A/x* + )% ¢ = tan~! % A=z (A9)

)

r, = A/x* 4+ y* 4 2* 0:tan‘1—xz—";-]£ ¢:tan‘1% (A.10)

Relationships (A.7) and (A.9) correspond to conversion from cylindrical
coordinates to Cartesian coordinates and vice versa. Relationships (A.8) and
(A.10) correspond to conversion from spherical coordinates to Cartesian
coordinates and vice versa.

Considering next the conversion of vectors from one coordinate system to
another, we note that in order to do this, we need to express each of the unit
vectors of the first coordinate system in terms of its components along the
unit vectors in the second coordinate system. From the definition of the dot
product of two vectors, the component of a unit vector along another unit
vector, that is, the cosine of the angle between the unit vectors, is simply the
dot product of the two unit vectors. Thus considering the sets of unit vectors
in the cylindrical and Cartesian coordinate systems, we have with the aid of
Fig. A.3(b),

IS WS COS¢ i iy = sin ¢ i, i,=20 (A.lla)
e, = —sing gei,=cos$p i+l =0  (A.llb)
iei,—=0 i,ei,=0 iei,=1  (Allc)

Similarly, for the sets of unit vectors in the spherical and Cartesian coordinate
systems, we obtain with the aid of Fig. A.3(c) and Fig. A.3(b),

i, s i, =sinf cos¢ i, i, =sinOsin¢ i, ¢i,=cosf (A.12a)
ip* i, =cosfOcos¢ ig ¢ i, = cos @ sin ¢ ipei,=—sin@ (A.12b)
iysi, = —sing igei,=cos¢ i1, =0 (A.12¢)

We shall now illustrate the use of these relationships by means of an example.

Example A.1. Let us consider the vector 3i, + 4i, + 5i, at the point
(3, 4, 5) and convert the vector to one in spherical coordinates.

First, from the relationships (A.10), we obtain the spherical coordinates of
the point (3, 4, 5) to be

re=aA/32+ 4>+ 52 =5./2
6= tan‘l‘——"gz—'s_42 =tan"!1 = 45°

$ = tan~t 3 = 53.13°
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Then noting from the relationships (A.12) that at the point under considera-

tion,
i,=sinfcos¢i, + cos@cosdi, —singi,
= 0.3,/21i,, -+ 0.3,/21, — 0.8i,
i,=sinfsin¢i, 4 cos@sin ¢ i, 1 cosd i,
= 0.4,/21,, + 04./2i, + 0.6,
i,=cos01i,, —sin @i, = 0.5./2i,, — 0.5,/ 21,
we obtain

3i, + 4, + 5i, = (0.9/Z + 1.6,/ 7 + 2.5,/ )i,

4+ 0.9/ 7 + 1.6/ 7 — 2.5/ Dip + (—2.4 + 2.8)i, = 5./7i,,

This result is to be expected since the given vector has components equal to
the coordinates of the point at which it is specified. Hence its magnitude is
equal to the distance of the point from the origin, that is, the spherical
coordinate r of the point and its direction is along the line drawn from the
origin to the point, that is, along the unit vector i, at that point. In fact, the
given vector is a particular case of the vector xi, 4 yi, + zi, = r,,, known
as the “position vector,” since it is the same as the vector drawn from the
origin to the point (x, y, z). =

REVIEW QUESTIONS

Al

A2,
A3,

A4,

AS.
A.6.

A
A.8.
A9.

What are the three orthogonal surfaces defining the cylindrical coordinate
system?

What are the limits of variation of the cylindrical coordinates ?

Which of the unit vectors in the cylindrical coordinate system are not uni-
form?

State whether the vector 3i, -+ 4i; + 5i, at the point (1, 0, 2) and the vector
3i, 4 4i; + 5i, at the point (2, 7/2, 3) are equal or not.

What are the differential length vectors in cylindrical coordinates ?

What are the three orthogonal surfaces defining the spherical coordinate
system?

What are the limits of variation of the spherical coordinates ?
Which of the unit vectors in the spherical coordinate system are not uniform?

State if the vector 3i, -4 4i, at the point (1, 7/2, 0) and the vector 3i, -+ 4i,
at the point (2, 0, 7/2) are equal or not.
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A.10.
A1,

Al2,
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What are the differential length vectors in spherical coordinates?

Outline the procedure for converting a vector at a point from one coordinate
system to another.

What is the expression for the position vector in the cylindrical coordinate
system ?

PROBLEMS

A.l.

A.2,

A3.

A4,

AS.

A.6.

A7,

A.8.

Express in terms of Cartesian coordinates the vector drawn from the point
P(2, /3, 1) to the point Q(4, 27/3, 2) in cylindrical coordinates.

Express in terms of Cartesian coordinates the vector drawn from the point
P(1, m/3, m/4) to the point Q(2, 27/3, 3m/4) in spherical coordinates.
Determine if the vector i, + iy + 2i, at the point (1, 7/4, 2) and the vector
A/ 2 i, + 2i, at the point (2, #/2, 3) are equal or not.

Determine if the vector 3i, + 4/ 31s — 2i, at the point (2, 7/3, m/6) and the
vector i, -+ 4/ 3 isg — 24/ 3 iy at the point (1, 7/6, 7/3) are equal or not.
Find the dot and cross products of the unit vector i, at the point (1, 0, 0) and
the unit vector iy at the point (2, #/4, 1) in cylindrical coordinates.

Find the dot and cross products of the unit vector i, at the point (1, n/4, 0)
and the unit vector ig at the point (2, m/2, @/2) in spherical coordinates.

Convert the vector 5i, + 12i, + 6i, at the point (5, 12, 4) to one in cylin-
drical coordinates.

Convert the vector 3i, -- 4i, — 5i, at the point (3, 4, 5) to one in spherical
coordinates.
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1% CURL,
DIVERGENCE,
AND GRADIENT
IN CYLINDRICAL
AND SPHERICAL
COORDINATE
SYSTEMS

In Secs. 3.1, 3.4, and 9.1 we introduced the curl, divergence, and gradient,
respectively, and derived the expressions for them in the Cartesian coordinate
system. In this appendix we shall derive the corresponding expressions in the
cylindrical and spherical coordinate systems. Considering first the cylindrical
coordinate system, we recall from Appendix A that the infinitesimal box
defined by the three orthogonal surfaces intersecting at point P(r, 8, ¢) and
the three orthogonal surfaces intersecting at point Q(r + dr, ¢ -+ dd, z + dz)
is as shown in Fig. B.1.

O(r +dr, ¢ +do,z +dz)

|
dz €
ly\\
VA
A g
. - (2 ~J
P(r,0,2)
dr (r +dr) d¢
f

Figure B.1. Infinitesimal box formed by incrementing the coordinates in
the cylindrical coordinate system.

441
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From the basic definition of the curl of a vector introduced in Sec. 3.3

and given by
A+ dl
1 i : (B.1)
V x A=Lim [TSL“I"

AS—0

we find the components of V x A as follows with the aid of Fig. B.1:

5;; Aedl
. 1 abcda
¥ x=r= E}lir:} area abcd

dz—
{[Ad]tr or 4o + [A.]., ¢+a¢1 dz }
— Lim [Aﬁ]fr zada)! d¢ [ 2 tr (2] dz

dg—0 rdeodz
dz—0
= Lim (4., g+a0 — [Aidonsy 4+ Lim [glir.y — [Aslir,zvar)
a0 rdg e dz
1 04 dA
= 7%5 -3 (B.2a)

« dl

§adefa
(VxA) = !LI_I,? area adef

{[A e, ﬁ: dz + [Ar]ws sz AF
Lim

= (redr) 42 — [A o, dr
20 dr dz

dr—0
— Lim [Ar](¢,z+dl) '_— [Ar](¢,z) + Lim [Az](r,qS) e [Az](r+dr,¢)
dz-0 dz dr-0 dr
d
— %% (B.2b)

fji A-.dl
afgba
8 D= 11’,1"’8 area afgh

{[Ar%iz,z) dr + Efas](w.ia,z)(r +- dr) d¢}

= — 1Arlg+dgn) A~ L Apltr, 7

s r dr dg

d¢—0

Lim [rdglirars — [rAgles + Lim (4 ), —d%;‘ir]mw.z)
r

dr—0 rdr d¢—+0

19 L 94,
= 34—+ g ®B.2)
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Combining (B.2a), (B.2b) and (B.2c), we obtain the expression for the curl
of a vector in cylindrical coordinates as

1 oA 04 04, 04,
W”r 9z "o

1 l:ar (rd,) — 0¢

VxA=

i L
7 L
S ®3
dr d¢ 9z
A, rdA, A,

To find the expression for the divergence, we make use of the basic defini-
tion of the divergence of a vector, introduced in Sec. 3.6 and given by

A
V.A=Lim Jafheids - (BY

Ay—0

Evaluating the right side of (B.4) for the box of Fig. B.1, we obtain

([A)eq)(r + drydd dz — [A,)r dbdz - [Agsras dr dz]
V. A — Lim \— [ele dr dz + [A].oor dr d — [A, T dr
dr—0 rdrdddz

—0
pLaac

— Lim ["Arlndrd [r4,], 4+ Lim [4, g+do!¢ [l

gD

dr-+0 rdar

_| L]m [A ] I-d':{“ [A:]:

194, 94
(A)+ ¢+0z (B.5)

To obtain the expression for the gradient of a scalar, we recall from
Appendix A that in cylindrical coordinates,

dl=dri, + rddi, + dzi, (B.6)
and hence
(ifo] 0<I)
dd = B dr +0¢ d¢—|— dz
0(1) 100, 0(1)
(6‘r + = 0¢ ¢+0 ) @dri, +rdpi, + dzi,)
(B.7)

=V . dl
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Thus

_ 00, 1dd. , 40,
V(I)——a—rl,—l—TWl‘t—FElz (B.8)

Turning now to the spherical coordinate system, we recall from Appendix
A that the infinitesimal box defined by the three orthogonal surfaces inter-
secting at P(r,0,¢) and the three orthogonal surfaces intersecting at
Q@ + dr, 6 4 dB, ¢ + dp) is as shown in Fig. B.2. From the basic defini-
tion of the curl of a vector given by (B.1), we then find the components of
V x A as follows with the aid of Fig. B.2:

5j5 A-dl
o ] abeda
LRSS {7;1?3 area abcd

d¢—0
{[AH]U, W do - [A¢](r,ﬂ+m!‘ sin (0 -+ d@) d¢}
= Lim 1= {Aﬂﬁfr—wwﬂ' df — [Asli,.0r sin 0 dd

da—0 r¥sin 0 df d¢
d¢—0
— Lim [A4; sin 8],0+00) — [Ay sin O] ir, 6
46—0 rsin
,l_ le [AG](r.d) — [Ae](r.¢+d¢;)
dg—0 r sin 6@ d
1 9 . 1 d4,
=099 0~ 9p (B.92)

(r +dr)sin 8 d¢

//h O(r+dr,0 +db, ¢ +de¢)

c ¥
/ (r+dr)do

rd0\ L gn (0 +d6) d¢
Ve

Figure B.2. Infinitesimal box formed by incrementing the coordinates in
the spherical coordinate system.
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$ A.a
i 1 adefa
(v x A, gl;g? area adef

{[A¢](r or sin 6 dp 4[4, grap ar
_ Lim \=[4desar,0(r + dr) sin 0 dp —
dp—0

dg=0 rsin @ dr do
— Lim Adesran — [4,]6,4

a0 r sin 6 d

[Ar](o, #) dr }

+ Lim [rdev.o — [rAglisiro
dr—0 rdr
1 44, 1 o"
"~ rsinf d¢ 3y 4s)

(B.9b)

ff A dl
— afgha
(V> A)y = %ﬂl area afgb

{[Ar]m,;sn dr 4 [Aolesar,(r + dr) dB
= Lim A= [, ) wsao.0 dr — [Aplir. 007 dO
dr-0 rdrdf

— Lim [rAolirrar, gy — [rAolins)
dr—0 rdr

4 Lim (4]0 dr — [Ar](0+d0,¢) dr

g0 r do
14 1 04,

Combining (B.9a), (B.9b), and (B.9¢), we obtain the expression for the curl
of a vector in spherical coordinates as

1
17 1 94, 1
-+ _[—_sm g W ~ 3 (rA¢):|lg + l:a (r4, ] "
ir i9 &
r2sin@ rsin @ r
=| 4 J J (B.10)
dr 00 d¢
A, rd,  rsin 04,

To find the expression for the divergence, we make use of the basic defini-
tion of the divergence of a vector given by (B.4) and by evaluating its right
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side for the box of Fig. B.2, we obtain

{'I %Ag%o,,mf Sd]_n (g “l_ do)]drdd¢d [A s Sln 0 dr d¢
o A — Tim A [Aalsiasr rd —[AMr r
VAE %ﬂ? r2sin @ dr d0 d¢

(4], sar(r a’r)2 sin @ df dp — [A ],r2 sin 8 df qu}

oy [PPA e — [r*4,], . [y sin 0ls.q0 — [4p sin 01,
o %rlg;l r2 dr + EZLT r sin 8 d6

[glsras — [As)s
- hl_l:{)l rsin 8 qu

1 94,

= 35 3 ) g g (esin 0 + i G

(B.11)

To obtain the expression for the gradient of a scalar, we recall from
Appendix A that in spherical coordinates,

dl=dri, +rdfi,+ rsinfdpi, (B.12)
and hence
0P (i}
a0 =52 dr %2 d0—|—0¢ ¢
0o . 14 1 0
(0r +-L (g"_l_rsn@(;gl; ) (dri, + r df iy -- r sin 0 d i)
—V® . dl (B.13)
Thus
GCI) 10(1) 1 40,
VEDES ar Lt % 9+rsm00¢ : (B3

REVIEW QUESTIONS

B.1. Briefly discuss the basic definition of the curl of a vector.

B.2. Justify the application of the basic definition of the curl of a vector to deter-
mine separately the individual components of the curl.

B.3. How would you generalize the interpretations for the components of the curl
of a vector in terms of the lateral derivatives involving the components of the
vector to hold in cylindrical and spherical coordinate systems ?

B.4. Briefly discuss the basic definition of the divergence of a vector,

B.5. How would you generalize the interpretation for the divergence of a vector in
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terms of the longitudinal derivatives involving the components of the vector
to hold in cylindrical and spherical coordinate systems ?

B.6. Provide general interpretation for the components of the gradient of a scalar.

PROBLEMS
B.1. Find the curl and the divergence for each of the following veclors in cylin-

drical coordinates: (a) rcos ¢ i, — rsin ¢ iy; (b) —irs (c)

B.2. Find the gradient for each of the following scalar functions in cylindrical
coordinates: (a) % cos ¢; (b) rsin ¢.

B.3. Find the expansion for the Laplacian, that is, the divergence of the gradient,
of a scalar in cylindrical coordinates.

B.4. Find the curl and the divergence for each of the following vectors in spherical

coordinates: (a) r2i, -+ r sin 8 iy; (b) & 19, (c)

B.5. Find the gradient for each of the following scalar functions in spherical coor-

dinates: (a) §1n—0 (b) rcos 0.

B.6. Find the expansion for the Laplacian, that is, the divergence of the gradient,
of a scalar in spherical coordinates.






s UNITS
AND
DIMENSIONS

In 1960 the International System of Units was given official status at the
Eleventh General Conference on weights and measures held in Paris, France.
This system of units is an expanded version of the rationalized meter-
kilogram-second-ampere (MKSA) system of units and is based on six
fundamental or basic units. The six basic units are the units of length, mass,
time, cutrrent, temperature, and luminous intensity.

The international unit of length is the meter. It is exactly 1,650,763.73
times the wavelength in vacuum of the radiation corresponding to the un-
perturbed transition between the levels 2p,, and 5d; of the atom of krypton-86,
the orange-red line. The international unit of mass is the kilogram. It is
the mass of the International Prototype Kilogram which is a particular cylin-
der of platinum-iridium alloy preserved in a vault at Sevres, France, by the
International Bureau of Weights and Measures. The international unit of
time is the second. It is equal to 9,192,631,770 times the period corresponding
to the frequency of the transition between the hyperfine levels F = 4, M = 0
and F = 3, M = 0 of the fundamental state 25,,, of the cesium-133 atom
unperturbed by external fields.

To present the definition for the international unit of current, we first
define the newton, which is the unit of force, derived from the fundamental
units meter, kilogram, and second in the following manner. Since velocity is
rate of change of distance with time, its unit is meter per second. Since accel-
eration is rate of change of velocity with time, its unit is meter per second per
second or meter per second squared. Since force is mass times acceleration,

449
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its unit is kilogram-meter per second squared, also known as the newton.
Thus, the newton is that force which imparts an acceleration of 1 meter per
second squared to a mass of 1 kilogram. The international unit of current,
which is the ampere, can now be defined. It is the constant current which
when maintained in two straight, infinitely long, parallel conductors of neg-
ligible cross section and placed one meter apart in vacuum produces a force
of 2 x 107 newtons per meter length of the conductors.

The international unit of temperature is the Kelvin degree. It is based on
the definition of the thermodynamic scale of temperature by means of the
triple-point of water as a fixed fundamental point to which a temperature of
exactly 273.16 degrees Kelvin is attributed. The international unit of luminous
intensity is the candela. It is defined such that the [uminance of a blackbody
radiator at the freezing temperature of platinum is 60 candelas per square
centimeter.

We have just defined the six basic units of the International System of
Units. Two supplementary units are the radian and the steradian for plane
angle and solid angle, respectively. All other units are derived units. For
example, the unit of charge which is the coulomb is the amount of charge
transported in 1 second by a current of 1 ampere; the unit of energy which is
the joule is the work done when the point of application of a force of 1 new-
ton is displaced a distance of 1 meter in the direction of the force; the unit
of power which is the watt is the power which gives rise to the production of
energy at the rate of 1 joule per second; the unit of electric potential differ-
ence which is the volt is the difference of electric potential between two points
of a conducting wire carrying constant current of 1 ampere when the power
dissipated between these points is equal to I watt; and so on. The units for
the various quantities used in this book are listed in Table C.1, together with
the symbols of the quantities and their dimensions.

Dimensions are a convenient means of checking the possible validity of
a derived equation. The dimension of a given quantity can be expressed as
some combination of a set of fundamental dimensions. These fundamental
dimensions are mass (M), length (L) and time (7). In electromagnetics, it is
the usual practice to consider the charge (Q), instead of the current, as the
additional fundamental dimension. For the quantities listed in Table C.1,
these four dimensions are sufficient. Thus, for example, the dimension of
velocity is length (L) divided by time (T), that is LT~!; the dimension of
acceleration is length (L) divided by time squared (72), that is, LT~?; the
dimension of force is mass (M) times acceleration (LT~?), that is, MLT?;
the dimension of ampere is charge (Q) divided by time (T), that is, QT';
and so on.

To illustrate the application of dimensions for checking the possible

validity of a derived equation, let us consider the equation for the phase »

velocity of an electromagnetic wave in free space, given by
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1

v =
? ;#nfo

We know that the dimension of v, is LT~!. Hence we have to show that the
dimension of 1/./s,€, is also LT-!. To do this, we note from Coulomb’s
law that

0.0,
4nFR?

€y —

Hence, the dimension of €, is Q%/[(MLT-2)(L?)] or M~'L3T?Q* We note
from Ampere’s law of force applied to two infinitesimal current elements
parallel to each other and normal to the line joining them that

P,
T (L dlpU, dly)

Hence the dimension of g, is [(MLT-2)(L*)]/(QT-1L)? or MLQO™%. Now we
obtain the dimension of 1/./lq€, as 1//(M-TL3T?>Q*)(MLQ™*) or LT !,
which is the same as the dimension of »,. It should, however, be noted that
the test for the equality of the dimensions of the two sides of a derived equa-
tion is not a sufficient test to establish the equality of the two sides since any
dimensionless constants associated with the equation may be in error.

It is not always necessary to refer to the table of dimensions for checking
the possible validity of a derived equation. For example, let us assume that
we have derived the expression for the characteristic impedance of a transmis-
sion line, i.e., »/€/C and we wish to verify that ,/£/€ does indeed have the
dimension of impedance. To do this, we write

We now recognize from our knowledge of circuit theory that both wL
and 1/wC, being the reactances of L and C, respectively, have the dimen-
sion of impedance. Hence we conclude that ,/£/€ has the dimension of

~/(mpedance)? or impedance.

TABLE C.1. Symbols, Units, and Dimensions of Various Quantities

Quantity Symbol Unit Dimensions
Admittance Y mho M-1L-2TQ2
Area A square meter L2
Attenuation constant o neper/meter L1
Capacitance C farad M-1L2T2Q2
Capacitance per unit length ] farad/meter M-1L3T2Q2
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TABLE C.1. Continued
Quantity Symbol Unit Dimensions

X meter L
Cartesian coordinates { ¥y meter /i

z meter L
Characteristic admittance Yo mho M-1L-2TQ2
Characteristic impedance Zy ohm ML2T-10-2
Charge Q,q coulomb Q
Conductance G mho M-1L-2TQ2
Conductance per unit length g mho/meter M-1L-3TQ?
Conduction current density Je ampere/square meter L-2T7-1Q
Conductivity o mho/meter M-1L-3TQ2
Current I ampere T-1Q
Cutoff frequency Iz hertz T-1
Cutoff wavelength Ac meter /5

rte meter L
Cylindrical coordinates { [ radian —

z meter L
Differential length element dl meter L
Differential surface element ds square meter L2
Differential volume element av cubic meter L3
Directivity D - —
Displacement flux density D coulomb/square meter L7200
Electric dipole moment p coulomb-meter LQO
Electric field intensity E volt/meter MLT-2Q"1
Electric potential | 4 volt ML2T2Q-1
Electric susceptibility Xe — —
Electron density N (meter)~3 L3
Electronic charge e coulomb o
Energy w joule ML2T-2
Energy density w joule/cubic meter ML-1T-2
Force F newton MLT2
Frequency f hertz T-1
Group velocity vg meter/second LTt
Guide impedance Ne ohm ML2T-1Q"2
Guide wavelength Ag meter L
Impedance Z ohm ML2T-1Q"2
Inductance L henry ML2Q™2
Inductance per unit length £ henry/meter MLQ™2
Intrinsic impedance n ohm ML2T-1Q"2
Length ! meter L
Line charge density PL coulomb/meter L-10
Magnetic dipole moment m ampere-square meter L27r-1Q
Magnetic field intensity H ampere/meter L-1T-1Q
Magnetic flux W weber ML2T-1Q-1
Magnetic flux density B tesla or weber/square MT-10-!

meter

Magnetic susceptibility Am - -
Magnetic vector potential A weber/meter MLT-1Q™!
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TABLE C.1. Continued
Quantity Symbol Unit Dimensions
Magnetization current density I ampere/square meter L-2T-1Q
Magnetization vector M ampere/meter L-1r-19
Mass m kilogram M
Mobility u square meter/volt- M-1TQ
second

Permeability u henry/meter MLQO™?
Permeability of free space Ho henry/meter MLQ™2
Permittivity € farad/meter M-1L=3T2Q2
Permittivity of free space € farad/meter M-1L-3T2Q2
Phase constant B radian/meter Lt
Phase velocity vp meter/second LTt
Plasma frequency N hertz T-1
Polarization current density Jp ampere/square meter L27-1Q
Polarization vector P coulomb/square meter L2Q0
Power P watt ML2T-3
Power density P watt/square meter MT-3
Poynting vector P watt/square meter MT-3
Propagation constant ¥y complex neper/meter L1
Propagation vector B radian/meter L1
Radian frequency " radian/second T-1
Radiation resistance R:ad ohm ML2T-1(Q2
Reactance X ohm ML2T-1Q"2
Reflection coefficient T — —
Refractive index n
Relative permeability Ur — —
Relative permittivity € — —
Reluctance ®R ampere (turn)/weber M-1L2Q2
Resistance R ohm ML2T-1Q-2
Skin depth o meter L

¥, Fy meter L
Spherical coordinates { 8 radian -

¢ radian -
Standing wave ratio SWR — —
Surface charge density ps coulomb/square meter L=2Q
Surface current density Js ampere/meter L-1T-1Q
Susceptance B mho M-1L2TQ2
Time t second T
Transmission coefficient T — —
Unit normal vector i, - —
Velocity v meter/second LT !
Velocity of light in free space ¢ meter/second LT !
Voltage 14 volt ML2T-2Q"1
Volume vV cubic meter L3
Volume charge density p coulomb/cubic meter L-3Q
Volume current density J ampere/square meter L2T-1Q
Wavelength pi meter L

| Work w joule MIL2T-2
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ANSWERS

TO
ODD-NUMBERED
PROBLEMS

CHAPTER 1

1.1. (a) 2 m; (b) 0.8 m northward and 0.4 m eastward; (c) 0.8944 m
1.5. 21

L7, 2iy + 2i, + i;

1.9. (4i, — 5i, + 3i,)/5/2; 6./ 2

111, (di, + 4i, +i.) dz

1.13. (4i, — i,)/4/T7

1.15. x +- y + z = constant
1.17. w(—yi, + xi,)
1.19. Traveling wave progressing in the negative z direction
1.21. (a) Linear; (b) circular; (c) elliptical
1.23. Elliptical polarization

1.25. 5 cos (0t -} 6.87°)

1.27. £/87€ 1% mg

129. 283€6, 4, i) NjC
131, 1977 R 9; _ 1y10-4i — 1)2 + 1173,

M€y =1

457
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1.33.
1.35.

1.37.

1.39.
1.41.
1.43.

ANSWERS TO ODD-NUMBERED PROBLEMS

=]

4 X 1077 50 3} [10742i — 12 + 1074@2) — 1)2 + 11272,
€y =1 j=1

(a) 0.4485 x 1076 sin 2z x 107¢1i, amp/m?
(b) 0.4485 x 1078 sin 27 x 107¢ amp

dF, = 0; dF, = f“—;nlz dxdyi,

(@) (5 X 1073 uo/m)i,; (b) —(107* uo/4m)i,
0.179 i,
—wBo(14i, + 7i)

CHAPTER 2

2.1.
2.3.
2.7.

2.9.

2.11.
2.13.
2.15.

2.17.

2.19.
2.21.
2.23.

2.25.

2.27.
2.29.

2.31.

2.33.
2.35.

0.855
1
1/6

@ — )1 — e _yp,,
201 — &7 ’

167
30 amp

—Bob%(ﬁ — xio)

Bybw In Yo+ @ gn o — Bobvo( 1
Xo X

0.20825, 0.21009, 0.21070, 0.21071

5
— — — ) COS !¢
ot+a Xo

2By sin wt
0
@0; b1 — I,

Jor
2

(a) 7/4; (b) 1/4
12

Pre
27t€0r

(a) Q/8; (b) Q/8
—1/2 amp

2
for r < aand '—’5—‘:— for r > a, direction circular to the axis of the wire

, direction radially away from the line charge

CHAPTER 3

3.1.
3.3.

z2 . .
wBOT sin Wt 1,

(a) Zix + Xiy + yiz; (b) 0
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35. 4 % 1077 cos (6T x 10% — 2m2) i, Whfm?
37. B = —0e€oEo % cos t i,
4
E = —w?uc€oEyp 12—2 sin @i,
3.9. E = 10cos (67 x 103t — 2mz2) i,
B = 5)3— cos (6w x 108t — 2m2) i,
3.11. Jy(a + 2)i, for —a < z < 0,Jo(a — 2) i, for 0 < z < a, 0 otherwise
3.13. Curl will have a component in the y direction in addition to the x component
3.15. Curl has only a z component
3.17. fch » dl = 0 for any C
3.19. (@) 3(x2 +y?2 +2%); (b)O
3.21. (a) —xi,, y; (b) —i,,0; (¢)0,1; (d)0,0
3.23. 2 — a?)i, for —a < x < a, 0 otherwise
ae‘
3.25. (a) and (c)
327.V.r=3
329.§ A-dS =27, V-A=3
A
331. 0
CHAPTER 4
4.1. (a) 0.2 amp; (b) 0; (c) 0.2 amp
4.3. (a) 0.2 cos ¢ amp; (b) 0.2 sin wt amp; (c) 0.2828 sin (Wt + 45°) amp
4.5. (a) 4-0.0368 cos @t i,; (b) +0.0135 cos w¢i,
4.7. Jo%i, for z < —a, —J, (z—l—z—z)i for —a <z <0, —J, (z—z—z)i for
e Jogy 2a)" » TI\F T 2g)
O<z<a, —Jo= lyforz>a
4.9. —(poal€q)iy for x < —a, (Pox/€o)iy for —a < x < a, (Poa/€o)ix for x > a
4.15. (t — za/ Uo€o)?* corresponds to a (+) wave; (¢ + za/ [o€0)? corresponds to a
(—) wave
417, ¢ =TJso

For Problem 4.13, E, ’1°Js° 10250 (¢t F za/ Ho€y)? for z 2= 0 and

H, = %forzzo
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4.19. E = [0.1#, cos (6 x 108¢ F 2mz) - 0.051, cos (12 X 10%¢ F 472)]i,
forz=0
E,.
H= :i:ml,,forzzo
4.21. (a) Same as in Fig. 4.17, except displaced to the left by 1/3 us; (b) 75.4 V/m
for 300(n — 1/3) < |z| < 300n and —37.7 V/m for 300(n — 1) <|z| <
300(r — 1/3), n=1,2,3,...; (c) 0.2z/|z] amp/m for 300(n — 1) < |z| <
300(n —2/3) and —0.1z/|z] amp/m for 300(n — 2/3) <|z| < 300n,
n=1213,...
4.23, (a) 0; (b) 7oJs0 sin ¢ sin fzi,; (c) 0
4.25. (a) ”OTJS“ [cos (wt + B2)i, — cos (wt + B2)1i,], linear;
(b) ”"T—JS" [cos (¢t — Pz)i, — cos (wt + B2)i,], elliptical except at z =0,
A/8, A/4, 34/8, and 1/2;
© ”°TJS° [cos (wt — Bz)i, — cos (@t — P2)i,)], linear
4.27. (a) 0; (b) —3.00 kHz; (c) 1.732 kHz
2
431 @ — Lo sin (@r — )i, + Zcos (0r — B i,; (b) EL4,
Ho Ho Ho
CHAPTER 5
5.1. (a) 0.1724 x 1074 V/m, 0.1724 x 1076 V, 0.1724 x 1075 ohms;
(b) 0.2857 x 1074 V/m, 0.2857 x 1076 V, 0.2857 x 10~5 ohms;
(c) 250 V/m, 2.5V, 25 ohms
5.3. 1.5245 x 107195
5.5. (a) —8.667 X 1077 sin 2w x 10°tamp; (b) —2.778 X 1076sin 27w X 109¢
amp; (c) —4.444 X 1075 sin 2 X 10%¢ amp
5.7. (a) €Eo(di, + 2i, + 2i,); (b) 8€4Eo(i~ + i, + i.); (€) 0.5E,(3ix — iy —iy)
5.9. |e|*Bya%/2m, 0.7035 x 10718 amp-m?
5.11. 0.5 X 1076 sin 2wz amp
9:H -
5.13. 022" = y2H,
5.15. 0.00083 nepers/m, 4.7562 x 1073 rad/m, 1.32105 x 10% m/s, 1321.05 m,
(161.102 + j28.115) ohms
5.17. E = 3.736¢70.0404 cos (21 x 1051 F 0.0976z + %) i for 2 2 0
H = +0.05 700404z cos 2 x 105t F 0.0976z) i, for z == 0
5.19. 16.09 m, 1.917:1, 90° out of phase
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5.21. (a) 30 MHz; (b) 5m; (¢) 1.5 x 10® m/s; (d) 4€,;
(e 61_7t cos (6m x 107t — 0.472) i, amp/m
5.23. (a) H = 0.1cos 3n x 107t — 0.4nz)i,, B = 2uH,M =H, J,, = —0.047m-

sin (37 x 107t — 0.47z)i,; (b) E =6mcos Bn x 107t — 0.47z)i,, D =
8¢.E, P = 7€,E, J, = —0.0357 sin 37 X 107¢ — 0.47z) i

5.25. (a) 0.0211 nepers/m, 18.73 rad/m, 0.3354 x 10% m/s, 0.3354 m, 42.15 ohms;
(b) 2 x 1073 nepers/m, 2 X 107? rad/m, 107 m/s, 1000 m, 2z(1 - j) ohms

5.27. 1Hz

CHAPTER 6

6.1, 4G, + 2i, + 3i.)//14
6.3. Hy(i, — i,)/"/3
6.5. ps =3 |Do|, JS == H0(2ix + iy - 2iz) DO/IDOI

6.7. (a) 21 cos (2m X 106t — 0.02mz) V; (b) 0.25 cos (2 X 105¢ — 0.02 7z) amp;
(c) 0.5 cos? 2 X 105¢ — 0.027n2) W

6.11. Exact values are £ = 0.1994u, @ = 5.0155¢, and G = 5.01550

6.13. (a) £ = 0.278 x 106 H/m, § = 4.524 X 10716 mho/m;
(b) (52.73 4 j0) ohms

6.17. () ‘;V i gl — YT ()7 =\/§3; _wge

6.19. 1667% at f= 50.01 MHz

6.21. 2.25€¢,
6.23. 4.7746 cm
6.25. E, = Ey(4i, -+ 2i, — 6i,), H, = Ho(4i, — 3i,)
6.27. All boundary conditions are satisfied
1,. 9, e 7 B0
6.29. (a) 1¢Pis (0) 1¢Pis (©) g P

6.31. 150 ohms

CHAPTER 7

7.1. 0.057(+/ T i + i)

7.3. f1x+f1y+

1
«/—



462

7.5.
1.7.

7.9.
7.11.
7.13.

7.15.
7.17.
7.19.

ANSWERS TO OpD-NUMBERED PROBLEMS

(2) Yes; (b) 5g—(/Fhy — i) cos [67 x 107 — 0.1a(y + o/F 2)]
(2) %(ix + 4/3i); (b) 8,/3 m, 24 m
lcm

3600 MHz, 5400 MHz

TE,,; mode; 10 sin 207x sin <101°7zt — gz) i,

' = —0.3252, 7 = 0.6748
(@) 0; (b) —5m/s
2.4 x 108 m/s

7.23. TEI,O; TE(),], TEZ‘O, TE1’1, and TM1,1
7.25. 6.5¢cm, 3.5cm
7.27. 3535.5 MHz (TE; o, 1, TEq,1,1), 4330.1 MHz (TE,;,1, TM;,1,1), 5590.2 MHz
(TEZ,O,I; TEO, 2,1 TEI.O,Z; TEO,I,Z)
7.29. (a) 41.81°; (b) 48.6°
CHAPTER 8
8.1. 0.2 cos 2 X 107¢ amp

8.5.
8.7.
8.9.
8.11.
8.13.
8.15.
8.17.

8.19.

8.21.

8.23.

8.25.

8.27.

0.24
(a) 1.257 x 1073 V/m; (b) R.,a = 0.0351 ohm, {P,,¢> = 1.7546 W
1.111' W
‘\/(DZRradZ)/(Deradl)

1’7

g
0.60943

1.015 W

LI, sin @ . E,

(@) E, = _BLL sin§ ey Sin (@t — fr), Hy = 7";
(b) Reaq = 20m2(L/2)*, D = 1.5

—%, cos (% cos y — %)

cos? (% cos yl)
’cos W cos (% cosy — %)‘

[cos (% cos 0)} / sin 8, where 8 is the angle from the vertical, D = 3.284
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8.29.
8.31.

4
0.00587 V

CHAPTER 9

9.1.

9.3.

9.5.
9.7.

9.9.

9.11.

9.13.

9.15.

9.17. (a

9.19.

9.21.
9.23.

9.25.

9.27.

9.29.
9.31.

(@) %% (b) yziy, + zxiy -+ X,

1 . R .
W(Sl,{ + 2i, + 4i,)
2.12t
0/30rne,
10—5 50 A
V=" Z [10-42i — 1)2 + y2]~1/2

E = Z [104(2i — 1)? 4 117372,

e 0 i=
4 2/3
(a) g;lz/o ( d) 5 (b) [p:]x=0 = 0’ [px]x=d = 4630:6
et
6¢€
€rx
( ) €af + 61(d
€9l
€t + €,(d— t)

sinh (wx/b) .
@ Yognh Geajp) ™
(b) 0.1963V,

& 4V, o nn sinh (n7x/b) sin 7Y nny
n=1,3,5,... I 4 sinh (nma/b) b

(a) 16.91 V; (b) 16.92 V; (c) 15.53 V. Exact value = 15.17 V
90.886 V

kd*x d d
3¢ for — < Xx <7
€t +€(x — 1)
€t +€1(d—1)

=4

V0f0r0<x<t, Vofort <x<d

(b)

¥V, sinh (37x/b) ny

sinh (37a/b) sin <5<

ny
5 T3 &

= 7 i 2
(b) Z;, =1 w# dl(l —1 wé‘ 2L ); equivalent circuit consists of an inductor L
in parallel with a resistor 3R where L = udl/w and R = djglw

5 _ joewl w2 uel>
e

series with an inductor (1/3) L where C = ewl/d and L = udljw
5 X 105 amp-turns/Wb
8.4 x 107¢ Wb

); equivalent circuit consists of a capacitor C in
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CHAPTER 10
10.1. (a) 240 km; (b) 6 MHz; (c) 10 MHz
10.3. (a) 0.9475 Hz; (b) 0.0347 Hz
10.5. 15¢cm
10.7. 45.39°
10.11. —0.00533 mho, 1.667
10.13. 0.142, 0.1924

10.15. (a) 0.0359Eo(—a/3ix —i;) cos [6m X 10°¢ — 10n(—x + /3 2)];
(b) 0.5359E(i. — i.) cos [6m X 10°¢ — 17.327(x - 2)]

10.17. 50.77°; perpendicular to the plane of incidence

10.19. (a) 8.02 m, 20; (b) 25.38 m, 52

10.21. 1.645

10.25. (a) 0.1654 X 1073 V/m;(b) Rraa = 0.6077 X 10~2 ohms, {P.,4> = 0.0304 W

APPENDIX A

Al —3i, 4+ /T, + 1,

A.3. Equal
1 1 .
AS. —ﬁs ﬁ]z

A7, 13i, + 6i,

APPENDIX B

B.1. (a) —sin ¢ i,, cos ¢; (b) 0, 0 except at r = 0; (c) O except at r = 0, 0

1 0( 5@) 1 ¢?®@ | 9@

B3 L o\"or) T T o

B.S. (a) — o (sin 1, — cos §1ig); (b) cos 81, — sin 81,
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A (see Magnetic vector potential)
Acceptor, 340, 342
Addition:
of complex numbers, 22
of vectors, 3, 4
Admittance:
characteristic, 399
input, 364
line, 399
Air gap, 367, 368
Ampere, definition of, 450
Ampere turn, 367
Ampere’s circuital law:
illustration of, 74
in differential form, 92, 95
in integral form, 62, 64, 90
statement of, 74
Ampere’s law of force, 30-32
Amplitude modulated signal, 270
group velocity for, 271
Anisotropic dielectric:
effective permittivity of, 170
example of, 386
wave propagation in, 386-87
Anisotropic dielectric materials, 169
Anisotropic magnetic material:
effective permeability of, 195
example of, 387

Antenna:
directivity of, 306
equiangular spiral, 411
frequency-independent, 411
half-wave dipole (see Half-wave dipole)
Hertzian dipole (see Hertzian dipole)
image, 316
loop (see Loop antenna)
radiation pattern, 304
radiation resistance of, 304
short dipole, 327
Antenna array:
group pattern for, 313
log-periodic dipole, 412
of two current sheets, 141
principle of, 141-42, 311
resultant pattern for, 313
Antenna arrays:
of two Hertzian dipoles, 311-14
radiation patterns for, 313-16
Antennas:
in sea water, 188
receiving properties of, 318
Antiferromagnetic material, 171
Apparent phase velocity, 252, 284
Apparent wavelength, 252, 284
Array (see Antenna array)
Array factor, 313
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Atom, classical model of, 162
Attenuation, 179
Attenuation constant, 179
for good conductor, 186
for imperfect dielectric, 185
units of, 179
Automobile, Doppler shift due to, 145

B (see Magnetic flux density)
B-H curve, 176
Biot-Savart law, 33
Bound electrons, 162, 164
Boundary condition:
at transmission line short circuit, 220
for normal component of B, 203, 229
for normal component of D, 202, 229
for tangential component of E, 199, 228
for tangential component of H, 201, 228
Boundary conditions:
at dielectric interface, 229, 239
at transmission line junction, 232
on perfect conductor surface, 203, 236
Brewster angle, 409
Broadside radiation pattern, 313

Cable, coaxial (see Coaxial cable)
Candela, definition of, 450
Capacitance:
definition of, 208
for parallel-plate arrangement, 346
Capacitance per unit length:
for arbitrary line, 215, 216, 238
for coaxial cable, 218, 238
for parallel-plate line, 209, 237
for parallel-wire line, 422
related to conductance per unit length, 209
related to inductance per unit length, 209
units of, 208
Cartesian coordinate system, 9-14
arbitrary curve in, 13
arbitrary surface in, 13
coordinates for, 10
curl in, 89, 114
differential length vector in, 12, 37
differential lengths, 12
differential surfaces, 12, 37
differential volume, 13, 37
divergence in, 104, 114
gradient in, 332, 370
Laplacian in, 340

INDEX

Cartesian coordinate system (Cont.):
orthogonal surfaces, 10
unit vectors, 10
Cavity resonator, 279
frequencies of oscillation, 280, 286
Characteristic admittance, 399
Characteristic impedance, 219, 238
for coaxial cable, 219
for lossless line, 219, 238
Characteristic polarizations, 170, 386, 388
Charge, 2, 24
conservation of, 72
line, 41
magnetic, 70
of an electron, 24
point (see Point charge)
surface, 42
unit of, 24
Charge density:
line, 41
surface, 42
volume, 70
Circuit:
distributed, 210, 211
magnetic (see Magnetic circuit)
Circuit parameters, 208
Circuit theory, 210
validity of, 227
Circuital law, Ampere’s (see Ampere’s
circuital law)
Circular polarization, 20-21
Circulation, 49
per unit area, 97, 99
Closed path, line integral around, 49
Closed surface integral, 55
Coaxial cable, 217
capacitance per unit length of, 218
characteristic impedance of, 219
conductance per unit length of, 218
field map for, 217
inductance per unit length of, 217
parameters for, 238
Communication:
from earth to moon, 150
from earth to satellite, 383-84
ground-to-ground, 384
under water, 188
Commutative property of vector dot
product, 5
Complete standing waves, 223
Complex number, conversion into expo-
nential form, 22
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Complex numbers, addition of, 22
Computer solution of Laplace’s equation,
basis for, 354, 372
Conductance:
definition of, 209
for parallel-plate arrangement, 346
Conductance per unit length:
for arbitrary line, 216, 238
for coaxial cable, 218, 238
for parallel-plate line, 209, 237
related to capacitance per unit length, 209
units of, 209
Conduction, 162
Conduction current, 162
power dissipation due to, 211
Conduction current density, 162
relationship with E, 163, 177, 189
Conductivities, table of, 163
Conductivity:
definition of, 163
for conductors, 163
for semiconductors, 163
units of, 163
Conductor:
decay of charge placed inside, 194
good (see Good conductor)
perfect (see Perfect conductor)
power dissipation density in, 184, 191
Conductors, 162, 189
good, 191
perfect, 192
Conservation of charge, 72
law of, 72, 76
Conservative field, 336
Constant of universal gravitation, 24
L Oonstant phase surfaces.
far from a physical antenna, 145
for uniform plane wave, 249
Constant SWR circle, 399
Constitutive relations, 161, 177, 190
Continuity equation, 109, 113
Coordinate system:
Cartesian, 9-14
cylindrical, 433-35
spherical, 435-37
Coordinates:
Cartesian, 10
cylindrical, 433
relationships between, 437-38
spherical, 436
Corner reflector, 328
Coulomb, as unit of charge, 24, 450
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Coulomb’s law, 25
Critical angle, 282, 287
Critical frequency, 383
Cross product of vectors, 6
distributive property of, 7, 8
Curl, 95-99
definition of, 96, 113
divergence of, 114, 423-24
in Cartesian coordinates, 89, 114
in cylindrical coordinates, 443
in spherical coordinates, 445
of E, 90, 112, 177
of gradient of scalar, 332
of H, 95, 113, 177
physical interpretation of, 97-99
Curl meter, 97
Current:
conduction, 162
crossing a line, 123-24
crossing a surface, 30, 63
displacement, 63
magnetization, 174
polarization, 167
unit of, 450
Current density:
conduction, 162, 163
definition of, 30
displacement, 95
due to motion of electron cloud, 29-30
surface, 123
volume, 63
Current element:
magnetic field of, 32-33, 37
magnetic force on, 33
Current enclosed by closed path, uniqueness
of, 64-67
Current loop (see also Loop antenna):
dipole moment of, 170
vector potential due to, 427
Current reflection coefficient, 233, 240
Current sheet, infinite plane (see Infinite
plane current sheet)
Current transmission coefficient, 233, 240
Curve, equation for, 13
Curvilinear squares, 216, 217
Cutoff condition, 260, 273, 274
Cutoff frequencies:
determination of, 277-79
for TE,y, o modes, 260, 285

for TE,y, , modes, 277
for TM,y,, p modes, 277
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Cutoff frequency, 260
of dominant mode, 278
Cutoff wavelength, 260
Cutoff wavelengths:
for TEg,, modes, 274
for TEm' o modes, 260, 273, 285
for TEy, n modes, 274, 286
for TMyy, , modes, 277, 286
Cylindrical coordinate system:
coordinates for, 433
curl in, 443
differential length vector in, 435
differential lengths, 435
differential surfaces, 435
differential volume, 435
divergence in, 443
gradient in, 444
limits of coordinates, 433
orthogonal surfaces, 433
unit vectors, 433

D (see Displacement flux density)
Degree Kelvin, definition of, 450
Del operator, 89
Density:
charge (see Charge density)
current (see Current density)
Depletion layer, 342
Depth, skin, 187
Derived equation, checking the validity
of, 450-51
Diamagnetic materials, values of X, for,
175-76
Diamagnetism, 171
Dielectric:
imperfect (see Imperfect dielectric)
perfect (see Perfect dielectric)
Dielectric constant, 169
Dielectric interface:
boundary conditions at, 229, 239
oblique incidence of uniform plane waves
on, 281, 404
Dielectrics, 162, 189
anisotropic, 169
imperfect, 191
linear isotropic, 169
perfect, 191
polarization in, 164
table of relative permittivities for, 169
Differential:
net longitudinal, 104
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Differential (Cont.):
net right-lateral, 88, 89
right-lateral, 88
Differential length vector:
in Cartesian coordinates, 12, 37
in cylindrical coordinates, 435
in spherical coordinates, 436
Differential lengths:
in Cartesian coordinates, 12
in cylindrical coordinates, 435
in spherical coordinates, 436
Differential surface, as a vector, 12
Differential surfaces:
in Cartesian coordinates, 12, 37
in cylindrical coordinates, 435
in spherical coordinates, 437
Differential volume:
in Cartesian coordinates, 13, 37
in cylindrical coordinates, 435
in spherical coordinates, 437
Dimensions, 450
table of, 451-53

Diode:
tunnel, 344
vacuum, 374
Dipole:

electric (see Electric dipole)
half-wave (see Half-wave dipole)
Hertzian (see Hertzian dipole)
magnetic (see Magnetic dipole)
short, 327
Dipole moment:
electric, 164, 339
magnetic, 170
of current loop, 170
per unit volume, 165, 172
Dipole moment per unit volume:
electric (see Polarization vector)
magnetic (see Magnetization vector)
Direction lines, 17
for electric dipole field, 339
for point charge field, 27
Directivity:
definition of, 306
of half-wave dipole, 311, 323
of Hertzian dipole, 306, 323
of loop antenna, 429
Discharge tube, in gas lasers, 409
Dispersion, 181, 266
Dispersion diagram, 269
Displacement current, 63
Displacement current density, 95
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Displacement flux, 63

Displacement flux density, 63
divergence of, 104, 113
due to point charge, 71-72
relationship with E, 76, 113, 168, 177
units of, 63

Displacement vector (see Displacement flux

density)
Distributed circuit, 210
physical interpretation of, 210-11
Distributive property:
of vector cross product, 7, 8
'of vector dot product, 6
Divergence, 107-10
definition of, 108, 113
in Cartesian coordinates, 104, 114
in cylindrical coordinates, 443
in spherical coordinates, 446
of B, 107, 113
of curl of a vector, 114, 423-24
of D, 104, 113
of gradient of scalar, 340
of J, 109, 113
physical interpretation of, 109-10
Divergence meter, 109
Divergence theorem, 110, 114
verification of, 110-12
Division of vector by a scalar, 5
Dominant mode, 277, 286
cutoff frequency of, 278
Donor, 340, 342
Doppler shift, 143
due to automobile, 145
due to changing ionosphere, 384
due to rocket, 160
due to satellite, 145-47
Doppler-shifted frequency, 143, 144
Dot product of vectors, 5
commutative property of, 5
distributive property of, 6
Drift velocity, 162

E (see Electric field intensity)
Effective permeabilities, of ferrite
medium, 388
Effective permeability, of anisotropic
magnetic material, 195
Effective permittivity:
of anisotropic dielectric, 170
of ionized medium, 381
Electrets, 165
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Electric dipole, 164, 338
dipole moment of, 164, 339
direction lines for the field of, 339
electric field of, 339
equipotential surfaces for, 339
potential field of, 339
schematic representation of, 164
torque on, 164, 194
Electric dipole moment, definition of, 164
Electric energy density:
in free space, 151, 153
in material medium, 184, 191
Electric field, 24
energy density in, 151, 153, 184, 191
energy storage in, 211
far from a physical antenna, 149
Gauss’ law for, 70, 104
induced, 60
motion of electron cloud in, 29-30
source of, 26
static (see Static electric field)
Electric field intensity:
curl of, 90, 112, 177
definition of, 26
due to charge distribution, 105-6
due to dipole, 339
due to point change, 26, 37
due to point charges, 26-28
relationship with D, 76, 113, 168, 177
unit of, 25
Electric force:
between two point charges, 24, 25
on a test charge, 25
Electric polarization (see Polarization in
dielectrics)
Electric potential, 335; see aiso Potential field
Electric potential difference (see Potential
difference)
Electric susceptibility, 165
Electromagnetic field:
due to current sheet, 138, 152
due to Hertzian dipole, 301, 322
power flow density in, 148
Electromagnetic waves:
guiding of, 247; see also Waveguide
propagation of, 121, 293; see also Wave
propagation
radiation of, 121, 293; see also Radiation
transmission of, 293; see also Transmission
lines
Electromotive force, 50, 57, 58
motional, 61
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Electron:

charge of, 24

mobility of, 163
Electron cloud, motion in electric field, 29-3(
Electron density, related to plasma

frequency, 381

Electronic orbit, 170
Electronic polarization, 164
Electrons:

bound, 162

conduction, 162

free, 162
Elliptical polarization, 21
Emf (see Electromotive force)
Endfire radiation pattern, 142, 314
Energy density:

in electric field, 151, 153, 184, 191

in magnetic field, 152, 153, 184, 191
Energy storage:

in electric field, 150, 211

in magnetic field, 150, 211
Equiangular spiral antenna, 411
Equipotential surfaces, 334

between parallel plates, 345

for electric dipole, 338-39

for line-charge pair, 420

for point charge, 337

Fabry-Perot resonator, 409
Faraday rotation, 390
Faraday’s law, 57
illustration of, 74
in differential form, 85, 90, 112
in integral form, 59, 74, 84
statement of, 74
Ferrimagnetic material, 171
Ferrites, 387
characteristic polarizations for, 388
effective permeabilities for, 388
wave propagation in, 387-90
Ferroelectric materials, 165
Ferromagnetic materials, 171
Field:
definition of, 14
electric (see Electric field)
gravitational, 14, 24
magnetic (see Magnetic field)
Field intensity:
electric (see Electric field intensity)
magnetic (see Magnetic field intensity)
Field map, 212
for arbitrary line, 212-14
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Field map (Cont.):
for coaxial cable, 217
Field mapping, determination of line
parameters from, 212-16
Fields:
conservative, 336
quasistatic, 357-64
radiation, 302; see also Radiation fields
scalar, 14-17; see also Scalar fields
sinusoidally time-varying, 18-24
static, 15-16; see also Static fields
time-varying, 16-17
vector, 17-18; see also Vector fields
Flux:
displacement, 63
magnetic, 51-53
Flux density:
displacement (see Displacement flux
density)
magnetic (see Magnetic flux density)
Flux lines, 17
Force:
Ampere’s law of, 30-32
electric (see Electric force)
gravitational, 15, 24
magnetic (see Magnetic force)
unit of, 449-50
Free electrons, 162
Free space:
intrinsic impedance of, 140
permeability of, 31
permittivity of, 25
velocity of light in, 136
wave propagation in, 135-47
Frequencies of oscillation, for cavity
resonator, 280, 286
Frequency:
cutoff, 260, 277, 285
plasma, 381
times wavelength, 140
Frequency-independent antenna, 411

Gas lasers, 409

Gauss’ law for the electric field:
illustration of, 75
in differential form, 104, 113
in integral form, 70, 75, 102
statement of, 69, 75

Gauss’ law for the magnetic field:
illustration of, 75
in differential form, 107, 113
in integral form, 69, 75, 106
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Gauss’ law for the magnetic field (Cont.):
physical significance of, 70
statement of, 70, 75

Good conductor:
attenuation constant for, 186
definition of, 184
intrinsic impedance for, 187
phase constant for, 187
skin effect in, 188
wave propagation in, 186-89

Good conductors, 191

Gradient, 332
curl of, 332
divergence of, 340
in Cartesian coordinates, 332, 370
in cylindrical coordinates, 444
in spherical coordinates, 446
physical interpretation of, 332-34

Gravitational field, 14, 24

Gravitational force, 15, 24

Ground, effect on antenna, 316

Group pattern, 313

Group patterns, determination of, 313-14

Group velocity:
concept of, 266
for a pair frequencies, 269
for amplitude modulated signal, 271
for narrowband signal, 270
in ionized medium, 385
in parallel-plate waveguide, 270

Guide impedance, 263, 285
compared to characteristic impedance, 264

Guide wavelength, 261, 285

H (see Magnetic field intensity)
Half-wave dipole:
directivity of, 311, 323
evolution of, 307
radiation fields for, 309, 323
radiation patterns for, 310
radiation resistance for, 310, 323
Hertzian dipole, 294
above perfect conductor surface, 316-18
charges and currents associated with, 295
directivity of, 306, 323
electromagnetic field for, 301, 322
radiation fields for, 302, 322
radiation patterns for, 304-6
radiation resistance for, 304, 322
retarded potential for, 426
time-average radiated power, 303, 322
Hertzian dipoles, array of, 311
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Holes, 163, 340
mobility of, 163

Hysteresis, 176

Hysteresis curve, 176

Image antennas, 316
illustration of, 317
Impedance:
characteristic, 219, 238
guide, 263, 285
input, 224
intrinsic, 140; see also Intrinsic impedance
line, 394
Imperfect dielectric:
attenuation constant for, 185
definition of, 184
intrinsic impedance for, 185
phase constant for, 185
wave propagation in, 185-86
Imperfect dielectrics, 191
Incident wave, 221, 231, 263, 281, 404
Induced electric field, 60
Inductance, definition of, 208
Inductance per unit length:
for arbitrary line, 214, 216, 237
for coaxial cable, 217, 238
for parallel-plate line, 208, 237
related to capacitance per unit length, 209
units of, 208
Infinite plane current sheet, 123
as an idealized source, 123, 293
electromagnetic field due to, 138, 152,
182, 190
magnetic field adjacent to, 126
radiation from, 139, 183
Input behavior, for low frequencies, 225-27,
357-64
Input impedance:
low frequency behavior of, 225-27
of short-circuited line, 224, 239
Input reactance, of short-circuited line, 224
Insulators, 162
Integral:
closed line (see Circulation)
closed surface, 55
line, 48
surface, 54
volume, 70-71
Integrated optics, 272
Interferometer, 328
International system of units, 24, 449
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Intrinsic impedance:
definition of, 140
for free space, 140, 152
for good conductor, 187
for imperfect dielectric, 185
for material medium, 181, 191
for perfect dielectric, 184
Ionic polarization, 164
Ionized medium:
condition for propagation in, 381
effective permittivity of, 381
example of, 380
group velocity in, 385
phase velocity in, 382
wave propagation in, 380-85
Ionosphere, 380
condition for reflection of wave, 383
description of, 382-83
Iteration technique, 355

J (see Volume current density)

J (see Conduction current density)
Joule, definition of, 450

Junction, p-n, 340

Kelvin degree, definition of, 450
Kilogram, definition of, 449
Kirchhoff’s current law, 210
Kirchhoff’s voltage law, 210

Laplace’s equation, 347, 371
application for field mapping, 347
applications of, 345-46, 348-52
computer solution of, 352-57
in one dimension, 345-46
in two dimensions, 347
solution for steady current condition, 344
solution of, 345, 347-48, 418-19

Laplacian, 340
in Cartesian coordinates, 340

Laser beam, 390

Lasers, gas, 409

Law of conservation of charge, 72, 76, 108
in differential form, 109, 113

Law of reflection, 282

Law of refraction, 282, 286

Leakage flux, 366

Lenz’s law, 60, 62

Light, velocity of (see Velocity of light)
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Line admittance, 399
from the Smith chart, 399-400
normalized, 399
Line charge, 41
infinitely long, 418
potential field of, 418-19
Line charge density, 41
units of, 41
Line current, magnetic field due to, 64-65
Line impedance, 394
from the Smith chart, 398-99
normalized, 395
Line integral, 48
around closed path, 49
evaluation of, 48-49
to surface integral, 99, 114
Line integral of E, physical meaning of, 49
Linear isotropic dielectrics, 169
Linear polarization, 19-20
Linear quadrupole, 374
Lines:
direction (see Direction lines)
transmission (see Transmission lines)
Log-periodic dipole array, 412
design of, 413-17
Longitudinal differential, net, 104
Loop antenna, 319, 426
directivity of, 429
magnetic vector potential for, 427
power radiated by, 428
radiation fields of, 428
radiation resistance of, 429
receiving properties of, 319-21
Lorentz force equation, 35, 38
Loss tangent, 180
Low frequency behavior, determination of,
225-27,357-64
Lumped circuits, 210

Magnetic charge, 70
Magnetic circuit:
analysis of, 367-69
example of, 365
reluctance of, 367
Magnetic dipole, 170
schematic representation of, 171
torqueon, 171, 194
Magnetic dipole moment, definition of, 170
Magnetic dipole moment per unit volume
(see Magnetization vector)
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Magnetic energy density:
in free space, 152, 153
in material medium, 184, 191
Magnetic field:
energy density in, 152, 153, 184, 191
energy storage in, 150, 211
far from a physical antenna, 149
Gauss’ law for, 69, 107
inside a good conductor, 189
realizability of, 107
source of, 35
Magnetic field intensity, 63
adjacent to current sheet, 126
curl of, 95, 113, 177
due to current distribution, 93-94
due to infinitely long wire of current, 64-65
relationship with B, 76, 113, 175, 177
units of, 64
Magnetic flux, crossing a surface, 51-53
Magnetic flux density:
definition of, 34
divergence of, 107, 113
due to current element, 32-33, 37
from A, 424
relationship with H, 76, 113, 175, 177
units of, 32
Magnetic force:
between two current elements, 31
in terms of current, 33
on a moving charge, 34
Magnetic materials, 170, 189
anisotropic, 175
Magnetic susceptibilities, values of, 176
Magnetic susceptibility, 172
Magnetic vector potential, 424
application of, 426
due to current element, 425
for circular loop antenna, 427
for Hertzian dipole, 426
relationship with B, 424
Magnetization, 170
Magnetization current, 174
Magnetization current density, 174
Magnetization vector:
definition of, 172
in magnetic iron-garnet film, 390, 392
relationship with B, 172
units of, 172
Magnetomotive force, 64, 68, 366
Magneto-optical switch, 390, 392
Magnitude of vector, 5
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Mass, 24
unit of, 449
Matching, transmission line, 400-402
Materials:
antiferromagnetic, 171
classification of, 161, 189
conductive (see Conductors)
constitutive relations for, 177
diamagnetic (see Diamagnetic materials)
dielectric (see Dielectrics)
ferrimagnetic, 171
ferroelectric, 165
ferromagnetic, 171
magnetic (see Magnetic materials)
paramagnetic (see Paramagnetic materials)
Maxwell’s curl equations:
for material medium, 177, 190
for static fields, 332,
successive solution of, 128-31, 153
Maxwell’s equations:
as a set of laws, 1, 45
for static fields, 370
in differential form, 112-13
in integral form, 74-75, 198
independence of, 76, 114-15
Meter, definition of, 449
Mho, 163
MKSA system of units, 449
Mmf (see Magnetomotive force)
Mobility, 163
Mode, Dominant (see Dominant mode)
Modes:
TE (see TE modes)
TM (see TM modes)
Moment:
electric dipole, 164
magnetic dipole, 170
Moving charge, magnetic force on, 34
Moving observer:
frequency viewed by, 143, 145
phase of the wave viewed by, 142
Multiplication of vector, by a scalar, 5

Newton, definition of, 449-50

Newton’s law of gravitation, 24

Newton’s third law, 32

Normal component of B, boundary condition
for, 203, 229

Normal component of D, boundary condition
for, 202, 229
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Normal vector to a surface:
from cross product, 13-14
from gradient, 334

Normalized line admittance, 399

Normalized line impedance, 395

Nucleus, 162

Observer:
moving, 142, 143, 145
stationary, 144-45
Ohm, 163
Ohm’s law, 163
w - f§zdiagram, 269
Operator, del, 89
Optical fiber, 282
Optical waveguides, principle of, 281
Orbit, electonic, 170
Orientational polarization, 164
Origin, 10
Orthogonality property, of sine functions, 352

Paddle wheel, 97
Parallel-plate transmission line, 205
capacitance per unit length for, 209
conductance per unit length for, 209
inductance per unit length for, 208
parameters for, 237
power flow along, 207
voltage and current along, 206
Parallel-plate waveguide, 259
cutoff frequencies for, 260
cutoff wavelengths for, 260
discontinuity in, 262-65
group velocity in, 270
guide wavelength in, 261
phase velocity along, 261
TE;,0 mode fields in, 261
TE,; 0 modes in, 259
Parallel polarization, 406
Parallel-wire line, 243, 418
capacitance per unit length of, 422
Parallelepiped, volume of, 40
Paramagnetic materials, 171
values of X ,, for, 176
Paramagnetism, 171
Partial standing waves, 235
standing wave patterns for, 235-36
Pattern multiplication, 314
Perfect conductor:
boundary conditions, 203, 236
definition of, 189

Perfect conductors, 192
Perfect dielectric:

boundary conditions, 229, 239

definition of, 184

intrinsic impedance for, 184

phase constant for, 184

phase velocity in, 184

wave propagation in, 184
Perfect dielectrics, 191
Permanent magnetization, 171
Permeability:

effective, 195, 388

of free space, 31

of magnetic material, 175

relative, 175

units of, 31
Permeability tensor, 195
Permittivity:

effective, 170, 381

of dielectric material, 169

of free space, 25

relative, 169

units of, 25
Permittivity tensor, 169, 194, 386
Perpendicular polarization, 405
Phase, 18
Phase constant:

for free space, 138, 152

for good conductor, 187

for ionized medium, 381

for imperfect dielectric, 185

for material medium, 180

for perfect dielectric, 184
Phase shift, 179
Phase velocity:

along guide axis, 261, 285

apparent, 252

in free space, 138, 152

in good conductor, 187

in imperfect dielectric, 185

in ionized medium, 382

in material medium, 180

in perfect dielectric, 184
Phasor, 22
Phasor technique, review of, 21-24
Plane surface, equation for, 13

INDEX

Plane wave, uniform (see Uniform plane

wave)
Plasma frequency:
definition of, 381
related to electron density, 381
p-n junction semiconductor, 340
analysis of, 340-43
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Point charge:
electric field of, 26, 37
equipotential surfaces for, 337
potential field of, 337, 371
Point charges, 24
electric field of, 26-28
Poisson’s equation, 340, 371
application of, 340-44
Polarization current, 167
Polarization current density, 168
Polarization in dielectrics, 164
electronic, 164
ionic, 164
orientational, 164
Polarization of vector fields:
circular, 20-21
elliptical, 21
linear, 19-20
parallel, 406
perpendicular, 405
Polarization vector:
definition of, 165
relationship with E, 165
units of, 165
Polarizer, 392
Polarizing angle, 409
Position vector, 250, 284, 439
Potential:
electric (see Electric potential)
magnetic vector (see Magnetic vector
potential)
retarded, 426
Potential difference, 335
compared to voltage, 336
Potential field:
of electric dipole, 339
of line charge, 418-19
of pair of line charges, 419-20
of point charge, 337, 371
Power:
carried by an electromagnetic wave, 148
dissipated in a conductor, 182
radiated by half-wave dipole, 309
radiated by Hertzian dipole, 303
radiated by loop antenna, 428
time-average, 303, 310, 428
Power balance, at junction of transmission
lines, 234
Power density, associated with an electro-
magnetic field, 148, 151
Power dissipation density, 184, 191
Power flow:
along parallel-plate line, 207
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Power flow (Cont.):
along short-circuited line, 221
in parallel-plate waveguide, 257
Poynting theorem, 151
for material medium, 184
Poynting vector, 148-51, 153
for half-wave dipole fields, 309
for Hertzian dipole fields, 302
for loop antenna fields, 428
for TE waves, 257
surface integral of, 151, 207, 302
time-average, 257
units of, 148
Propagating modes, determination of,
262,277-79
Propagation:
sky wave mode of, 384
waveguide mode of, 384
Propagation constant:
for material medium, 179, 190
for transmission line, 218, 238
Propagation vector, 250, 284

Quadrupole, linear, 374
Quasistatic behavior:
determination of, 358-60, 360-64
equivalent circuit for, 364
Quasistatic extension:
analysis beyond, 377
of static field, 358, 360, 372
Quasistatic fields, 331, 357-64

Radiation:
far from a physical anienna, 145
from current sheet, 139, 183
principle of, 123
Radiation fields:
definition of, 302
for half-wave dipole, 309, 323
for Hertzian dipole, 302, 322
for loop antenna, 428
Radiation pattern, 304
broadside, 313
endfire, 142, 314
Radiation patterns:
for antenna above perfect conductor, 318
for antenna arrays, 313-16
for half-wave dipole, 310
for Hertzian dipole, 304-6
Radiation resistance:
definition of, 304
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Radiation resistance (Cont.):
for half-wave dipole, 310, 323
for Hertzian dipole, 304, 322
for loop antenna, 429
Radio communication, 383
Rationalized MKSA units, 448
Receiving properties:
of Hertzian dipole, 318-19
of loop antenna, 319-21
Reciprocity, 318
Rectangular coordinate system (see Cartesian
coordinate system)
Rectangular waveguide, 272
determination of propagating modes in,
277-78
field expressions for TE modes in, 274-76
TE modes in, 274
TM modes in, 277
Reflected wave, 221, 231, 263, 281, 404
Reflection coefficient:
at waveguide discontinuity, 265
current, 233, 240
for oblique incidence, 406, 407
from the Smith chart, 398
voltage, 232, 239, 395
Reflection condition, for incidence on iono-
sphere, 383
Refractive index, 282
Relative permeability, 175
for ferromagnetic materials, 176
Relative permittivity, 169
table of values of, 169
Reluctance, definition of, 367
Resistance, 194, 212
Resonator, cavity (see Cavity resonator)
Resultant pattern, 313
Resultant patterns, determination of, 314-16
Retarded potential, 426
Right-hand screw rule, 59, 85, 87, 91
illustration of, 59
Right-handed coordinate system, 10
Right-lateral differential, net, 88, 89

Satellite, Doppler shift due to, 145-47
Satellite navigational systems, 384
Scalar:
definition of, 2
gradient of (see Gradient)
Laplacian of, 340
Scalar fields, 14-17
graphical representation of, 15-16
sinusoidally time-varying, 18
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Scalar product (see Dot product of vectors)
Scalar triple product, 8
Scalars, example of, 2
Second, definition of, 449
Semiconductor, p-» junction, 340
Semiconductors, 163
conductivity of, 163
Separation of variables technique, 132, 133
Shielding, 188
Short circuit, location of, 225
Short-circuited line:
input impedance of, 224, 239
instantaneous power flow down, 221
standing wave patterns for, 223
voltage and current on, 221
Short dipole, 327
Signal source, location of, 321
Sine functions, orthogonality property of, 352
Sinusiodally time-varying fields, 18-24
Skin depth, 187, 191
for copper, 187
Skin effect, 188
Smith chart:
applications of, 397-402
construction of, 395-96
use as admittance chart, 400
Snell’s law, 282, 286
Space charge layer, 340, 342
Spherical coordinate system:
brief review of, 296-97
coordinates for, 436
curl in, 445
differential length vector in, 436
differential lengths, 436
differential surfaces, 437
differential volume, 437
divergence in, 446
gradient in, 446
limits of coordinates, 436
orthogonal surfaces, 435-36
unit vectors, 436
Standing wave patterns, 223
for partial standing wave, 236
for short-circuited line, 223-24
Standing wave ratio:
definition of, 235, 240, 394
from the Smith chart, 399, 400
Standing waves, 204
complete, 223
partial, 235
Static electric field:
conservative property of, 336
determination of, 72
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Static electric field (Cont.):
in terms of potential, 336, 370
of electric dipole, 339
Static fields, 331
Maxwell’s equations for, 370
Static magnetic field, determination of, 65
Steady current condition, 344
Stokes’ theorem, 99-100, 114
verification of, 100-101
Stream lines, 17
Strip line, 244
Stub, 401, 402
Subtraction of vectors, 4
Surface:
differential (see Differential surface)
equation for, 13
Surface charge, 42
Surface charge density, 42
units of, 42
Surface current density, 123
units of, 123
Surface integral, 54
closed, 55
evaluation of, 55-57
of Ex H, 148
to volume integral, 110, 114
Surfaces:
constant phase (see Constant phase surfaces)
differential (see Differential surfaces)
equipotential (see Equipotential surfaces)
Susceptibility:
electric, 165
magnetic, 172
SWR (see Standing wave ratio)

Table:
of conductivities, 163
of dimensions, 451-53
of relative permittivities, 169
of units, 451-53
Tangential component of E, boundary con-
dition for, 199, 228
Tangential component of H, boundary con-
dition for, 201, 228
TEg,n modes, 273, 274
TE,;y,0 modes, 259
cutoff frequencies for, 260, 285
cutoff wavelengths for, 260, 273, 285
field expressions for, 261
guide impedance for, 263, 285
in parallel-plate waveguide, 259
in rectangular waveguide, 272
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TEm, n modes, 274
cutoff frequencies for, 277
cutoff wavelengths for, 274, 286
field expressions for, 274-76

TEm,n,i modes, in cavity resonator, 280

TE wave, 257, 285

TEM wave, 212

Thin film waveguide, 292

Time-average power.:
radiated by half-wave dipole, 310
radiated by Hertzian dipole, 303, 322
radiated by loop antenna, 428

Time-average power flow:
along short-circuited line, 223
for TE wave, 257

Time-average Poynting vector, 257

Time constant, for decay of charge inside a

conductor, 194

TMm‘ n modes, 277
cutoff frequencies for, 277
cutoff wavelengths for, 277, 286

TM,, n, 1 modes, in cavity resonator, 280

TM wave, 276

Toroidal magnetic core, 365

Torque:
on electric dipole, 164, 194
on magnetic dipole, 171, 194

Total internal reflection, 282, 287, 408

Transmission coefficient:
at waveguide discontinuity, 265
current, 233, 240
for oblique incidence, 406, 407
voltage, 233, 240

Transmission line:
characteristic impedance of, 219, 235
coaxial (see Coaxial cable)
compared to waveguide, 197, 247
field mapping, 212-16
location of short circuit in, 225
parallel-plate (see Parallel-plate line)
parallel-wire (see Parallel-wire line)
propagation constant for, 218, 238
short-circuited (see Short-circuited line)

Transmission-line admittance (see Line

admittance)

Transmission-line discontinuity:
boundary conditions at, 232
reflection coefficients, 232-33
_transmission coefficients, 233

Transmission-line equations, 208, 218, 237
circuit representation of, 209-10
in phasor form, 218, 238
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Transmission-line equivalent, for waveguide
discontinuity, 264
Transmission-line impedance (see Line
impedance)
Transmission-line matching, 400-402
Transmission-line parameters:
for arbitrary line, 237-38
for coaxial cable, 238
for parallel-plate line, 237
Transmission lines, power balance at junction
of, 234
Transmitted wave, 231, 263, 281, 404
Transverse electric wave, 257, 285
Transverse electromagnetic wave, 212
Transverse magnetic wave, 276
Transverse plane, 206, 207
Traveling wave, 136
negative going, 136
positive going, 136
velocity of, 136
Tunnel diode, 344

Uniform plane wave:
guided between perfect conductors, 205
oblique incidence on a dielectric, 281, 404
parameters associated with, 140-41
radiation from current sheet, 139, 183
terminology, 138

Uniform plane wave fields:
magnetization induced by, 172
polarization induced by, 165

Uniform plane wave in three dimensions:
apparent phase velocities, 252, 284
apparent wavelengths, 252, 284
electric field vector of, 250
expressions for field vectors, 284
magnetic field vector of, 251, 252
propagation vector for, 250, 284

Uniform plane wave propagation (see Wave

propagation)

Uniform plane waves:
bouncing obliquely of, 259
superposition of, 255

Unit conductance circle, 401

Unit pattern, 313

Unit vector, 3, 5

Unit vector normal to a surface:
from cross product, 13-14
from gradient, 334

Unit vectors:
cross products of, 7
dot products of, 5, 438

INDEX

Unit vectors (Cont.):
in Cartesian coordinates, 10
in cylindrical coordinates, 433
in spherical coordinates, 436
left-handed system of, 3
right-handed system of, 3
Units:
International system of, 24, 449
MKSA rationalized, 449
table of, 451-53

V (see Electric potential; and Voltage)
Vacuum diode, 374
Vector:

circulation of, 49

curl of (see Curl)

definition of, 2

divergence of (see Divergence)

division by a scalar, 5

graphical representation of, 2

magnitude of, 5

multiplication by a scalar, 5

position, 250, 284, 439

unit, 3, 5
Vector algebra, summary of rules of, 36
Vector fields, 17-18

graphical description of, 17-18

sinusoidally time-varying, 18-21
Vector potential (see Magnetic vector

potential)

Vector product (see Cross product of vectors)
Vectors:

addition of, 3, 4

cross product of, 6

dot product of, 5

examples of, §

scalar triple product of, 8

subtraction of, 4

unit (see Unit vectors)
Velocity:

drift, 162

group (see Group velocity)

phase (see Phase velocity)
Velocity of light, in free space, 136
Velocity of propagation, 138
Volt, definition of, 25, 450
Voltage, 49

compared to potential difference, 336
Voltage reflection coefficient, 232, 239, 395
Voltage transmission coefficient, 233, 239
Volume, differential (see Differential volume)



INDEX

Volume charge density, 70
units of, 70
Volume current density, 63; see also Current
density
Volume integral, evaluation of, 71

Watt, definition of, 450
Wave:
incident, 221, 231, 263, 281, 404
reflected, 221, 231, 263, 281, 404
TE, 257, 285
TEM, 212
T™, 276
transmitted, 231, 263, 281, 404
traveling (see Traveling wave)
Wave equation, 132
for ionized medium, 380-81
for material medium, 179
Wave motion, 121
as viewed by moving observer, 144
as viewed by stationary observer, 144
Wave propagation:
in anisotropic dielectric, 386-87
in ferrite medium, 387-90
in free space, 135-47
in good conductor, 186-89
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Wave propagation (Cont.):
in imperfect dielectric, 185-86
in ionized medium, 380-85
in material medium, 176-84
in perfect dielectric, 184
in terms of voltage and current, 208
Waveguide:
compared to transmission line, 197, 247
optical, 282
parallel-plate (see Parallel-plate waveguide)
rectangular (see Rectangular waveguide)
thin-film, 292
Wavelength:
apparent, 252
definition of, 138
guide, 261, 285
in free space, 138, 152
in good conductor, 187
in imperfect dielectric, 185-86
in material medium, 181
in perfect dielectric, 184
times frequency, 140
Waves:
electromagnetic (see Electromagnetic
waves)
standing (see Standing waves)
Work, in movement of charge in electric
field, 46-48
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