The Phish-Market Protocol

Securely Sharing Attack Data
Between Competitors

Tal Moran Tyler Moore

Center for Research on Computation and Society

31 | HARVARD

School of Engineering
and Applied Sciences

Outline

Motivation
Challenges

The Phish-Market Protocol
— Concepts, not math

A little math [Optional]
Implementation

Motivation

e Phishing is a serious problem for banks

* Phishers set up fake websites:
— pretend to be banks

— scam users into entering
passwords

— links often appear in spam

Vi
-
e

Motivation

Banks hire take-down’ companies to
patrol internet for phishing sites

— Aggregate multiple URL feeds
— Read from public sources (e.g., APWG)
— Proprietary sources (e.g., spam honey traps)
e Considered competitive advantage
Take-down companies compete for clients

Moore and Clayton estimate $330,000,000
cost of refusing to share data

Ordinary phishing sltes Mean lifetime (hours)

— For these two companies alone!

The Proposal

 Create a market for phishing data
— Remunerate companies for sharing data
— Must take into account competition

Challenges
e Buyer learns only URLs that phish client banks
e Seller does not learn about Buyer’s clients
e Buyer pays for new each URL learned
 Buyer doesn’t pay for URLs already known

In Practice:

<] Generic solutions
extremely inefficient

V

e Can’t introduce significant delays

Protocol Ideas

e |dea: “pay” with encrypted “coins”
e Reveal only payment totals

— Can’t tell which URLs were those “sold”.

e Relaxations for efficiency:
— Buyer learns “tags” of all Seller URLs

— Buyer learns already known URLs
(but does not pay)

1.

2.

Transaction Overview

Seller offers URL to Buyer
— Oblivious Transfer

Buyer sends encrypted payment
— Homomorphic Commitment

Buyer “proves” payment is good
— Zero-Knowledge Proof

Buyer “proves” he knew URL
— Zero-Knowledge Proof

Seller’s view is always the same!

The Phish-Market Protocol

 Meet Sally and Bob:

ﬁ Sally the Seller _
/ |
‘ {

Commitment Schemes

e Commitment to a value:

— Commit now
N o “Hiding”: Sally doesn’t learn contents

Think of this as
Encryption

— Reveal later
* “Binding”: Bob can’t change the contents

— Bob commits in advance to the URLs he knows

Zero-Knowledge Equivalence Proofs

 Prove two commitments are the same

e Don’t reveal anything else
by

e To prove payment is good: “payment=C(1)”
 To prove Bob already knew URL

Zero-Knowledge Equivalence Proofs
with trapdoor

e Sometimes Bob shouldn’t pay

e Sometimes Bob didn’t know URL beforehand
ol

= L

 Trapdoor lets Bob use secret key to fake proof
e Sally can’t tell the difference

Oblivious Transfer (OT)

e Sally prepares two encrypted items
 Bob gets to choose only one encryption key

e Sally doesn’t learn which
e assume keys are indistinguishable

Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening them
Raliy

This is a payment
commitment

(A chest won't fit in the piggy bank)

Homomorphic Addition

e Special commitment scheme:

— Can add commitments without opening

iy

— Can reveal sum without revealing anything else

High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL
2" proof key

Choice

OT result

e = Commitment to payment
u = Commitment to URL

ZK Proof 1
e=C(1)

ZK Proof 2
u=C(URL)
Proof 3: uisin
committed set

N

High-Level Protocol Summary

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL Don’t want URL
2" proof key OT 2 proof key
e = (C(0)
U = C(Fake previously known URL)

/K Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin

committed set

High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL
2" proof key

Want URL

OT * URL ~

N

e = C(1)
U = C(Fake previously known URL)

ZK Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin
committed set

High-Level Protocol Summaré

Commit to previously known URLs
URL Tag, C(URL) and single ZK proof key

URL
2" proof key

Want URL

OT * URL ~

N

e = C(0)
U = C(URL)

/K Proof 1
e=C(1)

/K Proof 2
u=C(URL)
Proof 3: uisin

committed set

Formal Security Guarantees

e For Seller:
— Equivalent to an “ideal world” with a trusted third
party.
* For Buyer:

— Seller doesn’t learn anything about Buyer’s secrets
except what is revealed by aggregate payment.

e Theorem: the protocol is secure!

Proof 3: Merkle Trees

e Efficient commitment to large sets
— Send only the root of the tree:

* Proofs are not zero-knowledge
— We use commitments as leaves
— Add “chaff” commitments

> ZK Equivalence Proof

(for homomorphic commitments)

e To prove: C(x) = C(y)
— Reduce to “proof of commited value”:

— Prove: C(x)/C(y)=C(x-y) ~ C(0)
e Standard protocol to prove C(x) = C(0):
commitment
1. Prover commits: C(b), sends b

2. Verifier sends random challenge: a
3. Prover opens commitment: C(ax+b)=C(x)2C(b)

* Value must be: b \ Note:
arithmetic is

e |f x20, w.h.p. (over a) we have: ax+b#b

* |f Prover knows a, can cheat by computing
o’=ax+b in step 1.

modular!

Trapdoor ZK Proofs

e ZK 2 - Protocol:
1. Prover commits
2. Verifier sends a random challenge
3. Prover opens commitment

e Generic transformation to add trapdoor:
1. Prover commits
2. Challenge computed using Coin-Flipping protocol
3. Prover opens commitment

 We use Coin-Flipping protocol with trapdoor.

Blum Coin-Flipping
(with trapdoor)

e Use a commitment to flip a coin:

— Bob chooses a random value
% He’s committed, but Sally doesn’t know the value

‘ A
\l’ +
— Sally chooses a random value

— Bob opens his commitment.
— The value of the coin is the sum.

e Bob can cheat if he can equivocate on commitment

Our Implementation

e Pedersen Commitment

e Naor-Pinkas Oblivious Transfer
— (uses “Random Oracle”)

 Both based on hardness of discrete log in a generic
group

e can be implemented over Elliptic-Curves or using modular
arithmetic

Performance

Elliptic-Curve based Java implementation

Ran experiments using real data

(two weeks)
~10000 URLs
Avg. 5 sec delay.
Max. 35 sec.

100.00%

80.00% -

60.00% -

|
|
|
I
|
|
|

- ——
|

-
F
i

#
/ |
I
¢

!

(1)
2"
l,
|.
40.00% 4 |
|
I
I . L
— — —— Per-transaction processing time
20.00% - | Queue delay
| Total delay
0.00% rerrrrrrerrrrrirrrrrrrrrTrTTrTTrTrTrTTd
1 4 7 10 13 16 19 22 25 28 31 34

Time In seconds

The Qilin Crypto SDK

(shameless plug)

e Java SDK for rapid prototyping of dis

cryptographic protocols
* API follows concepts from theoretical crypto

e Currently implements all building-blocks of
Phish-Market

— Generic implementation of EI-Gamal, Pedersen
— Instantiations over elliptic curves and over Z*p
— Automatic Fiat-Shamir converter for > -Protocols

e Get Qilin: http://qilin.seas.harvard.edu/

Open Questions

e Solve related data-sharing problems?

— Much easier if we don’t need to handle previously
known URLs

 Implement generic secure computation to
prevent tag leaks

e Side-channels?

Thank You

