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A e CYLINDRICAL
AND
SPHERICAL
COORDINATE
SYSTEMS

In Sec. 1.2 we learned that the Cartesian coordinate system is defined by
a set of three mutually orthogonal surfaces, all of which are planes. The
cylindrical and spherical coordinate systems also involve sets of three mu-
tually orthogonal surfaces. For the cylindrical coordinate system, the three
surfaces are a cylinder and two planes, as shown in Fig. A.1(a). One of these
planes is the same as the z = constant plane in the Cartesian coordinate
system. The second plane contains the z axis and makes an angle ¢ with a
reference plane, conveniently chosen to be the xz plane of the Cartesian
coordinate system. This plane is therefore defined by ¢ = constant. The
cylindrical surface has the z axis as its axis. Since the radial distance r from
the z axis to points on the cylindrical surface is a constant, this surface is
defined by r = constant. Thus the three orthogonal surfaces defining the
cylindrical coordinates of a point are r = constant, ¢ — constant, and z =
constant., Only two of these coordinates (r and z) are distances; the third
coordinate (@) is an angle. We note that the entire space is spanned by varying
r from 0 to oo, ¢ from 0 to 2z, and z from —oo to oo,

The origin is given by r = 0, ¢ = 0, and z = 0. Any other point in space is
given by the intersection of three mutually orthogonal surfaces obtained by
incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces r = 2, ¢ = n/4, and z = 3 defines the point
A(2, /4, 3), as shown in Fig. A.1(a). These three orthogonal surfaces define
three curves that are mutually perpendicular. Two of these are straight lines
and the third is a circle. We draw unit vectors, i,, iy, and i, tangential to these
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Figure A.1. Cylindrical coordinate system. (a) Orthogonal surfaces and
unit vectors, (b) Differential volume formed by incrementing the coordi-
nates,

curves at the point 4 and directed toward increasing values of r, ¢, and z,
respectively. These three unit vectors form a set of mutually orthogonal unit
vectors in terms of which vectors drawn at A can be described. In a similar
manner, we can draw unit vectors at any other point in the cylindrical coor-
dinate system, as shown, for example, for point B(1, 3z/4, 5) in Fig. A.1(a).
It can now be seen that the unit vectors i, and i, at point B are not parallel to
the corresponding unit vectors at point 4. Thus unlike in the Cartesian
coordinate system, the unit vectors i, and i, in the cylindrical coordinate
system do not have the same directions everywhere, that is, they are not
uniform. Only the unit vector i,, which is the same as in the Cartesian coor-
dinate system, is uniform. Finally, we note that for the choice of ¢ as in Fig,
A.1(a), that is, increasing from the positive x axis toward the positive y axis,
the coordinate system is right-handed, that is, i, x i, = i,.

To obtain expressions for the differential lengths, surfaces, and volume in
the cylindrical coordinate system, we now consider two points P(r, ¢, z) and
O(r + dr, ¢ -+ d¢, z + dz) where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. A.1(b). The three
orthogonal surfaces intersecting at P and the three orthogonal surfaces
intersecting at Q define a box which can be considered to be rectangular since
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dr, dd, and dz are infinitesimally small. The three differential length elements
forming the contiguous sides of this box are dr i,, ¥ d¢ i, and dz i,. The differ-
ential length vector d1 from P to Q is thus given by

dl=dri, +-rddi, + dzi, (A.])

The differential surfaces formed by pairs of the differential length elements
are

+dSi, = +£(d) (rdp)i, = Ldri, x rddi, (A.2a)
+:dSi, = £(rdd) (dz)i, = Lrddi, x dzi, (A.2b)
+dSiy = 4-(dz) (dr)i, = +dzi, x dri, (A.2¢)

Finally, the differential volume dv formed by the three differential lengths is
simply the volume of the box, that is,

dv = (dr) (r dd) (dz) = r dr d¢ dz (A.3)
For the spherical coordinate system, the three mutually orthogonal
surfaces are a sphere, a cone, and a plane, as shown in Fig. A.2(a). The plane

is the same as the ¢ = constant plane in the cylindrical coordinate system.

ZA ZA
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— i \ r=3 ¥ sin

(a) (b)

Figure A.2, Spherical coordinate system. (a) Orthogonal surfaces and unit
vectors. (b) Differential volume formed by incrementing the coordinates.
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The sphere has the origin as its center. Since the radial distance r from the
origin to points on the spherical surface is a constant, this surface is defined
by ¥ = constant. The spherical coordinate » should not be confused with the
cylindrical coordinate r. When these two coordinates appear in the same
expression, we shall use the subscripts ¢ and s to distinguish between cylin-
drical and spherical. The cone has its vertex at the origin and its surface is
symmetrical about the z axis. Since the angle § is the angle that the conical
surface makes with the z axis, this surface is defined by @ = constant. Thus
the three orthogonal surfaces defining the spherical coordinates of a point
are r = constant, # = constant, and ¢ = constant. Only one of these
coordinates (r) is distance; the other two coordinates (f and ¢) are angles.
We note that the entire space is spanned by varying » from 0 to co, # from 0 to
7, and ¢ from O to 2z.

The origin is given by r = 0, 8 = 0, and ¢ = 0. Any other point in space
is given by the intersection of three mutually orthogonal surfaces obtained by
incrementing the coordinates by appropriate amounts. For example, the
intersection of the three surfaces r = 3, 8 = #/6, and ¢ = n/3 defines the
point A(3, ©/6, n/3) as shown in Fig. A.2(a). These three orthogonal surfaces
define three curves that are mutually perpendicular. One of these is a straight
line and the other two are circles. We draw unit vectors i,, i5, and i, tangential
to these curves at point 4 and directed toward increasing values of r, 8, and ¢,
respectively. These three unit vectors form a set of mutually orthogonal unit
vectors in terms of which vectors drawn at 4 can be described. In a similar
manner, we can draw unit vectors at any other point in the spherical coordi-
nate system, as shown, for example, for point B(1, n/2, 0) in Fig. A.2(a). It
can now be seen that these unit vectors at point B are not parallel to the
corresponding unit vectors at point 4. Thus in the spherical coordinate system
all three unit vectors i,, iy, and i, do not have the same directions everywhere,
that is, they are not uniform. Finally, we note that for the choice of 8 as in
Fig. A.2(a), that is, increasing from the positive z axis toward the xy plane, the
coordinate system is right-handed, that is, i, x i, = i,.

To obtain expressions for the differential lengths, surfaces, and volume in
the spherical coordinate system, we now consider two points P(r, 8, ¢) and
Q(r + dr,0 + df, ¢ + d¢) where Q is obtained by incrementing infinitesi-
mally each coordinate from its value at P, as shown in Fig. A.2(b). The three
orthogonal surfaces intersecting at P and the three orthogonal surfaces
intersecting at Q define a box that can be considered to be rectangular since
dr, df, and d¢ are infinitesimally small. The three differential length elements
forming the contiguous sides of this box are dr i,, r df i,, and r sin 8 d¢ i,. The *
differential length vector dl from P to Q is thus given by

dl = dri, + rdfi, + rsin8 dd i, (A4
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The differential surfaces formed by pairs of the differential length elements
are

+dSiy, = +(dr) (r df) i, = Ldri, x rdl i, (A.5a)
+dSi, = +(rdf) (rsinf dp) i, = &rdfi, x rsinfdg i, (A.5b)
+dSi, = +(rsin § dd) (dr) iy = 4-rsinf do i, x dri, (A.5¢)

Finally, the differential volume dv formed by the three differential lengths is
simply the volume of the box, that is,

dv = (dr) (r d8) (r sin 0 d¢p) = r? sin 8 dr df d¢ (A.6)

In the study of electromagnetics it is sometimes useful to be able to
convert the coordinates of a point and vectors drawn at a point from one
coordinate system to another, particularly from the Cartesian system to the
cylindrical system and vice versa, and from the Cartesian system to the spher-
ical system and vice versa. To derive first the relationships for the conver-
sion of the coordinates, let us consider Fig. A.3(a) which illustrates the
geometry pertinent to the coordinates of a point P in the three different
coordinate systems. Thus from simple geometrical considerations, we have

x=r,cos¢ y =r,sin¢g z=1z AN

X — r,sin @ cos ¢ ¥ — r,sin @ sin ¢ z—=r,cos8 (A.8)
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Figure A.3. (a) For conversion of coordinates of a point from one coordi-
nate system to another. (b) and (c) For expressing unit vectors in cylindrical
and spherical coordinate systems, respectively, in terms of unit vectors in
the Cartesian coordinate system.
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Conversely, we have

r,=A/x* + )% ¢ = tan~! % A=z (A9)

)

r, = A/x* 4+ y* 4 2* 0:tan‘1—xz—";-]£ ¢:tan‘1% (A.10)

Relationships (A.7) and (A.9) correspond to conversion from cylindrical
coordinates to Cartesian coordinates and vice versa. Relationships (A.8) and
(A.10) correspond to conversion from spherical coordinates to Cartesian
coordinates and vice versa.

Considering next the conversion of vectors from one coordinate system to
another, we note that in order to do this, we need to express each of the unit
vectors of the first coordinate system in terms of its components along the
unit vectors in the second coordinate system. From the definition of the dot
product of two vectors, the component of a unit vector along another unit
vector, that is, the cosine of the angle between the unit vectors, is simply the
dot product of the two unit vectors. Thus considering the sets of unit vectors
in the cylindrical and Cartesian coordinate systems, we have with the aid of
Fig. A.3(b),

IS WS COS¢ i iy = sin ¢ i, i,=20 (A.lla)
e, = —sing gei,=cos$p i+l =0  (A.llb)
iei,—=0 i,ei,=0 iei,=1  (Allc)

Similarly, for the sets of unit vectors in the spherical and Cartesian coordinate
systems, we obtain with the aid of Fig. A.3(c) and Fig. A.3(b),

i, s i, =sinf cos¢ i, i, =sinOsin¢ i, ¢i,=cosf (A.12a)
ip* i, =cosfOcos¢ ig ¢ i, = cos @ sin ¢ ipei,=—sin@ (A.12b)
iysi, = —sing igei,=cos¢ i1, =0 (A.12¢)

We shall now illustrate the use of these relationships by means of an example.

Example A.1. Let us consider the vector 3i, + 4i, + 5i, at the point
(3, 4, 5) and convert the vector to one in spherical coordinates.

First, from the relationships (A.10), we obtain the spherical coordinates of
the point (3, 4, 5) to be

re=aA/32+ 4>+ 52 =5./2
6= tan‘l‘——"gz—'s_42 =tan"!1 = 45°

$ = tan~t 3 = 53.13°



APP. A REevVIEw QUESTIONS 439

Then noting from the relationships (A.12) that at the point under considera-

tion,
i,=sinfcos¢i, + cos@cosdi, —singi,
= 0.3,/21i,, -+ 0.3,/21, — 0.8i,
i,=sinfsin¢i, 4 cos@sin ¢ i, 1 cosd i,
= 0.4,/21,, + 04./2i, + 0.6,
i,=cos01i,, —sin @i, = 0.5./2i,, — 0.5,/ 21,
we obtain

3i, + 4, + 5i, = (0.9/Z + 1.6,/ 7 + 2.5,/ )i,

4+ 0.9/ 7 + 1.6/ 7 — 2.5/ Dip + (—2.4 + 2.8)i, = 5./7i,,

This result is to be expected since the given vector has components equal to
the coordinates of the point at which it is specified. Hence its magnitude is
equal to the distance of the point from the origin, that is, the spherical
coordinate r of the point and its direction is along the line drawn from the
origin to the point, that is, along the unit vector i, at that point. In fact, the
given vector is a particular case of the vector xi, 4 yi, + zi, = r,,, known
as the “position vector,” since it is the same as the vector drawn from the
origin to the point (x, y, z). =

REVIEW QUESTIONS

Al

A2,
A3,

A4,

AS.
A.6.

A
A.8.
A9.

What are the three orthogonal surfaces defining the cylindrical coordinate
system?

What are the limits of variation of the cylindrical coordinates ?

Which of the unit vectors in the cylindrical coordinate system are not uni-
form?

State whether the vector 3i, -+ 4i; + 5i, at the point (1, 0, 2) and the vector
3i, 4 4i; + 5i, at the point (2, 7/2, 3) are equal or not.

What are the differential length vectors in cylindrical coordinates ?

What are the three orthogonal surfaces defining the spherical coordinate
system?

What are the limits of variation of the spherical coordinates ?
Which of the unit vectors in the spherical coordinate system are not uniform?

State if the vector 3i, -4 4i, at the point (1, 7/2, 0) and the vector 3i, -+ 4i,
at the point (2, 0, 7/2) are equal or not.
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A.10.
A1,

Al2,
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What are the differential length vectors in spherical coordinates?

Outline the procedure for converting a vector at a point from one coordinate
system to another.

What is the expression for the position vector in the cylindrical coordinate
system ?

PROBLEMS

A.l.

A.2,

A3.

A4,

AS.

A.6.

A7,

A.8.

Express in terms of Cartesian coordinates the vector drawn from the point
P(2, /3, 1) to the point Q(4, 27/3, 2) in cylindrical coordinates.

Express in terms of Cartesian coordinates the vector drawn from the point
P(1, m/3, m/4) to the point Q(2, 27/3, 3m/4) in spherical coordinates.
Determine if the vector i, + iy + 2i, at the point (1, 7/4, 2) and the vector
A/ 2 i, + 2i, at the point (2, #/2, 3) are equal or not.

Determine if the vector 3i, + 4/ 31s — 2i, at the point (2, 7/3, m/6) and the
vector i, -+ 4/ 3 isg — 24/ 3 iy at the point (1, 7/6, 7/3) are equal or not.
Find the dot and cross products of the unit vector i, at the point (1, 0, 0) and
the unit vector iy at the point (2, #/4, 1) in cylindrical coordinates.

Find the dot and cross products of the unit vector i, at the point (1, n/4, 0)
and the unit vector ig at the point (2, m/2, @/2) in spherical coordinates.

Convert the vector 5i, + 12i, + 6i, at the point (5, 12, 4) to one in cylin-
drical coordinates.

Convert the vector 3i, -- 4i, — 5i, at the point (3, 4, 5) to one in spherical
coordinates.
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1% CURL,
DIVERGENCE,
AND GRADIENT
IN CYLINDRICAL
AND SPHERICAL
COORDINATE
SYSTEMS

In Secs. 3.1, 3.4, and 9.1 we introduced the curl, divergence, and gradient,
respectively, and derived the expressions for them in the Cartesian coordinate
system. In this appendix we shall derive the corresponding expressions in the
cylindrical and spherical coordinate systems. Considering first the cylindrical
coordinate system, we recall from Appendix A that the infinitesimal box
defined by the three orthogonal surfaces intersecting at point P(r, 8, ¢) and
the three orthogonal surfaces intersecting at point Q(r + dr, ¢ -+ dd, z + dz)
is as shown in Fig. B.1.

O(r +dr, ¢ +do,z +dz)

|
dz €
ly\\
VA
A g
. - (2 ~J
P(r,0,2)
dr (r +dr) d¢
f

Figure B.1. Infinitesimal box formed by incrementing the coordinates in
the cylindrical coordinate system.
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From the basic definition of the curl of a vector introduced in Sec. 3.3

and given by
A+ dl
1 i : (B.1)
V x A=Lim [TSL“I"

AS—0

we find the components of V x A as follows with the aid of Fig. B.1:

5;; Aedl
. 1 abcda
¥ x=r= E}lir:} area abcd

dz—
{[Ad]tr or 4o + [A.]., ¢+a¢1 dz }
— Lim [Aﬁ]fr zada)! d¢ [ 2 tr (2] dz

dg—0 rdeodz
dz—0
= Lim (4., g+a0 — [Aidonsy 4+ Lim [glir.y — [Aslir,zvar)
a0 rdg e dz
1 04 dA
= 7%5 -3 (B.2a)

« dl

§adefa
(VxA) = !LI_I,? area adef

{[A e, ﬁ: dz + [Ar]ws sz AF
Lim

= (redr) 42 — [A o, dr
20 dr dz

dr—0
— Lim [Ar](¢,z+dl) '_— [Ar](¢,z) + Lim [Az](r,qS) e [Az](r+dr,¢)
dz-0 dz dr-0 dr
d
— %% (B.2b)

fji A-.dl
afgba
8 D= 11’,1"’8 area afgh

{[Ar%iz,z) dr + Efas](w.ia,z)(r +- dr) d¢}

= — 1Arlg+dgn) A~ L Apltr, 7

s r dr dg

d¢—0

Lim [rdglirars — [rAgles + Lim (4 ), —d%;‘ir]mw.z)
r

dr—0 rdr d¢—+0

19 L 94,
= 34—+ g ®B.2)
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Combining (B.2a), (B.2b) and (B.2c), we obtain the expression for the curl
of a vector in cylindrical coordinates as

1 oA 04 04, 04,
W”r 9z "o

1 l:ar (rd,) — 0¢

VxA=

i L
7 L
S ®3
dr d¢ 9z
A, rdA, A,

To find the expression for the divergence, we make use of the basic defini-
tion of the divergence of a vector, introduced in Sec. 3.6 and given by

A
V.A=Lim Jafheids - (BY

Ay—0

Evaluating the right side of (B.4) for the box of Fig. B.1, we obtain

([A)eq)(r + drydd dz — [A,)r dbdz - [Agsras dr dz]
V. A — Lim \— [ele dr dz + [A].oor dr d — [A, T dr
dr—0 rdrdddz

—0
pLaac

— Lim ["Arlndrd [r4,], 4+ Lim [4, g+do!¢ [l

gD

dr-+0 rdar

_| L]m [A ] I-d':{“ [A:]:

194, 94
(A)+ ¢+0z (B.5)

To obtain the expression for the gradient of a scalar, we recall from
Appendix A that in cylindrical coordinates,

dl=dri, + rddi, + dzi, (B.6)
and hence
(ifo] 0<I)
dd = B dr +0¢ d¢—|— dz
0(1) 100, 0(1)
(6‘r + = 0¢ ¢+0 ) @dri, +rdpi, + dzi,)
(B.7)

=V . dl
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Thus

_ 00, 1dd. , 40,
V(I)——a—rl,—l—TWl‘t—FElz (B.8)

Turning now to the spherical coordinate system, we recall from Appendix
A that the infinitesimal box defined by the three orthogonal surfaces inter-
secting at P(r,0,¢) and the three orthogonal surfaces intersecting at
Q@ + dr, 6 4 dB, ¢ + dp) is as shown in Fig. B.2. From the basic defini-
tion of the curl of a vector given by (B.1), we then find the components of
V x A as follows with the aid of Fig. B.2:

5j5 A-dl
o ] abeda
LRSS {7;1?3 area abcd

d¢—0
{[AH]U, W do - [A¢](r,ﬂ+m!‘ sin (0 -+ d@) d¢}
= Lim 1= {Aﬂﬁfr—wwﬂ' df — [Asli,.0r sin 0 dd

da—0 r¥sin 0 df d¢
d¢—0
— Lim [A4; sin 8],0+00) — [Ay sin O] ir, 6
46—0 rsin
,l_ le [AG](r.d) — [Ae](r.¢+d¢;)
dg—0 r sin 6@ d
1 9 . 1 d4,
=099 0~ 9p (B.92)

(r +dr)sin 8 d¢

//h O(r+dr,0 +db, ¢ +de¢)

c ¥
/ (r+dr)do

rd0\ L gn (0 +d6) d¢
Ve

Figure B.2. Infinitesimal box formed by incrementing the coordinates in
the spherical coordinate system.
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$ A.a
i 1 adefa
(v x A, gl;g? area adef

{[A¢](r or sin 6 dp 4[4, grap ar
_ Lim \=[4desar,0(r + dr) sin 0 dp —
dp—0

dg=0 rsin @ dr do
— Lim Adesran — [4,]6,4

a0 r sin 6 d

[Ar](o, #) dr }

+ Lim [rdev.o — [rAglisiro
dr—0 rdr
1 44, 1 o"
"~ rsinf d¢ 3y 4s)

(B.9b)

ff A dl
— afgha
(V> A)y = %ﬂl area afgb

{[Ar]m,;sn dr 4 [Aolesar,(r + dr) dB
= Lim A= [, ) wsao.0 dr — [Aplir. 007 dO
dr-0 rdrdf

— Lim [rAolirrar, gy — [rAolins)
dr—0 rdr

4 Lim (4]0 dr — [Ar](0+d0,¢) dr

g0 r do
14 1 04,

Combining (B.9a), (B.9b), and (B.9¢), we obtain the expression for the curl
of a vector in spherical coordinates as

1
17 1 94, 1
-+ _[—_sm g W ~ 3 (rA¢):|lg + l:a (r4, ] "
ir i9 &
r2sin@ rsin @ r
=| 4 J J (B.10)
dr 00 d¢
A, rd,  rsin 04,

To find the expression for the divergence, we make use of the basic defini-
tion of the divergence of a vector given by (B.4) and by evaluating its right
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side for the box of Fig. B.2, we obtain

{'I %Ag%o,,mf Sd]_n (g “l_ do)]drdd¢d [A s Sln 0 dr d¢
o A — Tim A [Aalsiasr rd —[AMr r
VAE %ﬂ? r2sin @ dr d0 d¢

(4], sar(r a’r)2 sin @ df dp — [A ],r2 sin 8 df qu}

oy [PPA e — [r*4,], . [y sin 0ls.q0 — [4p sin 01,
o %rlg;l r2 dr + EZLT r sin 8 d6

[glsras — [As)s
- hl_l:{)l rsin 8 qu

1 94,

= 35 3 ) g g (esin 0 + i G

(B.11)

To obtain the expression for the gradient of a scalar, we recall from
Appendix A that in spherical coordinates,

dl=dri, +rdfi,+ rsinfdpi, (B.12)
and hence
0P (i}
a0 =52 dr %2 d0—|—0¢ ¢
0o . 14 1 0
(0r +-L (g"_l_rsn@(;gl; ) (dri, + r df iy -- r sin 0 d i)
—V® . dl (B.13)
Thus
GCI) 10(1) 1 40,
VEDES ar Lt % 9+rsm00¢ : (B3

REVIEW QUESTIONS

B.1. Briefly discuss the basic definition of the curl of a vector.

B.2. Justify the application of the basic definition of the curl of a vector to deter-
mine separately the individual components of the curl.

B.3. How would you generalize the interpretations for the components of the curl
of a vector in terms of the lateral derivatives involving the components of the
vector to hold in cylindrical and spherical coordinate systems ?

B.4. Briefly discuss the basic definition of the divergence of a vector,

B.5. How would you generalize the interpretation for the divergence of a vector in



APP. B PROBLEMS 447

terms of the longitudinal derivatives involving the components of the vector
to hold in cylindrical and spherical coordinate systems ?

B.6. Provide general interpretation for the components of the gradient of a scalar.

PROBLEMS
B.1. Find the curl and the divergence for each of the following veclors in cylin-

drical coordinates: (a) rcos ¢ i, — rsin ¢ iy; (b) —irs (c)

B.2. Find the gradient for each of the following scalar functions in cylindrical
coordinates: (a) % cos ¢; (b) rsin ¢.

B.3. Find the expansion for the Laplacian, that is, the divergence of the gradient,
of a scalar in cylindrical coordinates.

B.4. Find the curl and the divergence for each of the following vectors in spherical

coordinates: (a) r2i, -+ r sin 8 iy; (b) & 19, (c)

B.5. Find the gradient for each of the following scalar functions in spherical coor-

dinates: (a) §1n—0 (b) rcos 0.

B.6. Find the expansion for the Laplacian, that is, the divergence of the gradient,
of a scalar in spherical coordinates.






s UNITS
AND
DIMENSIONS

In 1960 the International System of Units was given official status at the
Eleventh General Conference on weights and measures held in Paris, France.
This system of units is an expanded version of the rationalized meter-
kilogram-second-ampere (MKSA) system of units and is based on six
fundamental or basic units. The six basic units are the units of length, mass,
time, cutrrent, temperature, and luminous intensity.

The international unit of length is the meter. It is exactly 1,650,763.73
times the wavelength in vacuum of the radiation corresponding to the un-
perturbed transition between the levels 2p,, and 5d; of the atom of krypton-86,
the orange-red line. The international unit of mass is the kilogram. It is
the mass of the International Prototype Kilogram which is a particular cylin-
der of platinum-iridium alloy preserved in a vault at Sevres, France, by the
International Bureau of Weights and Measures. The international unit of
time is the second. It is equal to 9,192,631,770 times the period corresponding
to the frequency of the transition between the hyperfine levels F = 4, M = 0
and F = 3, M = 0 of the fundamental state 25,,, of the cesium-133 atom
unperturbed by external fields.

To present the definition for the international unit of current, we first
define the newton, which is the unit of force, derived from the fundamental
units meter, kilogram, and second in the following manner. Since velocity is
rate of change of distance with time, its unit is meter per second. Since accel-
eration is rate of change of velocity with time, its unit is meter per second per
second or meter per second squared. Since force is mass times acceleration,

449
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its unit is kilogram-meter per second squared, also known as the newton.
Thus, the newton is that force which imparts an acceleration of 1 meter per
second squared to a mass of 1 kilogram. The international unit of current,
which is the ampere, can now be defined. It is the constant current which
when maintained in two straight, infinitely long, parallel conductors of neg-
ligible cross section and placed one meter apart in vacuum produces a force
of 2 x 107 newtons per meter length of the conductors.

The international unit of temperature is the Kelvin degree. It is based on
the definition of the thermodynamic scale of temperature by means of the
triple-point of water as a fixed fundamental point to which a temperature of
exactly 273.16 degrees Kelvin is attributed. The international unit of luminous
intensity is the candela. It is defined such that the [uminance of a blackbody
radiator at the freezing temperature of platinum is 60 candelas per square
centimeter.

We have just defined the six basic units of the International System of
Units. Two supplementary units are the radian and the steradian for plane
angle and solid angle, respectively. All other units are derived units. For
example, the unit of charge which is the coulomb is the amount of charge
transported in 1 second by a current of 1 ampere; the unit of energy which is
the joule is the work done when the point of application of a force of 1 new-
ton is displaced a distance of 1 meter in the direction of the force; the unit
of power which is the watt is the power which gives rise to the production of
energy at the rate of 1 joule per second; the unit of electric potential differ-
ence which is the volt is the difference of electric potential between two points
of a conducting wire carrying constant current of 1 ampere when the power
dissipated between these points is equal to I watt; and so on. The units for
the various quantities used in this book are listed in Table C.1, together with
the symbols of the quantities and their dimensions.

Dimensions are a convenient means of checking the possible validity of
a derived equation. The dimension of a given quantity can be expressed as
some combination of a set of fundamental dimensions. These fundamental
dimensions are mass (M), length (L) and time (7). In electromagnetics, it is
the usual practice to consider the charge (Q), instead of the current, as the
additional fundamental dimension. For the quantities listed in Table C.1,
these four dimensions are sufficient. Thus, for example, the dimension of
velocity is length (L) divided by time (T), that is LT~!; the dimension of
acceleration is length (L) divided by time squared (72), that is, LT~?; the
dimension of force is mass (M) times acceleration (LT~?), that is, MLT?;
the dimension of ampere is charge (Q) divided by time (T), that is, QT';
and so on.

To illustrate the application of dimensions for checking the possible

validity of a derived equation, let us consider the equation for the phase »

velocity of an electromagnetic wave in free space, given by
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1

v =
? ;#nfo

We know that the dimension of v, is LT~!. Hence we have to show that the
dimension of 1/./s,€, is also LT-!. To do this, we note from Coulomb’s
law that

0.0,
4nFR?

€y —

Hence, the dimension of €, is Q%/[(MLT-2)(L?)] or M~'L3T?Q* We note
from Ampere’s law of force applied to two infinitesimal current elements
parallel to each other and normal to the line joining them that

P,
T (L dlpU, dly)

Hence the dimension of g, is [(MLT-2)(L*)]/(QT-1L)? or MLQO™%. Now we
obtain the dimension of 1/./lq€, as 1//(M-TL3T?>Q*)(MLQ™*) or LT !,
which is the same as the dimension of »,. It should, however, be noted that
the test for the equality of the dimensions of the two sides of a derived equa-
tion is not a sufficient test to establish the equality of the two sides since any
dimensionless constants associated with the equation may be in error.

It is not always necessary to refer to the table of dimensions for checking
the possible validity of a derived equation. For example, let us assume that
we have derived the expression for the characteristic impedance of a transmis-
sion line, i.e., »/€/C and we wish to verify that ,/£/€ does indeed have the
dimension of impedance. To do this, we write

We now recognize from our knowledge of circuit theory that both wL
and 1/wC, being the reactances of L and C, respectively, have the dimen-
sion of impedance. Hence we conclude that ,/£/€ has the dimension of

~/(mpedance)? or impedance.

TABLE C.1. Symbols, Units, and Dimensions of Various Quantities

Quantity Symbol Unit Dimensions
Admittance Y mho M-1L-2TQ2
Area A square meter L2
Attenuation constant o neper/meter L1
Capacitance C farad M-1L2T2Q2
Capacitance per unit length ] farad/meter M-1L3T2Q2
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TABLE C.1. Continued
Quantity Symbol Unit Dimensions

X meter L
Cartesian coordinates { ¥y meter /i

z meter L
Characteristic admittance Yo mho M-1L-2TQ2
Characteristic impedance Zy ohm ML2T-10-2
Charge Q,q coulomb Q
Conductance G mho M-1L-2TQ2
Conductance per unit length g mho/meter M-1L-3TQ?
Conduction current density Je ampere/square meter L-2T7-1Q
Conductivity o mho/meter M-1L-3TQ2
Current I ampere T-1Q
Cutoff frequency Iz hertz T-1
Cutoff wavelength Ac meter /5

rte meter L
Cylindrical coordinates { [ radian —

z meter L
Differential length element dl meter L
Differential surface element ds square meter L2
Differential volume element av cubic meter L3
Directivity D - —
Displacement flux density D coulomb/square meter L7200
Electric dipole moment p coulomb-meter LQO
Electric field intensity E volt/meter MLT-2Q"1
Electric potential | 4 volt ML2T2Q-1
Electric susceptibility Xe — —
Electron density N (meter)~3 L3
Electronic charge e coulomb o
Energy w joule ML2T-2
Energy density w joule/cubic meter ML-1T-2
Force F newton MLT2
Frequency f hertz T-1
Group velocity vg meter/second LTt
Guide impedance Ne ohm ML2T-1Q"2
Guide wavelength Ag meter L
Impedance Z ohm ML2T-1Q"2
Inductance L henry ML2Q™2
Inductance per unit length £ henry/meter MLQ™2
Intrinsic impedance n ohm ML2T-1Q"2
Length ! meter L
Line charge density PL coulomb/meter L-10
Magnetic dipole moment m ampere-square meter L27r-1Q
Magnetic field intensity H ampere/meter L-1T-1Q
Magnetic flux W weber ML2T-1Q-1
Magnetic flux density B tesla or weber/square MT-10-!

meter

Magnetic susceptibility Am - -
Magnetic vector potential A weber/meter MLT-1Q™!
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TABLE C.1. Continued
Quantity Symbol Unit Dimensions
Magnetization current density I ampere/square meter L-2T-1Q
Magnetization vector M ampere/meter L-1r-19
Mass m kilogram M
Mobility u square meter/volt- M-1TQ
second

Permeability u henry/meter MLQO™?
Permeability of free space Ho henry/meter MLQ™2
Permittivity € farad/meter M-1L=3T2Q2
Permittivity of free space € farad/meter M-1L-3T2Q2
Phase constant B radian/meter Lt
Phase velocity vp meter/second LTt
Plasma frequency N hertz T-1
Polarization current density Jp ampere/square meter L27-1Q
Polarization vector P coulomb/square meter L2Q0
Power P watt ML2T-3
Power density P watt/square meter MT-3
Poynting vector P watt/square meter MT-3
Propagation constant ¥y complex neper/meter L1
Propagation vector B radian/meter L1
Radian frequency " radian/second T-1
Radiation resistance R:ad ohm ML2T-1(Q2
Reactance X ohm ML2T-1Q"2
Reflection coefficient T — —
Refractive index n
Relative permeability Ur — —
Relative permittivity € — —
Reluctance ®R ampere (turn)/weber M-1L2Q2
Resistance R ohm ML2T-1Q-2
Skin depth o meter L

¥, Fy meter L
Spherical coordinates { 8 radian -

¢ radian -
Standing wave ratio SWR — —
Surface charge density ps coulomb/square meter L=2Q
Surface current density Js ampere/meter L-1T-1Q
Susceptance B mho M-1L2TQ2
Time t second T
Transmission coefficient T — —
Unit normal vector i, - —
Velocity v meter/second LT !
Velocity of light in free space ¢ meter/second LT !
Voltage 14 volt ML2T-2Q"1
Volume vV cubic meter L3
Volume charge density p coulomb/cubic meter L-3Q
Volume current density J ampere/square meter L2T-1Q
Wavelength pi meter L

| Work w joule MIL2T-2




