1dPo SPECIAL
TOPICS

In Chap. 1 we learned the basic mathematical tools and physical concepts
of vectors and fields. In Chaps. 2 and 3 we learned the fundamental laws of
electromagnetics, namely, Maxwell’s equations, first in integral form and
then in differential form. Then in Chaps. 4 through 9 we studied the elements
of their engineering applications which comprised the topics of propagation,
transmission, and radiation of electromagnetic waves, and static and quasi-
static fields.

This final chapter is devoted to seven independent topics that are based on
Chaps. 4 through 9, in that order. The first six topics can be studied separately
following the respective chapters, The seventh topic can be studied following
Chaps. 8 and 9. These special topics, although independent of each other,
have the common goal of extending the knowledge gained in the correspond-
ing previous chapter for the purpose of illustrating a related phenomenon, or
application, or technique.
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10.1 WAVE PROPAGATION IN IONIZED MEDIUM

In Chap. 4 we studied uniform plane wave propagation in free space. In
this section we shall extend the discussion to wave propagation in ionized
medium. An example of ionized medium is the earth’s ionosphere which is a
region of the upper atmosphere extending from approximately 50 km to more
than 1000 km above the earth. In this region the constituent gases are ionized,
mostly because of ultraviolet radiation from the sun, thereby resulting in the
production of positive ions and electrons that are free to move under the
influence of the fields of a wave incident upon the medium. The positive ions
are, however, heavy compared to electrons and hence they are relatively
immobile. The electron motion produces a current that influences the wave
propagation.

In fact, in Sec. 1.5 we considered the motion of a cloud of electrons of
uniform density N under the influence of a time-varying electric field

E=E,coswti, (10.1)

and found that the resulting current density is given by
2
J=N¢p singri =N f E dt (10.2)
me m

where e and m are the electronic charge and mass, respectively. This result is
based on the mechanism of continuous acceleration of the electrons by the
force due to the applied electric field. In the case of the ionized medium, the
electron motion is, however, impeded by the collisions of the electrons with
the heavy particles and other electrons. We shall ignore these collisions as
well as the negligible influence of the magnetic field associated with the wave.

Considering uniform plane wave propagation in the z direction in an
unbounded ionized medium, and with the electric field oriented in the x
direction, we then have

dE, 0B, 9H,

I A T (10.32)
OH, dD,  Ne __JE,
G = e = —WIEX dt — € (10.3b)

Differentiating (10.3a) with respect to z and then substituting for dH,/dz
from (10.3b), we obtain the wave equation
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0’E, Ne?
L fE dr — e |

Ne? J*E,
— ﬂome E, + Uo€y e 37 (10.4)

Substituting
E = E, cos (wt — fz) (10.5)

corresponding to the uniform plane wave solution into (10.4) and simplifying,
we get

N 2
ﬁ7‘ = W€y — ﬂome
Ne?
_ a)"/toe'o(l - m_fow—z) (10.6)

Thus the phase constant for propagation in the ionized medium is given by

B = mq/ﬂofo(] e N—""ZZ) (10.7)

ME @

This result indicates that the ionized medium behaves as through the per-

mittivity of free space is modified by the multiplying factor (1 — m]Z e;z).
0

We may therefore write

B = o~/ Uo€ert (10.8)
where
= _ _Ne*
€utt = 60(1 - eowz) (10.9)

is the “cffective permittivity” of the ionized medium. We note that for
@ — 00, €,; — €, and the medium behaves just as free space. This is to be
expected since (10.2) indicates that for @ — oo, J — 0. As w decreases from
oo, €, becomes less and less until for @ equal to ~/ Net[me,, €, becomes
zero. Hence for @ > /NeZJme,, €. is positive, B is real, and the solution
for the electric field remains to be that of a propagating wave. For o <
/' NeZ[me,, €. is negative, f becomes imaginary, and the solution for the
electric field corresponds to no propagation.

Thus waves of frequency f> ./Ne?[4n’me, propagate in the ionized
medium and waves of frequency f < ./Ne/4n?me, do not propagate. The
quantity /Ne2[dnme, is known as the “plasma frequency” and is denoted
by the symbol, f},. Substituting values for ¢, m, and €,, we get

— ./80.6N Hz (10.10)
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where N is in electrons per meter cubed. We can now write €, as

€orr = 60(1 - %) (10.11)

Proceeding further, we obtain the phase velocity for the propagating range of
frequencies, that is, for f'> f,, to be

_ 1 _ 1
P N Ho€st A lo€o(1 — IS

v

- «/1?—6]"}:/? (10.12)

where ¢ = 1/.,/1,€, is the velocity of light in free space. From (10.12), we
observe that v, > ¢ and is a function of the wave frequency. The fact that
v, > ¢ is not a violation of the principle of relativity since the dispersive
nature of the medium resulting from the dependence of v, upon fensures that
information always travels with a velocity less than ¢ (see Sec. 7.4).

To apply what we have learned above concerning propagation in an
ionized medium to the case of the earth’s ionosphere, we first provide a brief
description of the ionosphere. A typical distribution of the ionospheric elec-
tron density versus height above the earth is shown in Fig. 10.1. The electron
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Figure 10.1. A typical distribution of ionospheric electron density versus
height above the earth.
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density exists in the form of several layers known as D, E, and F layers in
which the ionization changes with the hour of the day, the season, the sun-
spot cycle, and the geographic location. The nomenclature behind the desig-
nation of the letters for the layers is due to Appleton in England who in 1925
and at about the same time as Breit and Tuve in the United States demon-
strated experimentally the reflection of radio waves by the ionosphere. In his
early work, Appleton was accustomed to writing E for the electric field of the
wave reflected from the first layer he recognized. Later, when he recognized
a second layer, at a greater height, he wrote F for the field of the wave reflec-
ted from it. Still later he conjectured that there might be a third layer lower
from either of the first two and thus he decided to name the possible lower
layer D, thereby leaving earlier letters of the alphabet for other possible
undiscovered, still lower layers. Electrons were indeed detected later in the D
region.

The D region extends over the altitude range of about 50 km to about
90 km. Since collisions between electrons and heavy particles cannot be
neglected in this region, it is mainly an absorbing region. The E region ex-
tends from about 90 km to about 150 km. Diurnal and seasonal variations of
the E layer electron density are strongly correlated with the zenith angle of
the sun. In the F region the lower of the two strata is designated as the F1
layer and the higher, more intense ionized stratum is designated as the F 2
layer. The F1 ledge is usually located between 160 km and 200 km. Above
this region the F2 layer electron density increases with altitude, reaching a
peak at a height generally lying between 250 km and 400 km. Above this
peak the electron density decreases monotonically with altitude. The F1 ledge
is present only during the day. During the night the F1 and F2 layers are
identified as a single F layer. The F2 layer is the most important from the
point of view of radio communication since it contains the greatest concen-
tration of electrons. Paradoxically, it also exhibits several anomalies.

Wave propagation in the ionosphere is complicated by the presence of the
earth’s magnetic field. If we neglect the earth’s magnetic field, then for a wave
of frequency f incident vertically on the ionosphere from a transmitter on the
ground, it is evident from the propagation condition f > fy that the wave
propagates up to the height at which f = f,, and since it cannot propagate
beyond that height, it gets reflected at that height. Thus waves of frequencies
less than the maximum plasma frequency corresponding to the peak of the
F2 layer cannot penetrate the ionosphere. Hence for communication with
satellites orbiting above the peak of the ionosphere, frequencies greater than
this maximum plasma frequency, also known as the “critical frequency,”
must be employed. While this critical frequency is a function of the time of
day, the season, the sunspot cycle, and the geographic location, it is not
greater than about 15 MHz and can be as low as a few megahertz. For a wave
incident obliquely on the ionosphere, reflection is possible for frequencies
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greater than the critical frequency, up to about three times its value. Hence
for earth-to-satellite communication, frequencies generally exceeding about
40 MHz are employed. Lower frequencies permit long-distance, ground-to-
ground communication via reflections from the ionospheric layers. This mode
of propagation is familiarly known as the “sky wave mode” of propagation.
For very low frequencies of the order of several kilohertz and less, the lower
boundary of the ionosphere and the earth form a waveguide, thereby permit-
ting waveguide mode of propagation.

In Sec. 4.5 we learned that Doppler shift of frequency occurs when the
source or the observer is in motion. Doppler shift can also occur for the case
of fixed source and observer if the medium in which the wave propagates is
changing with time. The ionosphere provides an example of this phenomenon.
For simplicity, let us consider a hypothetical plane slab ionosphere of thick-
ness s and having uniform electron density N. Then for a uniform plane wave
of frequency w propagating normal to the slab, the phase shift undergone by
the wave in the thickness of the slab is given by

z
o=owt — fs=owt — m,‘/,uoeo(l — N—ez)s

cole B 80 6N (10.13)

If the electron density is now varying with time, the rate of change of phase
with time is given by

a'qS = _|_403cos<1 . 80.6N)‘”2 dN (10.14)

f? f? dt

Thus the Doppler shift in the frequency is

o — 403 cos(l B 80.6N>‘1"2d_N
D = 7 77 dt
or
_ 403s(, _ 80.6N\"'2 dN
fo="5 (1 = ) - (10.15)

The Doppler shift introduced by the changing ionosphere can be a source of
error in satellite navigational systems based on the Doppler shift due to the
moving satellite. It is, however, one of the tools for studying the ionosphere.

In this section we learned that in an ionized medium, wave propagation
occurs only for frequencies exceeding the plasma frequency corresponding to
the electron density. Applying this to the case of the earth’s ionosphere, we
found that this imposes a lower limit in frequency for communication with
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satellites. We also extended the discussion of Doppler shift to the case of a
time-varying propagation medium.

REVIEW QUESTIONS

10.1.

10.2.

10.3.
10.4.
10.5.

10.6.

What is an ionized medium ? What influences wave propagation in an ionized
medium ?

Provide physical explanation for the frequency dependence of the effective
permittivity of an ionized medium.

Discuss the condition for propagation in an ionized medium.
What is plasma frequency ? How is it related to the electron density ?

Provide a brief description of the earth’s ionosphere and discuss how it
affects communication.

Discuss the phenomenon of Doppler shift due to a time-varying medium.

PROBLEMS

10.1.

10.2.

10.3.

10.4.

Assume the ionosphere to be represented by a parabolic distribution of elec-
tron density as given by

1014 h — 300\2
N = m[l . (W) ] el/m®  for 200 < h < 400

where % is the height above the ground in kilometers. (a) Find the height at
which a vertically incident wave of frequency 8 MHz is reflected. (b) Find
the frequency of a vertically incident wave which gets reflected at a height of
220 km. (c) What is the lowest frequency below which communication is not
possible across the peak of the layer?

For a uniform plane wave of frequency 10 MHz propagating normal to a
slab of ionized medium of thickness 50 km and uniform plasma frequency
8 MHz, find (a) the phase velocity in the slab, (b) the wavelength in the slab,
and (c) the number of wavelengths undergone by the wave in the slab.

For a uniform plane wave propagating normal to a hypothetical slab iono-
sphere of thickness 100 km and uniform electron density (10'4/80.6) el/m3,
changing with time at the rate of 108 el/m3/s, find the Doppler shift in fre-
quency for (a) f = 10.1 MHz and (b) f = 40 MHz.

If you have studied Sec. 7.4, you should be able to show that the group veloc-
ity for propagation in the ionized medium is given by

B
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Show that for a hypothetical slab ionosphere of thickness s and uniform
plasma frequency fy, a narrow-band modulated signal of carrier frequency
> fy propagating normal to the slab undergoes a time delay in excess of
that of the free space value by the amount f3s/2¢f2.

10.2 WAVE PROPAGATION IN ANISOTROPIC
MEDIUM

In Sec. 5.2 we learned that for certain dielectric materials known as
“anisotropic dielectric materials,” D is not in general parallel to E and the
relationship between D and E is expressed by means of a permittivity tensor
consisting of a 3 x 3 matrix. Similarly, in Sec. 5.3 we learned of the an-
isotropic property of certain magnetic materials. There are several important
applications based on wave propagation in anisotropic materials. A general
treatment is, however, very complicated. Hence we shall consider two simple
cases.

For the first example, we consider an anisotropic dielectric medium
characterized by the D to E relationship given by

D, €. O 0 E,
0 E, (10.16)
0 0 €, E,

y

D

z

and having the permeability u,. This simple form of permittivity tensor can
be achieved in certain anisotropic liquids and crystals by an appropriate
choice of the coordinate system. It is easy to see that the characteristic polar-
izations for this case are all linear directed along the coordinate axes and
having the effective permittivities ¢,,, €,,, and ¢,, for the x-, y-, and z-directed
polarizations, respectively. Let us consider a uniform plane wave propagating
in the z direction. The wave will generally contain both x and y components
of the fields. It can be decomposed into two waves, one having an x-directed
electric field and the other having a y-directed electric field. These component
waves travel individually in the anisotropic medium as though it is isotropic
but with different phase velocities since the effective permittivities are differ-
ent. In view of this, the phase relationship between the two waves, and hence
the polarization of the composite wave, changes with distance along the direc-
tion of propagation.

To illustrate the foregoing discussion quantitatively, let us consider the
electric field of the wave to be linearly polarized at z = 0 as given by

E(0) = (E.oi, + E,i,) cos ot (10.17)

Then assuming (+) wave only, the electric field at an arbitrary value of z is



SEC. 10.2 WAVE PROPAGATION IN ANISOTROPIC MEDIUM 387

given by
E(z) = E,, cos (ot — B,2) i, + E,, cos (wt — f,2) 1, (10.18)
where
B = o/ p€,, (10.19a)
B = o/ u€,, (10.190)

are the phase constants corresponding to the x-polarized and y-polarized
component waves, respectively. Thus the phase difference between the x and
y components of the field is given by

Ap = (B, — Bz

As the composite wave progresses along the z direction, A¢ changes from
zero at z = 0 to n/2 at z = n/2(B, — B,) tow at z = z/(f, — f,), and so on.
The polarization of the composite wave thus changes from linear at z = 0 to
elliptical for z > 0, becoming linear again at z = z/(§, — f,), but rotated by
an angle of 2 tan~! (E,o/E,,), as shown in Fig. 10.2. Thereafter, it becomes
elliptical again, returning back to the original linear polarization at z =
2n/(B, — B,), and so on.

(10.20)

. = s lfia
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Figure 10.2. The change in polarization of the field of a wave propagating
in the anisotropic dielectric medium characterized by Eq. (10.16).

For the second example, we consider propagation in a ferrite medium.
Ferrites are a class of magnetic materials which when subject to a d.c. mag-
netizing field exhibit anisotropic magnetic properties. Since there are phase
differences associated with the relationships between the components of B
and the components of H due to this anisotropy, it is convenient to use the
phasor notation and write the relationship in terms of the phasor components.
For an applied d.c. magnetic field along the direction of propagation of the
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wave, which we assume to be the z direction, this relationship is given by

5«: M _jx 0 Hx
B,|=|jx wu 0] 4, (10.21)

_‘Bx_ _0 0 ﬂﬂ_ _H:

where u and x depend upon the material, the strength of the d.c. magnetic
field, and the wave frequency.
To find the characteristic polarizations, we first note from (10.21) that

B, = pH, — jxH, (10.22a)
B,=jkH, + uH, (10.22b)

Setting B,/B, equal to H,/H,, we then have
pH, — jkH, H,
jkH, + uH, H,
which upon solution for H,/H, gives

A .
1, 10.23
7 102

This result corresponds to equal amplitudes of A, and H, and phase differ-
ence of +90°. Thus the characteristic polarizations are both circular, rotating
in opposite senses as viewed along the z direction.

The effective permeabilities of the ferrite medium corresponding to the
characteristic polarizations are

_E_x — luﬁx _ JICI?J'
H, H,
= U —jlc&
H, .
—uFk forﬁ = 4j (10.24)

¥y

The phase constants associated with the propagation of the characteristic
waves are

B: = /e(uF k) (10.25)

where the subscripts + and — referto H,/H, = -+j and H,/H, = —j, respec-
tively. We note from (10.25) that #, can become imaginary if (4 — x) < 0.
When this happens, wave propagation does not occur for that characteristic



SEC. 10.2 WAVE PROPAGATION IN ANISOTROPIC MEDIUM 389

polarization. We shall hereafter assume that the wave frequency is such that
both characteristic waves propagate.

Let us now consider the magnetic field of the wave to be linearly polarized
in the x direction at z = 0, that is,

H(0) = H, cos wt i, (10.26)

Then we can express (10.26) as the superposition of two circularly polarized
fields having opposite senses of rotation in the xy plane in the manner

H) = ( 5 CO8 ot i, + % sin ot iy)

H, 2 s a9 )
+ ( 5 Cos ot i, 5 sin wti, (10.27)
The circularly polarized field inside the first pair of parentheses on the right
side of (10.27) corresponds to

Ho2 _
—JjH,/[2

H .
e +

T J

whereas that inside the second pair of parentheses corresponds to

H _H2 _
g, JH2

Assuming propagation in the positive z direction, the field at an arbitrary
value of z is then given by

H(z) = [Ho cos (@t — f.2)1, + T2 sin (@ — B2, |

[ He cos (@t — p2) 1. — li sin (@r — B2)1, |
LS B XY
B (o — Bt By B )]
[Hocos (o — By Bes 1 B B,
g (o B By B o))
_ l:Ho - <%z) i, - H,sin (ﬂ%ﬁ*z) iy]
- cos (cot - ﬁ;;—/&z) (10.28)
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The result given by (10.28) indicates that the x and y components of the
field are in phase at any given value of z. Hence the field is linearly polarized
for all values of z. The direction of polarization is, however, a function of z
since

&_Ho sin [(ﬂ——ﬁ+)/2]z_t B-— 8. 2
H.~ Hyoslf.—pom:="""2 - (0B

and hence the angle made by the field vector with the x axis is '[i‘;—ﬂ*z.

Thus the direction of polarization rotates linearly with z at a rate of '3‘;2'3*

This phenomenon is known as “Faraday rotation” and is illustrated with the
aid of the sketches in Fig. 10.3. The sketches in any given column correspond
to a fixed value of z whereas the sketches in a given row correspond to a
fixed value of ¢. At z = 0, the field is linearly polarized in the x direction and
is the superposition of two counter-rotating circularly polarized fields as
shown by the time series of sketches in the first column. If the medium is
isotropic, the two counter-rotating circularly polarized fields undergo the
same amount of phase lag with z and the field remains linearly polarized in
the x direction as shown by the dashed lines in the second and third columns.
For the case of the anisotropic medium, the two circularly polarized fields
undergo different amounts of phase lag with z. Hence their superposition
results in a linear polarization making an angle with the x direction and in-
creasing linearly with z as shown by the solid lines in the second and third
columns.

The phenomenon of Faraday rotation in a ferrite medium that we have
just discussed forms the basis for a number of devices in the microwave field.
The phenomenon itself is not restricted to ferrites. For example, an ionized
medium immersed in a d.c. magnetic field possesses anisotropic properties
which give rise to Faraday rotation of a linearly polarized wave propagating
along the d.c. magnetic field. A natural example of this is propagation along
the earth’s magnetic field in the ionosphere. A simple modern example of the
application of Faraday rotation is, however, illustrated by the magneto-
optical switch. In fact, Faraday rotation was originally discovered in the
optics regime.

The magneto-optical switch is a device for modulating a laser beam by
switching on and off an electric current. The electric current generates a mag-
netic field that rotates the magnetization vector in a magnetic iron-garnet
film on a substrate of garnet, in the plane of the film through which a light
wave passes. When it enters the film, the light wave field is linearly polarized
normal to the plane of the film. If the current in the electric circuit is off, the
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Figure 10.3. For illustrating the phenomenon of Faraday rotation,
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magnetization vector is normal to the direction of propagation of the wave
and the wave emerges out of the film without change of polarization, as
shown in Fig. 10.4(a). If the current in the electric circuit is on, the magnetiza-
tion vector is parallel to the direction of propagation of the wave, the light
wave undergoes Faraday rotation and emerges out of the film with its polar-
ization rotated by 90°, as shown in Fig. 10.4(b). After it emerges out of the
film, the light beam is passed through a polarizer which has the property of
absorbing light of the original polarization but passing through the light of

o

Polarization

Magnetization Light
Vector Beam
(a) Film
Polarization
Light Beam
M@
(b) Vector

Figure 10.4. For illustrating the principle of operation of a magneto-
optical switch.

the 90°-rotated polarization, Thus the beam is made to turn on and off by the
switching on and off of the current in the electric circuit. In this manner, any
coded message can be made to be carried by the light beam.

In this section we discussed wave propagation in an anisotropic medium,
In particular, we learned that in a ferrite medium, a linearly polarized wave
propagating along the direction of an applied d.c. magnetic field undergoes
Faraday rotation. We then briefly mentioned other examples of media in
which Faraday rotation takes place and finally discussed the operation of the
magneto-optical switch, a device employing Faraday rotation for modulating
a light beam.
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REVIEW QUESTIONS

10.7.

10.8.

10.9.

10.10.

10.11.

Discuss the principle behind wave propagation in an anisotropic medium
based on the decomposition of the wave into characteristic waves.

When does a wave propagate in an anisotropic medium without change in
polarization?

What is Faraday rotation? When does Faraday rotation take place in an
anisotropic medium ?

Consult appropriate reference books and list three applications of Faraday
rotation.

What is a magneto-optical switch ? Discuss its operation.

PROBLEMS

10.5.

10.6.

10.7.

10.8.

For the anisotropic medium characterized by the D to E relationship given
by Eq. (10.16), assume €,, = 4€,, €,, = %€, and €., = 2€,, and find the
distance in which the phase difference between the x and y components of a
plane wave of frequency 10° Hz propagating in the z direction changes by
the amount 7.

Show that for plane wave propagation in an anisotropic medium, the angle
between E and H is not in general equal to 90°. For the anisotropic dielectric
medium of Problem 10.5, find the angle between E and H for E linearly
polarized along the bisector of the angle between the x and y axes.

For a wave of frequency @, the quantities # and x in the permeability matrix
of Eq. (10.21) are given by

[OJN4)
b= a1+ ]

W pr
K= oot — @

where @y = Lo e|Ho/m, @y = phole|Mo/m, Hy is the d.c. magnetizing field,
M, is the magnetic dipole moment per unit volume in the material in the
absence of the wave, e is the charge of an electron, and m is the mass of
an electron. (a) Show that the effective permeabilities corresponding to
a—):o—:j':v[—w for Hx/Hy = :I:j
(b) Compute the Faraday rotation angle in degrees per centimeter along the
z direction for @ = 10! rad/s, if w, = 5 x 1010 rad/s, @, = 1.5 x 10'°
rad/s, and € = 9€,.

the characteristic polarizations are o [1 +

For the quantities defined in Problem 10.7 for the ferrite medium, show that



394 CH. 10 SpeciaL Topics

for o < @ and w,, < @, the Faraday rotation per unit distance along the
z direction is C%N/W Compute its value in degrees per centimeter if

Wy = 5 X 101° rad/s and € = 9¢€,.

10.3 THE SMITH CHART

In Sec. 6.6 we studied reflection and transmission at the junction of two
transmission lines. We found that when a line of certain characteristic imped-
ance is terminated by another line of different characteristic impedance, as
shown in Fig. 10.5, standing waves result on the first line. The degree of exist-
ence of the standing waves was defined by the standing wave ratio (SWR)
which is the ratio of the voltage maximum to the voltage minimum of the
standing wave pattern. In this section we shall proceed further and introduce
the Smith Chart, which is a useful graphical aid in the solution of transmis-
sion-line and many other problems.

T T

Line 1 Line 2

|

|

I
201*61 | Zoz’ﬁz

|

|

1

z=0 P

Figure 10.5. A transmission line terminated by another infinitely long
transmission line.

First we define the line impedance Z(z) at a given value of z on the line as
the ratio of the complex line voltage to the complex line current at that value
of z, that is,

5(2) — V@)
Z(2) o (10.30)

From the solutions for the line voltage and line current on line 2 given by
(6.71a) and (6.71b), respectively, the line impedance in line 2 is given by

5 (1) = V(@) _
Z,(2) I_Z(z) Zy,

Thus the line impedance at all points on line 2 is simply equal to the charac-
teristic impedance of that line. This is because the line is infinitely long and
hence there is only a (+) wave on the line. From the solutions for the line
voltage and line current in line 1 given by (6.70a) and (6.70b), respectively,
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the line impedance for that line is given by

. % 7+ o—ifiz [/ — piBiz
Z(2) = Vi(2) . Zmlfle 4 Viel?

I,(2) Vie ihs — Vieif:
14 Tz)
=Zy—=2 10.31
o (1031)
where

. o f/-l—efﬁll - 120
I'y(z) = _—ije“”’" = I'(0)e’?# (10.32)
.0 = Vi _Zo—Zy (10.33)

Vi  Zyy + Zoy

The quantity I',(0) is the voltage reflection coefficient at the junction z =0
and T',(z) is the voltage reflection coefficient at any value of z.

To compute the line impedance at a particular value of z, we first compute
T,(0) from a knowledge of Z,, which is the terminating impedance to line 1.
We then compute I'(z) = I'(0)e/2#* which is a complex number having
the same magnitude as that of T',(0) but a phase angle equal to 2f,z plus the
phase angle of T',(0). The computed value of T',(z) is then substituted in
(10.31) to find Z,(z). All of this complex algebra is eliminated through the use
of the Smith Chart.

The Smith Chart is a mapping of the values of normalized line impedance
onto the reflection coefficient (I',) plane. The normalized line impedance
Z (2) is the ratio of the line impedance to the characteristic impedance of the
line. From (10.31), and omitting the subscript 1 for the sake of generality, we
have

7 - Z_(Z) 14 I_V(Z)
Z(N=2\%) __ 21 -] 10.34
A7) Z, 1 —TW2) . )
Conversely,
T —_— —}l(z) 1
r = Z——_ 10.35
(@) Z(z)+1 ( )

Writing Z, = r + jx and substituting into (10.35), we find that

r+jx—1:,\/(r—l)z—|—x2<1 fOI‘I"ZO

= -
|V| I'—|—_]x-|—1 ,\/(r+1)2—i—x2—

Thus, we note that all passive values of normalized line impedances, that is,
points in the right half of the complex Z, plane shown in Fig. 10.6(a) are
mapped onto the region within the circle of radius unity in the complex I,
plane shown in Fig. 10.6(b).
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Figure 10.6. For illustrating the development of the Smith Chart.

We can now assign values for Z,, compute the corresponding values of
T, and plot them on the T', plane but indicating the values of Z, instead of
the values of T, To do this in a systematic manner, we consider contours in
the Z, plane corresponding to constant values of 7, as shown for example
by the line marked a for r = 1, and corresponding to constant values of x,
as shown for example by the line marked b for x =  in Fig. 10.6(a).

By considering several points along line g, computing the corresponding
values of T',, plotting them on the I, plane, and joining them, we obtain the
contour marked a’ in Fig. 10.6(b). Although it can be shown analytically that
this contour is a circle of radius 4 and centered at (1/2, 0), it is a simple task to
write a computer program to perform this operation, including the plotting.
Similarly, by considering several points along line b and following the same
procedure, we obtain the contour marked &’ in Fig. 10.6(b). Again, it can be
shown analytically that this contour is a portion of a circle of radius 2 and
centered at (1, 2). We can now identify the points on contour a’ as corre-
sponding to r = 1 by placing the number 1 beside it and the points on con-
tour b’ as corresponding to x = } by placing the number 0.5 beside it. The
point of intersection of contours a’ and b’ then corresponds to Z, = 1 + j0.5.

‘When the procedure discussed above is applied to many lines of constant
r and constant x covering the entire right half of the Z, plane, we obtain the
Smith Chart. In a commercially available form shown in Fig. 10.7, the Smith
Chart contains contours of constant » and constant x at appropriate incre-
ments of r and x in the range 0 <r < co and —oo < x < oo so that .
interpolation between the contours can be carried out to a good degree of
accuracy.

Let us now consider the transmission line system shown in Fig. 10.8, ..



Figure 10.7. A commercially available form of the Smith Chart (copy-
righted by and reproduced with the permission of Kay Elemetrics Corp.,
Pine Brook, N.I.).

Linel Line 1 Line 2
z iB z

Figure 10.8. A transmission-line system for illustrating the computation
of several quantities by using the Smith Chart,

397
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which is the same as that in Fig. 10.5 except that a reactive element having
susceptance (reciprocal of reactance) B is connected in parallel with line | at
a distance / from the junction. Let us assume Z;, = 150 ohms, Z,, = 50
ohms, B = —0.003 mho, and /= 0.3754,, where 4, is the wavelength in
line 1 corresponding to the source frequency, and find the following quanti-
ties by using the Smith Chart, as shown in Fig. 10.9:

1. Z,, line impedance just to the right of jB: First we note that since line
2 is infinitely long, the load for line 1 is simply 50 ohms. Normalizing
this with respect to the characteristic impedance of line 1, we obtain
the normalized load impedance for line 1 to be

_ 50 _ 1

Z,0)= 150 3

Locating this on the Smith Chart at point 4 in Fig. 10.9 amounts to
computing the reflection coefficient at the junction, that is, I",(0). Now
the reflection coefficient at z = —/ = —0.3754,, being equal to
T, (0)e~72#4 = T"(0)e~"5*, can be located on the Smith Chart by
moving A4 such that the magnitude remains constant but the phase
angle decreases by 1.5z. This is equivalent to moving it on a circle with

08 0.125)

0.25A

—0.8 3752

Figure 10.9. For illustrating the use of the Smith Chart in the computa-
tion of several quantities for the transmission-line system of Fig. 10.8.
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its center at the center of the Smith Chart and in the clockwise direc-
tion by 1.5z or 270° so that point B is reached. Actually, it is not neces-
sary to compute this angle since the Smith Chart contains a distance
scale in terms of A along its periphery for movement from load toward
generator and vice versa, based on a complete revolution for one-half
wavelength. The normalized impedance at point B can now be read off
the chart and multiplied by the characteristic impedance of the line to
obtain the required impedance value. Thus

Z, = (0.6 — j0.8)150 = (90 — j120) ohms.

2. SWR on line 1 to the right of jB: From (6.81)

_ 140y 14Tyl
SWR = vi_ v 10.36
1 —Ty| 1—|T, e (10.36)

Comparing the right side of (10.36) with the expression for Z, given by
(10.34), we note that it is simply equal to Z, corresponding to phase
angle of I', equal to zero. Thus, to find the SWR, we locate the point
on the Smith Chart having the same | T, | as that for z = 0, but having
a phase angle equal to zero, that is, the point C in Fig. 10.9, and then
read off the normalized resistance value at that point. Here, it is equal
to 3 and hence the required SWR is equal to 3. In fact, the circle passing
through C and having its center at the center of the Smith Chart is
known as the “constant SWR (= 3) circle” since for any normalized
load impedance to line 1 lying on that circle, the SWR is the same (and
equal to 3).

3. Y, line admittance just to the right of jB: To find this, we note that
the normalized line admittance ¥, at any value of z, that is, the line
admittance normalized with respect to the line characteristic admit-
tance Y, (reciprocal of Z,) is given by

Yo _ Z, _ _1
Yo  Z() Z(2)
A= (2 14+ TDy(2)etr
14+T,z) 1 —Ty2esr

_ L4 Te2¥4 _ 14 Tz £ 4/4)

T 1 =Ty (@)etrvt 1 — Tz + A4

—Z (z + %) (10.37)

Y(2) =

Thus ¥, at a given value of z is equal to Z, at a value of z located 1/4
from it. On the Smith Chart this corresponds to the point on the con-
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stant SWR circle passing through B and diametrically opposite to it,
that is, the point D. Thus,

Y,, = 0.6 + ;0.8
and

— = 1 :
Yy = Yo, ¥, = 155(0.6 +0.8)
= (0.004 + j0.0053) mho

In fact, the Smith Chart can be used as an admittance chart instead of
as an impedance chart, that is, by knowing the line admittance at one
point on the line, the line admittance at another point on the line can
be found by proceeding in the same manner as for impedances. As an
example, to find ¥, we can first find the normalized line admittance at
z = 0 by locating the point C diametrically opposite to point 4 on the
constant SWR cirlce. Then we find ¥,, by simply going on the con-
stant SWR circle by the distance / (= 0.3754,) toward the generator.
This leads to point D, thereby giving us the same result for ¥, as found
above.

4. SWR on line 1 to the left of jB: To find this, we first locate the nor-
malized line admittance just to the left of jB, which then determines the
constant SWR circle corresponding to the portion of line 1 to the left
of jB. Thus, noting that ¥, = ¥, + jB, or ¥,, = ¥,, + jB/Y,,, and
hence

Re[Y,,] = Re[7,,] (10.382)
Im{¥,,] = Im[7,,] + 2 (10.38b)

we start at point D and go along the constant real part (conductance)
circle to reach point E for which the imaginary part differs from the
imaginary part at D by the amount B/Y,,, that is, —0.003 /1—§0’ or
—0.45. We then draw the constant SWR circle passing through E and
then read off the required SWR value at point F. This value is equal to

1.94.

The steps outlined above in part 4 can be applied in reverse to determine
the location and the value of the susceptance required to achieve an SWR of
unity to the left of it, that is, a condition of no standing waves. This procedure
is known as transmission-line “matching.” It is important from the point of
view of eliminating or minimizing certain undesirable effects of standing
waves in electromagnetic energy transmission.

To illustrate the solution to the matching problem, we first recognize that
an SWR of unity is represented by the center point of the Smith Chart. Hence _
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matching is achieved if ¥, falls at the center of the Smith Chart. Now since
the difference between ¥, and ¥,, is only in the imaginary part as indicated
by (10.38a) and (10.38b), ¥,, must lie on the constant conductance circle
passing through the center of the Smith Chart (this circle is known as the
“unit conductance circle” since it corresponds to normalized real part equal
to unity). ¥,, must also lie on the constant SWR circle corresponding to the
portion of the line to the right of jB. Hence it is given by the point(s) of inter-
section of this constant SWR circle and the unit conductance circle. There are
two such points G and H, as shown in Fig. 10.10, in which the points 4 and

0.136A

0.25)

0.304A

Figure 10.10. Solution of transmission-line matching problem by using the
Smith Chart.

C are repeated from Fig. 10.9. There are thus two solutions to the matching
problem. If we choose G to correspond to Y,,,, then since the distance from C
to G is (0.333 — 0.250)4,, or 0.0834,, jB must be located at z = —0.0834,.
To find the value of jB, we note that the normalized susceptance value cor-
responding to G is —1.16 and hence B/Y,, = 1.16, or jB = j1.16Y,; =
j0.00773 mho. If, however, we choose the point H to correspond to Y,,, then
we find in a similar manner that jB must be located at z = (0.250 4 0.167)4,
or 0.417), and its value must be —;j0.00773 mho.

The reactive element jB used to achieve the matching is commonly
realized by means of a short-circuited section of line, known as a “stub.” This
is based on the fact that the input impedance of a short-circuited line is purely
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Input Load
—»
/B Y=oo

(o3 L

-«——Toward Generator

Figure 10.11. A short-circuited stub,

reactive, as shown in Sec. 6.4. The length of the stub for a required input
susceptance can be found by considering the short circuit as the load, as
shown in Fig. 10.11, and using the Smith Chart. The admittance correspond-
ing to a short circuit is infinity and hence the load admittance normalized
with respect to the characteristic admittance of the stub is also equal to infin-
ity. This is located on the Smith Chart at point I in Fig. 10.10. We then go
along the constant SWR circle passing through I (the outermost circle)
toward the generator (input) until we reach the point corresponding to the
required input susceptance of the stub normalized with respect to the char-
acteristic admittance of the stub. Assuming the characteristic impedance of
the stub to be the same as that of the line, this quantity is here equal to j1.16
or —j1.16, depending on whether point G or point H is chosen for the loca-
tion of the stub. This leads us to point J or point K, and hence the stub
length is (0.25 + 0.136)4,, or 0.3864,, for jB = j1.16, and (0.364 — 0.25)4,,
or 0.1144,, for jB = —j1.16. The arrangement of the stub corresponding to
the solution for which the stub location is at z = —0.0834,, and the stub
length is 0.3864,, is shown in Fig. 10.12.

I-c—[),{)83>\l—>-|

Line 1 [ Line 1 | Line 2
SWR =1 f SWR = 3 I
| I
I Y 31 _?
Stub
0.386X,

Figure 10.12. A solution to the matching problem for the transmission-
line system of Fig. 10.5.
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In this section we introduced the Smith Chart, which is a graphical aid in
the solution of transmission-line problems. After first discussing the basis
behind the construction of the Smith Chart, we illustrated its use by consid-
ering a transmission-line system and computing several quantities of interest.
We concluded the section with the solution of a transmission-line matching
problem.

REVIEW QUESTIONS

10.12. Define line impedance. What is its value for an infinitely long line ?

10.13. What is the basis behind the construction of the Smith Chart? How does the
Smith Chart simplify the solution of transmission-line problems?

10.14. Brieﬁz discuss the mapping of the normalized line impedances from the com-
plex Z, plane onto the Smith Chart.

10.15. Why is a circle with its center at the center of the Smith Chart known as a
constant SWR circle? Where on the circle is the corresponding SWR value
marked ?

10.16. Using the Smith Chart, how do you find the normalized line admittance at a
point on the line given the normalized line impedance at that point?

10.17. Briefly discuss the solution of the transmission-line matching problem.

10.18. How is the length of a short-circuited stub for a required input susceptance
determined by using the Smith Chart?

PROBLEMS

10.9. With the aid of a computer program, compute values of T';- corresponding to
several points along linc 4 in Fig. 10.6(a) and show that the contour a’ in
Fig. 10.6(b) is a circle of radius { and centered at (1/2, 0).

10.10. With the aid of a computer program, compute values of ' corresponding to
several points along line b in Fig. 10.6(a) and show that the contour 4’ in
Fig. 10.6(b) is a portion of a circle of radius 2 and centered at (1, 2).

10.11. For the transmission-line system of Fig. 10.8, and for the values of Z,1, Z¢2,
and [ specified in the text, find the value of B which minimizes the SWR to
the left of jB. What is the minimum value of SWR ?

10.12. In Fig. 10.8 assume Z,; = 300 ohms, Z,, = 75 ohms, B = 0.002 mllo, and
1 = 0.145], and find (a) Z,, (b) SWR on line 1 to the right of /B, (c) Y, and
(d) SWR on line 1 to the left of jB.

10.13. A transmission line of characteristic impedance 50 ohms is terminated by
a load impedance of (73 + j0) ohms. Find the location and the length of a
short-circuited stub of characteristic impedance 50 ohms for achieving a
match between the line and the load.



104 REFLECTI_ON AND REFRACTION OF PLANE
WAVES

In Sec. 7.6 we considered oblique incidence of uniform plane waves upon
an interface between two dielectric media and found the relationships be-
tween the angles of incidence, reflection, and transmission. In this section we
shall consider the problem in more detail and derive the expressions for the
reflection and transmission coefficients at the boundary. To do this, we dis-
tinguish between two cases: (a) the electric field vector of the wave linearly
polarized parallel to the interface and (b) the magnetic field vector of the
wave linearly polarized parallel to the interface. The law of reflection and
Snell’s law derived in Sec. 7.6 hold for both cases since they result from the
fact that the apparent phase velocities of the incident, reflected, and trans-
mitted waves parallel to the boundary must be equal.

The geometry pertinent to the case of the electric field vector parallel to
the interface is shown in Fig. 10.13 in which the interface is assumed to be in
the x = 0 plane, and the subscripts i, r, and ¢ associated with the field sym-
bols denote incident, reflected, and transmitted waves, respectively. The
plane of incidence, that is, the plane containing the normal to the interface
and the propagation vectors, is assumed to be in the xz plane so that the elec-
tric field vectors are entirely in the y direction. The corresponding magnetic
field vectors are then as shown in the figure so as to be consistent with the

Medium 1
€1ty

y z
Medium 2
€95 My X

I
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|
I
|
|
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Figure 10.13. For obtaining the reflection and transmission coefficients
for an obliquely incident uniform plane wave on a dielectric interface with
its electric field perpendicular to the plane of incidence.
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condition that E, H, and p form a right-handed mutually orthogonal set of
vectors. Since the electric field vectors are perpendicular to the plane of in-
cidence, this case is also said to correspond to perpendicular polarization. The
angle of incidence is assumed to be 8,. From the law of reflection (7.69a), the
angle of reflection is then also #,. The angle of transmission, assumed to be
0,, is related to @, by Snell’s law, given by (7.69b).

The boundary conditions to be satisfied at the interface x = 0 are that
(a) the tangential component of the electric field intensity be continuous and
(b) the tangential component of the magnetic field intensity be continuous.
Thus, we have at the interface x = 0

E,+ E, = E, (10.392)
H,+H, —H, (10.39b)

Expressing the quantities in (10.39a) and (10.39b) in terms of the total fields,
we obtain

E, + E, =E, (10.40a)
H,cos@, — H,cos 8, = H,cos 8, (10.40b)

We also know from one of the properties of uniform plane waves that

. T — = 1

Ei E 3 7, ”61 (10.41a)
E _ — Ho 10.41b
H= Hy = € (10.41b)

E — E, — £1.5%0 (10.42)

Solving (10.40a) and (10.42) for E; and E,, we have

__E, 1, cos 02)

E = 5 (1 + T cos 0. (10.432)
__E, 7, cos 02)

E =% (1 — et (10.43b)

We now define the reflection coefficient I', and the transmission coeffi-
cient 7, as

(10.44a)

(10.44b)
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where the subscript | refers to perpendicular polarization. From (10.43a)
and (10.43b), we then obtain

ﬂz COS 01 - ”1 COS 02
y,co8 6, + 7, cos b, (10.452)

— 21, cos 8,
L= /D) COSPl —+ 1, COS 02 (1045b)

Before we discuss the result given by (10.45a) and (10.45b), we shall
derive the corresponding expressions for the case in which the magnetic field
of the wave is parallel to the interface. The geometry pertinent to this case is
shown in Fig. 10.14. Here again the plane of incidence is chosen to be the xz
plane so that the magnetic field vectors are entirely in the y direction. The
corresponding electric field vectors are then as shown in the figure so as to be
consistent with the condition that E, H, and p form a right-handed mutually
orthogonal set of vectors. Since the electric field vectors are parallel to the
plane of incidence, this case is also said to correspond to parallel polarization.

Medium 1
€1a

y z
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Figure 10.14. For obtaining the reflection and transmission coefficients for
an obliquely incident uniform plane wave on a dielectric interface with
its electric field parallel to the plane of incidence.

Once again the boundary conditions to be satisfied at the interface x = 0
are that (a) the tangential component of the electric field intensity be con-
tinous and (b) the tangential component of the magnetic field intensity be
continuous. Thus we have at the interface x = 0,
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E,-+ E, =E, (10.46a)
H,+H, =H, (10.46b)

Expressing the quantities in (10.46a) and (10.46b) in terms of the total fields
and also using (10.41a) and (10.41b), we obtain

g _ peosf,
E —E = Ei g (10.472)
E +E = E,Z—‘ (10.47b)
2

Solving (10.47a) and (10.47b) for E, and E,, we have

. _E (n, | cos 02>
E =3 (112 + o0 (10.482)
_E (1, _ cos 0,
E, 2 (112 cos 01) ({d0x18h)

We now define the reflection coefficient I';; and the transmission coefli-
cient 7| as

_E, Ecosf, _ E,
Ty = E, —Ecos@, E (10.492)
v = Eu _ —Eicos0, _ E cosb, (10.49b)

E;cos @,

where the subscript || refers to parallel polarization. From (10.48a) and
(10.48b), we then obtain

_7yc088, — 1, cos b,
Ty 71, cos 0, + #, cos B, (f0585)

_ 21, cos 6,
T = Y, cos 8, + 7, cos 0, (0500)

We shall now discuss the results given by (10.45a), (10.45b), (10.50a), and
(10.50b) for the reflection and transmission coefficients for the two cases:

1. For 8, = 0, that is, for the case of normal incidence of the uniform
plane wave upon the interface, §, = 0 and

rlzﬂz_’h T _ N — 1

n. + 1 R NET
21, 21,
T, = 5 T =
170, +m A 1)
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Thus the reflection coefficients as well as the transmission coefficients
for the two cases become equal as they should since for normal in-
cidence, there is no difference between the two polarizations except
for rotation by 90° parallel to the interface.

., =1and I, = —1ifcos @, = 0, that is,

~1T—sin%6, =a4f1 — K€, sin?@, =0
ﬂl 2

or

sin 0, = /#4262 (10.51)
M€,y

where we have used Snell’s law given by (7:69b) to express sin 8, in
terms of sin §,. If we assume u, = y, = u, as is usually the case,
(10.51) has real solutions for 8, for €, < €,. Thus, for €, < €, that is,
for transmission from a dielectric medium of higher permittivity into
a dielectric medium of lower permittivity, there is a critical angle of

incidence 8, given by
0, —sin~1 4/ &2 (10.52)
€

for which 8, is equal to 90°, and |T", | = [I"};| = 1. For §, > @, sin 8,
becomes greater than 1, cos #, becomes imaginary, and |[I", | = ||
= 1. This is consistent with the phenomenon of “total internal reflec-
tion” for @, > 6,, which we discussed in Sec. 7.6.

. T, =0for#,cosd, =mn,cosd,, thatis

f2a/1 —sin? 0, = 4/ 1 Zlfl sin2 8,

or

n—ni _ g M — ui(€,/€1) 10.53
e lme) 2 BE—u (10.53)

Sin2 01 i -

For the usual case of transmission between two dielectric materials,
that is, for u, = u,, and €, % €,, this equation has no real solution
for @, and hence there is no angle of incidence for which the reflection
coefficient is zero for the case of perpendicular polarization.

4, T, = 0 for n, cos 8, = n, cos §,, that is,

Naa) 1 — Z;—z;sinzﬂl = /1 —sin? 6,
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or

m—n o (alp)e — 6
e ey -1 e—d (10.54)

Sin2 01 e

If we assume g, = u,, this equation reduces to

€,
€+ €

Sinz 01 =

which then gives
€4

2 o 12 —
cos2 @, =1 —sin% 0, =
1 1 61_1_62

and
€

tan 8, = r
1

Thus there exists a value of the angle of incidence 8, given by

9, = tan‘14/€—2 (10.55)
€4
for which the reflection coefficient is zero and hence there is complete
transmission for the case of parallel polarization.

5. In view of (3) and (4) above, for an elliptically polarized wave incident
on the interface at the angle 8,, the reflected wave will be linearly
polarized perpendicular to the plane of incidence. For this reason, the
angle @, is known as the “polarizing angle.” It is also known as the
“Brewster angle.” The phenomenon associated with the Brewster
angle has several applications. An example is in gas lasers in which the
discharge tube lying between the mirrors of a Fabry Perot resonator is
sealed by glass windows placed at the Brewster angle, as shown in Fig.
10.15, to minimize reflections tfrom the ends of the tube so that the
laser behavior is governed by the mirrors external to the tube.

/Gas Discharge Tube

Mirror Mirror

Glass Window Glass Window

Figure 10.15. For illustrating the application of the Brewster angle effect
in gas lasers,
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In this section we considered oblique incidence of a uniform plane wave
upon the boundary between two perfect dielectric media and derived the
expressions for the reflection and transmission coefficients for the cases of
perpendicular and parallel polarizations. An examination of these expres-
sions revealed that (a) for incidence from a dielectric medium of higher per-
mittivity onto one of lower permittivity, there is a critical angle of incidence
beyond which total internal reflection occurs, as we learned in Sec. 7.6, and
(b) for the case of parallel polarization, there is an angle of incidence, known
as the Brewster angle, for which the reflection coefficient is zero.

REVIEW QUESTIONS

10.19. What is meant by the plane of incidence ? Distinguish between the two dif-
ferent linear polarizations pertinent to the derivation of the reflection and
transmission coefficients for oblique incidence on a diclectric interface.

10.20. Briefly discuss the determination of the reflection and transmission coeffi-
cients for an obliquely incident wave on a dielectric interface.

10.21. What is the nature of the reflection coefficient for angle of incidence greater
than the critical angle for total internal reflection ?

10.22. What is the Brewester angle ? What is the polarization of the reflected wave
for an elliptically polarized wave incident on a dielectric interface at the
Brewster angle?

10.23. Discuss an application of the Brewster angle effect.

PROBLEMS

10.14. A uniform plane wave having the electric field given by
E = Ei, sin [67 X 10°¢ — 107(x + 4/ 3 2)]

is incident on the interface between free space and a dielectric of permit-
tivity 1.5€, as shown in Fig. 10.16. (a) Obtain the expression for the reflected
wave field. (b) Obtain the expression for the transmitted wave field.

Medium 1
€ Ko

1
l
l
|
!

60°

Medium 2

|
|
| 1.5¢€,, i, x

Figure 10.16. For Problem 10.14.
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10.15. Repeat Problem 10.14 for the uniform plane wave having the electric field
given by
E = E (% i, — Ti.) cos [67 x 10° — 10n(x + /3 2)]

10.16. Repeat Problem 10.14 for the uniform plane wave having the electric field
given by
3

E— E, (%ix - %1) cos [67 x 109 — 107(x + /T 2]

+ Eoi, sin [67 x 10%¢ — 107(x + A/ 3 2)]
Also discuss the polarizations of the incident, reflected, and transmitted
waves.

10.17. For the dielectric boundary in Fig. 10.16, determine the angle of incidence of
an elliptically polarized wave for the reflected wave to be linearly polarized.
In which plane is the reflected wave polarized then?

105 DESIGN OF A FREQUENCY-INDEPENDENT
ANTENNA

In Chap. 8 we studied the directional properties of antennas and antenna
arrays. These properties depend on the electrical dimensions of the antenna,
that is, the dimensions expressed in terms of the wavelength at the operating
frequency. Hence an antenna of fixed physical dimensions exhibits frequency-
dependent characteristics. This very fact suggests that for an antenna to be fre-
quency-independent, its electrical size must remain constant with frequency
and hence its physical size should increase proportionately to the wavelength.
Alternatively, for an antenna of fixed physical dimensions, the active region,
that is, the region responsible for the predominant radiation should vary
with frequency, that is, scale itself in such a manner that its electrical size
remains the same.

A simple illustration of the aforementioned property is provided by the
equiangular spiral antenna shown in Fig. 10.17 and so-termed because
the angle between the radius vector from the origin and the spiral remains the
same for all points on the curve. The equiangular spiral antenna was pro-
posed by Rumsey in 1954 during the early stages of research on frequency-
independent antennas at the University of Illinois. When this antenna is
excited at the origin, the current flows outward with small attenuation along
the spiral until an active region is reached from which essentially all of the
incident energy transmitted along the spiral arms is radiated. Since this active
region is of constant size in wavelengths, it moves toward the origin as the
operating wavelength decreases or the frequency increases. The size of the
effective radiating region thus adjusts automatically with the operating fre-
quency such that the antenna behaves the same at all frequencies except for
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o)
—

Figure 10.17. The equiangular spiral antenna,

——

a rotation of the radiated field about the antenna axis because of the spiraling
of the arms.

Another and more conventional example of a frequency-independent
antenna is the “log-periodic dipole array,” shown in Fig. 10.18. As the name
implies, it employs a number of dipoles. The dipole lengths and the spacings
between consecutive dipoles increase along the array by a constant scale
factor such that

-.N
I
A
A
T
A

=7 (10.56)

~
A

From the principle of scaling, it is evident that for this structure extending
from zero to infinity and energized at the apex, the properties repeat at fre-
quencies given by 1"f, where n takes integer values. When plotted on a loga-
rithmic scale, these frequencies are equally spaced at intervals of log 7. It is
for this reason that the structure is termed “log-periodic.”

The log-periodic dipole array is fed by a transmission line, as shown in
Fig. 10.18, such that a 180°-phase shift is introduced between successive ele-
ments in addition to that corresponding to the spacing between the elements.
The resulting radiation pattern is directed toward the apex, that is toward the
source. Almost all of the radiation takes place from those elements which
are in the vicinity of a half wavelength long. The operating band of fre-
quencies is therefore bounded on the low side by frequencies at which the
largest elements are approximately a half wavelength long and on the high ,
side by frequencies corresponding to the size of the smallest elements. As the
frequency is varied, the radiating or active region moves back and forth along
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Figure 10.18. Log-periodic dipole array.

the array. Since practically all of the input power is radiated by the active
region, the larger elements to the right of it are not excited. Furthermore,
because the radiation is toward the apex, these larger elements are essentially
in a field-free region and hence do not significantly influence the operation.
Although the shorter elements to the left of the active region are in the
antenna beam, they have small influence on the pattern because of their short
lengths, close spacings, and the 180°-phase shift.

We shall now discuss the design of a log-periodic dipole array. We shall
restrict the design to the computation of the lengths and spacings of the ele-
ments for a specified bandwidth of operation and directivity of the radiation
pattern. The design parameters are the scale factor 7 given by (10.56), the
half angle & subtended at the apex, and the ratio ¢ of the element spacing to
twice the length of the next larger element. Since the active region is not of
negligible length along the structure, the array is designed for a larger band-
width than the design specification. This larger bandwidth is known as the

- “bandwidth of the structure,” denoted B,. The ratio of B, to the design band-
width B is termed the “bandwidth of the active region,” B,, and is related to
o and 7.* We shall first present the relevant definitions and formulas, with

*The relationship between B,;, ¢ and 7 and other design curves have been obtained by
R. L. Carrell in a Ph.D. dissertation at the University of Illinois.
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reference to Fig. 10.18:

T = d“lj:‘ = I‘I—’:‘ = scale factor
g = g_; = relative spacing constant

o = half apex angle

L = boom length, that is, the distance between the shortest
and longest element

N = number of elements
B, = bandwidth of the structure

—4ns— pB (10.57)
B,, = bandwidth of the active region
= 1.1 + 7.7(1 — 7)* cot o (10.58)
Since
_ L=l _1—7
tana =-—r= =75
we obtain
1—1
— -1
o = tan o (10.59)
From
v
t =
L= Tl D — Gl ®
we have
[l 1
L= [_4_(1 B.,) cot oc] e (10.60)
From
Amin _ Iv — ov-1
A-max o 11 =
we obtain

log B, = (N — l)log%

_ log B,
N=1+ oz 075 (10.61)
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Let us now consider an example in which it is desired to design a log-
periodic dipole array for which the band of operation is from 12.5 MHz
to 30 MHz and the directivity is 9. In terms of decibels, the directivity is
20log,, 3, or 9.5 db. The design consists of the following steps:

1. Compute the design bandwidth B.

30
B = 55~ 24
2. Find 7 and ¢ to give the desired directivity. There exists an optimum o
for which the directivity is maximum for each value of 7 in the range
0.8 < v < 1.0. Plots of this optimum ¢ and the corresponding 7
versus the directivity are shown in Fig. 10.19. For the desired direc-
tivity of 9.5 db, we have from Fig. 10.19,

7 = 0.893
o = 0.163

1.00

Directivity, db

Figure 10.19. Plots of optimum ¢ and the corresponding 7 versus direc-
tivity for log-periodic dipole arrays.

3. Determine the half apex angle & from (10.59).

1 — 0.893

%0163 2

o, = tan™!

4. Determine the bandwidth of the active region B,, from (10.58).

B, = 1.1 + 7.7(1 — 0.893) cot 9.32° = 1.637
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5. Determine the bandwidth of the structure B, from (10.57).
B, =1.637 x 2.4 =3.929
6. Determine the boom length L from (10.60). Assuming the longest

element to be a half wavelength long at the low frequency end of the
specified band, A,,, = 24 m and,

iy 1 &
i [z(l m) cot 9.32 ]24 —2725m

7. Determine the number of elements N from (10.61).

log 3.929 3

N =1+ 15g (10,893 —

8. Determine the element lengths and spacings:

I, :’13"=274: 121m

I, = It =12 x 0.893 = 10.72 m
I, = Lt = 10.72 X 0.893 = 9.57 m

L =1,
2

d,=dt1=391x0893=349m
dy = d,t = 349 X 0.893 = 3.12m

d, = cotow = 0.64 cot 9.32° = 3.91'm

Values of the element lengths and spacings and the nearest frequen-
cies at which the elements are a half wavelength long are listed in Table
10.1.

In this section we introduced the concept of frequency-independent
antennas based upon the criterion that for the antenna characteristics to be
frequency-independent, the active region must vary with frequency such that
its electrical size remains approximately constant. We discussed in particular
the log-periodic dipole antenna array and illustrated by means of a numerical
example the computation of element lengths and spacings for desired operat-
ing bandwidth and directivity.
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TABLE 10.1. Computed Values of Log-Periodic Dipole
Array Element Parameters

Element Length Spacing Frequency
number (m) (m) (MHz)
1 12.00 .- 12.50
2 10.72 3.91 14.00
3 9.57 3.49 15.67
4 8.55 3.12 17.55
5 7.63 2.78 19.66
6 6.81 2.49 22.01
7 6.09 2.22 24.65
8 5.43 1.98 27.60
9 4.85 1.77 30.91
10 4.33 1.58 34.61
11 3.87 1.41 38.76
12 3.46 1.26 4341
13 3.09 1.13 48.61

REVIEW QUESTIONS

10.24. Discuss the criterion for an antenna of fixed physical size to be frequency-
independent.

10.25. Describe how the equiangular spiral antenna has frequency-independent
characteristics.

10.26. What is a log-periodic dipole array ? Briefly discuss its operation.

10.27. Why is a log-periodic dipole array designed for a larger bandwidth than the
design specification ?

10.28. Outline the steps in the design of a log-periodic dipole array.

PROBLEMS

10.18. Design a log-periodic dipole array for operation over the frequency band
from 54 MHz to 108 MHz (VHF TV channels 2 to 6 and FM band) and a
directivity of 10 db.

10.19. A log-periodic dipole array is to cover the frequency band from 50 MHz to
250 MHz. Find the boom length and the number of elements for directivity
of (a) 9.5 db and (b) 12 db.

10.6 CAPACITANCE OF A PARALLEL-WIRE LINE

In Sec. 9.3 we illustrated the solution of Laplace’s equation for the
parallel-plate case and discussed the applicability of the static field technique
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in the determination of transmission-line parameters. In this section we shall
use the technique to obtain an analytical expression for the capacitance of a
parallel-wire line, consisting of two infinitely long, straight, parallel, cylin-
drical wires.

Let us first consider an infinitely long, straight, line charge of uniform
density p,, C/m situated along the z axis, as shown in Fig. 10.20(a), and
obtain the electric potential due to the line charge. The symmetry of the prob-
lem indicates that the potential is dependent only on the cylindrical coordi-
nate #. Noting then from Appendix B that in cylindrical coordinates,

T, B _ 1 (rav
\% V—V-VV—To—r(rW>

we have from Laplace’s equation

10/ dV\ _
= W(rw> —=0 forr#0 (10.62)
Integrating twice, we obtain the solution for (10.62) to be

V=Alnr+ B (10.63)

where A and B are arbitrary constants. We can arbitrarily set the potential

Z A z A
L
\_'/
b
L&
f _ AN
>y L 2 r2 >y
//"““x / r\
x 7 \ x 1

T

Pro Pro
(a) (b)

Figure 10.20. (a) An infinitely long line charge of uniform density along
the z axis. (b) A pair of parallel, infinitely long line charges of equal and
opposite uniform densities.
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to be zero at a reference value r = r, giving us

O=Alnr,+ B or B= —Alnr,

and

V:Alnr—AlnrozAlan (10.64)

0

To evaluate the arbitrary constant 4 in (10.64), we find that the electric
field intensity due to the line charge is given by
av. A,
— =i

E:_VV: 0rr—_Tlr

The electric field is thus directed radial to the line charge. Let us now con-
sider a cylindrical box of radius r and length / coaxial with the line charge, as
shown in Fig. 10.20(a), and apply Gauss’ law for the electric field in integral
form to the surface of the box. For the cylindrical surface,

fD + ds = — A anrl)

For the top and bottom surfaces, [ D + dS = 0 since the field is parallel to
the surfaces. The charge enclosed by the box is p.,/. Thus we have

_¢4 = — —Pro
P Qarl) = prol or A= e

Substituting this result in (10.64) we obtain the potential field due to the line
charge to be

>

= —Ffrop T _Frgple 10.65
4 27t6nr0 Jne " r ( )

Let us now consider two infinitely long, straight, line charges of equal and
opposite uniform charge densities p;, C/m and — p,, C/m, parallel to the z
axis and passing through x = b and x = —b, respectively, as shown in Fig.
10.20(b). Applying superposition and using (10.65), we write the potential
due to the two line charges as

— Projptor _ Proqyloz
vV e In 7 = One In = (10.66)

where r, and r, are the distances of the point of interest from the line charges
and r,, and r,, are the distances to the reference point at which the potential



420 CH. 10 SpeciaL Torics

is zero. By choosing the reference point to be equidistant from the two line
charges, that is, ro; = r,,, We get

—Prp’
y=£6nin (10.67)

rq

From (10.67), we note that the equipotential surfaces for the potential
field of the line-charge pair are given by

% = constant, say, k (10.68)
1

where k lies between 0 and oc. In terms of Cartesian coordinates, (10.68) can
be written as
() e o A 10.69
G—Brty ~ ()

Rearranging (10.69), we obtain

xt— bRt et 2t 52 =0

or

(v — i) 402 = (b)) (10.70)

Equation (10.70) represents cylinders having their axes along

k? 41
X = bﬁ’ y =0
and radii equal to bkzzi T The corresponding potentials are (p,/2n€) In k.

The cross sections of the equipotential surfaces are shown in Fig. 10.21.

We can now place perfectly conducting cylinders in any two equipotential
surfaces without disturbing the field configuration, as shown, for example, by
the thick circles in Fig. 10.21, thereby obtaining a parallel-wire line. Letting
the distance between their centers be 24 and their radii be a, we have

.2
td = b ] (10.712)

2k

a=bm—

(10.71b)
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Solving (10.71a) and (10.71b) for k and accepting only those solutions lying
between 0 and oo, we obtain

f{ — dtl:.‘ M’gz “n -‘Jz (10.72)

Figure 10.21. Cross sections of equipotential surfaces for the line-charge
pair of Fig. 10.20(a). Thick circles represent cross section of parallel-wire
line,

The potentials of the right (k > 1) and left (k < 1) conductors are then given,
respeciively, by

p,=Lupdts/T - (10.73a)
y.=fupd-—d—a
- 2me a
. "gTL; pd+ fd* — a «/aﬂ"-az (10.73b)

The potential difference between the two conductors is

Vo=V,—V_= % In d+ Jd* — a ng—az (10.74)
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Finally, to find the capacitance, we note that since the electric field lines
begin on the positive charge and end on the negative charge orthogonal to the
equipotentials, the magnitude of the charge on either conductor, which pro-
duces the same field as the line-charge pair, must be the same as the line charge
itself. Thus considering unit length of the line, we obtain the capacitance per
unit length of the parallel-wire line to be

@ P _ e
Vo In[(d+ o/d*— a%)/a]

e
— T (10.75)

In this section we obtained the electric potential field of two parallel, infi-
nitely long, straight, line charges of equal and opposite uniform charge densi-
ties and we showed that the equipotential surfaces are cylinders having their
axes parallel to the line charges. By placing conductors in two equipotential
surfaces, thereby forming a parallel-wire line, we obtained the expression for
the capacitance per unit length of the line.

REVIEW QUESTIONS

10.29. Discuss the applicability of static field techniques in the determination of
transmission-line parameters.

10.30. Briefly discuss the solution for the potential field of the infinitely long,
straight, line charge of uniform density.

10.31. Describe the equipotential surfaces for the potential field of two parallel,
infinitely long, straight, line charges of equal and opposite uniform densities.
What are the shapes of the direction lines of the electric field ?

10.32. Briefly discuss the determination of the capacitance of the parallel-wire line
from the potential field of the line-charge pair.

PROBLEMS

10.20. For the line-charge pair of Fig. 10.21, show that the direction lines of the
electric field are arcs of circles emanating from the positively charged line
and terminating on the negatively charged line.

10.21. For the parallel-wire line, show that for d > a, the capacitance per unit
B E 113 ) .
length of the line is I da) Find the value of d/a for which the exact value

of the capacitance per unit length is 1.1 times the value given by the approxi-
mate expression for d > a.
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10.22. Figure 10.22 shows the cross-sectional view of an arrangement of two infi-
nitely long, parallel, cylindrical conductors of radii a and b and with their
axes separated by distance 4. Show that the capacitance per unit length of
the arrangement is 2z€/cosh™! [(a? + b2 — d?)/2ab].

Figure 10.22. For Problem 10.22.

107 MAGNETIC VECTOR POTENTIAL

In Sec. 9.1 we learned that since
VxE=0

for the static electric field, E can be expressed as the gradient of a scalar
potential in the manner

E=-VV

We then proceeded with ihe discussion of ihe eleciric scalat poteiitial and its
application for the computation of static electric fields. In this section we
shall introduce a similar tool for the magnetic field computation, namely, the
magnetic vector potential. When extended to the time-varying case, the mag-
netic vector potential has useful application in the determination of fields
due to antennas.

To introduce the magnetic vector potential concept, we recall that the
divergence of the magnetic flux density vector, whether static or time-varying,
is equal to zero, that is,

V.B=0 (10.76)

If the divergence of a vector is zero, then that vector can be expressed as the
curl of another vector since the divergence of the curl of a vector is identically
equal to zero, as can be seen by expansion in Cartesian coordinates:
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YA . d .0 d a9 o
V'VXA—(IXEC—I—IJ,W—I—L&—Z—) T% e 0z
A, A, A,

9 9 0

dx dy 0z

—1a 8 8|=0
dx dy d:z
A, A, A

Thus the magnetic field vector B can be expressed as the curl of a vector A,
that is,

B—VxA (10.77)

The vector A is known as the magnetic vector potential in analogy with the
electric scalar potential for V.

If we can now find A due to an infinitesimal current element, we can then
find A for a given current distribution and determine B by using (10.77). Let
us therefore consider an infinitesimal current element of length d1 situated at
the origin and oriented along the z axis as shown in Fig. 10.23. Assuming
first that the current is constant, say, I amperes, we note from (1.68) that the
magnetic field at a point P due to the current element is given by

_ uldlxi,
R (10.78)
ZA

P
I
r I
I
0 |
|
dl .
~ | -y
S

¢ “\ah I

~

X

Figure 10.23. For finding the magnetic vector potential due to an infinitesi-
mal current element,
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where r is the distance from the current element to the point P and i, is the
unit vector directed from the element toward P. Expressing B as

.y _ylLl
B— Arax ( \% r) (10.79)

and using the vector identity

AXVV =VVxA—Vx(VA) (10.80)
we obtain
"] ﬂldl>
B——Alvxdlvx (47” (10.81)

Since dl is a constant, V x dl = 0, and (10.81) reduces to

B—Vx (“4;‘?) (10.82)

Comparing (10.82) with (10.77), we now see that the vector potential due to
the current element situated at the origin is simply given by

_ pldl
A = (10.83)

Thus it has a magnitude inversely proportional to the radial distance from the
clement (similar to the inverse distance dependence of the scalar potential
due to a point charge) and direction parallel to the element.

If the current in the element is now assumed to be time-varying in the
manner

I=1,cos wt

we would intuitively expect that the corresponding magnetic vector potential
would also be time-varying in the same manner but with a time-lag factor
included, as discussed in Sec. 8.1 in connection with the determination of the
clectromagnetic fields due to the time-varying current element (Hertzian
dipole). To verify our intuitive expectation, we note from (8.23b) that the
magnetic field due to the time-varying current element is given by

B — uH — 4l dl sin O cos (wt — fr) B sin (wt — ﬂr):\i
N 4 r? r ¢

_ ulydl {l:cos (0t — Br) B sin (ot — ﬂr)] ir}
r

47 r2

_ Eionl % {_V[cos (cotr— ﬂr)]}
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and proceed in the same manner as for the constant current case to obtain the

vector potential to be

ul, dl
4zr

Comparing (10.84) with (10.83), we find that our intuitive expectation is
indeed correct for the vector potential case unlike the case of the fields in
Sec. 8.1! The result given by (10.84) is familiarly known as the “retarded”
vector potential in view of the phase-lag factor fr contained in it.

To illustrate an example of the application of (10.84), we now consider a
circular loop antenna having circumference small compared to the wave-
length so that it is an electrically small antenna. Under this condition, the
current flowing in the Ioop can be assumed to be uniform around the loop.
Let us assume the loop to be in the xy plane with its center at the origin, as
shown in Fig. 10.24, and the loop current to be I = I, cos et in the ¢ direc-
tion. In view of the circular symmetry around the z axis, we can consider a
point P in the xz plane without loss of generality to find the vector potential.
To do this, we divide the loop into a series of infinitesimal elements. Consid-
ering one such current element dl = a do (—sin & i, + cos & i,), as shown in
Fig. 10.24, and using (10.84) we obtain the vector potential at P due to that
current element to be

A=

cos (ot — fr) (10.84)

dA = Bhada(—sinai.+ cosab) oo — prY  (10.85)

4R
where
R = [(rsin@ — acosa)? + (asin a)? -} (r cos )]/
= [r? 4 a* — 2ar sin @ cos a)]!/2 (10.86)
ZA
P
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|
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1 dl
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X

Figure 10.24. For finding the magnetic vector potential due to a small
circular loop antenna.
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The vector potential at point P due to the entire current loop is then
given by

2r
A— L:O dA
2r .
_ ulya sin o do . i
_ [L:o R cos (axt ﬂR):l I,
N > ulya cos o da cos(wt#ﬂR)'i (10.87)
s 4nR ’ .

The first integral on the right side of (10.87) is, however, zero since the con-
tributions to it due to elements situated symmetrically about the xz plane
cancel. Replacing i, in the second term by i, to generalize the result to an
arbitrary point P(r, 6, ¢), we then obtain

2r
A= [ f HM%MCOS (ot — ,BR)] i, (10.88)
=0

Although the evaluation of the integral in (10.88) is complicated, some
approximations can be made for obtaining the “radiation fields.” For these
fields, we can set the quantity R in the amplitude factor of the integrand equal
to r. For R in the phase factor of the integrand, we write

a* 2a

1/2
R = r[l + = ——sinGcosoz]
¥ 2
=~ r[l — % sin @ cos oc:\ (10.89)

Thus for the radiation fields,
2 yl,a cos o do |
A= |:f b% cos (et — Br + Pasin 6 cos OL)J iy (10.90)
o=0
Now, since 2rna < 4, or fla < 1, we can write

cos (wt — Br + Pasin G cos &)
~ cos (wt — Br) — Pasin @ cos a sin (wt — fr) (10.91)

Substituting (10.91) into (10.90) and evaluating the integral, we obtain

A= — MLﬁgsi_nﬁ sin (@ — fr) i, (10.92)

Having obtained the required magnetic vector potential, we can now
determine the radiation fields. Thus from (10.77),
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H=B _lyxa
7 u

ur ar (rA,,,)le
. Lma*f*sin @ -
= g cos (ot — Br)i, (10.93)
aD JE
FromV x H = 27 = €g;0 Ve have
JE 1 19 ]
W =5 ?V xH= 6—"0—"-("He)l¢
Liwa?B?sin @ . _ .
—T sin (CO[ ﬂr) 1y
I,wa*f? sin 0 . .
Tioer OO (wt — fir)i,
Iyma*fi* sin 6 cos (@r — pr)i (10.94)
4mr # '

Comparing (10.94) and (10.93) with (8.25a) and (8.25b), respectively, we note
that a duality exists between the radiation fields of the small current loop and
those of the infinitesimal current element aligned along the axis of the current
loop.

Proceeding further, we can find the Poynting vector, the instantaneous
radiated power and the time-average radiated power due to the loop antenna
by following steps similar to those employed for the Hertzian dipole in Sec.
8.2. Thus

P =E x H= Eji, X Hiy = —EH,i,

ﬁ4IO7r a*sin?0

. _ .
622 cos? (wt — Br)i,

Paa=|" ["P-rsingdgdgi,
=0 Jg=0

9=0 /¢
= f f nf T a’ sin’ 8 cose (ot — pr) df dg
6=0 Jp=0 g

_ nB*lin*at
6n

Praay = ﬂ‘?—”za—a {cos® (@t — Br)>

=+ 154(7)’]

cos? (wt — Br)
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We now identify the radiation resistance of the small loop antenna to be

_8mq(a)!
Rrad I 3 (l) (10.95)

For free space, # = #, = 120z ohms, and

R,,, = 3207 (%)4 . 207:2(@;)4 (10.96)

Comparing this result with the radiation resistance of the Hertzian dipole
given by (8.30), we note that the radiation resistance of the small loop antenna
is proportional to the fourth power of its electrical size (circumference/wave-
length) whereas that of the Hertzian dipole is proportional to the square of
its electrical size (length/wavelength). The directivity of the small loop anten-
na is, however, the same as that of the Hertzian dipole, that is, 1.5, as given by
(8.33), in view of the proportionality of the Poynting vectors to sin? @ in both
cases.

In this section we introduced the magnetic vector potential as a tool for
computing the magnetic fields due to current distributions. In particular, we
derived the expression for the retarded magnetic vector potential for a
Hertzian dipole and illustrated its application by considering the case of a
small circular loop antenna. We derived the radiation fields for the loop
antenna and compared its characteristics with those of the Hertzian dipole.

REVIEW QUESTIONS

10.33. Why can the magnetic flux density vector be expressed as the curl of another
vector?

10.34. Discuss the analogy between the magnetic vector potential due to an infini-
tesimal current element and the electric scalar potential due to a point
charge.

10.35. What does the word “retarded” in the terminology “retarded magnetic vector
potential” refer to? Explain.

10.36. Discuss the application of the magnetic vector potential in the determination
of the electromagnetic fields due to an antenna.

10.37. Discuss the duality between the radiation fields of a small circular loop
antenna with those of a Hertzian dipole at the center of the loop and aligned
with its axis.

10.38. Compare the radiation resistance and directivity of a small circular loop
antenna with those of a Hertzian dipole.
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PROBLEMS

10.23. By expansion in Cartesian coordinates, show that

AXVV=VVXA—-VX(VA).

10.24. For the half-wave dipole of Sec. 8.3, determine the magnetic vector potential
for the radiation fields. Verify your result by finding the radiation fields and
comparing with the results of Sec. 8.3.

10.25. A circular loop antenna of radius 1 m in free space carries a uniform current
10 cos 4 x 106t amp. (a) Calculate the amplitude of the electric field inten-
sity at a distance of 10 km in the plane of the loop. (b) Calculate the radia-
tion resistance and the time-average power radiated by the loop.

10.26. Find the length of a Hertzian dipole that would radiate the same time-
average power as the loop antenna of Problem 10.25 for the same current and
frequency as in Problem 10.25.



