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In the preceding five chapters we studied the principles of propagation,
transmission, and radiation of electromagnetic waves. These phenomena are
based upon the interaction between the time-varying electric and magnetic
fields as indicated by Maxwell’s equations that we introduced in Chaps. 2 and
3. To conclude our study of the elements of engineering electromagnetics, we
shall devote this chapter to static fields, that is, fields independent of time,
and quasistatic fields, which are low-frequency extensions of static fields.
Since we have already built up many of the concepts and tools of engineering
clectromagnetics in the previous chapters, our goal in this chapter will be to
start with Maxwell’s equations, set the time variations equal to zero, and
proceed with a logical development of the topics.

Perhaps the most important quantity in the study of static fields is the
electric potential, a scalar that is related to the static electric field intensity
through a vector operation known as the “gradient.” We shall introduce the
gradient and the electric potential at the outset and illustrate the computation
of the static electric field through the use of the potential concept. We shall
then consider the solution of two important differential equations involving
the potential, known as “Poisson’s equation” and “Laplace’s equation,”
which have applications in electronic devices, among others. We shall then
extend our study to the quasistatic case, illustrating the determination of
low-frequency behavior of physical structures via the quasistatic field
approach, and we shall finally conclude the chapter with a discussion of
magnetic circuits.
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9.1 GRADIENT AND ELECTRIC POTENTIAL

For static fields, 8/d¢ = 0, and Maxwell’s curl equations given for time-
varying fields by
JB

VxE= —37 9.1)
VxH=1J+3D (9.2)
reduce to
VxE=0 9.3
VxH=1J 9.4)

respectively. Equation (9.3) states that the curl of the static electric field is
equal to zero. If the curl of a vector is zero, then that vector can be expressed
as the “gradient” of a scalar, since the curl of the gradient of a scalar is
identically equal to zero. The gradient of a scalar, say @, denoted V@ (del @)
is given in Cartesian coordinates by

_fs 0 . @ .0
Vo = (I"d’_)—c - ly@ - 1,E)(I>
_ 00,  dD., L dD.
—Wlx—f—wly-l-wl, 9.5)
The curl of V& is then given by
i, i, i,
d d d

(V®). (V@), (VD).

S T
9 9 9
=|dx dy 0z
io 90 o0
dx dy 0z
=0 9.6)

To discuss the physical interpretation of the gradient, we note that
(0D, , 0D. , 0D, 5 5 A
V(I)-dl—(ﬁlx—kwly—l—ﬁl,) (dxi, 4 dyi, +dzi,)

[
= d® 0.7

_ 0D J® o]
—de—l-wdy—l——zdz
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Let us consider a surface on which @ is equal to a constant, say ®@,, and a
point P on that surface as shown in Fig. 9.1(a). If we now consider another
point Q, on the same surface and an infinitesimal distance away from P, d®
between these two points is zero since @ is constant on the surface. Thus for
the vector dl, drawn from P to Q,, [V®], » dl;, = 0 and hence [V®], is
perpendicular to dl,. Since this is true for all points Q,, @5, @5, ... on the

(a)

Figure 9.1. For discussing the physical interpretation of the gradient of
a scalar function,

constant @ surface, it follows that [V®], must be normal to all possible
infinitesimal displacement vectors dl,, dl,, dl;, ... drawn at P and hence is
normal to the surface. Denoting i, to be the unit normal vector to the surface
at P, we then have

VO], = |V® |- i, 9.8)
Let us now consider two surfaces on which @ is constant, having values
®, and @, + d®, as shown in Fig. 9.1(b). Let P and Q be points on the

®d = ®, and ® = @, + d® surfaces, respectively, and dl be the vector
drawn from P to Q. Then from (9.7) and (9.8),

d® = [V®]; - dl
= |V®@|p i, « dl
= |V®|pdlcos 9.9)

where o is the angle between i, at P and dl. Thus

_dd
VO |, = A cosa (9.10)
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Since dl cos o is the distance between the two surfaces along i, and hence is
the shortest distance between them, it follows that | V@ |, is the maximum rate
of increase of @ at the point P. Thus the gradient of a scalar function @ at a
point is a vector having magnitude equal to the maximum rate of increase of
® at that point and is directed along the direction of the maximum rate of
increase, which is normal to the constant @ surface passing through that
point. This concept of the gradient of a scalar function is often utilized to find
a unit vector normal to a given surface. We shall illustrate this by means of an
example.

Example 9.1. Let us find the unit vector normal to the surface y = x?* at the
point (2, 4, 1) by using the concept of the gradient of a scalar.
Writing the equation for the surface as
x2—y=20
we note that the scalar function that is constant on the surface is given by
(I)(X,y, Z) = x?— y

The gradient of the scalar function is then given by

VO = V(x2 —y)

_ 0 =y 02—y 4 0 —p);
- Ix i, + ay l_v+ Jz I

= 2xi, — i,

The value of the gradient at the point (2, 4, 1) is 2(2)i, — i, = 4i, — i,. Thus
the required unit vector is

4i,

|—4.—_Ti(f f) -

Returning to Maxwell’s curl equation for the static electric field given by
(9.3), we can now express E as the gradient of a scalar function, say, ®. The
question then arises as to what this scalar function is. To obtain the answer,
let us consider a region of static electric field. Then we can draw a set of
surfaces orthogonal everywhere to the field lines, as shown in Fig. 9.2. These
surfaces correspond to the constant @ surfaces. Since on any such surface
E « d1 = 0, no work is involved in the movement of a test charge from one
point to another on the surface. Such surfaces are known as the “equipoten-
tial surfaces.” Since they are orthogonal to the field lines, they may physically
be occupied by conductors without affecting the field distribution.
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Equipotential
Surfaces

Figure 9.2. A set of equipotential surfaces in a region of static electric
field.

Movement of a test charge from a point, say 4, on one equipotential
surface to a point, say B, on another equipotential surface involves an amount

of work per unit charge equal to JB E ¢ dl to be done by the field. This
A

quantity is known as the “electric potential difference” between the points 4
and B and is denoted by the symbol [V]2. It has the units of volts. There is a
potential drop from 4 to B if work is done by the field and a potential rise if
work is done against the field by an external agent. The situation is similar to
that in the earth’s gravitational field for which there is a potential drop
associated with the movement of a mass from a point of higher elevation to a
point of lower elevation and a potential rise for just the opposite case.

It is convenient to define an “electric potential” associated with each point.
The potential at point A4, denoted V,, is simply the potential difference
between point A and a reference point, say O. It is the amount of work per
unit charge done by the field in connection with the movement of a test
charge from 4 to O, or the amount of work per unit charge done against the
field by an external agent in moving the test charge from O to 4. Thus

Vo= LOE-dlz —f:E-dl ©.11)
and
[V]ﬁ:ij-dl:j:E.lerj:E.dl
:LoE-dl—J;E-dl
— V=V, 9.12)
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If we now consider points A and B to be separated by infinitesimal length
dl from A to B, then the incremental potential drop from A to BisE, « dl, or
the incremental potential rise 4V along the length 4l is given by

dV=—E,.dl 9.13)
Writing
dv=1[VV],.dl 9.14)

in accordance with (9.7), we then have
[VV],«dl= —E, . dl 9.15)
Since (9.15) is true at any point 4 in the static electric field, it follows that
E=-VV (9.16)

Thus we have obtained the result that the static electric field is the negative of
the gradient of the electric potential.

Before proceeding further we note that the potential difference we have
defined here has the same meaning as the voltage between two points, defined
in Sec. 2.1. We, however, recall that the voltage between two points 4 and B
in a time-varying field is in general dependent on the path followed from A4 to

B
B to evaluate J E « dl since according to Faraday’s law
A

§Eodl=—% B.dS ©.17)
C S

is not in general equal to zero. On the other hand, the potential difference (or
voltage) between two points 4 and B in a static electric field is independent of

the path followed from A4 to B to evaluate F E . dl since for static fields,
A
d/dt = 0, and (9.17) reduces to

3€ E.dl=0 (9.18)

Thus the potential difference between two points in a static electric field has a
unique value. Fields for which the line integral around a closed path is zero
are known as “conservative” fields. The static electric field is a conservative
field. The earth’s gravitational field is another example of a conservative field
since the work done in moving a mass around a closed path is equal to zero.

Returning now to the discussion of electric potential, let us consider the
electric field of a point charge and investigate the electric potential due to the
point charge. To do this, we recall from Sec. 1.5 that the electric field intensity
due to a point charge Q is directed radially away from the point charge and
its magnitude is Q/4me,R? where R is the radial distance from the point
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charge. Since the equipotential surfaces are everywhere orthogonal to the
field lines, it then follows that they are spherical surfaces centered at the point
charge, as shown by the cross-sectional view in Fig. 9.3. If we now consider
two equipotential surfaces of radii R and R + dR, the potential drop from

the surface of radius R to the surface of radius R + dR is 47z€Q 7 dR or, the
0
incremental potential rise dV is given by
. Y )
= d<4MOR +C (9.19)
where C is a constant. Thus
VR) =2+ ¢ (9.20)

4ze,

A

Figure 9.3. Cross-sectional view of equipotentiai surfaces and eleciric
field lines for a point charge.

We can conveniently set C equal to zero by noting that it is equal to ¥(cc) and
by choosing R = oo for the reference point. Thus we obtain the electric
potential due to a point charge Q to be

__9
V= ek 9.21)
We note that the potential drops off inversely with the radial distance away
from the point charge.
Equation (9.21) is often the starting point for the computation of the
potential field due to static charge distributions and the subsequent deter-
mination of the electric field by using (9.16). We shall illustrate this by
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considering the case of the electric dipole in the following example and we
shall include a few other cases in the problems.

Example 9.2. As we have learned in Sec. 5.2, the electric dipole consists of
two equal and opposite point charges. Let us consider a static electric dipole
consisting of point charges Q and — Q situated on the z axis at z = d/2 and
z = —dJ2, respectively, as shown in Fig. 9.4(a) and find the potential and
hence the electric field at distances far from the dipole.
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Figure 9.4. (a) Geometry pertinent to the determination of the electric field
due to an electric dipole. (b) Cross sections of equipotential surfaces and
direction lines of the electric field for the electric dipole.

First we note that in view of the symmetry associated with the dipole
around the z axis, it is convenient to use the spherical coordinate system. As
discussed in Appendix A, the spherical coordinates of a point P are the
distance * from the origin O to the point P, the angle § which the line OP
makes with the z axis, and the angle ¢ which the line from the origin to the
projection of P onto the xy plane makes with the x axis as shown in Fig.
9.4(a). Denoting the distance from the point charge Q to P to be r, and the
distance from the point charge — Q to P to be r,, we write the expression for
the electric potential at P due to the electric dipole as

V — Q —Q

T 4meqr, iy 4reyr,

- 47?50(% B "iz)
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For a point P far from the dipole, that is, for » >> d, the lines drawn from
the two charges to the point are almost parallel. Hence

d
rlkr—Tcose

r2&r+%0050
and

1 I _rp—ry _dcosf

7y Fy  PiFy r2

so that

VdecosB _ P
4re,r? 4meyr?

where p = Qdi, is the dipole moment of the electric dipole. Thus the potential
field of the electric dipole drops off inversely with the square of the distance
from the dipole.

Now, from (9.16) and noting from Appendix B that the gradient of a
scalar in spherical coordinates is given by

_ 0D, 190, 1 00,
Ve ="t d0" " rsing 9g "

we obtain the electric field intensity due to the dipole to be

_ w0 (Qdcos@\. 1 0 (Qdcosb\.
B -V = 0r(4neor2 )l’ r o0 (41!60r2 )le

= ‘%(2 cos 0 i, + sin 8 iy)
We note that this result agrees with the one obtained directly in (8.8) in
Sec. 8.1.

Finally, a sketch of the direction lines of the electric field and of the cross
sections of the equipotential surfaces (cos §/r? = constant) is shown in Fig.
9.4(b). Although it is possible to derive the equation for the direction lines, it
is not essential to do so since they can be sketched by recognizing that (a) they
must originate from the positive charge and end on the negative charge and
(b) they must be everywhere perpendicular to the equipotential surfaces. m

9.2 POISSON'S EQUATION

In the previous section we learned that for the static electric field, V x E

is equal to zero, and hence
E=—-VV
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Substituting this result into Maxwell’s divergence equation for D, and
assuming € to be uniform, we obtain

V:D=V.cE=¢V.E
=€V (—=VV)=p
or

V.vr=-—£
€
The quantity V « VV is known as the “Laplacian” of V, denoted V2F (del
squared V). Thus we have

V2 — _% 9.22)

This equation is known as “Poisson’s equation.” It governs the relationship
between the volume charge density p in a region and the potential in that
region. In Cartesian coordinates,

ViV =V .VV
AR BN B A S LA 4
_<1xﬁ+1y@—|—1z£> <Wlx—|—W1y+WIZ>

02V | d*V | 9

=3 Tt 0:23)
and Poisson’s equation becomes
v | 9V, WV _  p (9.24)

gt tar= ¢

For the one-dimensional case in which ¥ varies with x only, d2¥/dy? and
02V/dz? are both equal to zero, and (9.24) reduces to . '
0V 4w p
T =dr = ¢ 9.25)
To illustrate an example of the application of (9.25), let us consider the
space charge layer in a p-n junction semiconductor with zero bias, as shown
in Fig. 9.5(a), in which the region x < 0 is doped p-type and the region
x > 0 is doped n-type. To review briefly the formation of the space charge
layer, we note that since the density of the holes on the p side is larger than
that on the » side, there is a tendency for the holes to diffuse to the # side and
recombine with the electrons. Similarly, there is a tendency for the electrons
on the n side to diffuse to the p side and recombine with the holes. The
diffusion of holes leaves behind negatively charged acceptor atoms and the
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Figure 9.5. For illustrating the application of Poisson’s equation for the

determination of the potential distribution for a p—n junction semiconduc-
tor.

3



342 CH. 9 STATIC AND QUASISTATIC FIELDS

diffusion of electrons leaves behind positively charged donor atoms. Since
these acceptor and donor atoms are immobile, a space charge layer, also
known as the “depletion layer,” is formed in the region of the junction with
negative charges on the p side and positive charges on the # side. This space
charge gives rise to an electric field directed from the # side of the junction to
the p side so that it opposes diffusion of the mobile carriers across the
junction thereby resulting in an equilibrium.

For simplicity, let us consider an abrupt junction, that is, a junction in
which the impurity concentration is constant on either side of the junction.
Let N, and N, be the acceptor and donor ion concentrations, respectively,
and d, and d, be the widths in the p and n regions, respectively, of the deple-
tion layer. The space charge density p is then given by

p— {—eNA for —d, <x <0 9.26)

eN, for 0<x<d,
as shown in Fig. 9.5(b), where e is the electronic charge. Since the semiconduc-

tor is electrically neutral, the total acceptor charge must be equal to the total
donor charge, that is,

eN,d, = eNyd, (9.27)
Substituting (9.26) into (9.25), we obtain

" eTNA for —d, <x <0
Z_‘Z’ — (9.28)
* _% for 0<x<d,

This equation governs the potential distribution in the depletion layer.
To solve (9.28) for V, we integrate it once and obtain

eN, .
av Tx-FC1 for —d, <x <0
4z —efﬂx + C, for O0<x<d,

where C, and C, are constants of integration. To evaluate C, and C,, we note
that since E = —VV = —(@V/dx)i,, dV/dx is simply equal to —E,. Since
the electric field lines begin on the positive charges and end on the negative
charges, the field and hence 0V/dx must vanish at x = —d, and x = d,,
giving us

%(x +d,) for—d,<x<0
Z_V — (9.29)
x —e—Jg—D(x —d) for O0<x<d,
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The field intensity, that is, —(dV/dx), may now be sketched as a function of x
as shown in Fig. 9.5(c).
Proceeding further, we integrate (9.29) and obtain

Nix +d)y+C, for—d,<x<0

+ C, ioi 0 < x<d,
where C, and C, are constants of integration. To evaluate C; and C,, we first
set the potential at x = —d,, arbitrarily equal to zero to obtain C, equal to

zero. Then we make use of the condition that the potential be continuous at
x = 0, since the discontinuity in dV/dx at x = 0 is finite, to obtain

eN, ;, eNp 5,
2Ed =~ 5 d: + C,
or

Co =5 (Nydj + Ny d})

Substituting this value for C, and setting C; equal to zero in the expression for
V, we get the required solution

eNA(x + d,)? for —d, <x <0
V= (9.30)
eND(x — 2% d,,)-|—eN"d2 for 0<x<d,

The variation of potential with x as given by (9.30) is shown in Fig. 9.5(d).

We can proceed further and find the width d = d, + d, of the depletion
layer by setting 7(d,) equal to the contact potential, ¥, that is, the potential
difference across the depletion layer resulting from the electric field in the
layer. Thus

Vo= Vd) =2 az + L2 a

_ £ ND(NA+ND)d2_|_ e NA(NA_I—ND)dZ
2 N,+ N, 2¢ Ns+ Np ?
NCIE, 7
" 26N, Np
_ e NN, d2
2¢e Ny+ Np

(d} +d; +2d,d,)

where we have used (9.27). Finally, we obtain the result that

TeVo( L _i_)
e (NA—l—ND
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which tells us that the depletion layer width is smaller the heavier the doping
is. This property is used in tunnel diodes to achieve layer widths on the order
of 10~¢ cm by heavy doping as compared to widths on the order of 1074 cm
in ordinary p—# junctions.

We have just illustrated an example of the application of Poisson’s
equation involving the solution for the potential distribution for a given
charge distribution. Poisson’s equation is even more useful for the solution of
problems in which the charge distribution is the quantity to be determined
given the functional dependence of the charge density on the potential. We
shall, however, not pursue this topic any further.

9.3 LAPLACE'S EQUATION

In the previous section we derived Poisson’s equation

Vi = L
€

If the charge density in a region is zero, then Poisson’s equation reduces to
ViV =10 (9.31)

This equation is known as “Laplace’s equation.” It governs the behavior of
the potential in a charge-free region. In Cartesian coordinates, it is given by

axv . 0V | 9V
g T g T =0 ©-32)

Laplace’s equation is also satisfied by the potential in conductors under
steady current condition. For the steady current condition, dp/dt = 0 and
the continuity equation given for the time-varying case by

reduces to
V:J.=0 (9.33)

Replacing J, by 6E = —oVV where o is the conductivity of the conductor
and assuming ¢ to be constant, we obtain

VeogE=6¢V:E=—0¢V.VV=—0aVV=0
or
V2V =0
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The problems for which Laplace’s equation is applicable consist of
finding the potential distribution in the region between two conductors given
the charge distribution on the surfaces of the conductors or the potentials of
the conductors or a combination of the two. The procedure involves the
solving of Laplace’s equation subject to the boundary conditions on the sur-
faces of the conductors. The electric field intensity between the conductors is
then found by using E = —VV, from which the conduction current density
is obtained by using J, = oE, if the medium is a conductor. We shall illustrate
this by means of an example involving variation of ¥ in one dimension.

Example 9.3. Let us consider two infinite, plane, parallel, perfectly con-
ducting plates occupying the planes x = 0 and x = d and kept at potentials
¥V = 0 and ¥V = V,, respectively, as shown by the cross-sectional view in Fig.
9.6, and find the solution for Laplace’s equation in the region between the
plates. The arrangement may be considered an idealization of two parallel
plates having dimensions very large compared to the spacing between them.

+ H lt -

x=0, V=0

Figure 9.6. For illustrating the solution of Laplace’s equation in one
dimension.

The potential is obviously a function of x only and hence (9.32) reduces to

9w _ 4 _
9x% — dx*

Integrating this equation twice, we obtain
V(x) = Ax + B

where A and B are constants of integration. To determine the values of 4 and
B, we make use of the boundary conditions for V, that is,

V=20 forx =20
V=V, forx=4d
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giving us

0= A4(0) +- B or B=0
Vo—=AWd)+B=Ad or A=Yo

Thus the required solution for the potential is given by
_V
V= =% for0<x<d

which tells us that the equipotentials are planes parallel to the conductors, as
shown in Fig. 9.6.
Proceeding further, we obtain

E=-vw=-39 - _Yoi  ftoro<x<d
dx d
This field is uniform and directed from the higher potential plate to the lower
potential plate, as shown in Fig. 9.6. The surface charge densities on the two
plates are given by

[pslemo = Dlwy » iy = — 00, v, = — o
[Psleea = [Dlawy + (—i) = =104, » (i) — o

The magnitude of the surface charge per unit area on either plate is Q =
| ps|(1) = €V,/d, and the capacitance per unit area of the plates, that is, the
ratio of Q to V,, is equal to €/d.

If the medium between the plates is a conductor, then the conduction
current density is given by

_aV,
d

J,=0E = i,
The conduction current from the higher potential plate to the lower potential

plate per unit area of the plates is I, = |J,[(1) = ¢V,/d, and the conductance
per unit area of the plates, that is, the ratio of I, to ¥, isequal too/d. m

We have just illustrated the solution of Laplace’s equation by considering
an example involving the variation of ¥ in one dimension only. Before going
on to the solution of Laplace’s equation in two dimensions, a brief discussion
of the applicability of Laplace’s equation in the determination of transmission-
line parameters and field maps is in order. To do this, we recall that a trans-
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mission line is characterized by fields that are entirely transverse to its axis.
Hence in any given transverse plane, that is, cross-sectional plane, if E.dl
c

= 0 and E possesses the same spatial characteristics in the transverse dimen-
sions as those of a static field although it is time-varying. Thus by solving
Laplace’s equation in the cross-sectional plane, subject to the boundary
conditions at the conductors of the line, we can obtain the field map consisting
of equipotential “lines” and electric field lines. The equipotential lines, being
everywhere orthogonal to the electric field lines, are identical to the magnetic
field lines. Conversely, the graphical field mapping technique discussed in
Sec. 6.3 is equally applicable to the solution of Laplace’s equation if we
recognize that the magnetic field lines are equivalent to equipotential lines.
A comparison of the results of Example 9.3 with the parallel-plate transmis-
sion line case in Sec. 6.2 serves as an example for this discussion.

Returning to the solution of Laplace’s equation, we now consider its
solution in two dimensions, say x and y. The potential, being independent of
z, then satisfies the equation

2 2
3712’ I %7‘2/ _0 (9.34)

Equation (9.34) is a partial differential equation in two dimensions. As we
have already discussed in Sec. 4.4, the technique by means of which it is
solved is the “separation of variables” technique. It consists of assuming that
the solution for the potential is the product of two functions, one of which is a
function of x only and the second is a function of y only. Denoting these
functions to be X and Y, respectively, we have

Vix,y) = X(x) Y(») (9.35)
Substituting this assumed solution into the differential equation, we obtain

d*X

W

a2y
+ Xz =0

Dividing both sides by XY and rearranging, we get

1 d*X 1 d*Y
Xde~ Y& ©:36)
The left side of (9.36) is a function of x only; the right side is a function of

y only. Thus (9.36) states that a function of x only is equal to a function of y
only. A function of x only other than a constant cannot be equal to a function
of y only other than the same constant for all values of x and y. For example,
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2x is equal to 4y for only those pairs of values of x and y for which x = 2y.
Since we are seeking a solution that is good for all pairs of x and y, the only
solution that satisfies (9.36) is that for which each side of (9.36) is equal to a
constant, Denoting this constant to be 2, we have

d2X

and
‘57{ — _a?Y (9.37b)

Thus we have obtained two ordinary differential equations involving sepa-
rately the variables x and y, starting with the partial differential equation
involving both of the variables x and y. It is for this reason that the method is
known as the separation of variables technique.

The solutions for (9.37a) and (9.37b) are given by

A ox B —oax f 0
X(x) = { e + Be DHEES (9.382)
Aox + B, fora =0

where A4, B, A,, and B, are arbitrary constants, and

Ccosay + Dsinay fora #0

{9.38b)
Coy + D, fora =0

Y(y) = {

where C, D, C,, and D, are arbitrary constants. Substituting (9.38a) and
(9.38b) into (9.35), we obtain

(de** + Be **)(C cosay + Dsinay)  fore #0

(9.39)
(4ox + B)(Coy + Dy) foree =0

Y, y) = {

Equation (9.39) is the general solution for Laplace’s equation in the two
dimensions x and y. The arbitrary constants are evaluated from the boundary
conditions specified for a given problem. We shall now consider two
examples.

Example 9.4. Let us consider an infinitely long rectangular slot cut in a
semi-infinite plane conducting slab held at zero potential, as shown by the
cross-sectional view, transverse to the slot, in Fig. 9.7. With reference to the
coordinate system shown in the figure, assume that a potential distribution
V = V, sin (ny/b), where V, is a constant, is created at the mouth x = a of
the slot by the application of a potential to an appropriately shaped conductor
away from the mouth of the slot not shown in the figure. We wish to find the
potential distribution in the slot.
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x=a
A my
V="V, sin B
y=0 y=b
a V=0 Slot V=0 Conductor
1’ x
P L
z y x=0,V=0
L (') L

Figure 9.7. Cross-sectional view of a rectangular slot cut in a semi-infinite
plane conducting slab at zero potential. The potential at the mouth of the
slot is Vo sin (my/b) volts.

Since the slot is infinitely long in the z direction with uniform cross section,
the problem is two dimensional in x and y and the general solution for V given
by (9.39) is applicable. The boundary conditions are

V=20 fory=0,0<x<a (9.40a)
V=20 fory—»50<x<a (9.40b)
V=20 forx=0,0<y<b (9.40¢)
V=Vosin72—y forx=a,0<y<b (9.40d)

The solution corresponding to & = 0 does not fit the boundary conditions

since V is required to be zero for two values of y and in the range 0 < x < a.

Hence we can ignore that solution and consider only the solution for & = 0.
Applying the boundary condition (9.40a), we have

0 = (de** 4+ Be~**)(C) for0<x<a

The only way of satisfying this equation for a range of values of x is by
setting C = 0. Next, applying the boundary condition (9.40c), we have

0=(4 -+ B)Dsinay forO<y<bd

This requires that (4 + B)D = 0, which can be satisfied by either 4 +- B = 0
or D = 0. We, however, rule out D = 0 since it results in a trivial solution of
zero for the potential. Hence we set

A+B=0 or B=—4
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Thus the solution for V reduces to

V(x,y) = (de** — Ae=**)D sin oy

= A’ sinh ax sin oy 9.41)
where A’ = 24D.
Next, applying boundary condition (9.40b) to (9.41), we obtain

0 = A’ sinh ox sin ab for0<x<a

To satisfy this equation without obtaining a trivial solution of zero for the
potential, we set
sinab =0
or
b = nzn n=1273,...

ocz’%" n=1,2,3,...

Since several values of ¢ satisfy the boundary condition, several solutions are
possible for the potential. To take this into account, we write the solution as
the superposition of all these solutions multiplied by different arbitrary
constants. In this manner, we obtain

Vix,y) = _li A,sinh ™ sin TV foro<y<b (942

Finally, applying the boundary condition (9.40d) to (9.42), we get

Vosin® = S Asinh™4n™  for0<y<b  (9.43)
b n=1,79,... b b

On the right side of (9.43) we have an infinite series of sine terms in y, but on
the left side we have only one sine term in y, Equating the coefficients of the
sine terms having the same arguments, we obtain ‘

Yl sinhw _ Vo forn=1
" b 0 forn 1

or
¥
' ™ sinh (na/b)

4,=0 forn=1

Substituting this result in (9.42), we obtain the required solution for ¥ as

__ 1, sinh(@x/b) . my
V(x, y) = Vo W sin ? (9.44)
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We may now compute the potential at any point inside the slot given the
values of @, b, and V. For example, for a = b, that is, for a square slot, (9.44)
gives the potential at the center of the slot to be 0.1993V. ™

Example 9.5. Let us assume that the rectangular slot of Fig. 9.7 is covered
at the mouth x = a by a conducting plate that is kept at a potential V' = V,
making sure that the edges touching the corners of the slot are insulated, as
shown in Fig. 9.8(a), and find the solution for the potential in the slot for this
new boundary condition.

x=a, V=V, V="V,
y=0 y=b
V=0 =
V=0 V=0 V=0
\
XA r
) S
z y x=0, V=0 V=0
(a) (b)

Figure 9.8. (a) Cross-sectional view of a rectangular slot in a semi-infinite
plane conducting slab at zero potential and covered at the mouth by a
conducting plate kept at a potential V. (b) Equipotentials and direction
lines of electric field in the slot for the case bja = 1.

Since the boundary conditions (9.40a)-(9.40c) remain the same, all we
need to do to find the required solution for the potential is to substitute the
new boundary condition

V="V, forx=a,0<y<bd

in (9.42) and evaluate the coefficients 4;. Thus we have

Vo= 3 A,sinhTsin TF for0<y<b (945
n=1,2,3,...

In this equation we have an infinite series on the right side, but the left side is a
constant. Thus we cannot hope to obtain A/, by simply comparing the
coefficients of the sine terms having like arguments as in Example 9.4. If we
do so, we get the ridiculous answer of ¥, = 0 and all 4], = 0 since there is no
constant term on the right side and there are no sine terms on the left side.
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The way out of the dilemma is to make use of the so-called orthogonality
property of sine functions, given by

» 0 n#=m
f sinwsinr—nﬂdyz p
y=0 D p —2— n=m

where m and n are integers. Multiplying both sides of (9.45) by sin —= mny dy

and integrating between the limits 0 and b, we have

b b =
V, sin bydy—f Y A4, sinh 74 b 2 sin n;)zy sin ydy
y=0 y=0 n=1,2,3,...

The integration and summation on the right side can be interchanged, giving
us

b = b
f V, sin by dy = IZ Al sinh n;t_a f sin ? sin m;)t_y dy
¥ 25000 y=0

- s,
or

Vobq _ _ (4 sinh @\ b
m—nl cosmn)-(A,,, sinh b )2

av, 1
y {m—n ERGmaD) oo

0 for m even

Substituting this result in (9.42), we obtain the required solution for the
potential inside the slot as

& 4V sinh (nrx/b)

= n=15%,... nw sinh (nma/b)

sin 2% (9.46)

The numerical values of potentials may now be computed for points inside
the slot for given values of g, b, and ¥, and equipotentials may be sketched by
joining points having approximately the same potential values. The electric
field lines can then be drawn orthogonal to the equipotentials. The resulting
sketches for a square slot are shown in Fig. 9.8(b). =

9.4 COMPUTER SOLUTION OF LAPLACE’S EQUATION*

In the previous section we illustrated the solution of the two-dimensional
Laplace’s equation in Cartesian coordinates x and y. In this section we shall
discuss the approximate solution of the two-dimensional Laplace’s equation

*This section may be omitted without loss of continuity.
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which forms the basis for adaptation to digital computers. To illustrate the
principle behind the approximate solution, let us suppose that we know the
potentials V', ¥, V3, and ¥, at four points equidistant from a point P(0, 0, 0)
and lying on mutually perpendicular axes, which we call x and y, passing
through P as shown in Fig. 9.9. We wish to find the potential V, at P in terms
of Vi, V,, V3, and V.

XA

V,9{a,0,0)

>y
0)

a nJS

P Vs
4,0

(0,4, 0) (0,0,0) (0,

V,$(a,0,0)

Figure 9.9. For illustrating the principle behind the approximate solution
of Laplace’s equation in two dimensions.

Assuming no variation of ¥ in the z direction, we require that

V2V, = 0 LA A lo . (9.47)

To solve this equation approximately for ¥y, we note that

l:aZV (0,0,0) - l:aix(a—V)il(o,o,o)
7{[0%' (a/2,0,0) \:% (—a/2,0,0) }

i{[V](a 9,0) [V](o,o.o) __ [V](o.o.o) —_ [V](—a,O,O)}

a a a

%[(Vl — Vo) — (Vo — V)

Similarly,

2
[‘9 4 ~ Lo+ vi—2v0 (9.48b)
(0,0,0)
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Substituting (9.48a) and (9.48b) into (9.47) and rearranging, we obtain
Vor Vit Va o+ Vi V) (9.49)

Thus the potential at P is approximately equal to the average of the potentials
at the four equidistant points lying along mutually perpendicular axes through
P. The result becomes more and more accurate as the spacing a becomes less
and less.

Equation (9.49) forms the basis for the computer solution of Laplace’s
equation. To illustrate the technique, let us consider the problem of Example
9.4 and assume @ = b, that is, a square slot. We can then divide the area of the
slot into a 4 x 4 grid of squares, as shown in Fig. 9.10. If we assume ¥, to be
100 V, then the potentials at the five grid points along the mouth of the slot
are 100 sin 0, 100 sin =, 100 sin % 100 sin %, and 100sinz or 0, 70.71,
100, 70.71, and O V, respectively, as shown in the figure. The potentials at the
grid points along the remaining three sides of the slot are all zero. The exact
values of potentials at the grid points inside the slot computed from the

70.71 100.00 70.71

0.————— -——————, ————— 0——-———-10
j | |
|
A
i |
1% 14
0 r_____lll .____.__'2_;__.____114 _____ 0
| 3201 | 45.27 [ 32.01
[33.10 | 46.84 | 33.10
|33.18 | 46.92 33.18
|33.18 | 46.93 33.18
. V2113228 Vil 4565 Vnlaag o
| 14.09 19.93 14.09
| 15.01 |21.26 I 15.01
| 15.08 [21.33 | 15.08
| 15.09 | 21.34 | 15.09
. Val1a30 V302023 Vaal 1430 8
e e e e e T—'_'___—T—'_”__'_' — et e e et
7 .
| 5.32 | 7:52 | 532
[ 5.79 | 8.21 I 5.79
| 5.83 | 8.25 | 5.83
| 5.84 | 8.25 | 5.84
| 5.42 | 7.67 | 5.42
0 " i /| 0
0 0 0

Figure 9.10. For illustrating the computer solution of Laplace’s equation
in two dimensions.
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analytical solution given by (9.44) are shown by the upper rows of numbers
beside the grid points for later comparison with those obtained by the com-
puter solution technique.

The computer solution consists of finding the potentials at the nine grid
points inside the slot from the given values at the grid points on the boundaries
of the slot. Irrespective of how this is achieved, we must obtain a final set of
values such that the potential at each grid point inside the slot is the average
of the potentials at the neighboring four grid points, or the sum of the four
neighboring potentials is equal to four times the potential at the grid point, in
accordance with (9.49). The simplest technique adaptable to computer
solution is to start with values of zero for all unknown potentials. Each
unknown potential is then replaced by the average of the four neighboring
potentials by traversing the grid in a systematic manner and by replacing in
this process old values with new values as they are computed, until a set of
values satisfying (9.49) at each grid point, to within a specified error, is
obtained. Any symmetry associated with the problem, as in the present case,
can be utilized to advantage for achieving a reduction in the number of
computations.

The method we just discussed is known as the “iteration” technique since
it involves the iterative process of converging an initially assumed solution to
a final one consistent with Laplace’s equation in the approximate sense given
by (9.49). There are scveral variations of the iteration technique. For example,
by empioying an initial guess other than zeros, a [asler convergence may be
achieved. The end result will, however, still be only to within the specified
accuracy.

The values of potentials obtained by the iteration technique for a specified
maximum allowable value of 0.1 V for the error

A:[Vo —%(Vx + VvV, -+ Vs + V4)]

are shown by the second rows of numbers beside the grid points in Fig. 9.10.
When the specified maximum error is decreased to 0.01 V, thereby demanding
a more accurate solution, the values of potentials obtained are shown by the
third rows of numbers beside the grid points in Fig. 9.10. When these two
rows are compared with the upper rows, it appears that the specification of a
greater required accuracy in the iteration leads to a less accurate end result.
This is, however, not the case since the iteration method can only converge
to a solution that is consistent with (9.49) and not to the analytical solution.

Hence let us find the exact values of the unknown potentials consistent
with (9.49). To do this, we write a set of simultaneous equations for these
potentials by applying (9.49) at each grid point inside the slot. Thus denoting
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the unknown potentials to be V,;, i,j = 1,2, 3, as shown in Fig. 9.10, we
obtain a set of nine equations given in matrix form by

~ 4 -1 0, -1 0 0! 0 0 O ¥Vu] [ 70717
]
-1 4 -1) 0 -1 0! 0 0 0|V 100.00
0 -1 41 0 017 0 0 0¥ 70.71
_____________ by o e i e . v . i s ] i . e e e 0 - -
—1 0 0 4 -1 0l -1 0 0¥y 0
0 -1 01 -1 4 —1 0 -1 0|V |=| o0 (9.50)
00—150—14:00_1 Vs 0
|
_____________ R (S | .
0005-10 L4 =1 0| Va 0
|
0 0 01! 0 -1 01! —1 4 —1]||[Wa 0
]
Lo o o! o o 11 o -1 4wl |_ o _

The matrix equation (9.50) can be inverted directly, since it involves only
a9 X 9 matrix. Imagine, however, the situation if the number of grid points
is large. For example, even for a 16 x 16 grid of squares, it will be necessary
to invert a 225 X 225 matrix! Fortunately, however, it is not necessary to
directly invert the matrix. To illustrate this we see from the partitionings in
(9.50) that it can be written in compact form as

] M - U 0 V] V*

—U M —U||V,|=]|0 9.51)
0 —-U M ||V, 0
where
4 —1 0
M=|—1 4 —1 (9.52a)
0 —1 4
1 00
U=|(0 1 0 (9.52b)
0 01
Vi
Vi=|Vy i=1,2,3 (9.52¢)
Vis
70.71
v, = | 100.00 (9.52d)

70.71



SEC. 9.5 Low-FREQUENCY BEHAVIOR VIA QUASISTATICS 357

From (9.51), we can write the following equations successively:
—UV, + MV, =0

Vv, = MV, (9.53a)
— UV, + MV, — UV, =0
V, = MV, — UV, = (M* — U)V; (9.53b)

MVI . UVZ . Vg
(M3 — 2M)V, =V,
V,=(M?*—2M)'V, (9.53¢)

Substituting for M and ¥, in (9.53c) from (9.52a) and (9.52d), respectively,
and simplifying, we get

Vi 68 —48 1271 70.71
Vi | =] —48 80 —48 100.00 (9.54)
Vs 12 —48 68| | 70.71

Thus, we have simplified the problem into one of inversion of a 3 x 3 matrix.
Inverting the 3 X 3 matrix and performing the matrix multiplication on the
right side of (9.54), we obtain the values of ¥y, V32, and ¥,5. The remaining
values can then be found from (9.53a) and (9.53b). The results are shown hy
the fourth rows of numbers beside the grid points in Fig. 9.10.

It can now be seen by comparing the second and third rows of values with
the fourth rows of values that the iteration method does converge closer to
the exact solution consistent with (9.49) as the specified allowable error is
decreased. To obtain a solution closer to the exact analytical solution, we
must decrease the spacing between the grid points. For example, foran8 x 8
grid of squares, the solution obtained by the iteration method for a specified
maximum error of 0.01 V is shown by the set of numbers in the last rows in
Fig. 9.10.

9.5 LOW-FREQUENCY BEHAVIOR VIA QUASISTATICS

In Example 6.4 in Sec. 6.4 we illustrated the determination of the low-
frequency behavior of a physical structure from its input impedance by
considering the example of the short-circuited line. We expressed the input
impedance of the short-circuited line as an infinite series involving powers of
the frequency o and by considering the term proportional to & we found that
for a line of length /, the input impedance is equivalent to that of a single
inductor for frequencies low enough such that / < 4, the wavelength corre-
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sponding to the frequency. In this section we shall illustrate the determination
of the low-frequency behavior by a quasistatic extension of the static field
existing in the structure when the frequency of the source driving the structure
is zero. The quasistatic extension consists of starting with a time-varying field
having the same spatial characteristics as that of the static field and obtaining
the field solutions containing terms up to and including the first power in .

To introduce the quasistatic field approach, we shall first consider the
same physical structure as a short-circuited parallel-plate line, that is, an
arrangement of two parallel, plane, perfect conductors joined at one end by
another perfectly conducting sheet, as shown in Fig. 9.11(a). We shall neglect
fringing of the fields by assuming that the spacing d between the plates is very
small compared to the dimensions of the plates or that the structure is part of
a structure of much larger extent in the y and z directions. For a constant
current source of value I, driving the structure at the end z = —/, as shown
in the figure, such that the surface current densities on the two plates are
given by

zﬂi: forx =10
o (9.55)
_doi forx—a
W
|
|
|
w 1
____________ J
Vs
s
/
// )
y )
P
d / z
/
/
z=0 X (a)

aT‘ X X X X X X

¥ z
I(A) ¥ X x XHX X X
py XXX XX X I

z=-1 z=0 (b)

Figure 9.11. (a) A parallel-plate structure short-circuited at one end and
driven by a current source at the other end. (b) Magnetic field between the
plates for a constant current source.
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the medium between the plates is characterized by a uniform y-directed
magnetic field as shown by the cross-sectional view in Fig. 9.11(b). The field is
zero outside the plates. From the boundary condition for the tangential
magnetic field intensity at the surface of a perfect conductor, the magnitude
of this field is I,/w. Thus we obtain the static magnetic field intensity between
the plates to be

I .

H= o for0<x<d (9.56)

¥y
The corresponding magnetic flux density is given by
B:qu%I"iy for0<x<d 9.57)

The magnetic flux y linking the current is simply the flux crossing the cross-
sectional plane of the structure. Since B is uniform in the cross-sectional plane
and normal to it,

v =B, =44, (9.58)

The ratio of this magnetic flux to the current, that is, the inductance of the
structure, is

L— _Z_ — /‘7‘” (9.59)

To discuss the quasistatic behavior of the structure, we now let the current
source be varying sinusoidally with time at a frequency w and assume that the
magnetic field between the plates varies accordingly. Thus for

I(t) = I, cos wt (9.60)
we have

H, = o cos ot 9.61)
where the subscript O denotes that the field is of the zeroth power in . In
terms of phasor notation, we have for

I=1I, (9.62)

L
H, = = (9.63)
The time-varying magnetic field (9.61) gives rise to an electric field in

accordance with Maxwell’s curl equation for E. Expansion of the curl equa-
tion for the case under consideration gives

OE, _ 0B, _ _,0H,
9z ot - Ha
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or, in phasor form

X

E,
dz

= —jwﬂﬁyo (9.64)

Substituting for H,, from (9.63), we have

dE, . I,
az Oy
or
E = —jcoﬂ{v&z s (9.65)

The constant € is, however, equal to zero since [E,],_, = O to satisfy the
boundary condition of zero tangential electric field on the perfect conductor
surface. Thus we obtain the quasistatic electric field in the structure to be

E, = —jco%zfo (9.66)

where the subscript 1 denotes that the field is of the first power in .
The voltage developed across the current source is now given by

= b e
7= [ 1Bl dx

_ jptdly
——_]COWIO

= joLl, (9.67)

Thus the quasistatic extension of the static field in the structure of Fig. 9.11
illustrates that its input behavior for low frequencies is equivalent to that of a
single inductor as we found in Example 6.4.

Example 9.6, Let us consider the case of two parallel perfectly conducting
plates separated by a lossy medium characterized by conductivity ¢, permit-
tivity €, and permeability g and driven by a voltage source at one end, as
shown in Fig. 9.12(a). We wish to determine its low-frequency behavior by
using the quasistatic field approach.

Assuming the voltage source to be a constant voltage source, we first
obtain the static electric field in the medium between the plates to be

= Yo
E= 7k

following the procedure of Example 9.3. The conduction current density in
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a
7a |
Vﬁfx !
| W
P
7/7/ I
ks
7 L ol
& i__/’x=0 y
- /
71t 0,6 u 4 3
7
L/ x=d
z=—1 l} z=0 X ()
R X
X X X
v(®) |x x| x X H € Ina
x x| X X ElJ,
»Y Y
1 X
z=-1 z=0 (b)

Figure 9.12. (a) A parallel-plate structure with lossy medium between the
plates and driven by a voltage source. (b) Electric and magnetic fields
between the plates for a constant voltage source.

the medium is then given by

J. = oE =07V0ix

The conduction current gives rise to a static magnetic field in accordance with
Maxwell’s curl equation for H given for static fields by

VxH=J, =0E

For the case under consideration, this reduces to
giving us

The constant C, is, however, equal to zero since [H,},-, = 0 in view of the
boundary condition that the surface current density on the plates must be
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zero at z = 0. Thus the static magnetic field in the medium between the plates
is given by

H— —GZOZiy

The static electric and magnetic field distributions are shown by the cross-
sectional view of the structure in Fig. 9.12(b).

To determine the quasistatic behavior of the structure, we now let the
voltage source be varying sinusoidally with time at a frequency o and assume
that the electric and magnetic fields vary with time accordingly. Thus for

V =V, coswt

we have
V, .
E, = 7 08 ot i, (9.68a)
H, = — V0% cos ot i (9.68b)
5 g cosoti, .

where the subscript 0 denotes that the fields are of the zeroth power in w. In
terms of phasor notation, we have for V' = V,,

E,=Ye (9.692)

Hy= 20t (9.69b)

The time-varying electric field (9.68a) gives rise to a magnetic field in
accordance with

_dD, 0E,
VXH—W_GW

and the time-varying magnetic field (9.68b) gives rise to an electric field in
accordance with

_ _90B,_ _0H,
VEgE= o - Ha

For the case under consideration and using phasor notation, these equations
reduce to

0ﬁy__- 5 _ . €V,
9z = jweE,, = Jo==
0E, _ . = . ugVz
7 i JouH =Jo=—7>=
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giving us

ﬁyl . _waI;OZ + é7.
— 2 —_—
B, =ja>£“’2—‘2°z— + &,

where the subscript 1 denotes that the fields are of the first power in co. The
constant C, is, however, equal to zero in view of the boundary condition that
the surface current density on the plates must be zero at z = 0. To evaluate
the constant C,, we note that [E,,],._; = O since the boundary condition
at the source end, that is,

- b
V= [ (B rdx
is satisfied by E,, alone. Thus we have
wHVo (=D L & g

Jo—
or

5 . peVyl?
C, jeo >d

Substituting for G, and C, in the expressions for E,, and H,,, respectively,
we get

B, = jo#VZ =1 (9.702)
2d
H, = ]cof—l;"z

The result for H,, is, however, not complete since E,, gives rise to a conduc-
tion current of density proportional to @ which in turn provides an additional
contribution to H,,. Denoting this contribution to be Hy,, we have

0H; L uatV(z2 — %)

5 = OB = 0T
= 2 3 __ 2 -
Hy = —jo?l V°(Z6d g,

The constant C, is zero for the same reason that C, is zero. Hence setting C,
equal to zero and addmg the resulting expression for H;1 to the rlght side of
the expression for H,,, we obtain the complete expression for H,, as

, = —jole — jw”"zVo(f,;— 3:1%) (9.70b)
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The total field components correct to the first power in o are then given by
E—x = E_xO + E.xl

_ Vo o i HOYe@— 1)
=g + jo 5d (9.71a)

ﬁ.v = ﬁyo + Eyl
 aVer . eVoz . uoV(z — 3zl
Y Y B 6d

(9.71b)

The current drawn from the voltage source is
I- = w[ﬁy]z=—l
20573\ —
(a:ivl _|_Jw6wl qua wl >V ©9.72)

3d

Finally, the input admittance of the structure is given by
7 i o owl Nk
A ( —J0T3 )

ewl 1

= jo— p, +ail( +Jw”§l)

ewl 1
Ot T udl ok
owl 3w
1

=/oCt R GaLp) =l

where C = ewl/d is the capacitance of the structure if the material is a perfect
dielectric, R = djowl is the d.c. resistance (reciprocal of the conductance) of
the structure, and L = ud!/w is the inductance of the structure if the material
is lossless and the two plates are short-circuited at z = 0. The equivalent
circuit corresponding to (9.73) consists of capacitance C in parallel with the

series combination of resistance R and inductance L/3, as shown in Fig. 9.13.
|

Figure 9.13. Equivalent circuit for the low-frequency input behavior of the
structure of Fig. 9.12.
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In this section we shall introduce the principle of magnetic circuits.
A simple example of magnetic circuit is the toroidal magnetic core of uni-
form permeability x4 and having a uniform, circular cross-sectional area A
and mean circumference /, as shown in Fig. 9.14. A current /; amp is passed
through a filamentary wire of N turns wound around the toroid. Because of
this current, a magnetic field is established in the core in the direction of
advance of a right-hand screw as it is turned in the sense of the current, as
shown in Fig. 9.14.

Figure 9.14. A toroidal magnetic circuit.

If the permeability of the core material is very large compared to the
permeability of the surrounding medium, which is free space, the magnetic
flux is confined almost entirely to the core in a manner similar to conduction
current flow in wires or fluid flow in pipes. To illustrate this, let us consider
lines of magnetic flux density on either side of a plane interface between a
magnetic material of z >> u, and free space, as shown in Fig. 9.15. Then from
the boundary conditions for the magnetic field components, we have

B, sing, = B, sina, (9.74a)
H, cos o, = H, cos d, (9.74b)
Dividing (9.74a) by (9.74b), we get
B, — 5
H, tan o, H, tan o,

Uy tan o, = U, tan o,

tana, _ Ky _ Mo
tano, MUy My
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Figure 9.15. Lines of magnetic flux density at the boundary between free
space and a magnetic material of u > uo.

Thus o, < «,, and
B, _ sina, <1

B, sina,

For example, if the values of x4, and a, are 1000 u, and 5°, respectively, then
o, = 89.35°and B,/B, = 0.087. Fora; = 3°, &, = 88.9°and B,/B, = 0.052.
The magnetic flux is for all practical purposes confined entirely to the core
and very little flux appears as leakage flux outside the core.

If we assume that the magnetic flux y over the cross-sectional area of the
toroid is equal to the flux density B,, at the mean radius of the toroid times the
cross-sectional area of the toroid, we can then write

B,=¥ 9.75)
H,=72n_-Y¥ (9.76)

From Ampere’s circuital law, the magnetomotive force around the closed path
C along the mean circumference of the toroid is equal to the current enclosed
by that path. This current is equal to NI, since the filamentary wire penetrates
the surface bounded by the path N times. Thus

§ H. dl = NI,
c

H_l= NI, 9.77)
Substituting for H,, from (9.76) and rearranging, we obtain

uNI A

l
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We now define the “reluctance” of the magnetic circuit, denoted by the
symbol ®, as the ratio of the ampere turns NI, applied to the magnetic circuit
to the magnetic flux w. Thus

NI, I

®R - 7 (9.78)
The reluctance of the magnetic circuit is analogous to the electric circuit
quantity resistance and has the units of ampere turns per weber. We note from
(9.78) that for a given magnetic material, the reluctance appears tobe purely a
function of the dimensions of the circuit. This is, however, not true since for
the ferromagnetic materials used for the cores, y is a function of the magnetic
flux density in the material, as we learned in Sec. 5.3.

As a numerical example of computations involving the magnetic circuit of
Fig. 9.14, let us consider a core of cross-sectional area 2 cm? and mean
circumference 20 cm. Let the material of the core be annealed sheet steel for
which the B versus H relationship is shown by the curve of Fig. 9.16. Then to
establish a magnetic flux of 3 X 10~* Wb in the core, the mean flux density
must be (3 x 1074)/(2 x 107%) or 1.5 Wb/m?. From Fig. 9.16, the corre-
sponding value of H is 1000 amp/m. The number of ampere turns required
to establish the flux is then equal to 1000 x 20 X 10-2%, or, 200, and the
reluctance of the core is 200/(3 x 10-%), or (2/3) x 10° amp-turns/Wb. We
shall now consider a more detailed example.

2.0
LS
o~
g /
S 10
=
[2-]
08
0 500 1000 1500 2000 2500 3000

H, amp/m
Figure 9.16. B versus H curve for annealed sheet steel.

Example 9.7. A magnetic circuit containing three legs and with an air gap
in the right leg is shown in Fig. 9.17(a). A filamentary wire of N turns carrying
current I is wound around the center leg. The core material is annealed sheet
steel, for which the B versus H relationship is shown in Fig. 9.16. The dimen-
sions of the magnetic circuit are

A, = A, =3cm?, A, = 6 cm?

l[,=1,=20cm, I, =10 cm, I, =0.2mm
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Figure 9.17. (a) A magnetic circuit. (b) Fringing of magnetic flux in the air
gap of the magnetic circuit. (¢) Effective and actual cross sections for the

air gap.

Let us determine the value of NI required to establish a magnetic flux of
4 x 10~* Wb in the air gap.

The current in the winding establishes a magnetic flux in the center leg
which divides between the right and left legs. Fringing of the flux occurs in
the air gap, as shown in Fig. 9.17(b). This is taken into account by using an
effective cross section larger than the actual cross section, as shown in Fig.
9.17(c). Using subscripts 1, 2, 3, and g for the quantities associated with the
left, center, and right legs, and the air gap, respectively, we can write

Vs =V,
V=W, TV,

Also, applying Ampere’s circuital law to the right and left loops of the
magnetic circuit, we obtain, respectively,

NI = Hyl, + H,l, + H,I,
NI = H,l, + H,l,

It follows from these two equations that

H,l, = H,l, + H,I,
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which can also be written directly from a consideration of the outer loop of
the magnetic circuit.

Noting from Fig. 9.17(c) that the effective cross section of the air gap is
(W3 - 1)* = 3.07 cm?, we find the required magnetic flux density in the air
gap to be
W, 4 x 1074

Be =) ~ 307 % 10

— 1.303 Wb/m?

The magnetic field intensity in the air gap is

B, 1303 ,
H, = ﬂ_: = 10 0.1037 x 107 amp/m
The flux density in leg 3 is

4% 10
BRI

3

B, =

_ Y, _ 2
= A: 1.333 Wb/m

S

From Fig. 9.16, the value of H, is 475 amp/m.
Knowing the values of H, and H;, we then obtain

H,l, = H,l, + H,I,
= 475 x 0.2 + 0.1037 x 107 x 0.2 x 1072
= 302.4 amp

_ 3024

H; = %5~ = 1512 amp/m

From Fig. 9.16, the value of B, is 1.56 Wb/m? and hence the flux in leg 1 is

w, — B4, =156 X 3 X 107% — 4.68 x 107* Wb
Thus
Yo=Y+ ¥s
= 4.68 X 107* 4 4 X 1074 = 8.68 X 10* Wb

_ w, 868 x 10

_ 2
BZ—A_Z_ 510 1.447 Wb/m

From Fig. 9.16, the value of H, is 750 amp/m. Finally, we obtain the required
number of ampere turns to be

NI = H,l, 4+ H,/,
=750 x 0.2 -+ 302.4
= 452.4 -



9.7 SUMMARY

In this chapter we learned that Maxwell’s equations for static fields are
given by

VxE=0 (9.79a)
VxH=1J (9.79b)
V-D=yp (9.79¢)
V.B=0 (9.79d)

whereas the continuity equation is
V:J=0 (9.80)

These equations together with the constitutive relations

D =¢E (9.81a)
B

== 9.81b

7 (9.81b)

J=1J,=0¢E (9.81¢)

govern the behavior of static fields.

First we learned from (9.79a) that, since the curl of the gradient of a scalar
function is identically zero, E can be expressed as the gradient of a scalar
function. The gradient of a scalar function @ is given in Cartesian coordinates
by

_dd, 00 . ifoR
V(I)—Elx—l—a—yly—{—%lz

The magnitude of V@ at a given point is the maximum rate of increase of @ at
that point, and its direction is the direction in which the maximum rate of
increase occurs, that is, normal to the constant @ surface passing through that
point.

From considerations of work associated with the movement of a test
charge in the static electric field, we found that

E= —VV (9.82)

where V is the electric potential. The electric potential ¥, at a point 4 is the
amount of work per unit charge done by the field in the movement of a test
charge from the point 4 to a reference point O. It is the potential difference
between 4 and O. Thus

370
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n:wm:ﬁmm:-ﬂmm

The potential difference between two points has the same physical meaning as
the voltage between the two points. The voltage is, however, not a unique
quantity since it depends on the path employed for evaluating it, whereas the
potential difference, being independent of the path, has a unique value.

We considered the potential field of a point charge and found that for the
point charge

__0
V_47t€R

where R is the radial distance away from the point charge. The equipotential
surfaces for the point charge are thus spherical surfaces centered at the point
charge. We illustrated the application of the potential concept in the deter-
mination of electric field due to charge distributions by considering the
example of an electric dipole.

Substituting (9.82) into (9.79c), we derived Poisson’s equation

WVz—% (9.83)
which states that the Laplacian of the electric potential at a point is equal to
—1/e times the volume charge density at that point. In Cartesian coor-

dinates,

9w | 9, 9
VV =5zt g7 T

For the one-dimensional case in which the charge density is a function of x
only, (9.83) reduces to
a2V _ 4w _  p

Ix* ~ dx* €
We illustrated the solution of this equation by considering the example of a

p-n junction diode.
If p = 0, Poisson’s equation reduces to Laplace’s equation

VY =0 (9.84)

This equation is applicable for a charge-free dielectric region as well as for a
- conducting medium. We illustrated the solution of the one-dimensional
Laplace’s equation
v _dv _
Ox?  dx*

by considering a parallel-plate arrangement. By using the separation of
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variables technique, we obtained the general solution to Laplace’s equation
in two dimensions

vy, 9V _

g T2 =0

and illustrated its application by considering two examples. We also discussed
the applicability of Laplace’s equation for the determination of transmission-
line parameters and field maps.

To illustrate the computer solution of Laplace’s equation, we derived the
approximate solution to Laplace’s equation in two dimensions. This solution
states that the potential ¥, at a point P is given by

Vy %(V1 LV, LV, V) (9.85)

where V,, V,, Vs, and V, are the potentials at four equidistant points lying
along mutually perpendicular axes through P. By means of an example, we
discussed the iteration technique of computer solution based on the repeated
application of (9.85) to a set of grid points in the region of interest until a
solution that converges to within a specified error is obtained. We also
discussed the direct solution for the potentials at the grid points consistent
with (9.85) using matrix inversion techniques.

After having considered the solution of static field problems, we then
turned to the quasistatic extension of the static field solution as a means of
obtaining the low-frequency behavior of a physical structure. The quasistatic
field approach involves starting with a time-varying field having the same
spatial characteristics as the static field in the physical structure and then
obtaining field solutions containing terms up to and including the first power
in frequency by using Maxwell’s curl equations for time-varying fields. We
illustrated this approach by considering two examples, one of them involving
a lossy medium.

Finally, we introduced the magnetic circuit, which is essentially an
arrangement of closed paths for magnetic flux to flow around just as current
in electric circuits. The closed paths are provided by ferromagnetic cores
which because of their high permeability relative to that of the surrounding
medium confine the flux almost entirely to within the core regions. We
illustrated the analysis of magnetic circuits by considering two examples, one
of them including an air gap in one of the legs.

REVIEW QUESTIONS

9.1, State Maxwell’s curl equations for static fields.

9.2. What is the expansion for the gradient of a scalar in Cartesian coordinates ?
When can a vector be expressed as the gradient of a scalar?
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9.3.
94.

9.5.

9.6.

9.7.

9.8.
9.9.
9.10.

9.11.

9.12.
9.13.

9.14.
9.15.
9.16.
9.17.

9.18.

9.19

9.20.
9.21.
9.22.
9.23.
9.24.

9.25.

Discuss the physical interpretation for the gradient of a scalar function,

Discuss the application of the gradient concept for the determination of unit
vector normal to a surface.

How would you find the rate of increase of a scalar function along a specified
direction by using the gradient concept ?

Define electric potential. What is its relationship to the static electric field
intensity ?

Distinguish between voltage, as applied to time-varying fields, and potential
difference.

What is a conservative field ? Give two examples of conservative fields.
Describe the equipotential surfaces for a point charge.

Discuss the determination of the electric field intensity due to a charge dis-
tribution by using the potential concept.

What is the Laplacian of a scalar ? What is its expansion in Cartesian coordi-
nates?

State Poisson’s equation.

Outline the solution of Poisson’s equation for the potential in a region of
known charge density varying in one dimension.

State Laplace’s equation. In what regions is it valid?
Discuss the application of Laplace’s equation for a conducting medium.
Outline the solution of Laplace’s equation in one dimension.

Why is Laplace’s equation applicable to the determination of transmission-
line parameters and field maps ?

Outline the solution of Laplace’s equation in two dimensions by the separa-
tion of variables technique.

What is the principle behind the approximate solution of Laplace’s equation
in two dimensions ?

Discuss the iteration technique for the computer solution of Laplace’s equa-
tion in two dimensions.

By consulting appropriate reference books, discuss two variations of the
iteration technique for the computer solution of Laplace’s equation.

How would you apply the iteration technique for the computer solution of
Laplace’s equation in three dimensions ?

What is meant by the quasistatic extension of the static field in a physical struc-
ture?

Outline the steps involved in the determination of the quasistatic electric field
in a parallel-plate structure short circuited at one end.

Why must the surface current density on the plates of the structure of Fig.
9.12 be zero at z = 0?7
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9.26.
9.27.

9.28.

9.29.

9.30.

CH. 9 StaTIC AND QUASISTATIC FIELDS

Discuss the quasistatic behavior of the structure of Fig. 9.12 for ¢ = 0.

What is a magnetic circuit? Why is the magnetic flux in a magnetic circuit
confined almost entirely to the core?

Define the reluctance of a magnetic circuit. What is the analogous electric
circuit quantity ?

Why is the reluctance for a given set of dimensions of a magnetic circuit not a
constant?

How is the fringing of the magnetic flux in an air gap in a magnetic circuit
taken into account?

PROBLEMS

9.1.

9.2.

9.3.

94.
9.5.

9.6.

9.7.

9.8

9.9.

9.10.
9.11.

Find the gradients of the following scalar functions: (&) /X2 + y? + z%;
(b) xyz.

Determine which of the following vectors can be expressed as the gradient of
a scalar function: (a) yi, — xi,; (b) xi, + yi, + zi,; (c) 2xy3zi, 4 3x2y2zi,
+ x2ydi,.

Find the unit vector normal to the plane surface 5x -+ 2y + 4z = 20.

Find a unit vector normal to the surface x2 — y2 = 5 at the point (3, 2, 1).

Find the rate of increase of the scalar function x2y at the point (1, 2, 1) in the
direction of the vector i, — i,.

For the static electric field given by E = yi, + xi,, find the potential differ-
ence between points A(1, 1, 1) and B(2, 2, 2).

For a point charge Q situated at the point (1, 2, 0), find the potential differ-
ence between the point 4(3, 4, 1) and the point B(5, 5, 0).

An arrangement of point charges known as the linear quadrupole consists of
point charges Q, —20, and Q at the points (0, 0, d), (0, 0, 0), and (0, 0, —d), .
respectively. Obtain the expression for the electric potential and hence for the
electric field intensity at distances from the quadrupole large compared to d.

For a line charge of uniform density 10~3 C/m situated along the z axis be-
tween (0,0, —1) and (0, 0, 1), obtain the series expression for the electric
potential at the point (0, y, 0) by dividing the line charge into 100 equal seg-
ments and considering the charge in each segment to be a point charge located
at the center of the segment. Then find the series expression for the electric
field intensity at the point (0, 1, 0).

Repeat Problem 9.9, assuming the line charge density to be 1072 | z| C/m.

The potential distribution in a simplified model of a vacuum diode consisting
of cathode in the plane x = 0 and anode in the plane x = d and held at a
potential ¥, relative to the cathode is given by

x

4/3
V=V0(7) for0<x<d
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9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18

9.19.

(a) Find the space charge density distribution in the region 0 < x <d.
(b) Find the surface charge densities on the cathode and the anode.

Show that for the p—# junction diode of Fig. 9.5(a), the boundary condition of
the continuity of the normal component of displacement flux density at x = 0
is automatically satisfied by Eq. (9.29).

Assume that the impurity concentration for the p-u junction diode of Fig.

9.5(a) is a linear function of distance across the junction. The space charge
density distribution is then given by

p=kx for —df2 < x < dJ2

where d is the width of the space charge region and k is the proportionality
constant. Find the solution for the potential in the space charge region.

Two infinitely long cylindrical conductors having radii « and b and coaxial
with the z axis are held at a potential difference of V,. Using the cylindrical
coordinate system, obtain the solution for the potential and hence for the elec-
tric field intensity in the charge-free dielectric region between the cylinders.
Find the expression for the capacitance per unit length of the cylinders.

The region between the two plates of Fig. 9.6 is filled with two perfect dielec-
tric media having permittivities €, for 0 < x < ¢ and €, for t <x < d.
(a) Find the solutions for the potentials in the two regions 0 < x < ¢ and
t < x < d. (b) Find the potential at the interface x = r.

Repeal Problem 9.15 if the (wo media are imperfect dieleclrics having conduc-
tivities 4 and &,.

The potential distribution at the mouth of the slot of Fig. 9.7 is given by

_ yosin®2 4 Ly gin 302
V—V051nb—|—3Vosmb

(2) Find the solution for the potential distribution inside the slot. (b) Com-
pute the value of the potential at the center of the slot, assuming the slot to be
square.
Repeat Problem 9.17 for the potential distribution at the mouth of the slot
given by

V = V, sin? n_b_y

Assume that the rectangular slot of Fig. 9.7 is covered at the mouth by con-
ducting plates such that the potential distribution is given by

0 for 0 <y <bld
V=3V for b/4 <y < 3b/4
0 for 3b/4 <y < b

Find the solution for the potential inside the slot.
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9.20.

9.21.

9.22.

9.23.

9.24.

9.25.
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For the rectangular slot of Example 9.4, (a) find the expression for the electric
field intensity inside the slot and (b) find the electric field intensity at the
center of the slot, assuming the slot to be square.

For the slot of Example 9.4, assume a = b and the potential distribution at
the mouth to be 100 sin3 (zy/b) V. Compute the value of the potential at the
center of the slot by (a) applying the iteration method to a 4 x 4 grid of
squares, (b) using the 4 x 4 grid of squares to obtain the exact solution con-
sistent with Eq. (9.49), and (c) applying the iteration method to an 8 x 8 grid
of squares. Compare the results with the exact value given by the analytical
solution found in Problem 9.18. Use a value of A = 0.01 V for the iteration
methods.

For the example of Fig. 9.10, divide the slot into a 16 x 16 grid of squares and
by computing the potentials at the grid points surrounding the center of the
slot by using the iteration technique and A = 0.01 V, estimate the value of
the electric field intensity at the center of the slot. Compare the estimated
value with the exact value obtained in Problem 9.20.

The cross section of a structure that repeats endlessly in the plane of the paper
is shown in Fig. 9.18. For the grid of points shown in the figure, compute the
exact value of the potential at point A4 consistent with Eq. (9.49).

Figure 9.18. For Problem 9.23.

By considering Laplace’s equation in three dimensions, show that the poten-
tial at a given point P in a charge-free region is approximately equal to the
average of the potentials at the six equidistant points lying along mutually
perpendicular axes through P. Then compute by the iteration method the
potential at the center of the cubical box shown in Fig. 9.19 in which the top
face is kept at 100 V relative to the other five faces. Usea 4 x 4 X 4 grid of
cubes and a value of 0.01 V for A.

For the structure of Fig. 9.11, assume that the medium between the plates is
an imperfect dielectric of conductivity o. (a) Show that the input impedance
correct to the first power in @ is the same as if @ were zero. (b) Obtain the
input impedance correct to the second power in @ and determine the equiva-
lent circuit.
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9.26.

9.27.

9.28.

9.29.

9.30.

9.31.

9.32.

Figure 9.19. For problem 9.24,

For the structure of Fig. 9.11, continue the analysis beyond the quasistatic
extension and obtain the input impedance correct to the third power in .
Determine the equivalent circuit.

For the structure of Fig. 9.12, assume ¢ = 0 and continue the analysis beyond
the quasistatic extension to obtain the input admittance correct to the third
power in @. Determine the equivalent circuit.

Find the condition(s) under which the quasistatic input behavior of the struc-
ture of Fig. 9.12 is essentially equivalent to (a) a capacitor in parallel with a
resistor and (b) a resistor in series with an inductor.

For the toroidal magnetic circuit of Fig. 9.14, assume A = 5 cm?, [ = 20 cm,
and annealed sheet steel for the material of the core. Find the reluctance of
the circuit for an applied NI equal to 400 amp-turns.

For the magnetic circuit of Fig. 9.17, assume the air gap to be in the center
leg. Find the required NI to establish a magnetic flux of 9 X 1074 Wb in the
air gap.

For the magnetic circuit of Fig. 9.17, assume (hat there is no air gap. Tind the
magnetic flux established in the center leg for an applied NI equal to 180 amp-
turns.

For the magnetic circuit of Fig. 9.17, assume no air gapand 4y =5 cm? with
all other dimensions remaining as specified in Example 9.7. Find the magnetic
flux density in the center leg for an applied NI equal to 150 amp-turns.



