&, ANTENNAS

In the preceding four chapters we studied the principles of propagation
and transmission of electromagnetic waves. The remaining important topic
pertinent to electromangetic wave phenomena is radiation of electromagnetic
waves. We have, in fact, touched on the principle of radiation of electro-
magnetic waves in Chap. 4 when we derived the electromagnetic field due
to the infinite plane sheet of sinusoidally time-varying, spatially uniform
current density. We learned that the current sheet gives rise to uniform plane
waves “radiating” away from the sheet to either side of it. We pointed out
at that time that the infinite plane current sheet is, however, an idealized,
hypothetical source. With the experience gained thus far in our study of the
elements of engineering electromagnetics, we are now in a position to learn
the principles of radiation from physical antennas, which is our goal in this
chapter.

We shall begin the chapter with the derivation of the electromagnetic
field due to an elemental wire antenna, known as the “Hertzian dipole.”
After studying the radiation characteristics of the Hertzian dipole, we shall
consider the example of a half-wave dipole to illustrate the use of super-
position to represent an arbitrary wire antenna as a series of Hertzian dipoles
in order to determine its radiation fields. We shall also discuss the principles
of arrays of physical antennas and the concept of image antennas to take
into account ground effects. Finally, we shall briefly consider the receiving
properties of antennas and learn of their reciprocity with the radiating prop-
erties.
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8.1 HERTZIAN DIPOLE

The Hertzian dipole is an elemental antenna consisting of an infinitesi-
mally long piece of wire carrying an alternating current I(¢), as shown in Fig.
8.1. To maintain the current flow in the wire, we postulate two point charges
Q,(t) and Q,(z) terminating the wire at its two ends, so that the law of con-
servation of charge is satisfied. Thus if

I(t) = I, cos wt 8.1)

then
dd_Qtl — K1) = I, cos oot (8.2a)
%Qt_z — —Kf) = —1I, cos ot (8.2b)

and
0.() = % sin wt (8.3)
0. = —% sin of = —0,(1) (8.3b)

0,
dl NG

0,(1)=-0, (1)
Figure 8.1. Hertzian dipole.

The time variations of 7, Q,, and @,, given by (8.1), (8.3a) and (8.3b),
respectively, are illustrated by the curves and the series of sketches for the
dipoles in Fig. 8.2, corresponding to one complete period. The different sizes
of the arrows associated with the dipoles denote the different strengths of
the current whereas the number of the plus or minus signs is indicative of
the strength of the charges.

To determine the electromagnetic field due to the Hertzian dipole, we
shall employ an intuitive approach based upon the knowledge gained in the
previous chapters as follows: From the application of what we have learned
in Chap. 1, we can obtain the expressions for the electric and magnetic fields
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Figure 8.2. Time variations of charges and current associated with the
Hertzian dipole.

due to the point charges and the current element, respectively, associated with
the Hertzian dipole, assuming that the fields follow exactly the time-varia-
tions of the charges and the current. These expressions do not, however,
take into account the fact that time-varying electric and magnetic fields give
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rise to wave propagation. Hence we shall extend them from considerations
of our knowledge of wave propagation and then check if the resulting solu-
tions satisfy Maxwell’s equations. If they do not, we will then have to modify
them so that they do satisfy Maxwell’s equations and at the same time reduce
to the originally derived expressions in the region where wave propagation
effects are small, that is, at distances from the dipole small compared to a
wavelength.

To follow the approach outlined in the preceding paragraph, we locate
the dipole at the origin with the current directed along the z axis, as shown
in Fig. 8.3, and derive first the expressions for the fields by applying the sim-
ple laws learned in Secs. 1.5 and 1.6. The symmetry associated with the prob-
lem is such that it is simpler to use a spherical coordinate system. Hence if
the reader is not already familiar with the spherical coordinate system, it is
suggested that Appendix A be read at this stage. To review briefly, a point in
the spherical coordinate system is defined by the intersection of a sphere cen-
tered at the origin, a cone having its apex at the origin and its surface sym-
metrical about the z axis, and a plane containing the z axis. Thus the
coordinates for a given point, say P, are r, the radial distance from the origin,
8, the angle which the radial line from the origin to the point makes with the
z axis, and ¢, the angle which the line drawn from the origin to the projec-
tion of the point onto the xy plane makes with the x axis, as shown in Fig.
8.3. A vector drawn at a given point is represented in terms of the unit vectors

2
A ¢ j

Figure 8.3. For the determination of the electromagnetic field due to the
Hertzian dipole.
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i,» iy, and i, directed in the increasing r, 8, and ¢ directions respectively, at
that point. It is important to note that all three of these unit vectors are not
uniform unlike the unit vectors i,, i,, and i, in the Cartesian coordinate sys-
tem.

Now using the expression for the electric field due to a point charge given
by (1.52), we can write the electric field at point P due to the arrangement of
the two point charges O, and — 0, in Fig. 8.3 to be

E= 9 — Qi (8.4)

T dmertt dmeri "

where r, and r, are the distances from @, to P and Q, (= —Q,) to P,
respectively, and i,, and i,, are unit vectors dirccted along the lines from @,
to P and Q, to P, respectively, as shown in Fig. 8.3. Noting that

i, =cosa i, +sinw, i (8.5a)

i, =cosa,i, —sina, iy (8.5b)

we obtain the r and @ components of the electric field at P to be

0os 0 o0
= (5 - o) 50
_ &(sin o, , sin oc2>
Eo dme\ r? + ri (8.6b)

For infinitesimal value of the length d! of the current element, that is,
fordigr,

(cos &;  cos ocz) ~ 1 1
r: re

,("2*r1)(’z+r1)x(dlcoso)2r

rir2 rt
2dlcos @
_ rcao_s (8.7a)
and
sino, , sin®,\ __ 2sin &,
( A ) T
~ dl sin 8 (8.7b)

where we have also used the approximations that for d/ < r, (r, — ry) =

dl cos B and sin of; =~ M These are, of course, exact in the limit that
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dl — 0. Substituting (8.7a) and (8.7b) in (8.6a) and (8.6b), respectively, we
obtain the electric field at point P due to the arrangement of the two point
charges to be given by

E=219%0c0s0i, + sin ) (8.8)

Note that Q, dl is the electric dipole moment associated with the Hertzian
dipole.
Using the Biot-Savart law given by (1.68), we can write the magnetic
field at point P due to the infinitesimal current element in Fig. 8.3 to be
_ B Idli,xi,
H=="am

dur (®.9)

To extend the expressions for E and H given by (8.8) and (8.9), respec-
tively, we observe that when the charges and current vary with time, the fields
also vary with time giving rise to wave propagation. The effect of a given
time-variation of the source quantity is therefore felt at a point in space not
instantaneously but only after a time lag. This time lag is equal to the time
it takes for the wave to propagate from the source point to the observation
point, that is, 7/v,, or Br/w, where v, (= 1//u€) and (= w./ue€) are the
phase velocity and the phase constant, respectively. Thus for

0, = % sin ot (8.10)
I = I, cos wt 8.11)

we would intuitively expect the fields at point P to be given by

E= [(Io/w) sin (,O(t _ ,Br/w)] dl (2 cos @ i, + sin /] ig)

dmer?
Ly disin (ot — fr) i +sindi
—hdisin(@t = )3 co591, + sinbip (8.122)
H = o cos ot — Brim)]dl . o,
4nr? ¢
_ Jodlcos (@ — fr) g g4, (8.12b)

4mr?

There is, however, one thing wrong with our intuitive expectation of the
fields due to the Hertzian dipole! The fields do not satisfy Maxwell’s curl
equations
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_ _dB_ _¢H
VxE=—5=—uS0 (8.132)
.. dD__ _9E
VxH=J+5 =5 (8.13b)

(where we have set J = 0 in view of the perfect dielectric medium). For exam-
ple, let us try the curl equation for H. First we note from Appendix B that
the expansion for the curl of a vector in spherical coordinates is

VxA= rsilﬂ[g_o(A°’ sin ) — %_,:; i,
+ 55 — e )i
+ %B’—r (r0) — S i, 8.14)
Thus
VxH= . silnB(;iGl:IO dlcozftc’f)zt — B sin? 9]i,
- % (% L dl cos4 Stcgt — pr sin 0] i,

_ 1L dl cozy(tc;)at - ﬂ")(z cos B i, 4 sin 8 iy)

__ B, dlsin (0t — Br) sin 8 i,

4mr
JE 1, dl si t — L oT
=€ar — BL, Sl‘?n(g B Gin g i
JE
ok n (8.15)

The reason behind the discrepancy associated with the expressions for
the fields due to the Hertzian dipole can be understood by recalling that in
Sec. 4.6 we learned from considerations of the Poynting vector that the
fields far from a physical antenna vary inversely with the radial distance away
from the antenna. The expressions we have derived do not contain inverse
distance dependent terms and hence they are not complete, thereby causing
the discrepancy. The complete field expressions must contain terms involving
1/r in addition to those in (8.12a) and (8.12b). Since for small r, I/r K
1/r? & 1/r?, the addition of terms involving 1/r and containing sin @ to (8.12a)
and (8.12b) would still maintain the fields in the region close to the dipole
to be predominantly the same as those given by (8.12a) and (8.12b), while
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making the 1/r terms predominant for large r since for large r, 1/r > 1/r?
> 1/,

Thus let us modify the expression for H given by (8.12b) by adding a
second term containing 1/r in the manner

H— I, dlsin@ [cos (a)t ﬁr) A cos (cot pr + J)jl

- i (8.16)

where 4 and J are constants to be determined. Then from Maxwell’s curl
equation for H, given by (8.13b), we have

JE 1 d . 5 1 0 .
W_Vx e —G(H,,Slno)l,—TW(er,)lo

_ 2L dl cos O cos (cot Br) | Acos(wt — fr+ )7,
. 4 |: »? + r? :|l’

+ I, dl sin 9[005 (cor pr) _ B sin (ot — fr)
dx r r?

_ ABsin (ot — pr -+ 9)7; (8.17)
r .

dnew e

F— 21, dl cos O[Sin (wt — fr) 4 A sin (ot ;-: pr+ 5)] i

+ I dl sin @[ sin (et — fr) + B cos (et — fr)
dnew rd r*

. AP cos (mrr— pr+ 6)] L (8.18)

Now, from Maxwell’s curl equation for E given by (8.13a), we have

u‘%{= _VxE— —i[i(rEg) —‘9_Er i

_ Iy dlsin 0[2ﬂ cos (wt — fpr)  2Asin (wt — Br + J)

dmew r? r

_ Bsin (gt — Br) _ AB*sin (wt — fr -+ 5)},,, (8.19)
H- b dl sin 02 sin (wt — fr) a 24 cos (wt — Br 4 9)
4 pre pr?
4 cos (cortz— Br) n A cos (wt r— pr+ 5)] i, (8.20)

We, however, have to rule out the 1/r* terms in (8.20) since for small r, these
terms are more predominant than the 1/#2 dependence required by (8.12b).
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Equation (8.20) will then also be conmsistent with (8.16) from which we
derived (8.18) and then (8.20). Thus we set

2sin (ot — Br) | 2Acos (wt — fr +0) _
5 + o= =0 (8.21)

which gives us
.
0= 5 (8.22a)
A= (8.22b)

Substituting (8.22a) and (8.22b) in (8.18) and (8.20), we then have

21, dl cos 8 sin (ot — Br) | B cos (wt — Br)];
= 04715660 r? i r? }’

I, dl sin 07 sin (wt — Br) , B cos(wt — Br)
+ 047!660 r + re

= w]ig (8.232)

’

Bl di;me cos (cort Br) _ Bsin (wt ﬁ’)] (8.23b)

These expressions for E and H satisfy both of Maxwell’s curl equations,
reduce to (8.12a) and (8.12b), respectively, for small r (fr < 1), and they
vary inversely with r for large r (8r > 1). They represent the complete elec-
tromagnetic field due to the Hertzian dipole.

8.2 RADIATION RESISTANCE
AND DIRECTIVITY

In the previous section we derived the expressions for the complete elec-
tromagnetic field due to the Hertzian dipole. These expressions look very
complicated. Fortunately, it is seldom necessary to work with the complete
field expressions because one is often interested in the field far from the
dipole which is governed predominantly by the terms involving 1/r. We,
however, had to derive the complete field in order to obtain the amplitude
and phase of these 1/r terms relative to the amplitude and phase of the cur-
rent in the Hertzian dipole, since these terms alone do not satisfy Maxwell’s
equations. Furthermore, by going through the exercise, we learned how to
solve a difficult problem through intuitive extension and reasoning based on
previously gained knowledge.



302 CH. 8 ANTENNAS

Thus from (8.23a) and (8.23b), we find that for a Hertzian dipole of
length d/ oriented along the z axis and carrying current

I = I, cos wt (8.24)

the electric and magnetic fields at values of # far from the dipole are given by

s
E— _ﬁ%il_;lrne sin (@t — B i,

= —ﬂ/”°—4‘ft’rsm—9 sin (@t — Br) iy (8.252)
H—— /”—ff;i—no sin (ot — Br)i, (8.25b)

These fields are known as the “radiation fields,” since they are the compo-
nents of the total fields that contribute to the time-average radiated power
away from the dipole (see Problem 8.6). Before we discuss the nature of
these fields, let us find out quantitatively what we mean by “far from the
dipole.” To do this, we look at the expression for the complete magnetic field
given by (8.23b) and note that the ratio of the amplitudes of the 1/r2 and 1/r
terms is equal to 1/Br. Hence for fr>> 1, or r>> A/2x, the 1/r* term is neg-
ligible compared to the 1/r term. Thus even at a distance of a few wavelengths
from the dipole, the fields are predominantly radiation fields.

Returning now to the expressions for the radiation fields given by (8.25a)
and (8.25b), we note that at any given point, (a) the electric field (£,), the
magnetic field (H,), and the direction of propagation (r) are mutually per-
pendicular and (b) the ratio of E, to H, is equal to 7, the intrinsic impedance
of the medium, which are characteristic of uniform plane waves. The phase
of the field, however, is uniform over the surfaces r = constant, that is,
spherical surfaces centered at the dipole, whereas the amplitude of the field
is uniform over surfaces (sin 8)/r = constant. Hence the fields are only
locally uniform plane waves, that is, over any infinitesimal area normal to
the r direction at a given point.

The Poynting vector due to the radiation fields is given by

P=ExH
= Egio X H¢i¢ = Eng,i,-
_ np2Ii(dl)? sin? § sin? (@t — Br)1i, (8.26)

167212

By evaluating the surface integral of the Poynting vector over any surface
enclosing the dipole, we can find the power flow out of that surface, that is,
the power “radiated” by the dipole. For convenience in evaluating the
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Figure 8.4. For computing the power radiated by the Hertzian dipole.

surface integral, we choose the spherical surface of radius r and centered at
the dipole, as shown in Fig. 8.4. Thus noting that the differential surface
area on the spherical surface is (r d8)(r sin 8 d) i, or r? sinf df d¢ i,, we
obtain the instantaneous power radiated to be
n 2n
. SWy2a] .
Prad_J;oJ;g OP r Sln0d0d¢lr
- f f NI Si0° 8 oo (r — pr) i dp
=0 Jg=0
272 L
= ﬂﬂ—é"@ sin? (cot — fr) f sin® 8 df
7 6=0

= ___nﬂ216§7§a’l)2 sin? (wt — fr)

= 2l b (-‘i—’)z sin? (0t — Br) (8.27)

The time-average power radiated by the dipole, that is, the average of P,,4
over one period of the current variation, is

(P> = Z(F]) Gsin @t — B>

At

- 5% [273”1(37) ] (8.28)
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We now define a quantity known as the “radiation resistance” of the
antenna, denoted by the symbol R_,4, as the value of a fictitious resistor that
dissipates the same amount of time-average power as that radiated by the
antenna when a current of the same peak amplitude as that in the antenna
is passed through it. Recalling that the average power dissipated in a resistor

R when a current 1, cos cot is passed through it is %I%R, we note from (8.28)

that the radiation resistance of the Hertzian dipole is

Riy — Egﬂ(%)z ohms (8.29)

For free space, # = #, = 120z ohms, and

Ry — 80n2<%>2 onE (8.30)

As a numerical example, for (d//A) equal to 0.01, R, = 8072(0.01)% =
0.08 ohms. Thus for a current of peak amplitude 1 amp, the time-average
radiated power is equal to 0.04 W, This indicates that a Hertzian dipole of
length 0.011 is not a very effective radiator.

We note from (8.29) that the radiation resistance and hence the radiated
power are proportional to the square of the electrical length, that is, the
physical length expressed in terms of wavelength, of the dipole. The result
given by (8.29) is, however, valid only for small values of dl/A since if dl/A
is not small, the amplitude of the current along the antenna can no longer
be uniform and its variation must be taken into account in deriving the
radiation fields and hence the radiation resistance. We shall do this in the
following section for a half-wave dipole, that is, for a dipole of length equal
to /2.

Let us now examine the directional characteristics of the radiation from
the Hertzian dipole. We note from (8.25a) and (8.25b) that, for a constant ,
the amplitude of the fields is proportional to sin . Similarly, we note from
(8.26) that, for a constant r, the power density is proportional to sin2 §. Thus
an observer wandering on the surface of an imaginary sphere centered at
the dipole views different amplitudes of the fields and of the power density
at different points on the surface. The situation is illustrated in Fig. 8.5(a)
for the power density by attaching to different points on the spherical surface
vectors having lengths proportional to the Poynting vectors at those points.
It can be seen that the power density is largest for 8 = #/2, that is, in the
plane normal to the axis of the dipole, and decreases continuously toward
the axis of the dipole, becoming zero along the axis.

It is customary to depict the radiation characteristic by means of a
“radiation pattern,” as shown in Fig. 8.5(b), which can be imagined to be
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Figure 8.5. The directional characteristics of radiation from the Hertzian
dipole.

obtained by shrinking the radius of the spherical surface in Fig. 8.5(a) to
zero with the Poynting vectors attached to it and then joining the tips of
the Poynting vectors. Thus the distance from the dipole point to a point on
the radiation pattern is proportional to the power density in the direction
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of that point. Similarly, the radiation pattern for the fields can be drawn
as shown in Fig. 8.5(c), based upon the sin @ dependence of the fields. In
view of the independence of the fields from ¢, the patterns of Fig. 8.5(b)—(c)
are valid for any plane containing the axis of the dipole. In fact, the three-
dimensional radiation patterns can be imagined to be the figures obtained by
revolving these patterns about the dipole axis. For a general case, the radia-
tion may also depend on ¢ and hence it will be necessary to draw a radiation
pattern for the § = n/2 plane. Here, this pattern is merely a circle centered
at the dipole.

We now define a parameter known as the “directivity” of the antenna,
denoted by the symbol D, as the ratio of the maximum power density radiated
by the antenna to the average power density. To elaborate on the definition
of D, imagine that we take the power radiated by the antenna and distribute
it equally in all directions by shortening some of the vectors in Fig. 8.5(a)
and lengthening the others so that they all have equal lengths. The pattern
then becomes nondirectional and the power density, which is the same in all
directions, will be less than the maximum power density of the original
pattern. Obviously, the more directional the radiation pattern of an antenna
is, the greater is the directivity.

From (8.26), we obtain the maximum power density radiated by the
Hertzian dipole to be

272 2ot 2
[P Yo = TSI Bl 12 (o —

2
_ —”/3126’7;%?2 sin? (wf — Br) (8.31)

By dividing the radiated power given by (8.27) by the surface area 4zr? of
the sphere of radius r, we obtain the average power density to be

. Prad . "ﬂzlg(dl)z 2 -
[Plev = 5225 = 154022 sin® (@t — Br) (8.32)

Thus the directivity of the Hertzian dipole is given by

e [Pr]max j— b
D = lrgteas — 1.5 (8.33)

8.3 HALF-WAVE DIPOLE
In the previous section we found the radiation fields due to a Hertzian

dipole, which is an elemental antenna of infinitesimal length. If we now have
an antenna of any length having a specified current distribution, we can
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divide it into a series of Hertzian dipoles and by applying superposition we
can find the radiation fields for that antenna. We shall illustrate this procedure
in this section by considering the half-wave dipole, which is a commonly
used form of antenna.

The half-wave dipole is a center-fed, straight wire antenna of length L
equal to 4/2 and having the current distribution

I(z) = I, cos nfz coset  for — % <z< % (8.34)

where the dipole is assumed to be oriented along the z axis with its center
at the origin, as shown in Fig. 8.6(a). As can be seen from Fig. 8.6(a), the
amplitude of the current distribution varies cosinusoidally along the antenna
with zeros at the ends and maximum at the center. To see how this distribu-
tion comes about, the half-wave dipole may be imagined to be the evolution
of an open-circuited transmission line with the conductors folded perpendicu-
larly to the line at points A/4 from the end of the line. The current standing
wave pattern for an open-circuited line is shown in Fig. 8.6(b). It consists of
zero current at the open circuit and maximum current at A/4 from the open
circuit, that is, at points @ and a’. Hence it can be seen that when the con-
ductors are folded perpendicularly to the line at @ and a’, the half-wave dipole
shown in Fig. 8.6(a) results.

Amplitude .
of Current 7 2
Distribution /,
[/
/A
/ i i T .
- e
1’ = i i .
b g, ®=0 e .
\ S~ N
\ A7 4
A
\ L
=2
2
(a) (b)

Figure 8.6. (a) Half-wave dipole. (b) Open-circuited transmission line for
illustrating the evolution of the half-wave dipole.

Now to find the radiation field due to the half-wave dipole, we divide it
into a number of Hertzian dipoles, each of length dz’ as shown in Fig. 8.7.
If we consider one of these dipoles situated at distance z’ from the origin,
then from (8.34) the current in this dipole is 1, cos (nz'/L) cos cwt. From (8.25a)
and (8.25b), the radiation fields due to this dipole at point P situated at dis-



308 CH. 8 ANTENNAS

L

2

Figure 8.7. For the determination of the radiation field due to the half-
wave dipole.

tance r’' from it are given by

dE = — nB1, cos (nz'/L) dz' sin 0’
4mr’

JH — — Blo cos (mz'/L) dz” sin '
dmr’

sin (et — fr) iy (8.35a)

sin (ot — fBri) i, (8.35b)

where 8’ is the angle between the z axis and the line from the current element
to the point P and i, is the unit vector perpendicular to that line, as shown in
Fig. 8.7. The fields due to the entire current distribution of the half-wave
dipole are then given by

L/2
E = dE
2’==L/2
L/2 7 . ’ ’
_ _f np1, cos (nz /L,.) sin 0" dz’ . (@f — Bryiy  (8.36a)
= s 4z
/2
H=— j‘ dH
z’=—L/2

L/2 ’ . ’ '
_ _f BI, cos (rnz'[L) sin §' dz sin (@ — Br)i, (8.36b)

r
oS dnr

where ¢, 6’ and i, are functions of z’.
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For radiation fields, ' is at least equal to several wavelengths and hence
> L. We can therefore set i, = i, and 8’ = 0 since they do not vary signifi-
cantly for —L/2 < z’ < L/2. We can also set ' = r in the amplitude factors
for the same reason, but for #’ in the phase factors we substitute » — z’ cos 8
since sin (ot — Br’) = sin (wt — mr’/L) can vary appreciably over the range
—LJ2 < 2/ < L/2. Thus we have

E — Ej4i,
where
L2 12 .
B ~f 11y cos (nz'/L) sin 0 sin (wt — Br + B2 cos 8) dz’
z'=~L/2 nr
_ n(m/L)I, sin 6 nz' . ( _ n ) :
S e T wt ol + 72 cos 6) dz
1y cos [(=/2) cos O] . ( _n )
== sn® sin | ot T’ (8.37a)
Similarly,
H = H,j,
where
_ 1y cosl(mj2)cos @] . _ T )
H, — — o €08 (2203 0] gin (cot ~r (8.37b)

The Poynting vector due to the radiation fields of the half-wave dipole
is given by
P=E x H= EH,,

_ nl% cos?[(m)2) cos 0]
T 4m2r? sin? @

sin? (cot —

N2

i, (8.38)
The power radiated by the half-wave dipole is given by

4 2n
Prad:J f P.r2sinfdfddi,
0=0 Jg=0

. f L k, COS cos” [(/2) cos 0] 2 (cot — —Z—r) do d¢

T sinf6

111 2 _m 2 cos? [(m/2) cos 6]
sin (a)t T r) J;=0 ——an® do

0.609913 . , __7;_)
= 20 gin (a)t Lr (8.39)
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The time-average radiated power is

B 0.609111%,< -, ( oz >>
{Praa) = = (sin® (of — Fr

gy 0.60911>
= 10(—n (8.40)

Thus the radiation resistance of the half-wave dipole is

0.6099

Rrad = T

ohms 8.41)

For free space, # = 5, = 120z ohms, and
R4 = 0.609 X 120 = 73 ohms (8.42)

Turning our attention now to the directional characteristics of the half-
wave dipole, we note from (8.37a) and (8.37b) that the radiation pattern for

the fields is [cos (—725— cos 0)]/ sin # whereas for the power density, it is

[cos2 (% cos 0)] / sin? §. These patterns, which are sketched in Fig. 8.8(a)-(b),

are slightly more directional than the corresponding patterns for the Hertzian
dipole. To find the directivity of the half-wave dipole, we note from (8.38)

(a)

(&)

Figure 8.8. Radiation patterns for (a) the fields and (b) the power density
due to the half-wave dipole.
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that the maximum power density is

[Pl — nl? {cos2 [(r/2) cos 0]}max sin? (cot - 1'_)

dn?r? sin? 6 L
2
= gl sin® (r — ) (8.43)

The average power density obtained by dividing P,,q by 4nr? is

2
[Py = 222118 i (coz -z ) (8.44)

Thus the directivity of the half-wave dipole is given by

. [Pr]mnx . 1 -
D = s — (g — 1642 (8.45)

8.4 ANTENNA ARRAYS

In Scc. 4.5 we illustrated the principle of an antenna array by considering
an array of two parallel, infinite plane current sheets of uniform densities.
We learned that by appropriately choosing the spacing between the current
sheets and the amplitudes and phases of the current densities, a desired radia-
tion characteristic can be obtained. The infinite plane current sheet is, how-
ever, a hypothetical antenna for which the fields are truly uniform plane
waves propagating in the one dimension normal to the sheet. Now that we
have gained some knowledge of physical antennas, in this section we shall
consider arrays of such antennas.

The simplest array we can consider consists of two Hertzian dipoles,
oriented parallel to the z axis and situated at points on the x axis on either
side of and equidistant from the origin, as shown in Fig. 8.9. We shall con-
sider the amplitudes of the currents in the two dipoles to be equal, but we
shall allow a phase difference o between them. Thus if J,(#) and /,(¢) are the
currents in the dipoles situated at (d/2, 0, 0) and (—d/2, 0, 0), respectively,
then

I, = I, cos (cot + %) (8.462)
1, = I, cos (cot = %) (8.46b)

For simplicity, we shall consider a point P in the xz plane and compute the
field at that point due to the array of the two dipoles. To do this, we note
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Figure 8.9. For computing the radiation field due to an array of two
Hertzian dipoles.

from (8.25a) that the electric field intensities at the point P due to the indivi-
dual dipoles are given by

_ _yBlydlsing, . - oc).

E, = 12k gin (cot pri+ %, (8.472)
__nBldlsin, . ( . _oc>.

E, = amr, sin (@t — fir, 5 ) o (8.47b)

where 0., 8,, ri, r,, i5,, and i,, are as shown in Fig. 8.9.

For r>> d, that is, for points far from the array, which is the region of
interest, we can set 8, =~ 8, = @ and i, & is, = i,. Also, we can set r; = r,
=~ r in the amplitude factors, but for r, and r, in the phase factors, we
substitute

raRr— % cos ¥ (8.48a)
d
ry==r+ 5 cosy (8.48b)

where y is the angle made by the line form the origin to P with the axis of
the array, that is, the x axis, as shown in Fig. 8.9. Thus we obtain the resul-
tant field to be
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E=E, +E,
__nﬁlodlsinO[- ( . i} oo)
= =~ | S0 ot — fr+ 5 cosy + 5
-+ sin (a)t — pr— ﬂTdcos W — %)ilio

- _2’7513!;1’{ sin ¢ cos (ﬁd 0052'/’ + “) sin (wt — fr)i,  (8.49)

Comparing (8.49) with the expression for the electric field at P due
to a single dipole situated at the origin, we note that the resultant field of
the array is simply equal to the single dipole field multiplied by the factor

2 cos (ﬁdc4032|//_—l—_oc), known as the “array factor.” Thus the radiation pattern

of the resultant field is given by the product of sin 8, which is the radiation
cos( dcoszy/ T “) , which is the

radiation pattern of the array if the antennas were isotropic. We shall call
these three patterns the “resultant pattern,” the “unit pattern,” and the
“group pattern,” respectively. It is apparent that the group pattern is inde-
pendent of the nature of the individual antennas as long as they have the same
spacing and carry currents having the same relative amplitudes and phase
differences. It can also be seen that the group pattern is the same in any plane
containing the axis of the array. In other words, the three-dimensional group
pattern is simply the pattern obtained by revolving the group pattern in the
xz plane about the x axis, that is, the axis of the array.

pattern of the single dipole field, and

Example 8.1. For the array of two antennas carrying currents having equal
amplitudes, let us consider several pairs of d and o and investigate the group
patterns.

Case 1: d = A2, « = 0. The group pattern is

cos (% cos l//)‘ = o8 (—g— cos l//)

This is shown sketched in Fig. 8.10(a). It has maxima perpendicular to the
axis of the array and nulls along the axis of the array. Such a pattern is known
as a “broadside pattern.”

Case 2: d = A2, & = m. The group pattern is

}cos (ﬁcosvl—l—%)}z

)

sin (1 cos )
3 v

This is shown sketched in Fig. 8.10(b). It has maxima along the axis of the
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array and nulls perpendicular to the axis of the array. Such a pattern is
known as an “endfire pattern.”
Case 3: d = 1/4, o = —mn/2. The group pattern is

COos (ﬁ—;COSW—%M:cos <%cost//—%)

This is shown sketched in Fig. 8.10(c). It has a maximum along y = 0 and
null along w = =. Again, this is an endfire pattern, but directed to one side.
This case is the same as the one considered in Sec. 4.5.

3 OO O

(b)

Figure 8.10. Group patterns for an array of two antennas carrying currents
of equal amplitude for (a) d = 1/2,a = 0,(b)d = A/2, ¢ = =, (c)d = A/4,
o= —n/2,and (d)d =2, 0 = 0.

Case 4: d = A, o = 0. The group pattern is

cos (% cos !//) ’ = |cos (7 cos ) |

This is shown sketched in Fig. 8.10(d). It has maxima along w = 0°, 90°,
180°, and 270° and nulls along w = 60°, 120°, 240°, and 300°.

Proceeding further, we can obtain the resultant pattern for an array of
two Hertzian dipoles by multiplying the unit pattern by the group pattern.
Thus recalling that the unit pattern for the Hertzian dipole is sin @ in the
plane of the dipole and considering values of 4/2 and 0 for d and @, respec-
tively, for which the group pattern is given in Fig. 8.10(a), we obtain the
resultant pattern in the xz plane, as shown in Fig. 8.11(a). In the xy plane,
that is, the plane normal to the axis of the dipole, the unit pattern is a circle
and hence the resultant pattern is the same as the group pattern, as illustrated
in Fig. 8.11(b). -

Example 8.2. The procedure of multiplication of the unit and group pat-
terns to obtain the resultant pattern illustrated in Example 8.1 can be extended
to an array containing any number of antennas. Let us, for example, consider
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O X 8 : 8 ’
Figure 8.11. Determination of the resultant pattern of an antenna array
by multiplication of unit and group patterns.

a linear array of four isotropic antennas spaced 1/2 apart and fed in phase,
as shown in Fig. 8.12(a), and obtain the resultant pattern.

To obtain the resultant pattern of the four-element array, we replace it
by a two-element array of spacing 1, as shown in Fig. 8.12(b), in which each
element forms a unit representing a two-element array of spacing A/2. The

A A A
.<—E—>0<-—§—>0<—5—>0 (a)

He—A—>D (b)
X = (c)

Figure 8.12. Determination of the resultant pattern for a linear array of
four isotropic antennas.
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unit pattern is then the pattern shown in Fig. 8.10(a). The group pattern,
which is the pattern of two isotropic radiators having d = A and & = 0,
is the pattern given in Fig. 8.10(d). The resultant pattern of the four-element
array is the product of these two patterns, as illustrated in Fig. 8.12(c). If
the individual elements of the four-element array are not isotropic, then this
pattern becomes the group pattern for the determination of the new resul-
tant pattern. |

8.5 IMAGE ANTENNAS

Thus far we have considered the antennas to be situated in an unbounded
medium so that the waves radiate in all directions from the antenna without
giving rise to reflections from any obstacles. In practice, however, we have to
consider the effect of the ground even if no other obstacles are present. To
do this, it is reasonable to assume that the ground is a perfect conductor.
Hence in this section we shall consider antennas situated above an infinite
plane, perfect conductor surface and introduce the concept of image sources,
a technique that is also useful in solving static field problems.

Thus let us consider a Hertzian dipole oriented vertically and located at
a height 4 above a plane, perfect conductor surface, as shown in Fig. 8.13(a).
Since no waves can penetrate into the perfect conductor, as we learned in
Sec. 5.6, the waves radiated from the dipole onto the conductor give rise to
reflected waves, as shown in Fig. 8.13(a) for two directions of incidence. For
a given incident wave onto the conductor surface, the angle of reflection is
equal to the angle of incidence, as can be seen intuitively from the following
reasons: (a) the reflected wave must propagate away from the conductor
surface, (b) the apparent wavelengths of the incident and reflected waves
parallel to the conductor surface must be equal, and (¢) the tangential com-
ponent of the resultant electric field on the conductor surface must be zero,
which also determines the polarity of the reflected wave electric field.

If we now produce the directions of propagation of the two reflected
waves backward, they meet at a point which is directly beneath the dipole
and at the same distance 4 below the conductor surface as the dipole is above
it. Thus the reflected waves appear to be originating from an antenna, which
is the “image” of the actual antenna about the conductor surface. This image
antenna must also be a vertical antenna since in order for the boundary con-
dition of zero tangential electric field to be satisfied at all points on the con-
ductor surface, the image antenna must have the same radiation pattern as
that of the actual antenna, as shown in Fig. 8.13(a). In particular, the current
in the image antenna must be directed in the same sense as that in the actual
antenna to be consistent with the polarity of the reflected wave electric field.
It can therefore be seen that the charges associated with the image dipole
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Figure 8.13. For illustrating the concept of image antennas. (a) Vertical
Hertzian dipole and (b) horizontal Hertzian dipole above a plane perfect-
conductor surface.

have signs opposite to those of the corresponding charges associated with
the actual dipole.

A similar reasoning can be applied to the case of a horizontal dipole above
a perfect conductor surface, as shown in Fig. 8.13(b). Here it can be seen
that the current in the image antenna is directed in the opposite sense to
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that in the actual antenna. This again results in charges associated with
the image dipole having signs opposite to those of the corresponding charges
associated with the actual dipole. In fact, this is always the case.

From the foregoing discussion it can be seen that the field due to an
antenna in the presence of the conductor is the same as the resultant field of
the array formed by the actual antenna and the image antenna. There is,
of course, no field inside the conductor. The image antenna is only a virtual
antenna that seves to simplify the field determination outside the conductor.
The simplicity arises from the fact that we can use the knowledge gained on
antenna arrays in the previous section to determine the radiation pattern.
Thus, for example, for a vertical Hertzian dipole at a height of 1/2 above
the conductor surface, the radiation pattern in the vertical plane is the product
of the unit pattern, which is the radiation pattern of the single dipole in the
plane of its axis, and the group pattern corresponding to an array of two iso-
tropic radiators spaced A apart and fed in phase. This multiplication and
the resultant pattern are illustrated in Fig. 8.14. The radiation patterns
for the case of the horizontal dipole can be obtained in a similar manner.

X - L%T
\\~_—‘, I"\ ‘:*.._”' L
AR =

1/ o

Figure 8.14. Determination of radiation pattern in the vertical plane for a
vertical Hertzian dipole above a plane perfect-conductor surface.

8.6 RECEIVING ANTENNAS

Thus far we have considered the radiating, or transmitting, properties
of antennas. Fortunately, it is not necessary to repeat all the derivations for
the discussion of the receiving properties of antennas since reciprocity dictates
that the receiving pattern of an antenna be the same as its transmitting
pattern. To illustrate this in simple terms without going through the general
proof of reciprocity, let us consider a Hertzian dipole situated at the origin
and directed along the z axis, as shown in Fig. 8.15. We know that the radia-
tion pattern is then given by sin @ and that the polarization of the radiated
field is such that the electric field is in the plane of the dipole axis.

To investigate the receiving properties of the Hertzian dipole, we assume
that it is situated in the radiation field of a second antenna so that the incom-
ing waves are essentia]ly[uniform plane waves. Thus let us consider a uni-
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di )

X

Figure 8.15. For investigating the receiving properties of a Hertzian dipole.

form plane wave with its electric field E in the plane of the dipole and incident
on the dipole at an angle @ with its axis, as shown in Fig. 8.15. Then the com-
ponent of the incident electric field parallel to the dipole is E sin 0. Since the
dipole is infinitesimal in length. the voltage induced in the dipole, which is
the line integral of the electric field intensity along the length of the dipole,
is simply equal to (E sin @) d! or to E dl sin . This indicates that for a given
amplitude of the incident wave field, the induced voltage in the dipole is
proportional to sin@. Furthermore, for an incident uniform plane wave
having its electric field normal to the dipole axis, the voltage induced in the
dipole is zero, that is, the dipole does not respond to polarization with elec-
tric ficld normal to the plane of its axis. These properties are reciprocal to
the transmitting properties of the dipole. Since an arbitrary antenna can be
decomposed into a series of Hertzian dipoles, it then follows that reciprocity
holds for an arbitrary antenna. Thus any transmitting antenna can be used
as a receiving antenna and vice versa.

We shall now briefly consider the loop antenna, a common type of
receiving antenna. A simple form of loop antenna consists of a circular
loop of wire with a pair of terminals. We shall orient the circular loop antenna
with its axis aligned with the z axis, as shown in Fig. 8.16, and we shall assume
that it is electrically short, that is, its dimensions are small compared to the
wavelength of the incident wave, so that the spatial variation of the field
over the area of the loop is negligible. For a uniform plane wave incident on
the loop, we can find the voltage induced in the loop, that is, the line integral
of the electric field intensity around the loop, by using Faraday’s law. Thus
if H is the magnetic field intensity associated with the wave, the magnitude
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Figure 8.16. A circular loop antenna.

of the induced voltage is given by

—|_4 .
IVl_\_EJ;reaofB ds‘
the loop

d :

™ ’ #-d—t area of H | dSlZ
the loop
dH,

_ /lAI 2 (8.50)

where A is the area of the loop. Hence the loop does not respond to a wave
having its magnetic field entirely parallel to the plane of the loop, that is,
normal to the axis of the loop.

For a wave having its magnetic field in the plane of the axis of the loop,
and incident on the loop at an angle § with its axis, as shown in Fig. 8.16,
H, = H sin § and hence the induced voltage has a magnitude

V= uA’%—If sin 0 (8.51)

Thus the receiving pattern of the loop antenna is given by sin 8, same as that
of a Hertzian dipole aligned with the axis of the loop antenna. The loop
antenna, however, responds best to polarization with magnetic field in the
plane of its axis, whereas the Hertzian dipole responds best to polarization
with electric field in the plane of its axis.
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Example 8.3. The directional properties of a receiving antenna can be
used to locate the source of an incident signal. To illustrate the principle,
let us consider two vertical loop antennas, numbered 1 and 2, situated on the
x axis at x = 0 m and x = 200 m, respectively. By rotating the loop antennas
about the vertical (z axis), it is found that no (or minimum) signal is induced
in antenna 1 when it is in the xz plane and in antenna 2 when it is in a
plane making an angle of 5° with the axis, as shown by the top view in Fig.
8.17. Let us find the location of the source of the signal.

\ 200 m

Figure 8.17. Top view of two loop antennas used to locate the source of an
incident signal.

Since the receiving properties of a loop antenna are such that no signal
is induced for a wave arriving along its axis, the source of the signal is located
at the intersection of the axes of the two loops when they are oriented so as
to receive no (or minimum) signal. From simple geometrical considerations,
the source of the signal is therefore located on the y axis at y = 200/tan 5°
or 2.286 km. -

8.7 SUMMARY

In this chapter we studied the principles of antennas. We first introduced
the Hertzian dipole, which is an elemental wire antenna, and derived the
complete electromagnetic field due to the Hertzian dipole by employing an
intuitive approach based on the knowledge gained in the previous chapters.
For a Hertzian dipole of length d/, oriented along the z axis at the origin,
and carrying current

I(t) = I, cos wt

we found the complete electromagnetic field to be given by
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| — 24 dl cos B sin (co:a— Bry | Bcos (C,"f — /fr)] il

drew
I, dl sin O sin (wt — Br) , B cos(wt — Br)
+ 0471:660 [ r’ * r
_ B?sin (ot — Br)].
e ],

H— I, d‘l‘ 7stin 6 [cos (co:z— fr)  Bsin (0t — ﬂr)] i,

r

where f = w./u€ is the phase constant.

For fr>> 1 or for r>> 1/2x, the only important terms in the complete
field expressions are the 1/r terms since the remaining terms are negligible
compared to these terms. Thus for » > 1/2x, the Hertzian dipole fields are
given by

E — _’ﬂb‘&lrﬂsin(wt — i,
H— _Wsm (w1 — Br)i,

where n = ./ u/e is the intrinsic impedance of the medium. These fields,
known as the radiation fields, correspond to locally uniform plane waves
radiating away from the dipole and, in fact, are the only components of the
complete fields contributing to the time-average radiated power. We found
the time-average power radiated by the Hertzian dipole to be given by

o= {2

and identified the quantity inside the brackets to be its radiation resistance.
The radiation resistance, R,,4, of an antenna is the value of a fictitious resistor
that will dissipate the same amount of time-average power as that radiated
by the antenna when a current of the same peak amplitude as that in the
antenna is passed through it. Thus for the Hertzian dipole,

_ 2an (dl\*
an _T(}»>

We then examined the directional characteristics of the radiation fields of
the Hertzian dipole, as indicated by the factor sin @ in the field expressions
and hence by the factor sin2 @ for the power density. We discussed the radia-
tion patterns and introduced the concept of the directivity of an antenna.
The directivity, D, of an antenna is defined as the ratio of the maximum power
density radiated by the antenna to the average power density. For the
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Hertzian dipole,
D=15

As an illustration of obtaining the radiation fields due to a wire antenna
of arbitrary length and arbitrary current distribution by representing it as a
series of Hertzian dipoles and using superposition, we considered the example
of a half-wave dipole and derived its radiation fields. We found that for a
center-fed half-wave dipole of length L (= 1/2), oriented along the z axis
with its center at the origin, and having the current distribution given by

a nz _L L
I(z) = I, cos 7 €08 wt for 5 <z< 5

the radiation fields are

_ _nl, cos[(m/2) cos 9] . ( _m )

E . sng S wt )
_ 1y cos[(m/2)cos 0] . _n >

L 2mr sin @ e <cot L")Y

From these, we sketched the radiation patterns and computed the radiation

resistance and the directivity of the half-wave dipole to be

R,,s = 73 ohms for free space
D = 1.642

We discussed antenna arrays and introduced the technique of obtaining
the resultant radiation pattern of an array by multiplication of the unit and
the group patterns. For an array of two antennas having the spacing d and
fed with currents of equal amplitude but differing in phase by &, we found

the group pattern for the fields to be COSMOST—M , where y is the

angle measured from the axis of the array, and we investigated the group
patterns for several pairs of values of 4 and a. For example, for d = A/2
and o = 0, the pattern corresponds to maximum radiation broadside to the
axis of the array, whereas for d = 1/2 and & = =, the pattern corresponds to
maximum radiation endfire to the axis of the array.

To take into account the effect of ground on antennas, we introduced the
concept of an image antenna in a perfect conductor and discussed the applica-
tion of the array techniques in conjunction with the actual and the image
antennas to obtain the radiation pattern of the actual antenna in the presence
of the ground.

Finally, we discussed the reciprocity between the receiving and radiating
properties of an antenna by considering the simple case of the Hertziandipole.



324

CH. 8 ANTENNAS

We introduced the loop antenna and illustrated the application of its direc-
tional properties for locating the source of an incident signal.

REVIEW QUESTIONS

8.1.
8.2

8.3.
8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.
8.11.
8.12.
8.13.

8.14.
8.15.
8.16.
8.17.

8.18.

8.19.

What is a Hertzian dipole?

Discuss the time-variations of the current and charges associated with the
Hertzian dipole.

Briefly describe the spherical coordinate system.

Explain why it is simpler to use the spherical coordinate system to find the
fields due to the Hertzian dipole.

Discuss the reasoning associated with the intuitive extension of the fields due
to the time-varying current and charges of the Hertzian dipole based on time-
varying electromagnetic phenomena.

Explain the reason for the inconsistency with Maxwell’s equations of the intui-
tively derived fields due to the time-varying current and charges of the Hert-
zian dipole.

Briefly outline the reasoning used for the removal of the inconsistency with
Maxwell’s equations of the intuitively derived fields due to the Hertzian
dipole.

Discuss the characteristics of the complete electromagnetic field due to the
Hertzian dipole.

Consult an appropriate reference book and compare the procedure used for
obtaining the electromagnetic field due to the Hertzian dipole with the pro-
cedure used here.

What are radiation fields ? Why are they important ?
Discuss the characteristics of the radiation fields.
Define the radiation resistance of an antenna.

Why is the expression for the radiation resistance of a Hertzian dipole not
valid for a linear antenna of any length?

Explain why power lines are not effective radiators.
What is a radiation pattern?
Discuss the radiation pattern for the power density due to the Hertzian dipole.

Define the directivity of an antenna. What is the directivity of a Hertzian
dipole?

What is the directivity of a fictitious antenna that radiates equally in all direc-
tions into one hemisphere ?

How do you find the radiation fields due to an antenna of arbitrary length and
arbitrary current distribution ?
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8.20.

8.21.

8.22,

8.23.

8.24.

8.25.

8.26.

8.27.

8.28.
8.29.

8.30.

8.31.

8.32.

8.33.

8.34.

8.35.

8.36.

Discuss the evolution of the half-wave dipole from an open-circuited trans-
mission line.

Justify the approximations involved in evaluating the integrals in the deter-
mination of the radiation fields due to the half-wave dipole.

What are the values of the radiation resistance and the directivity for a half-
wave dipole?

What is an antenna array?

Justify the approximations involved in the determination of the resultant
field of an array of two antennas.

Why is it that the distances r; and r, in the phase factors in Eqgs. (8.47a) and
(8.47b) cannot be set equal to r, but the same quantities in the amplitude
factors can be set equal to r?

What is an array factor ? Provide a physical explanation for the array factor.

Discuss the concept of unit and group patterns and their multiplication to
obtain the resultant pattern of an array.

Distinguish between broadside and endfire radiation patterns.

Discuss the concept of an image antenna to find the field of an antenna in the
vicinity of a perfect conductor.

What determines the sense of the current flow in an image antenna relative to
that in the actual antenna?

How does the concept of an image antenna simplify the determination of the
radiation pattern of an antenna above a perfect conductor surface?

Discuss the reciprocity associated with the transmitting and receiving proper-
ties of an antenna. Can you think of a situation in which reciprocity does not
hold?

What is the receiving pattern of a loop antenna?

How should you orient a loop antenna to receive (a) a maximum signal and
(b) a minimum signal ?

Discuss the application of the directional receiving properties of a loop
antenna in the location of the source of a radio signal.

How would you determine the direction of arrival of a radio signal by employ-
ing an array of two antennas located in the plane of incidence of the signal?

PROBLEMS

8.1.

The electric dipole moment associated with a Hertzian dipole of length 0.1 m
is given by

p = 10"?sin 27z X 107¢i, C-m

Find the current in the dipole.
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8.2

8.3.

84.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.13

8.14

CH. 8 ANTENNAS

Evaluate the curl of E given by Eq. (8.12a) and show that it is not equal to
——y%—l;l where H is given by Eq. (8.12b).

Show that in the limit @ — 0, the complete field expressions given by Egs.
(8.23a) and (8.23b) tend to Egs. (8.12a) and (8.12b), respectively.

Show that the radiation fields given by Egs. (8.25a) and (8.25b) do not by
themselves satisfy both of Maxwell’s curl equations.

Find the value of r at which the amplitude of the radiation field term in Eq.
(8.23a) is equal to the resultant amplitude of the remaining two terms in the
6 component.

Obtain the Poynting vector corresponding to the complete electromagnetic
field duc to the Hertzian dipole and show that the 1/r3 and 1/r2 terms do not
contribute to the time-average power flow from the dipole.

A straight wire of length 1 m situated in free space carries a uniform current
10 cos 4 x 106¢ amp. (a) Calculate the amplitude of the electric field intensity
at a distance of 10 km in a direction at right angle to the wire. (b) Calculate
the radiation resistance and the time-average power radiated by the wire.

Compute the radiation resistance per kilometer length of a straight power-line
wire. Comment on the effectiveness of the power line as a radiator.

Find the time-average power required to be radiated by a Hertzian dipole in
order to produce an electric field intensity of peak amplitude 0.01 V/m at a
distance of 1 km broadside to the dipole.

A Hertzian dipole situated at the origin and oriented along the x axis carries
a current I; = I cos wt. A second Hertzian dipole, having the same length
and also situated at the origin but oriented along the z axis, carries a current
I, = I, sin ot. Find the polarization of the radiated electric field at (a) a point
on the x axis, (b) a point on the z axis, (¢) a point on the y axis, and (d) a point
on the line x =y, z =0.

Find the ratio of the currents in two antennas having directivities D, and D,
and radiation resistances R;,q ; and R;,q , for which the maximum radiated
power densities are equal.

The radiation pattern for the power density of an antenna located at the origin
is dependent on @ in the manner sin* . Find the directivity of the antenna.

. The radiation pattern for the power density of an antenna located at the
origin is dependent on @ in the manner sin? 8 cos? #. Find the directivity of
the antenna.

. In Fig. 8.7, let L = 2 m, and investigate the variations of r* and zr’/L for
—L/2 < z’ < L/2 for (a) a point in the xy plane at r = 1 km and (b) a point
on the z axis at r = 1 km.

8.15. By dividing the interval 0 < @ < 7/2 into nine equal parts, numerically com-



CH. 8 PROBLEMS 327

8.16.
8.17.

8.18

8.19.

8.20.

8.21.

8.22.

8.23.

8.24

8.25.

8.26.

pute the value of

"2 cos? [(/2) cos 0] 40
i sin @

Complete the missing steps in the evaluation of the integral in Eq. (8.37a).

Find the time-average power required to be radiated by a half-wave dipole
in order to produce an electric ficld intensity of pcak amplitude 0.01 V/m at
a distance of 1 km broadside to the dipole.

Compare the correct value of the radiation resistance of the half-wave dipole
with the incorrect value that would result from using the expression for the
radiation resistance of the Hertzian dipole.

A short dipole is a center-fed straight wire antenna having a length small
compared to a wavelength, The amplitude of the current distribution can then
be approximated as decreasing linearly from a maximum at the center to zero
at the ends. Thus for a short dipole of length L lying along the z axis between
z = —L/2 and z = L/2, the current distribution is given by

Io(l—l—zfz)cosa)t for—%<z<0
I(z) =

22) L
I"(]_f cos Wt for0<z<-2—

(a) Obtain the radiation fields of the short dipole. (b) Find the radiation
resistance and the directivity of the short dipole.

For the array of two antennas of Example 8.1, find and sketch the group pat-
terns for (@) d = A/4, ¢ = /2 and (b) d = 24, & = 0.

For the array of two antennas of Example 8.1, having d = /4, find the value
of & for which the maxima of the group pattern are directed along ¥ = +60°,
and then sketch the group pattern.

Obtain the resultant pattern for a linear array of eight isotropic antennas,
spaced A/2 apart, carrying equal currents, and fed in phase.

Obtain the resultant pattern for a linear array of three isotropic antennas,
spaced A/2 apart, carrying unequal currents in the ratio 1:2:1, and fed in
phase.

For the array of two Hertzian dipoles of Fig. 8.9, find and sketch the resultant
pattern in the xz plane for d = A/2 and & = 7.

For the array of two Hertzian dipoles of Fig. 8.9, find and sketch the resultant
pattern in the xz plane for d = A/4 and & = —m/2.

For a horizontal Hertzian dipole at a height 1/4 above a plane, perfect con-
ductor surface, find and sketch the radiation pattern in (a) the vertical plane
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8.27.

8.28.

8.29.

8.30.

8.31.

8.32.
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perpendicular to the axis of the antenna and (b) the vertical plane containing
the axis of the antenna.

For a vertical antenna of length A/4 above a plane, perfect conductor surface,
find (a) the radiation pattern in the vertical plane and (b) the directivity.

A Hertzian dipole is situated parallel to a corner reflector, which is an arrange-
ment of two plane, perfect conductors at right angles to each other, as shown
by the cross-sectional view in Fig. 8.18. (a) Locate the image antennas required
to satisfy the boundary conditions on the corner reflector surface. (b) Find
and sketch the radiation pattern in the cross-sectional plane.

Hertzian

A
4 ? Dipole
A
1

Figure 8.18. For Problem 8.28,

If the Hertzian dipole in Fig. 8.18 is situated at a distance A/2 from the corner
and equidistant from the two planes, find the ratio of the radiation field at a
point broadside to the dipole and away from the corner to the radiation field
in the absence of the corner reflector.

An arrangement of two identical Hertzian dipoles situated at the origin and
oriented along the x and y axes, known as the turnstile antenna, is used for
receiving circularly polarized signals arriving along the z axis. Determine how
you would combine the voltages induced in the two dipoles so that the turn-
stile antenna is responsive to circular polarization rotating in the clockwise
sense as viewed by the antenna but not to that of the counterclockwise sense
of rotation.

A vertical loop antenna of area 1 m? is situated at a distance of 10 km from a
vertical wire antenna of length A/4 above a perfectly conducting ground
(directivity = 3.28; see Problem 8.27) radiating at 2 MHz. The loop antenna
is oriented so as to maximize the signal induced in it. For a time-average
radiated power of 10 kW, find the amplitude of the voltage induced in the
loop antenna.

An interferometer consists of an array of two identical antennas with spacing
d. Show that for a uniform plane wave incident on the array at an angle ¥ to
the axis of the array, as shown in Fig. 8.19, the phase difference A¢ between
the voltage induced in antenna 1 and the voltage induced in antenna 2 is
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Figure 8.19. For Problem 8.32,

%dr:os ¥, where A is the wavelength of the incident wave. For d = 24 and
for A¢p = 30°, find all possible values of . Take into account the fact that the

phase measurement is ambiguous by the amount -+2n7 where 2 is an integer.



