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In Chap. 6 we studied the principles of transmission lines, one of the two
kinds of waveguiding systems. We learned that transmission lines are made
up of two (or more) parallel conductors. The second kind of waveguiding
system, namely, waveguides, generally consists of a single conductor. Guiding
of waves in a waveguide is accomplished by the bouncing of the waves
obliquely between the walls of the guide, as compared to the case of a
transmission line in which the waves slide parallel to the conductors of the
line. It is our goal in this chapter to learn the principles of waveguides.

We shall introduce the principle of waveguides by first considering a
parallel-plate waveguide, that is, a waveguide consisting of two parallel, plane
conductors and then extend it to the rectangular waveguide, which is a hollow
metallic pipe of rectangular cross section, a common form of waveguide. We
shall learn that waveguides are characterized by cutoff, which is the phenome-
non of no propagation in a certain range of frequencies, and dispersion, which
is the phenomenon of propagating waves of different frequencies possessing
different phase velocities along the waveguide. In connection with the latter
characteristic, we shall introduce the concept of group velocity. We shall also
discuss the principles of cavity resonators, the microwave counterparts of
resonant circuits, and of optical waveguides. To introduce the parallel-plate
waveguide, we shall make use of the superposition of two uniform plane
waves propagating at an angle to each other. Hence we shall begin the
chapter with the discussion of uniform plane wave propagation in an arbitrary
direction relative to the coordinate axes.
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71 UNIFORM PLANE WAVE PROPAGATION
IN AN ARBITRARY DIRECTION

In Chap. 4 we introduced the uniform plane wave propagating in the z
direction by considering an infinite plane current sheet lying in the xy plane.
If the current sheet lies in a plane making an angle to the xy plane, the
uniform plane wave would then propagate in a direction different from the z
direction. Thus let us consider a uniform plane wave propagating in the z’
direction making an angle @ with the negative x axis as shown in Fig. 7.1. Let
the electric field of the wave be entirely in the y direction. The magnetic field
would then be directed as shown in the figure so that E x H points in the z’
direction.

B\
\ l\
\ \
\ \ z'
€ K \ \
\ \
\ \A
\ RO
(0] b P 7 v z
o\ C\\ _
H \ \
\ \ x
\ \
E \ \
\ \
Wrx \

Figure 7.1. Uniform plane wave propagating in the z’ direction lying in the
xz plane and making an angle 8 with the negative x axis.

We can write the expression for the electric field of the wave as
E = E, cos (0t — pz))i, 7.1)

where f# = w./ue€ is the phase constant, that is, the rate of change of phase
with distance along the z' direction for a fixed value of time. From the
construction of Fig. 7.2(a), we, however, have
z = —xcosf + zsin 6 (7.2)
so that
E = E, cos [wt — B(—x cos § + zsin )] i,
= E, cos [wt — (— f cos @)x — (B sin §)z] i,
= E, cos (wt — f.x — B.2)1i, (7.3)
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v;___._._% ————— !(x,z)
—x \\ L9 |
\ |
y |
>z
\—,~ cos @
‘}x
(2) (b)

Figure 7.2. Constructions pertinent to the formulation of the expressions
for the fields of the uniform plane wave of Fig. 7.1.

where f, = —fcosf and B, = fsin@ are the phase constants in the
positive x and positive z directions, respectively.

We note that | .| and | .| are less than f, the phase constant along the
direction of propagation of the wave. This can also be seen from Fig. 7.1 in
which two constant phase surfaces are shown by dashed lines passing through
the points O and 4 on the z’ axis. Since the distance along the x direction
between the two constant phase surfaces, that is, the distance OB is equal to
OA/cos 8, the rate of change of phase with distance along the x direction is
equal to

o4 o4 _
'BO—B " Odfcos6 B cosd

The minus sign for f, simply signifies the fact that insofar as the x axis is
concerned, the wave is progressing in the negative x direction. Similarly,
since the distance along the z direction between the two constant phase sur-
faces, that is, the distance OC is equal to O4/sin 8, the rate of change of phase
with distance along the z direction is equal to

04 POA)  ,.
Boc=04jsm0 — Bsind

Since the wave is progressing along the positive z direction, §, is positive. We
further note that

p% + B2 = (—pcos ) + (B sin0)* = p? (7.4)
and that
—cos @i, +sinfi, =i, (1.5

where i, is the unit vector directed along z’ direction, as shown in Fig. 7.2(b).
Thus the vector

B = (—B cosO)i, + (BsinO)i, = B, + B.i. (7.6)
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defines completely the direction of propagation and the phase constant along
the direction of propagation. Hence the vector B is known as the “propagation
vector.”

The expression for the magnetic field of the wave can be written as

H = H, cos (0t — fz') (7.7

where

H,| = Lo — (7.8)

CJule n

since the ratio of the electric field intensity to the magnetic field intensity of a
uniform plane wave is equal to the intrinsic impedance of the medium. From
the construction in Fig. 7.2(b), we observe that

H, = Hy(—sinfi, —cos@i,) (7.9
Thus using (7.9) and substituting for z’ from (7.2), we obtain
H = H/(—sin#i, — cos 81i,) cos [wt — Bf(—x cos @ + zsin §)]
— B %(Sin @i, + cos01i,) cos [wr — f.x — B.z] (1.10)

Generalizing the foregoing treatment to the case of a uniform plane wave
propagating in a completely arbitrary direction in three dimensions, as shown
in Fig. 7.3, and characterized by phase constants §,, f,, and §, in the x, y,
and z directions, respectively, we can write the expression for the electric
field as

E =E; cos (wt — f.x — B,y — B.z + ¢o)
e EO Cos [(Dt - (ﬁxix + ﬂyiy + ﬂziz) ¢ (Xix + yiy _I— Ziz) —I_ ¢0]
=E,cos(wt —B+1+ ¢) (7.11)

where

B = B.i. + B, + B.i. (7.12)
is the propagation vector,
r = xi, + yi, + zi, (7.13)

is the position vector, and ¢, is the phase at the origin at ¢ = 0. The position
vector is the vector drawn from the origin to the point (x, y, z) and hence has
components x, y, and z along the x, y, and z axes, respectively. The expression
for the magnetic field of the wave is then given by
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H = H, cos (wt — P +r+ ) (7.14)
where
1, = Bl (7.15)

Since E, H, and the direction of propagation are mutually perpendicular to
each other, it follows that

E,-p=0 (7.162)
H,.p=0 (7.16b)
E, H, =0 (1.16¢c)

In particular, E x H should be directed along the propagation vector B as
illustrated in Fig. 7.3 so that B x E, is directed along H,. We can therefore
combine the facts (7.16) and (7.15) to obtain

H _igxE, i, X Ey _ o/ puei; X E

0 =

n ule o
_BisxE, _BxE (7.17)
U ou
xjr
§

4_—>‘
=

4 — Constant Phase Surface
Phase = ¢ — 27

Constant Phase Surface
Phase = ¢

Figure 7.3. The various quantities associated with a uniform plane wave
propagating in an arbitrary direction.
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where iy is the unit vector along B. Thus
_ 1
H= w—ﬂﬂ x E (7.18)

Returning to Fig. 7.3, we can define several quantities pertinent to the
uniform plane wave propagation in an arbitrary direction. The apparent
wavelengths 4,, 1,, and A, along the coordinate axes x, y, and z, respectively,
are the distances measured along those respective axes between two con-
secutive constant phase surfaces between which the phase difference is 27, as
shown in the figure, at a fixed time. From the interpretations of g,, f,, and
B. as being the phase constants along the x, y, and z axes, respectively, we
have

1 ;—” (7.19)

=2 (7.19b)
Sl

A= i,—” (7.19)

We note that the wavelength A along the direction of propagation is related
to 4., 4,, and 4, in the manner

1_ 1 _ g _ B+ 8+ 8
22 QupY: 4nt 472
1 1 1
:A—i+l_§+l_§ (7.20)

The apparent phase velocities v,,, v,,, and v,, along the x, y, and z axes,
respectively, are the velocities with which the phase of the wave progresses
with time along the respective axes. Thus

Y, = ﬂﬂ (7.21a)

v, = ﬂﬂ (7.21b)
¥

v, =2 7.21¢c

==, =0

The phase velocity v, along the direction of propagation is related to v,,,

v,,, and v, in the manner
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1 _ 1 _p_B+B+E
- £

l

2 (0/f)} ®*
1 1 1
o S T 4 o (7.22)

The apparent wavelengths and phase velocities along the coordinate axes
are greater than the actual wavelength and phase velocity, respectively, along
the direction of propagation of the wave. This fact can be understood
physically by considering, for example, water waves in an ocean striking the
shore at an angle. The distance along the shoreline between two successive
crests is greater than the distance between the same two crests measured along
a line normal to the orientation of the crests. Also, an observer has to run
faster along the shoreline in order to keep pace with a particular crest than he
has to do in a direction normal to the orientation of the crests. We shall now
consider an example.

Example 7.1. Let us consider a 30 MHz uniform plane wave propagating in
free space and given by the electric field vector

E = 5(i, + o/ 31,) cos [6m X 107t — 0.052(3x — A/ 3y + 22)] V/m

Then comparing with the general expression for E given by (7.11), we have

E, = 50, + 4/31)
Ber=0.0523x — o/ 3y + 22)
= 0.057(3i, — o/ 3, + 2i,)  (xi, + i, + zi,)
B = 0.057(3i, — /31, + 2i,)
B« E, = 0.057(3i, — A/ 31, + 2i,) « 50, + +/31,)
=02573 —3) =0

Hence (7.16a) is satisfied; E, is perpendicular to B.

B — |B| = 0057 |3i, — A/3i, -+ 2i,| = 0.057,/9 + 3+ 4= 0.2z

_2n _ 2m _
1_?_0.2n_10m

3 x 108
10
The direction of propagation is along the unit vector

C_ B _%,—/Fh42 3, /3 1y
| v oy S S S A A

This does correspond to a frequency of Hz or 30 MHz in free space.
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From (7.17),

H, = B xE,

w/‘o

— 0.05z X 5 s . ) . '
=GR 107 X 4z X 107700 — &/ 3h + 20) x (i + /3

1 . )
= 75 (—~/ 31, +1, 4+ 2/31)
Thus
= zg;—,,(—«/ 3i, + i, + 24/31,) cos [6m X 1072
— 0.052(3x — A/ 3y + 2z) amp/m

To verify the expression for H just derived, we note that

Ho + B = | g5z (—/ i+ b+ 2/31) |+ 10,0570k, — /T, + 20)
_0?35( 33 — /3 +4/3)=0
E, « Hy = 5@, + 4/ 31,) » 8( A 341, 4 2./31,)

487t —/I+3)=0

Eo| _ Sliz t /33 5V/TF3
[H,[ ~ @/8r)[—/ 31, +1,+ 2./315,]  (1/48m)/3 + 1+ 12

10 _ _
= iz = 1207 = 7,

Hence (7.16b), (7.16¢), and (7.15) are satisfied.
Proceeding further, we find that
B.=0.05z x 3=0.15%

B, = —0.05z X /3 = —0.05,/3=
B:=0057 X 2=0.1z



SEC. 7.2 TRANSVERSE ELECTRIC WAVES IN A PARALLEL-PLATE WAVEGUIDE 255

We then obtain
2r 27t 40

b= = e = 3 m=13333m
2= Ii”zl :o.os%n:%m:mmm
’1-’:/23_7,5:02.—?7::20’“

Ve Z,‘l 676>1<510 =4 x 108 m/s

o 6mx 107
2B, T 005/ 3%
w 6 X 107

— e et S 8
v‘"_ﬂz_ 0% =6 X 10®* m/s

Finally, to verify (7.20) and (7.22), we note that

=4,/3 X 108 m/s = 6.928 X 10® m/s

1 1 1
RN U <40/3>2 i (40/«/_)2 + 2
4 1 1
= 7605 - 600 * 600 = T00

and
o + e e
vz + = @x 108)2 @73 % 1092 T (6 X 10°

1 1 1
=16 x 10 + 38 x 107 36 x 107

I T 1 _pilx
TOXI0F @B x 10° 2 -

7.2 TRANSVERSE ELECTRIC WAVES
IN A PARALLEL-PLATE WAVEGUIDE

Let us now consider the superposition of two uniform plane waves
propagating symmetrically with respect to the z axis as shown in Fig. 7.4 and
having the electric fields

E, = E,cos(wt — B, - D1,

= E, cos (wt - Bxcosf = fzsinf)i, (7.23a)
E,= —E;cos (wt — B, * 1) i,

= —E, cos (wt — fxcos@ — PfzsinB)i, (7.23b)
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>z Y z
. 616
1 E x

E FZ

Y x 2

Figure 7.4. Superposition of two uniform plane waves propagating sym-
metrically with respect to the z axis.

where f = w./ €, with € and u being the permittivity and the permeability,
respectively, of the medium. The corresponding magnetic fields are given by

H, = %(—Sin 0i, —cosfi,)cos(wt + Bxcosd — Bzsinf) (7.24a)
H, = %(Sin fi, — cos8i,)cos (wt — fxcos§ — Bz sin @) (7.24b)
where # = ./u/e. The electric and magnetic fields of the superposition of the

two waves are given by

E—E, +E,

= E,[cos (wt — Bz sin @ + Bx cos §)

— cos (wr — fzsin  — fx cos O)]i,

= —2E, sin (fx cos ) sin (cot — fzsin 0) i, (7.252)
H=H, +H,

= —% sin 0 [cos (wt — Bz sin @ + Bx cos B)
— cos (wt — fzsin § — Bx cos O)]i,
—% cos & [cos (wt — Bz sin 8 + Bx cos 6)
+ cos (wr — Pz sin @ — Bx cos D],
2E,

=t sin @ sin (Bx cos 0) sin (ot — Bz sin ) i,

— %cos 8 cos (fx cos B) cos (wt — PfzsinB)i, (7.25b)
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In view of the factors sin (Bx cos §) and cos (8 cos 8) for the x depen-
dence and the factors sin (wt — Bz sin ) and cos (w¢ — Pz sin @) for the z
dependence, the composite fields have standing wave character in the x
direction and traveling wave character in the z direction. Thus we have
standing waves in the x direction moving bodily in the z direction, as illus-
trated in Fig. 7.5, by considering the electric field for two different tirnes. In
fact, we find that the Poynting vector is given by

P=ExH=E, x (H,, + H,i,)
— —E,H, + EH,i,
4E°s1n 6 sin? (Bx cos 8) sin? (wt — fzsin ) i,
-+ ]i" cos 0 sin (2f8x cos 0) sin 2(wt — Pz sin 0) i, (7.26)
The time-average Poynting vector is given by
4E0 - PP
P> = sin 0 sin? (Bx cos 0) {sin? (wt — Bz sin O)) i,
+ E—’;" cos 8 sin (2B cos ) {sin 2(wt — Pz sin B)) i,

25" sin @ sin® (fx cos 0) i, (7.27)

Thus the time-average power flow is entirely in the z direction, thereby
verifying our interpretation of the field expressions. Since the composite
electric field is directed entirely transverse to the z direction, that is, the
direction of time-average power flow, whereas the composite magnetic field
is not, the composite wave is known as the “transverse electric,” or TE wave.

From the expressions for the fields for the TE wave given by (7.25a) and
(7.25b), we note that the electric field is zero for sin (fx cos #) equal to zero,
or

pxcosf = +mn, m=20,1,2,3,...

/3’::1(:;0 J—rzcr:’:ie’ m=0,1,2,3,... (7.28)

where
2= 2n _2r 1
o uE  f ue

Thus if we place perfectly conducting sheets in these planes, the waves will
propagate undisturbed, that is, as though the sheets were not present since the



Figure 7.5. Standing waves in the x direction moving bodily in the z
direction.
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boundary condition that the tangential component of the electric field be zero
on the surface of a perfect conductor is satisfied in these planes. The boundary
condition that the normal component of the magnetic field be zero on the
surface of a perfect conductor is also satisfied since H,, is zero in these planes.

If we consider any two adjacent sheets, the situation is actvally one of
uniform plane waves bouncing obliquely between the sheets, as illustrated in
Fig. 7.6 for two sheets in the planes x = 0 and x = 1/(2 cos ), thereby guiding

A
2cosf

x =

Figure 7.6. Uniform plane waves bouncing obliquely between two
parallel plane perfectly conducting sheets.

the wave and hence the energy in the z direction, parallel to the plates. Thus
we have a “parallel-plate waveguide,” as compared to the parallel-plate
transmission line in which the uniform plane wave slides parallel to the plates.
We note from the constant phase surfaces of the obliquely bouncing wave
shown in Fig. 7.6 that 1/(2 cos 8) is simply one-half of the apparent wavelength
of that wave in the x direction, that is, normal to the plates. Thus the fields
have one-half apparent wavelength in the x direction. If we place the perfectly
conducting sheets in the planes x = 0 and x = mAl/(2 cos ), the fields will then
have m number of one-half apparent wavelengths in the x direction between
the plates. The fields have no variations in the y direction. Thus the fields are
said to correspond to “TE,, , modes™ where the subscript m refers to the x
direction, denoting m number of one-half apparent wavelengths in that
direction and the subscript 0 refers to the y direction, denoting zero number of
one-half apparent wavelengths in that direction.

Let us now consider a parallel-plate waveguide with perfectly conducting
plates situated in the planes x = 0 and x = g, that is, having a fixed spacing
a between them, as shown in Fig. 7.7(a). Then, for TE,, , waves guided by the
plates, we have from (7.28),

__mh
2cos @
or

cost9~&1=2ﬂ

7.29
I/ e e

('h
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(a) (b)

/'/\

(©) ()

(e) )

Figure 7.7. For illustrating the phenomenon of cutoff in a parallel-plate
waveguide.

Thus waves of different wavelengths (or frequencies) bounce obliquely
between the plates at different values of the angle §. For very small wave-
lengths (very high frequencies), mA/2a is small, cos § =~ 0, § =~ 90°, and the
waves simply slide between the plates as in the case of the transmission line,
as shown in Fig. 7.7(b). As 1 increases (f decreases), mAi/2a increases, 0
decreases, and the waves bounce more and more obliquely, as shown in
Fig. 7.7(c)—(e), until A becomes equal to 2a/m for which cos =1, § = 0°,
and the waves simply bounce back and forth normally to the plates, as shown
in Fig. 7.7(f), without any feeling of being guided parallel to the plates. For
A > 2a/m, mA[2a > 1, cos @ > 1, and @ has no real solution, indicating that
propagation does not occur for these wavelengths in the waveguide mode.
This condition is known as the “cutoff” condition.
The cutoff wavelength, denoted by the symbol 4,, is given by

2a
Ae = = (7.30)

This is simply the wavelength for which the spacing a is equal to m number of
one-half wavelengths. Propagation of a particular mode is possible only if 4 is
less than the value of A, for that mode. The cutoff frequency is given by

. om
fe= SPNUTT: (7.31)

Propagation of a particular mode is possible only if fis greater than the value
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of f, for that mode. Consequently, waves of a given frequency f'can propagate
in all modes for which the cutoff wavelengths are greater than the wavelength
or the cutoff frequencies are less than the frequency.

Substituting 4, for 2a/m in (7.29), we have

cosf = -ii = J} (7.32a)

sin @ = /T — cos? 0 — \/1 = (11_) = ,\/1 — (fT_)‘ (7.32b)

_2mA _2n_mz
ﬂcose—Tﬂ—c =1 =2 (7.32)

Bsing =2 1= (f_); (7.32d)

We see from (7.32d) that the phase constant along the z direction, that is,
B sin §, is real for 4 < A, and imaginary for 2 > 4, thereby explaining once
again the cutoff phenomenon. We now define the guide wavelength, A,, to be
the wavelength in the z direction, that is, along the guide. This is given by

L2 _ A _ A
£ Bsin® L JT—Q@JA)Y 11— )P

This is simply the apparent wavelength, in the z direction, of the obliquely
bouncing uniform plane waves. The phase velocity along the guide axis,
which is simply the apparent phase velocity, in the z direction, of the obliquely
bouncing uniform plane waves, is

(7.33)

(4] v v

D J— r — vF
Y= Fsin0 sl ST — AR JT—Tr

Finally, substituting (7.32a)—(7.32d) in the field expressions (7.25a) and
(7.25b), we obtain

(7.34)

= . (mExN 2z \.
E = —2E;sin (_a ) sin (cot 7 z) i, (7.35a)
H—2E 4 sin (m__nx) sin (a)t iy ) i,
n A a Ae
2B L g (M) o (o — 22
n A cos ( 7 ) o8 w! 7 z) i, (7.35b)

These expressions for the TE,, , mode fields in the parallel-plate waveguide do
not contain the angle 8. They clearly indicate the standing wave character of
the fields in the x direction, having m one-half sinusoidal variations between
the plates. We shall now consider an example.
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Example 7.2. Let us assume the spacing a between the plates of a paraliel-
plate waveguide to be 5 cm and investigate the propagating TE,, , modes for
f = 10,000 MHz.

From (7.30), the cutoff wavelengths for TE,, , modes are given by

This result is independent of the dielectric between the plates. If the medium
between the plates is free space, then the cutoff frequencies for the TE, ,
modes are

£ 3x100 3 10
A  01/m

= 3m X 10° Hz

For f= 10,000 MHz = 10?° Hz, the propagating modes are TE, ,(f, =
3 x 10° Hz), TE, ((f, = 6 x 10° Hz), and TE, ,(f, = 9 x 10° Hz).

For each propagating mode, we can find 4, 4,, and »,, by using (7.32a),
(7.33), and (7.34), respectively. Values of these quantities are listed in the
following:

Mode Ac, CM fey MHz 8, deg Ag, cm Vpz, MfS

TE1,0 10 3000 72.54 3.145 3.145 x 108
TE;z, 0 5 6000 53.13 3.75 3.75 x 108
TE3,0 3.33 9000 25.84 6.882 6.882 x 108

7.3 PARALLEL-PLATE WAVEGUIDE DISCONTINUITY

In the previous section we introduced TE, , waves in a parallel-plate
waveguide. Let us now consider reflection and transmission at a dielectric
discontinuity in a parallel-plate guide, as shown in Fig. 7.8. Ifa TE, , wave is
incident on the junction from section 1, then it will set up a reflected wave into

x=0

Section 1

€, 1y

Figure 7.8. For consideration of reflection and transmission at a dielectric
discontinuity in a parallel-plate waveguide.
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section 1 and a transmitted wave into section 2, provided that mode propa-
gates in that section. The fields corresponding to these incident, reflected, and
transmitted waves must satisfy the boundary conditions at the dielectric
discontinuity. These boundary conditions were derived in Sec. 6.5. Denoting
the incident, reflected, and transmitted wave fields by the subscripts Z, #, and
t, respectively, we have from the continuity of the tangential component of E
at a dielectric discontinuity,

E,+ E,=E,atz=0 (7.36)

and from the continuity of the tangential component of H at a dielectric
discontinuity,

H,+H,=H,atz=0 (7.37)

We now define the guide impedance, #,,, of section 1 as

Her = _EI'J; A (7.38)

Recognizing that i, x (—i,) = i,, we note that #,, is simply the ratio of the
transverse components of the electric and magnetic fields of the TE,, , wave
which give rise to time-average power flow down the guide. From (7.35a) and
(7.35b) applied to section 1, we have

Agy N1 /B
=5 = . (7.39)
Tot =My = T= Gy T—(Falf?
The guide impedance is analogous to the characteristic impedance of a
transmission line, if we recognize that E,; and —H,,, are analogous to V'* and
I+, respectively. In terms of the reflected wave fields, it then follows that

E,, E,
flor — — (—ﬁz ) — £ (7.40)
This result can also be seen from the fact that for the reflected wave, the power
flow is in the negative z direction and since i, x i, = —i,, #,, is equal to
E, /H,,. For the transmitted wave fields, we have

= s (7.41)
where

(7.42)

ez = ﬂz@ - e - -
&l }.2 ,\/]. — (lz/}.c)z /\/1 - (f;:Z/f)z

is the guide impedance of section 2.
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Using (7.38), (7.40), and (7.41), (7.37) can be written as

Ey By _ By

”gl ”gl ﬂgz
Solving (7.36) and (7.43), we get
E(I_M) E,(l @>:0
N Het + b 5 Her

or the reflection coefficient at the junction is given by

rz&:ﬂn—ﬂu

E, Mg+ gy

and the transmission coefficient at the junction is given by

E E, + E
TZJ: yi yr=1+1"
E, E,

(7.43)

(7.44)

(7.45)

These expressions for I and 7 are similar to those obtained in Sec. 6.6 for
reflection and transmission at a transmission-line discontinuity. Hence
insofar as reflection and transmission at the junction are concerned, we can
replace the waveguide sections by transmission lines having characteristic
impedances equal to the guide impedances, as shown in Fig. 7.9. It should be
noted that unlike the characteristic impedance of a lossless line, which is a
constant independent of frequency, the guide impedance of the lossless

M1

[IJ
|
|

Line 1 I Line 2
| g2
|
[§]

|
z=0

Figure 7.9. Transmission-line equivalent of parallel-plate waveguide

discontinuity.

waveguide is a function of the frequency. We shall now consider an example.

Example 7.3. Let us consider the parallel-plate waveguide discontinuity
shown in Fig. 7.10. For TE, , waves of frequency /' = 5000 MHz, incident on
the junction from the free space side, we wish to find the reflection and

transmission coefficients.
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€ps Mo

lt——— 5 cm ——

z=0

Figure 7.10. For illustrating the computation of reflection and transmis-
sion coefficients at a parallel-plate waveguide discontinuity.

For the TE, , mode, 4, = 2a = 10 cm, independent of the diclectric. For
f = 5000 MHz,

1, = wavelength on the free space side = 3x10° _ 6em
' 5% 10°

A, = wavelength on the dielectric side = _ 3x10° 6 _sem
g VI X5x10° 3

Since 4 < A, in both sections, TE,,, mode propagates in both sections. Thus

. /3 . 1207 _ 471.24 oh
Mot = T Gala TGO o
= 1 _ 1205 40 _ 128250h
Her = ,\/l - (lz’f‘l‘)z - /\/1 — (2’“0)2 /\/1 —0.04 . ohms
 fey — Mgy 12825 —471.24
[ = o =T T anizd — O
t=14+T=1-—0.572=0428
For f = 4000 MHz. we would obtain I' = —0.629 and 7 = 0.371. -

7.4 DISPERSION AND GROUP VELOCITY*

In Sec. 7.2 we learned that for the propagating range of frequencies, the
phase velocity and the wavelength along the axis of the parallel-plate wave-
guide are given by

— Y 7.46
Ve = T G (7.46)

and

A
. — 7.47
e = TT= G0 (7.47)

*This section may be omitted without loss of continuity.
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where v, = 1/./p€, A = v,/f = 1/f s/ 1€, and f, is the cutoff frequency. We
note that for a particular mode, the phase velocity of propagation along the
guide axis varies with the frequency. As a consequence of this characteristic
of the guided wave propagation, the field patterns of the different frequency
components of a signal comprising a band of frequencies do not maintain the
same phase relationships as they propagate down the guide. This phenomenon
is known as “dispersion,” so termed after the phenomenon of dispersion of
colors by a prism.

To discuss dispersion, let us consider a simple example of two infinitely
long trains 4 and B traveling in parallel, one below the other, with each train
made up of boxcars of identical size and having wavy tops, as shown in Fig.
7.11. Let the spacings between the peaks (centers) of successive boxcars be
50 m and 90 m, and let the speeds of the trains be 20 m/s and 30 m/s, for
trains 4 and B, respectively. Let the peaks of the cars numbered 0 for the two
trains be aligned at time ¢ = 0, as shown in Fig. 7.11(a). Now, as time
progresses, the two peaks get out of alignment as shown, for example, for
t = 1sin Fig, 7.11(b), since train B is traveling faster than train 4. But at the
same time, the gap between the peaks of cars numbered —1 decreases. This
continues until at ¢ = 4 s, the peak of car “—1” of train 4 having moved by a
distance of 80 m aligns with the peak of car “—1” of train B, which will have
moved by a distance of 120 m, as shown in Fig. 7.11(c). For an observer
following the movement of the two trains as a group, the group appears to
have moved by a distance of 30 m although the individual trains will have
moved by 80 m and 120 m, respectively. Thus we can talk of a “group
velocity,” that is, the velocity with which the group as a whole is moving. In
this case, the group velocity is 30 m/4 s or 7.5 m/s.

The situation in the case of the guided wave propagation of two different
frequencies in the parallel-plate waveguide is exactly similar to the two-train
example just discussed. The distance between the peaks of two successive cars
is analogous to the guide wavelength, and the speed of the train is analogous
to the phase velocity along the guide axis. Thus let us consider the field
patterns corresponding to two waves of frequencies f, and f, propagating in
the same mode, having guide wavelengths ,, and A,,, and phase velocities
along the guide axis v,,, and v, respectively, as shown, for example, for the
electric field of the TE, , mode in Fig. 7.12. Let the positive peaks numbered 0
of the two patterns be aligned at t = 0, as shown in Fig. 7.12(a). As the indi-
vidual waves travel with their respective phase velocities along the guide,
these two peaks get out of alignment but some time later, say At, the positive
peaks numbered —1 will align at some distance, say Az, from the location of
the alignment of the “0” peaks, as shown in Fig. 7.12(b). Since the “—1”th
peak of wave 4 will have traveled a distance 4,, + Az with a phase velocity
v,,4 and the “—1”th peak of wave B will have traveled a distance Aes + Az
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Figure 7.11. For illustrating the concept of group velocity.
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Figure 7.12. For illustrating the concept of group velocity for guided wave
propagation,.
with a phase velocity v,,, in this time Az, we have
},gA 4+ Az = Vpzd At (7.48a)
hen+ Az =, At (7.48b)
Solving (7.48a) and (7.48b) for At and Az, we obtain
At — tea— Aen (1.49a)

'vpzA = Usz

268
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and

Az — Pedpsn = Aes¥p:s (7.49b)

'vpzA - Usz

The group velocity, v,, is then given by

v, = Az Ag¥psn — Ags¥pea _ Agihenfs — AgnAgafu

Ar J.:-«: — An L 1\
heshen(12 = 70)
- So —Jfa _ Qp — Wy
L - L ﬂzﬂ ol ﬁzA (7'50)
lgB lgA

where f8,,and B, are the phase constants along the guide axis, corresponding
to f,, and f5, respectively. Thus the group velocity of a signal comprised of two
frequencies is the ratio of the difference between the two radian frequencies to
the difference between the corresponding phase constants along the guide
axis.

If we now have a signal comprised of a number of frequencies, then a
value of group velocity can be obtained for each pair of these frequencies in
accordance with (7.50). In general, these values of group velocity will all be
different. In fact, this is the case for wave propagation in the parallel-plate
guide, as can be seen from Fig. 7.13, which is a plot of w versus §, corre-
sponding to the parallel-plate guide for which

e S R

Such a plot is known as the “w—f, diagram” or the “dispersion diagram.”

w}l

621 ﬁ22 ﬁ23

Figure 7.13. Dispersion diagram for the parallel-plate waveguide.
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The phase velocity, w/8,, for a particular frequency is given by the slope of
the line drawn from the origin to the point, on the dispersion curve, corre-
sponding to that frequency as shown in the figure for the three frequencies
@1, @,, and ;. The group velocity for a particular pair of frequencies is given
by the slope of the line joining the two points, on the curve, corresponding to
the two frequencies as shown in the figure for the two pairs w,, w, and w,, ;.
Since the curve is nonlinear, it can be seen that the two group velocities are
not equal. We cannot then attribute a particular value of group velocity for
the group of the three frequencies w;, w,, and w,.

If, however, the three frequencies are very close, as in the case of a
narrow-band signal, it is meaningful to assign a group velocity to the entire
group having a value equal to the slope of the tangent to the dispersion curve
at the center frequency. Thus the group velocity corresponding to a narrow
band of frequencies centered around a predominant frequency  is given by

v, = ij (1.52)

For the parallel-plate waveguide under consideration, we have from (7.51),
: I (O
B ue1 = (B) +ovie (15"
— i fi, o f2 ﬁ)‘” 2
—W‘f( P )5
1/2
— 1 te
= (1 - 5)

and

= d/)’ «/ﬂf*/ L == \/l - (%)2 a2e)

As a numerical example, for the case of Example 7.2, the group velocities for
S = 10,000 MHz for the three propagating modes TE, ,, TE, ,, and TE, ,
are 2.862 x 10%® m/s, 2.40 X 10® m/s, and 1.308 x 10%® m/s, respectively.
From (7.46) and (7.53), we note that

U,V = U} (7.54)

An example of a narrow-band signal is an amplitude modulated signal,
having a carrier frequency w modulated by a low frequency Aw < w as given
by

E.(t) = E,,(1 + mcos Aw-t) cos mt (7.55)

where m is the percentage modulation. Such a signal is actually equivalent to
a superposition of unmodulated signals of three frequencies w — Aw, @, and
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@ + Aw, as can be seen by expanding the right side of (7.55). Thus
E.(t) = E,, cos wt + mE,, cos wt cos Aw-t

= E,, cos ¢t + % [cos (w — Aw)t + cos (w + Aw)t] (7.56)

The frequencies w — Aw and @ + Aw are the side frequencies. When the
amplitude modulated signal propagaies in a dispersive channel such as the
parallel-plate waveguide under consideration, the different frequency com-
ponents undergo phase changes in accordance with their respective phase
constants. Thus if f, — AB,, B,, and §, 4+ Ap, are the phase constants
corresponding to @ — Aw, », and o -+ Aw, respectively, assuming linearity
of the dispersion curve within the narrow band, the amplitude modulated
wave is given by

E(z,1) = E, cos (wt — f.2)
+ %{m [(@ — Aw)t — (8. — ABz]
+ cos [(w -+ Aw)t — (B, + AB)z]}

= E,, cos (wt — f£,2)

mE.,

+ 2 O{COS [(Cl)t_ﬂ_.Z)—(Aa).t— Aﬁz-Z)]
+ cos [(@t — B.2) + (Awt — AB,-2)]}
= E,, cos (ot — f,2) + mE,q cos (wt — f.z) cos (Aw-t — Af,-2)
= E 1 -+ mcos (Aw-t — AB,-2)] cos (wt — f.2) (1.57)
This indicates that although the carrier frequency phase changes in accor-

dance with the phase constant §,, the modulation envelope and hence the
information travels with the group velocity Aw/Af,, as shown in Fig. 7.14, In

Aw

AT T T

=|e

LY

Figure 7.14. For illustrating that the modulation envelope travels with the
group velocity.
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view of this and since v, is less than v,, the fact that v, is greater than v, is
not a violation of the theory of relativity. Since it is always necessary to use
some modulation technique to convey information from one point to
another, the information always takes more time to reach from one point to
another in a dispersive channel than in the corresponding nondispersive
medium.

7.5 RECTANGULAR WAVEGUIDE
AND CAVITY RESONATOR

Thus far, we have restricted our discussion to TE,, , wave propagation in
a parallel-plate waveguide. From Sec. 7.2, we recall that the parallel-plate
waveguide is made up of two perfectly conducting sheets in the planes
x = 0 and x = « and that the electric field of the TE,, , mode has only a y
component with m number of one-half sinusoidal variations in the x direction
and no variations in the y direction. If we now introduce two perfectly
conducting sheets in two constant y planes, say, y = 0 and y = b, the field
distribution will remain unaltered since the electric field is entirely normal to
the plates, and hence the boundary condition of zero tangential electric field is
satisfied for both sheets. We then have a metallic pipe with rectangular cross
section in the xy plane, as shown in Fig. 7.15. Such a structure is known as the
“rectangular waveguide” and is, in fact, a common form of waveguide.

x=0

&
¥

Ny

xY

Neme Nyeg

Figure 7.15. A rectangular waveguide,

Since the TE, , mode field expressions derived for the parallel-plate
waveguide satisfy the boundary conditions for the rectangular waveguide,
those expressions as well as the entire discussion of the parallel-plate wave-
guide case hold also for TE, , mode propagation in the rectangular wave-
guide case. We learned that the TE, ; modes can be interpreted as due to
uniform plane waves having electric field in the y direction and bouncing
obliquely between the conducting walls x = 0 and x = g, and with the
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associated cutoff condition characterized by bouncing of the waves back and
forth normally to these walls, as shown in Fig. 7.16(a). For the cutoff condi-
tion, the dimension « is equal to m number of one-half wavelengths such that

[AdrE,.. = L (7.58)

m

In a similar manner. we can have uniform plane waves having electric
field in the x direction and bouncing obliquely between the walls y = 0 and
y = b, and with the associated cutoff condition characterized by bouncing of
the waves back and forth normally to these walls, as shown in Fig. 7.16(b),
thereby resulting in TE, , modes having no variations in the x direction and
n number of one-half sinusoidal variations in the y direction. For the cutoff

y
7 ot
xY A
\
(@)
Y A
| z g—>
%
xY M.——' xY
//_ _________________ -
”
(b)
Yy
z -

xY

()

Figure 7.16. Propagation and cutoff of (a) TEp, o, (b) TEg, , and (c) TEp, »
modes in a rectangular waveguide.
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condition, the dimension b is equal to » number of one-half wavelengths such
that

[}'c]TEo,n == %

= (7.59)

We can even have TE,, , modes having m number of one-half sinusoidal
variations in the x direction and n» number of one-half sinusoidal variations in
the y direction due to uniform plane waves having both x and y components
of the electric field and bouncing obliquely between all four walls of the guide
and with the associated cutoff condition characterized by bouncing of the
waves back and forth obliquely between the four walls as shown, for
example, in Fig. 7.16(c). For the cutoff condition, the dimension a must be
equal to m number of one-half apparent wavelengths in the x direction and the
dimension b must be equal to » number of one-half apparent wavelengths in
the y direction such that

A,  Qamy? t Gy (7.60)
or
— 1
[lC]TEm,n . /\/(m/za)z + (n/2b)2 (761)

*wnm At this point, it may be of interest to obtain the field expressions
for the TE,, , modes. To do this, we shall first show, by making use of the
expansions for the Maxwell’s curl equations in Cartesian coordinates given by
(3.12a)—(3.12c) and (3.26a)—(3.26¢), that all transverse (x and y) field com-
ponents are derivable from the longitudinal field component H.,. It is con-
venient to use the phasor forms of the field components and the differential
equations. Since all components of the fields are then dependent on ¢ and z in
the manner e/l@~ (/497 we can replace d/d¢ by jo and d/dz by —j(2xn/4,).
Furthermore, E, = 0 in view of TE modes and J,, J,, and J, are all zero since
the medium inside the waveguide is a perfect dielectric. Thus the phasor
forms of (3.12a)—(3.12¢) and (3.26a)—(3.26¢) pertinent to the discussion here
are

ji_"Ey — —joul, (7.622)
4
2% A
~IEE, = —jou, (7.62)
‘% _ 00% — joud, (7.62c)

*The portion between the symbols wnwi may be omitted without loss of continuity.
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"g 1 2, = joeE, (7.62d)

~2 0, — e — joeE, (7.62¢)
8

"0’? _ "gx —0 (7.626)

Solving (7.62a), (7.62b), (7.62d), and (7.62¢), for E,, E,, H,, and H, in
terms of H,, we obtain

7o Jou _ IH,

b = iy — o oy S
- _](Dﬂ oﬁz

= " @min)T— othe ox e
. 27t/ 0H, (7.63¢)

" :J(2n//1g)2 — @?ue 0x

= . 27/A, dH,
Hy - 1(27[/1?)2 = Cozﬂ_f 6y (7.63(1)

Furthermore by substituting (7.63a) and (7.63b) into (7.62¢) and rearranging,
we obtain a differential equation for H, as given by

et St [ (B) +oue] =0 (7.64)

When the differential equation (7.64) is solved by using the separation of
variables technique and subject to appropriate boundary conditions, the
solution for H, is obtained, which can then be put into (7.63a)—(7.63d) to
obtain the transverse field components. We shall, however, not pursue this
approach but shall write the solution for H, from our knowledge of H, for
TE,, , modes and the subsequent discussion of TE,,, and TE, , modes. To
do this, we first note from (7.35b) that for TE,, , modes,

H,= H, cos (mnx) cos (cot — %t-z) (7.65a)

a g

where we have replaced the amplitude factor by H,. The expression for H,
for TE, , modes can then be obtained by letting x — y, m — n, anda— b
in (7.65a). Thus for TE,, , modes

H, = H, cos (ﬂ’;—y) cos (cot — %%) (7.65b)
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Combining (7.65a) and (7.65b), we have for TE,, , modes,

H, = Hcos ( nx) cos (nby>cos (cot - 2{—2) (7.66)

Note that (7.66) reduces to (7.65a) for » = 0 and to (7.65b) for m = 0.
Writing H, in phasor form, that is,

H, = H, cos (m;t ) cos <n;:y> e/ (2n/iz (7.67)
and substituting into (7.64), we obtain
21\ A nm\?
() +otue= () + ()
— | ot + Ty
(2afm)* * (2b/m)*

_ (i_”)z (7.68)

Substituting (7.68) and (7.67) into (7.63a)-(7.63d), we finally obtain the
expressions for the transverse field components:

E, — JC‘Z/;% th A (m;zx) e (nbﬂ) PRI EE (7.69a)
E = 1021/71{} WZIHO (m;rx) o (%) oI (2a/Az (7.69b)
Hy— j% n—Z—IHO sin (%) cos (n_;)tz) e~/ (7.69¢)
H, _]2;5 nanU cos ( Zx) sin ("bﬂ> g~ iAoz (7.69d)

Note that the sine terms in these field expressions satisfy the boundary
conditions of zero tangential electric field and zero normal magnetic field at
the walls of the waveguide. mum

The entire treatment of guided waves in Sec. 7.2 can be repeated starting
with the superposition of two uniform plane waves having their magnetic
fields entirely in the y direction, thereby leading to “transverse magnetic
waves,” or “TM waves,” so termed because the magnetic field for these
waves has no z component, whereas the electric field has. Insofar as the cutoff
phenomenon is concerned, these modes are obviously governed by the same
condition as the corresponding TE modes. There cannot, however, be any
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TM,, , or TM, , modes in a rectangular waveguide since the z component of
the electric field, being tangential to all four walls of the guide, requires
sinusoidal variations in both x and y directions in order that the boundary
condition of zero tangential component of electric field is satisfied on all four
walls. Thus for TM,, , modes in a rectangular waveguide, both m and n
must be nonzero and the cutoff wavelengths are the same as for the TE,, ,
modes, that is,

1

N ~m2a): -+ (n]2b)? (7.70)

(A,

The foregoing discussion of the modes of propagation in a rectangular
waveguide points out that a signal of given frequency can propagate in
several modes, namely, all modes for which the cutoff frequencies are less
than the signal frequency or the cutoff wavelengths are greater than the
signal wavelength. Waveguides are, however, designed so that only one mode,
the mode with the lowest cutoff frequency (or the largest cutoff wavelength),
propagates. This is known as the “dominant mode.” From (7.58), (7.59),
(7.61), and (7.70), we can see that the dominant mode is the TE, , mode or the
TE,, ; mode, depending on whether the dimension a or the dimension b is the
larger of the two. By convention, the larger dimension is designated to be 4,
and hence the TE, , mode is the dominant mode. We shall now consider an
example.

Example 7.4. 1t is desired to determine the lowest four cutoff frequencies
referred to the cutoff frequency of the dominant mode for three cases of
rectangular waveguide dimensions: (i) b/a = 1, (ii) b/a = 1/2, and (iii)
bj/a = 1/3. Given a = 3 cm, it is then desired to find the propagating mode(s)
for f = 9000 MHz for each of the three cases.

From (7.61) and (7.70), the expression for the cutoff wavelength for a
TE,, , mode wherem =0, 1,2, 3, . .. andn=20,1,2,3,...butnot both m
and » equal to zero and for a TM,, , mode where m = 1, 2,3,...and n =
1,2, 3,...1s given by

B 1
Y 77 e T

The corresponding expression for the cutoff frequency is
_ Y L«a)z (1)2
fc_lc—\/ﬂe 2a) T \2p
- G2
2a./ ue b
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The cutoff frequency of the dominant mode TE, , is 1/2a./u€e. Hence

[_f%;a =/ m? + (n%)z

By assigning different pairs of values for m and n, the lowest four values of
/L f-Jez, , can be computed for each of the three specified values of /a. These
computéd values and the corresponding modes are shown in Fig. 7.17.

For a = 3 cm, and assuming free space for the dielectric in the waveguide,

1 3% 108
[fIJ]TEl'o e 20,\/% = 7% 0.03 = 5000 MHz

Hence for a signal of frequency f = 9000 MHz, all the modes for which
Sollfe,, is less than 1.8 propagate. From Fig. 7.17, these are

TE, 4, TE, ;, TM, ,, TE,, forbja=1
TE,,q for bja = 1/2
TE,,, for bja = 1/3

It can be seen from Fig. 7.17 that for b/a < 1/2, the second lowest cutoff

™, ,
™, ,
TEI,O TMI,1 TE2’0 TE2'1
TEO,I TEl,l TE0,2 TE1,2
2 =1 # ¢ ¢ # | 1 1 - fc
a 1 \/E 2 \/g 3 4 5 [fc]TEIO
TEO’1 TEl,l TEZ,1
TEI,O TE2,0 TMl,l TMZ,I
b 1 * ¢ + ¢ L L L fe
a 2 1 2 V5 N 4 5 [fc]TElo
TE3’0 TMI_1
TEI.O TEZ.O TEO.I TEl,l
_lz: l ‘ # + ¢ 1 1 > fc
a 3 | 2 3V10 4 5 [fc]TE10

Figure 7.17. Lowest four cutoff frequencies referred to the cutoff frequency
of the dominant mode for three cases of rectangular waveguide dimensions.
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frequency that corresponds to that of the TE, , mode is twice the cutoff
frequency of the dominant mode TE, ,. For this reason, the dimension b of
a rectangular waveguide is generally chosen to be less than or equal to /2 in
order to achieve single-mode transmission over a complete octave (factor of
two) range of frequencies. -

Let us now consider guided waves of equal magnitude propagating in the
positive z and negative z directions in a rectangular waveguide. This can be
achieved by terminating the guide by a perfectly conducting sheet in a
constant z plane, that is, a transverse plane of the guide. Due to perfect
reflection from the sheet, the fields will then be characterized by standing wave
nature along the guide axis, that is, in the z direction, in addition to the
standing wave nature in the x and y directions. The standing wave pattern
along the guide axis will have nulls of transverse electric field on the termi-
nating sheet and in planes parallel to it at distances of integer multiples of
A,/2 from that sheet. Placing of perfect conductors in these planes will not
disturb the fields since the boundary condition of zero tangential electric field
is satisfied in those planes.

Conversely, if we place two perfectly conducting sheets in two constant z
planes separated by a distance d, then, in order for the boundary conditions
to be satisfied, d must be equal to an integer multiple of 1,/2. We then have a
rectangular box of dimensions g, b, and d in the x, y, and z directions, res-
pectively, as shown in Fig. 7.18. Such a structure is known as a “cavity

-

Ax
N

Figure 7.18. A rectangular cavity resonator.

resonator” and is the counterpart of the low-frequency lumped parameter
resonant circuit at microwave frequencies since it supports oscillations at
frequencies for which the above condition, that is,

d:l%, —1,2,3,... .71

is satisfied. Recalling that A, is simply the apparent wavelength of the
obliquely bouncing uniform plane wave along the z direction, we find that the
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wavelength corresponding to the mode of oscillation for which the fields have
m number of one-half sinusoidal variations in the x direction, #» number of
one-half sinusoidal variations in the y direction, and / number of one-half
sinusoidal variations in the z direction is given by

1 i 1 1
1%, QRalm): + (2b/n)? + @djh? (1.72)

or
Fose = : (7.73)

~(m2a)* & (n2b)* + (I]2d)*

The expression for the frequency of oscillation is then given by

e . (S

The modes are designated by three subscripts in the manner TE, ,, and
TM,, ... Since m, n, and / can assume combinations of integer values, an
infinite number of frequencies of oscillation are possible for a given set of
dimensions for the cavity resonator. We shall now consider an example.

Example 7.5. The dimensions of a rectangular cavity resonator with air
dielectric are a = 4 cm, b = 2 cm, and d = 4 cm. It is desired to determine
the three lowest frequencies of oscillation and specify the mode(s) of oscilla-
tion, transverse with respect to the z direction, for each frequency.

By substituting 4 = u,, € = €,, and the given dimensions for a, b, and d
in (7.74), we obtain

Jose =3 X 108\/(TH$§)2+<ﬁ)2—|—<6£—8>2

= 3750./m? + 4n* 4+ [* MHz

By assigning combinations of integer values for m, n, and / and recalling that
both m and # must be nonzero for TM modes, we obtain the three lowest
frequencies of oscillation to be

3750 x ./ 2 = 5303 MHz for TE, , ; mode

3750 x /5 = 8385 MHz for TE, , , TE, ,,, and TE, , , modes

3750 X /6 = 9186 MHz for TE, , , and TM, , ; modes -

7.6 OPTICAL WAVEGUIDES

Thus far we have been concerned with waveguides that have conductors as
boundaries. In this section we shall briefly consider another class of wave-
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guides. These waveguides, having dielectrics as their boundaries, form the
basis for waveguiding at optical frequencies. The principle of optical wave-
guides suggests itself from the phenomenon of guiding of waves by means of
oblique reflections at the boundaries of the guide. Thus let us consider a
uniform plane wave incident obliquely on a plane boundary between two
different perfect dielectric media at an angle of incidence 8, to the normal to
the boundary, as shown in Fig. 7.19. To satisfy the boundary conditions at

Medium 2
€ My

Transmitted
Wave

l
|
|
|
|
0

t

Medium 1
€, Ky

Reflected
Wave

Incident
Wave

Figure 7.19. Reflection and transmission of an obliquely incident unitorm
plane wave on a plane boundary between two different perfect dielectric
media.

the interface between the two media, a reflected wave and a transmitted wave
will be set up. Let 8, be the angle of reflection and 6, be the angle of transmis-
sion. Then without writing the expressions for the fields, we can find the
relationship between 8,, §,, and @, by noting that in order for the incident,
reflected, and transmitted waves to be in step at the boundary, their apparent
phase velocities parallel to the boundary must be equal, that is

U1 _ Y1 _ Um
sin 0;‘ T sin 0,. sin 0: (775)

where v,, (= 1/2/11€,) and v,, (= 1/3/11,€,) are the phase velocities along
the directions of propagation of the waves in medium 1 and medium 2,
respectively.

From (7.75), we have

sin 8, = sin 6, (7.76a)
sin 0, = 222 5in @, = ,/ #4161 4in G, (7.76b)
Up1 Ha€2
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or

0, =86, (7.77a)
—in-t (L BaEa 7.77b
#, = sin (W//lzfz sin 0,) ( )

Equation (7.77a) is known as the “law of reflection” and (7.77b) is known as
the “law of refraction,” or “Snell’s law.” Snell’s law is commonly cast in terms
of the refractive index, denoted by the symbol # and defined as the ratio of the
velocity of light in free space to the phase velocity in the medium. Thus if
n, (= ¢/v,,) and n, (= c/v,,) are the refractive indices for media 1 and 2,
respectively, then

9, — sin~! (% sin 0,.) (1.78)

2

Assuming that g, = u, = U,, which is generally the case, we note from
(7.76b) that for €, > €, sin @, < sin @, and 6, < @, so that the transmitted
wave is refracted toward the normal to the boundary. For €, < €, sin8, >
sin @, and @, > 0, so that the transmitted wave is refracted away from the
normal to the boundary. Hence for this case there exists a value of @, for
which 6, = 90°. Denoting this “critical angle” of incidence to be §,, we have
from (7.76b).

Jﬁ sin @, = sin 90° = 1
€,
or

9, = sin? x/ﬁ —sint 22 (1.79)
€y ny

For 6, > 0,, there is no real solution for #, and “total internal reflection”
occurs, that is, the incident wave is entirely reflected. Hence if we have a
dielectric slab of permittivity €,, sandwiched between two dielectric media of
permittivity €, < €, then by launching waves at an angle of incidence
greater than the critical angle, it is possible to achieve guided wave propaga-
tion, as shown in Fig. 7.20. This is the principle of optical waveguides. As in
the case of metallic waveguides, a given frequency signal may propagate in
several modes for which the cutoff frequencies are less than the wave fre-
quency. We shall, however, not pursue a discussion of these modes; instead,
we shall conclude this section with a brief description of an optical fiber,

which is a common form of optical waveguide.
An optical fiber, so termed because of its filamentary appearance, consists
typically of a core and a cladding, having cylindrical cross sections as shown
in Fig. 7.21(a). The core is made up of a material of permittivity greater than



SEC. 7.7 SuMMARY 283

u0,62<61

\/ \/

By, €, <é

Figure 7.20. Total internal reflection in a dielectric slab waveguide.

Cladding Cladding €, <e
@ Core €
Cladding €, <¢€;

(a) (b)

Figure 7.21. (a) Transverse and (b) longitudinal cross sections of an
optical fiber,

that of the cladding so that a critical angle exists for waves inside the core
incident on the interface between the core and the cladding, and hence
waveguiding is made possible in the core by total internal reflection. The
phenomenon may be visualized by considering a longitudinal cross section of
the fiber through its axis, shown in Fig. 7.21(b), and comparing it with that of
the slab waveguide shown in Fig. 7.20. Although the cladding is not essential
for the purpose of waveguiding in the core since the permittivity of the core
material is greater than that of free space, the cladding serves two useful
purposes: (a) It avoids scattering and field distortion by the supporting
structure of the fiber since the field decays exponentially outside the core and
hence is negligible outside the cladding. (b) It allows single-mode propagation
for a larger value of the radius of the core than permitted in the absence of the
cladding.

77 SUMMARY

In this chapter we studied the principles of waveguides. To introduce the
waveguiding phenomenon, we first learned how to write the expressions for
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the electric and magnetic fields of a uniform plane wave propagating in an
arbitrary direction with respect to the coordinate axes. These expressions are
given by
E=E;cos(wt—PB+r+ ¢,
H=H,cos(wt —f 1+ ¢)

where B and r are the propagation and position vectors given by

ﬁ = ﬂxix ST ﬂyiy i ﬂziz
r = xi, + yi, + zi,

and ¢, is the phase of the wave at the origin at t+ = 0. The magnitude of B is
equal to w./ue€, the phase constant along the direction of propagation of the
wave. The direction of B is the direction of propagation of the wave. We
learned that

E,-p=0
Hy«p=0
E,-H, =0

that is, E;, Hy, and B are mutually perpendicular, and that

|E,| _ _«/z
H,  ~ 7T~V

Also, since E x H should be directed along the propagation vector B, it then
follows that

1
H=— E
cou'$><

The quantities 8., §8,, and B, are the phase constants along the x, y, and z
axes, respectively. The apparent wavelengths and the apparent phase veloc-
ities along the coordinate axes are given, respectively, by

2z "
j,,-:-——, L=X),Z
B
vpi:%a i:xsy5z

By considering the superposition of two uniform plane waves propagating
at an angle to each other and placing two perfect conductors in appropriate
planes such that the boundary condition of zero tangential electric field is
satisfied, we introduced the parallel-plate waveguide. We learned that the
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composite wave is a transverse electric, or TE wave since the electric field is
entirely transverse to the direction of time-average power flow, that is, the
guide axis, but the magnetic field is not. In terms of the uniform plane wave
propagation, the phenomenon is one of waves bouncing obliquely between the
conductors as they progress down the guide. For a fixed spacing a between the
conductors of the guide, waves of different frequencies bounce obliquely at
different angles such that the spacing a is equal to an integer, say, 7 number
of one-half apparent wavelengths normal to the plates and hence the fields
have m number of one-half-sinusoidal variations normal to the plates. These
are said to correspond to TE, , modes where the subscript 0 implies no
variations of the fields in the direction parallel to the plates and transverse to
the guide axis. When the frequency is such that the spacing a is equal to m
one-half wavelengths, the waves bounce normally to the plates without the
feeling of being guided along the axis, thercby leading to the cutoff condition.
Thus the cutoff wavelengths corresponding to TE,, , modes are given by

and the cutoff frequencies are given by

v

f — Y _ m
= = ——
A, 2a./ue

A given frequency signal can propagate in all modes for which 4 < 4, or
f> f.. For the propagating range of frequencies, the wavelength along the
guide axis, that is, the guide wavelength, and the phase velocity along the
guide axis are given, respectively, by

1= gl . A
VT =@ ST =LY
v v

R w7 RV =

We discussed the solution of problems involving reflection and transmis-
sion at a discontinuity in a waveguide by using the transmission-line analogy.
This consists of replacing each section of the waveguide by a transmission line
whose characteristic impedance is equal to the guide impedance and then
computing the reflection and transmission coefficients as in the transmission-
line case. The guide impedance, #,, which is the ratio of the transverse
electric field to the transverse magnetic field, is given for the TE modes by

7, = ] = n
M= N = ()?
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We discussed the phenomenon of dispersion arising from the frequency
dependence of the phase velocity along the guide axis, and we introduced the
concept of group velocity. Group velocity is the velocity with which the
envelope of a narrow-band modulated signal travels in the dispersive channel
and hence it is the velocity with which the information is transmitted. It is
given by

)

where f, is the phase constant along the guide axis.

We extended the treatment of the parallel-plate waveguide to the rectan-
gular waveguide, which is a metallic pipe of rectangular cross section. By
considering a rectangular waveguide of cross-sectional dimensions a and b, we
discussed transverse electric or TE modes as well as transverse magnetic or
TM modes, and learned that while TE,, , modes can include values of m or n
equal to zero, TM,, , modes require that both m and » be nonzero, where m
and n refer to the number of one-half sinusoidal variations of the fields along
the dimensions a and b, respectively. The cutoff wavelengths for the TE,, , or
TM,,,, modes are given by

o 1
be = Ty T T

The mode that has the largest cutoff wavelength or the lowest cutoff frequency
is the dominant mode, which here is the TE, , mode. Waveguides are
generally designed to transmit only the dominant mode.

By placing perfect conductors in two transverse planes of a rectangular
waveguide separated by an integer multiple of one-half the guide wavelength,
we introduced the cavity resonator, which is the microwave counterpart of
the lumped parameter resonant circuit encountered in low-frequency circuit
theory. For a rectangular cavity resonator having dimensions «, b, and d, the
frequencies of oscillation for the TE,, ,; or TM,, ,, modes are given by

o= 7l Ge) + (@) +32)

where [ refers to the number of one-half sinusoidal variations of the fields
along the dimension d.

Finally, we discussed the principle of optical waveguides. By considering
a uniform plane wave incident at an angle §, from medium 1 of permittivity
€, and permeability x, onto medium 2 of permittivity €, and permeability z,,
we derived Snell’s law of refraction

0, = sin™! (\/& sin 9.-)
M€,
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where 6, is the angle of transmission into medium 2. For g, = u, and for
€, < €,, there exists a critical angle of incidence 6, given by

6, = sin™! «/ﬁ
€

above which total internal reflection of the wave occurs into medium 1. Thus
optical waveguides consist of a dielectric medium sandwiched between two
dielectric media of lesser permittivity so as to permit waveguiding by means
of total internal reflection.

REVIEW QUESTIONS

7.1. What is the propagation vector? Interpret the significance of its magnitude
and direction.

7.2. Discuss how the phase constants along the coordinate axes are less than the
phase constant along the direction of propagation of a uniform plane wave
propagating in an arbitrary direction.

Write the expressions for the electric and magnetic fields of a uniform plane
wave propagating in an arbitrary direction and list all the conditions to be
satisfied by the electric field, magnetic field, and propagation vectors.

7.4. What are apparent wavelengths? Why are they longer than the wavelength
along the direction of propagation?

7.5. What are apparent phase velocities? Why are they greater than the phase
velocity along the direction of propagation?

7.3

7.6. Discuss how the superposition of two uniform plane waves propagating at an
angle to each other gives rise to a composite wave consisting of standing waves
traveling bodily transverse to the standing waves.

7.7. What is a transverse electric wave ? Discuss the reasoning behind the nomen-
clature TE,,, o modes.

7.8. How would you characterize a transverse magnetic wave?

7.9. Compare the phenomenon of guiding of uniform plane waves in a parallel-
plate waveguide with that in a parallel-plate transmission line.

7.10. Discuss how the cutoff condition arises in a waveguide.

7.11. Explain the relationship between the cutoff wavelength and the spacing be-
tween the plates of a parallel-plate waveguide based on the phenomenon at
cutoff.

7.12. Is the cutoff wavelength dependent on the dielectric in the waveguide? Is the
cutoff frequency dependent on the dielectric in the waveguide ?

7.13. What is guide wavelength ?
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7.14.

7.15.
7.16.

7.17.

7.18.
7.19.
7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.
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Provide a physical explanation for the frequency dependence of the phase
velocity along the guide axis.

Define guide impedance.

Discuss the use of the transmission-line analogy for solving problems involv-
ing reflection and transmission at a waveguide discontinuity.

Why are the reflection and transmission coefficients for a given mode at a
lossless waveguide discontinuity dependent on frequency whereas the reflec-
tion and transmission coefficients at the junction of two lossless lines are
independent of frequency ?

Discuss the phenomenon of dispersion.
Discuss the concept of group velocity with the aid of an example.

What is a dispersion diagram? Explain how the phase and group velocities
can be determined from a dispersion diagram.

When is it meaningful to attribute a group velocity to a signal comprised of
more than two frequencies? Why ?

Discuss the propagation of a narrow-band amplitude modulated signal in a
dispersive channel.

Discuss the nomenclature associated with the modes of propagation in a rec-
tangular waveguide.

Explain the relationship between the cutofl wavelength and the dimensions of
a rectangular waveguide based on the phenomesnon at cutoff.

Discuss the reasoning behind the formulation of the expression for H, for
TE,,,, modes in a rectangular waveguide.

Briefly outline the procedure for deriving the transverse ficld components in
a rectangular waveguide from the longitudinal field component.

Why can there be no transverse magnetic modes having no variations for the
fields along one of the dimensions of a rectangular waveguide ?

What is meant by the dominant mode ? Why are waveguides designed so that
they propagate only the dominant mode?

Why is the dimension b of a rectangular waveguide generally chosen to be less
than or equal to one-half the dimension a?

Explain why, when driving through a mountain tunnel or under a road bridge,
you are able to receive signals in the FM band but not in the AM band of an
AM-FM radio.

What is a cavity resonator?

How do the dimensions of a rectangular cavity resonator determine the fre-
quencies of oscillation of the resonator?

Discuss the condition required to be satisfied by the incident, reflected, and
transmitted waves at the interface between two diclectric media.

What is Snell’s law ?
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7.35. What is total internal reflection ? What are the requirements for total internal
reflection ?

7.36. Discuss the principle of optical waveguides.

7.37. Compare the phenomenon at cutoff in a metallic waveguide with that at cutoff
in an optical waveguide.

7.38. Provide a brief description of an optical fiber.

PROBLEMS

7.1. Assuming the x and y axes to be directed eastward and northward, respec-
tively, find the expression for the propagation vector of a uniform plane wave
of frequency 15 MHz in free space propagating in the direction 30° north of
cast.

7.2. The propagation vector of a uniform plane wave in a perfect dielectric medium

having € = 4.5€9 and g = U, is given by

.

B = 2nr(3i,. + 4i, + 5i,)

Find (a) the apparent wavelengths and (b) the apparent phase velocities, along
the coordinate axes.

7.3. For a uniform plane wave propagating in free space, the apparent phase
velocities along the x and y directions are found to be 6,/2 X 10% m/s and
2./3 % 108 m/s, respectively. Find the direction of propagation of the wave.

7.4. The electric field vector of a uniform plane wave propagating in a perfect
dielectric medium having € = 9€, and u = U, is given by

E = 10(—ix — 24/ 31, + 4/ 31i,) cos [167 x 105¢
— 0.04n(,/ 3 x — 2y — 32)]
Find (2) the frequency, (b) the direction of propagation, (c) the wavelength

along the direction of propagation, (d) the apparent wavelengths along the x,
y, and z axes, and (¢) the apparent phase velocities along the x, y, and z axes.

7.5. Given
E = 10i, cos [6m x 107t — 0.1n(y + /3 2)]
(a) Determine if the given E represents the electric field of a uniform plane

wave propagating in free space. (b) If the answer to part (a) is “yes,” find the
corresponding magnetic field vector H.

7.6. Given
E = (i, — 2i, — /3 i,) cos [157 x 105¢ — 0.057(,/ 3 x + 2)]

H = gi(ix -+ 2i, — o/F1) cos [157 x 105 — 0.057(y/ 3 x + 2]
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7.8.

79.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.
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(a) Perform all the necessary tests and determine if these fields represent a
uniform plane wave propagating in a perfect dielectric medium. (b) Find the
permittivity and the permeability of the medium.

Two equal-amplitude uniform plane waves of frequency 25 MHz and having
their electric fields along the y direction propagate along the directions i, and
3G/ 3i, + i.) in free space. (a) Find the direction of propagation of the com-
posite wave. (b) Find the wavelength along the direction of propagation and
the wavelength transverse to the direction of propagation of the composite
wave.

Show that {sin2 (wt — fzsin §)> and <sin 2(wt — Bzsin B)> are equal to
zero and 1/2, respectively.

Find the spacing a for a parallel-plate waveguide having a dielectric of € = 9¢,
and u = K, such that 6000 MHz is 20 percent above the cutoff frequency of
the dominant mode, that is, the mode with the lowest cutoff frequency.

The dimension a of a parallel-plate waveguide filled with a dielectric having
€ = 4€, and u = Y, is 4 cm. Determine the propagating TE,, , modes for a
wave of frequency 6000 MHz. For each propagating mode, find f,, §, and 4,.

The spacing a between the plates of a parallel-plate waveguide is equal to 5 cm.
The dielectric between the plates is free space. If a generator of fundamental
frequency 1800 MHz and rich in harmonics excites the waveguide, find all
frequencies that propagate in TE,,, mode only.

The electric and magnetic fields of the composite wave resulting from the
superposition of two uniform plane waves are given by

E = E., cos fB,x cos (0t — B,2) 1.
+ E,osin f.x sin (ot — B.2) 1,
H = H,; cos f.xcos (0t — f.2) 1,

(a) Find the time-average Poynting vector. (b) Discuss the nature of the
composite wave.

Transverse electric modes are excited in an air dielectric parallel-plate wave-
guide of dimension a = 5 cm by setting up at its mouth a field distribution
having

E = 10(sin 207tx + 0.5 sin 607x) sin 1017z i,

Determine the propagating mode(s) and obtain the expression for the electric
field of the propagating wave.

For the parallel-plate waveguide discontinuity of Example 7.3, find the reflec-
tion and transmission coeflicients for f = 7500 MHz propagating in (a)
TE;, mode and (b) TE,,, mode.

The left half of a parallel-plate waveguide of dimension ¢ = 4 cm is filled with
a dielectric of € = 4€, and u = ,. The right half is filled with a dielectric of
€ = 9¢g and u = p,o. For TE,,, wave of frequency 2500 MHz incident on the
discontinuity from the left, find the reflection and transmission coefficients.
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7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

Assume that the permittivity of the dielectric to the right side of the parallel-
plate waveguide discontinuity of Fig. 7.10 is unknown. If the reflection coef-
ficient for TE,,, waves of frequency 5000 MHz incident on the junction from
the free space side is —0.2643, find the permittivity of the dielectric.

For the two-train example of Fig. 7.11, find the group velocity if the speed of
train numbered B is (a) 36 m/s and (b) 40 m/s, instead of 30 m/s. Discuss your
results with the aid of sketches.

Find the velocity with which the group of two frequencies 2400 MHz and
2500 MHz travels in a parallel-plate waveguide of dimension a = 2.5 cm and
having a perfect dielectric of € = 9¢, and x4 = U,.

For a narrow-band amplitude modulated signal having the carrier frequency
5000 MHz propagating in an air dielectric parallel-plate waveguide of dimen-
sion @ = 5 cm, find the velocity with which the modulation envelope travels.

For an @ — f, relationship given by
0 =, + kf?

where @, and k are positive constants, find the phase and group velocities for
(a) @ = 1.5m,, (b) @ = 2m,, and (c) @ = 3@,.

By considering the parallel-plate waveguide, show that a point on the obli-
quely bouncing wavefront, traveling with the phase velocity along the oblique
direction, progresses parallel to the guide axis with the group velocity.

Write the expression for E, for TM modes in a rectangular waveguide. Then
obtain the transverse field components by following a procedure similar to that
used in the text for TE modes.

For an air dielectric rectangular waveguide of dimensions ¢ = 3 cm and
b = 1.5 cm, find all propagating modes for f = 12,000 MHz.

For a rectangular waveguide of dimensions @ = 5 cm and b = 5/3 cm, and
having a dielectric of € = 9¢, and u — U, find all propagating modes for
S = 2500 MHz.

For f — 3000 MHz, find the dimensions a and b of an air dielectric rectangular
waveguide such that TE;,, mode propagates with a 30 percent safety factor
(f = 1.30£,) but also such that the frequency is 30 percent below the cutoff
frequency of the next higher order mode.

For an air dielectric rectangular cavity resonator having the dimensions a =
2.5cm, b =2 cm, and d = 5 cm, find the five lowest frequencies of oscilla-
tion. Identify the mode(s) for each frequency.

For a rectangular cavity resonator having the dimensions a = b = d = 2 cm,
and filled with a dielectric of € = 9€¢, and y = U, find the three lowest fre-
quencies of oscillation. Identify the mode(s) for each frequency.

In Flg 719, let € = 460, €y = 960, and Wty = Uz = Lo (a) For 05 = 300,
find §,. (b) Is there a critical angle of incidence for which G, = 90°?
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7.29. In Fig. 7.19, let €, = 4€, €; = 2.25€¢, and x4y = pfty = py. (a) For 8, = 30°,
find @,. (b) Find the value of the critical angle of incidence 0., for which
g, = 90°.

7.30. A thin-film waveguide employed in integrated optics circuits consists of a sub-
strate upon which a thin film of refractive index greater than that of the sub-
strate is deposited. The medium above the thin film is air. For refractive
indices of the substrate and the film equal to 1.51 and 1.53, respectively, find
the minimum bouncing angle of the total internally reflected waves in the film.



