Appendix I—C: Materials Science and Engineering Course Descriptions (Syllabi for College of Engineering core courses are included in the college report.)

MSE 182—Introduction to Materials Science & Engineering

Catalog Data:	Provides an overview of Materials Science and Engineering as a basis for understanding how structure/property/processing relationships are developed and used for different types of materials. Illustrates the role of materials in modern society by case studies of advances in new materials and processes. Laboratory/discussion periods will be devoted to demonstrations and experiments that illustrate the lectures. Design teams will analyze or synthesize objects that use materials creatively.		
Prerequisite:	None. 3 hours. 3 lecture-discussion hours/week.		
Textbook:	W.D. Callister, Jr., "Materials Science and Engineering, An Introduction" Wiley 7th Edition		
Course Topics:	 Atoms, bonding, basic chemistry: (basic results of quantum mechanics) Basic types of interatomic bonds: (covalent, ionic, metallic bonding, van der Waals interactions, dipolar interactions, hydrogen bonding) Crystal structures & crystallography: (lattices, unit cells, basis, crystallographic planes, Bragg's Law) Introduction to metals: (fcc, bcc, hcp, atomic packing, slip systems, relation to macroscopic phenomena) Introduction to ceramics: (organizing principles, coordination numbers and atomic sizes, crystal structures, clays, zeolites and molecular sieves, ultra-hard 'covalent ceramics', macroscopic properties, crack propagation, revitrification, ceramic composites) Disorder: (polycrystalline matter, grain boundaries, Long Range Order and Short Range Order, metallic glasses, polymeric glasses) Defects: (point defects, diffusion, line defects, dislocations, dislocation movement) Stress and strain: (Young's modulus, relation to interatomic potentials, strong materials, composite materials) Introduction to polymeric materials: (polymers, Gaussian chains, entropy, elastomers, rubber elasticity, coiling times and glass transition temperatures, block copolymers, liquid crystalline polymers and strong polymer fibers, biopolymers) Introduction to liquid crystals: (metals, smectic, cholesteric mesophases, lyotropics, Frederiks's transition, LCD's, soaps and membranes) Introduction to electronic materials: (metals, semiconductors, insulators, band formation, atomic origins of band structure, relation to bonding and anti-bonding orbitals, electron mobility, doping in semiconductors, device examples) 		
Course Objectives:	 To review physics and chemistry in the context of materials science & engineering. To describe the different types of bonding in solids, and the physical ramifications of these differences. To describe and demonstrate diffraction, including interpretation of basic x-ray data. Give an introduction to metals, ceramics, polymers, and electronic materials in the context of a molecular level understanding of bonding. Give an introduction to the relation between processing, structure, and physical properties. Give the beginning student an appreciation of recent developments in materials science & engineering within the framework of this class. Give the beginning student an opportunity for teamwork in research Give the beginning student practice in basic expository technical writing. 		
Course Outcomes:	 Given a type of material, be able to qualitatively describe the bonding scheme and its general physical properties, as well as possible applications. Given a type of bond, be able to describe its physical origin, as well as strength. Be able to qualitatively derive a material's Young's modulus from a potential energy curve. Given the structure of a metal, be able to describe resultant elastic properties in terms of its 1D and 2D defects. Given a simple set of diffraction data, be able to index the peaks and infer the structure. Be able to describe a polymer's elastic behavior above and below the glass transition. Be able to do simple diffusion problems. 		

Assessment Tools:	Five quizzes (40%) Homework (20%)
	EOH term project (20%) Attendance (20%)

Professional Component:: 100%

Prepared by: Paul Braun

Date: April 2007

MSE 201—Phases and Phase Relations

Catalog Description:	This course provides the basis for the understanding of microstructure. It treats in quantitative terms and in some depth the concept of phases (crystalline and non-crystalline structures) and the relationships between phases (phase diagrams). Commercial practices for producing desired macroscopic phase configurations and macroscopic shapes are described (processing).	
Prerequisite:	Chem 102, MSE 182, Physics 112, Mathematics 242. 3 hours. 3 lecture-discussion hours/week	
Textbooks:	M. F. Ashby and D. R. H. Jones, Engineering Materials 2: An Introduction to Microstructures, Processing, and Design, Butterworth Heinemann (1998).	
References:	None	
Course Topics:	Phases and phase relations Crystal structures Kinetics of phase transformations	Microstructures Metals Ceramics and glasses Polymers and composites
Course Objectives:	 The meaning of phases, and the different types of phase transformations. How to interpret a binary phase diagram, especially the compositions and fractions of equilibrium phases according to the lever rule. The crystal structures for common metals, ceramics, and semiconductors, including construction from a lattice plus basis, construction from hard sphere packing, and interstitial positions. Thermodynamic driving forces and kinetic limitations in phase transformations. The meaning and use of time-temperature-transformation diagrams. The microstructures resulting from near-equilibrium vs. far-from-equilibrium thermal treatments. The mechanical properties of metals, ceramics, and polymers as a function of microstructure, as determined by processing. 	
Course Outcomes:	 Which material properties vary significantly with Given a binary phase diagram, what microstructure Give examples for near-equilibrium and far-What are the crystal structures of the common methat crystalline structures and transformations a hardened alloys? What are the driving forces and kinetic barriers to What are the governing equations for creep? For How does the modulus of a polymer vary as a further the mechanical properties of a composition the component materials? 	n microstructure? ures can be obtained by suitable thermal treatments? from-equilibrium processing. etals and ceramics? ure involved in the formation of martensites? Of age- o phase transformations? brittle fracture? nction of temperature, loading rate, and cross-linking? te material related to the properties and arrangement of
Assessment Tools:	 Six sets of homework problems, concerning both quantitative reasoning and worked examples A daily "minute quiz" on the assigned reading, w material <i>before</i> the lecture; the students reporting greatly enhances the learning process. Two in-class hour examinations. A short paper on a topic of their choice, within the extensively marked by the instructor with ed final grade is assigned. The preparation of a poster summarizing the key material to classmates during an in-class "potential". 	a theory and applications, involving qualitative and which obliges the students to read and think about the rt (by ICES) that the advance reading and thinking the subject areas included in the course. These papers are itorial suggestions, handed back, and rewritten before a points in their paper, and the presentation of this ster session."
Professional Component:	100%	
	Prepared by: John R. Abelson	Date: February, 2006

MSE/TAM 206—Mechanics for MatSE

Catalog Description:	Topics from statics, mechanics of materials, and fluid mechanics pertinent to the fields of metallurgical engineering, ceramic engineering, and materials science and engineering: force resultants, stresses and strains produced in elastic bodies, microscopic effects of different loading states (tension, compression, torsion and bending) on deformable bodies, beam stresses and deflections, introduction to three-dimensional stresses and strains, stress and strain-rate relationships for Newtonian and non-Newtonian fluids, conservation equations (control volume analysis) for fluid flow, Reynolds number, and slow inertial and turbulent flows. This course is tailored for students with interests in materials science and engineering.	
Prerequisite:	Credit or concurrent registration in MSE 201. 4 hours. 4 lecture-discussion hours/week.	
Textbook:	William F, Riley, Leroy D. Sturges and Don H. Morris. <i>Statics and Mechanics of Materials: An Integrated Approach</i> . New York: Wiley 2 nd ed. (2001).	
Recommended reading: (typical):	 Round and Garg, Applications of Fluid Dynamics, Baltimore: Arnold (1986) Love, A Treatise on the Mathematical Theory of Elasticity, 4th ed., New York: Dover Publications (1944) Fung, Foundations of Solid Mechanics, Englewood Cliffs, N.J.: Prentice-Hall (1965) Truesdell, A First Course in Rational Continuum Mechanics, 2nd ed., Boston: Academic Press (1991) 	
Course Topics:	Units and vectors Forces, moments, couples Equilibrium, resultants, distributed forces, free-body diagrams Analysis of stress Strain and stressstrain relationships Centroids, moments Beam stresses and deflections Concepts of strain energy Introduction to fluid mechanics Properties of fluids Hydrostatics and pressure measurement Conservation equations Dimensionless variables Slow flows, inertial flows, and turbulent flows Applications	
Course Objectives:	to provide intermediate-level analysis and problem-solving methods in engineering to give the students the basis for more advanced course work (e.g. materials processing) required for an in-depth and comprehensive program in materials science and engineering	
Course Outcomes:	ability to construct free-body diagrams of mechanically loaded engineering components ability to apply the principles of statics and strength of materials to find force resultants and internal stresses in elementary mechanical structures ability to identify types of fluid flow and apply the principles of hydrostatics and fluid dynamics to solve elementary fluid mechanics problems	
Assessment Tools:	Weekly sets of homework problems Three one hour written exams plus 3 hour comprehensive final exam on course content designed to test the students ability to apply his/her knowledge.	
Professional Component:	100%	
	Prepared by: Richard D. Keane & James W. Phillips Date: June 2007	

MSE 280—Introduction to Engineering Materials

Catalog Description:	Introduction to the materials science and engineering of ceramics, electronic materials, metals and polymers. Bonding; crystallography; imperfections; processing and properties of semiconductors, polymers, metals, ceramics and composites; and phase diagrams. Case studies and demonstrations will be used to exemplify the lecture material.	
Prerequisites:	Physics 112, 114 (concurrent), and Math 242. <i>3 hours</i> (students may not receive credit for MSE 200 and TAM 224 (CE 210) or ME 231). <i>3 hours</i> . 3 lecture-discussion/week	
Textbook:	"Fundamentals of Materials Science and Engineering," William D. Callister, Jr 2nd Ed.(special edition	
References: (available in Grainger)	Foundations of Materials Science and Engineering, William F. Smith (McGraw-Hill, 1993). Engineering Materials and Their Applications, R.A. Flinn and P.K. Torjan (Wiley, 1995). Engineering Materials 1, 2nd Ed., Michael Ashby and David Jones (Pergamon, 1996). Materials Selection in Mechanical Design, 2nd Ed., Ashby (Butterworth/Heinemann, 1999). The Principles of Engineering Materials, Barrett, Nix and Tetelman (Prentice, 1973).	
Course Topics:	 Atomic Structure Atomic bonding in solids Metallic, Ceramic, and Polymer Structures: ionic and metallic crystal structures, polymer structures (crystalline, non-crystalline, etc.), Miller indices, diffraction. Defects in solids: vacancies, Frenkel and Schottky defects in ionic systems, dislocations. Diffusion: vacancy and atomic diffusion in solids (time-dependent and time-independent) Mechanical Behavior of Metals, Ceramics and Polymers Deformation mechanisms - metals (dislocation motion, slip, plasticity) Strengthening/Hardening mechanisms (metals, ceramics, polymers) Phase diagrams (phases, phase composition, composition, and microstructure) Kinetics of phase diagrams (brief) Fracture, crack propagation, and simple failure mechanisms (ductile-to-brittle transitions, leak-beforefail criterion, etc.) Composites (isoload and isostrain cases, laminates) Simplified materials selection for design, with examples (e.g., use of Ashby plots, design of leak-beforefail vessels, strong but light, low-deflection/no-fail, cost optimization, etc.). 	
Course Objectives:	 To recall chemical bonding, types of bonds, and arrangement of periodic table. To understand the correlation between bonding and structure, and bonding and properties. To introduce concept of crystal structure, and the myriad of structures possible in metals and ceramics, as well as crystalline polymers, including crystal planes and diffraction. To introduce the physical origin of and demonstrate the correlation between structure and properties of materials. To introduce common crystal defects and to understand their role in materials behavior. To provide overview of mechanical behavior of ceramics, metals, and polymers, including concepts of stress-strain curves, elastic response and Poission effect, yielding, necking, fracture, slip via dislocations, ductility, britteness, strengthening mechanisms, transformation toughening, cross-linking polymers, polymer confirmations. To know how to estimate the effects of the physical effects on mechanical behavior. To introduce students to the concept of phases and phase diagrams, including T-c behavior leads to different microstructures and, hence, varying mechanical behavior, as well as how process history effects materials properties. To introduce and utilize simple concepts of crack propagation, fast-fracture, and failure. To provide failure examples and motivate importance of materials and to use this information in simple examples of design and failure. To use simplified materials selection concepts for design purposes. To give student broad introductory knowledge of how materials properties ultimately affect engineering design in their respective disciplines, and how such properties lead to limitations. 	

Course Outcomes:	Given type of material (ceramic, metal, polymer), identify type of bonding present, types of crystal structure expected, and expected mechanical responses.
	Be able to predict expected ordered structures in specific ionic solids.
	Utilize information about elastic and plastic deformation to predict loads or strains that lead to yielding, necking, or fracture. Identify generic differences between stress-strain response in ceramics, metals, crystalline and non-crystalline polymers, and tissue.
	Identify common defects in a material, when they are to be expected, and know how they affect material's mechanical properties.
	Know types of dislocation, how they move, what strain-fields occur and how dislocations interact, what effects are created in crystals when they move, and how they lead to plastic deformation.
	Understand and identify the stress-strain response of ceramics, metals, and polymers, and know generally how these are altered by strengthening/hardening mechanisms, alloying, etc.
	Be able to identify phases (and their abundance), eutectics, eutectoid, and peritectic reactions in T-c diagrams, as well as identify simple microstructures that can occur (including possible effects on mechanical response).
	Utilize concepts of crack propagation and fast-fracture and ductile-to-brittle effects to predict failure of brittle solids, and experience these in simple measurement of design problem.
	Utilize material index parameters to select materials appropriate to simple design problems, including yielding and fast-fracture.
Assessment Tools:	Homework problems involving application of each topic. Three written examinations (one in-class and two more extended take-home) Exams are designed to test the student's understanding of concepts and their ability to apply his/her knowledge.
Professional	100%
Component:	Prepared by: Duane D. Johnson Date: April 2007

MSE 304—Electronic Properties of Materials

Catalog Description:	Study of the electronic structure and bonding of materials, electrical conduction in metals and semiconductors, and dielectric and magnetic properties of solids
Prerequisites:	Physics 214 and junior standing in science and engineering. Students may not receive credit for both Materials Science and Engineering 304 and Physics 460. (Students may substitute Physics 460 for Materials Science and Engineering 304 as part of the Materials Science and Engineering degree requirements.) <i>3 hours.</i> 3 lecture-discussion hours/week.
Textbook:	S. O. Kasap, "Principles of Electronic Materials and Devices," McGraw Hill, 3rd edition, 2006.
Course Topics:	Quantum mechanics of matter waves Time-independent Schroedinger equation and solutions for one-dimensional potentials Calculation of expectation values Hydrogen atom ground state wave functions and energies Quantum numbers and the periodic table H ₂ ⁺ and simple molecules, bonding and antibonding states and energy levels Beyond hydrogen, electron spectroscopy, photoemission Thermodynamics of the quantum mechanical free electron gas Periodic potentials and Bloch waves Band diagrams in one, two, and three dimensions; effective mass; holes Semiconductor band structures; carrier densities Extrinsic semiconductors; dopant ionization p-n junctions; electrostatics, carrier densities, and transport Metal-oxide-semiconductor diodes; electrostatics and carrier densities
Course Objectives:	 To teach students the science of electronic structure and transport in crystals. To extend students' knowledge of the mathematics of complex variables, probability functions, integration, and the solutions of differential equations. To extend students' knowledge of the thermodynamics and kinetics of a classical gas. To teach students the science and engineering fundamentals of p-n junctions, transistors, and lasers. To extend students' knowledge and understanding of the Schroedinger equation and the quantum mechanical behavior of electrons.
Course Outcomes:	 Be able to calculate the dc and ac mobility and conductivity of a material from the collision time and carrier density. Be able to calculate probability densities and expectation values for position, momentum, and energy for a given quantum mechanical wavefunction. Be able to use the uncertainty principle to estimate the kinetic and potential energies of a bound electron state. Be able to describe transport in a p-n junction controlled by the minority carrier lifetime. Be able to use simple band diagrams to understand optical activity of a semiconductor. Be able to describe laser action in terms of optical absorption, stimulated emission, and spontaneous emission. Be able to calculate charge densities in a biased metal-oxide-semiconductor diode.
Assessment Tools:	Weekly problem sets (10%) Regular quizzes (15%) Three, one hour exams (25% each)
Professional Component:	100%
	Prepared by: John Weaver Date: September 2006

MSE 307—Materials Science and Engineering Laboratory I

Catalog Description:	Laboratory course to learn basic experimental skills and to introduce basic instruments in materials science and engineering. Use of optical, electrical, thermal and mechanical techniques to investigate composition, structure, thermodynamic and kinetic processes of materials. Communicate laboratory findings through written reports and oral presentation.		
Prerequisites:	Completion of campus Composition I requirement; credit or concurrent registration in MSE 401, and MSE 405, and I E 330. <i>3 hours</i> . 2 lecture hours, 2 laboratory hours/week		
Textbook:	Lab Manual		
References:	Listed in the Lab Manual (Numerous reference texts and Handbooks are also on reserve in Grainger Engineering Library)		
Course Topics:	Introduction to Basic Laboratory Instruments Data Acquisition and Analysis Metallography using Optical Microscopy Cooling Curves of Binary Alloys Scanning Electron Microscopy Fourier Transform Infrared Spectroscopy Thermomechanical Analysis Thermogravimetric Analysis Differential scanning calorimetry Technical writing and presentation		
Course Objectives:	 The overall objective of the course is to provide the students with hands-on experience in (1) basic experimental techniques (2) data analysis and (3) writing journal-quality report. Small groups of about 5 to 6 students work as teams in each laboratory session with the reports prepared independently. The main objectives of the course are To learn the principles of materials science and engineering though lab investigation; To learn the basic skills required to properly use materials science instruments; To learn to organize the lab results into a logic, concise and accurate report; To develop writing and communications skills for a persuasive presentation of technical materials. The specific objectives are given below for each experiment. Introduction to Basic Laboratory Instruments: Introduction to the use of voltmeters, oscilloscopes, scales for mass, micrometers for length. Data Acquisition and Analysis: Introduction to the computer-based data acquisition and analysis (DAA) system. Use of PC-based DAA for temperature measurements. Metallography using Optical Microscopy: Learning the metallurgical sample preparation techniques: cutting, mounting, grinding and polishing. Characterization of microstructure using optical microscope. Scanning Calorimetry and Cooling Curve: To obtain the melting point and the heat of fusion for two metals elements. Using cooling curves and calorimeter to obtain a binary phase diagram. Thermogravimetric Analysis: Determine the expansion behavior and softening point of glass Thermogravimetric Analysis: Determine the expansion behavior and softening point of glass Thermogravimetric Analysis: Determine the stoichiometric relationship for the decomposition of hydrated calcium oxalate. Fourier Transform Infrared Spectroscopy (FTIR): Introduction to spectroscopy techniques using a variety of organic specimens such as polystyrene. Scanning Electron Micros		

Course Outcomes:	Ability to prepare formal laboratory re Ability to operate basic instruments in Ability to interpret the data from the e	ports describing the results of experiments; materials science and engineering; xperiments.
Assessment Tools:	 Direct supervision of lab sessions to erexperiment; Six laboratory reports and a final preserability to compose technical report After the first lab report has been grade assess the students composition sk 6-8 quizzes given throughout the seme understanding of the concepts and 	sure every student's participation and completion of each ntation to assess the student's performance in the laboratory, and present technical results, and technical understanding. ed a one-on-one meeting (1/2 hour) is held with each student to lls and to provide feedbacks to the students ster to assess student's preparation for individual labs and principles.
Professional Component:	100%	
	Prepared by: Jian Ku Shang	Date: April, 2007

MSE 308—Materials Science and Engineering Laboratory II

Catalog Description:	Experiments to characterize mechanical, transport, and magnetic-electric properties of materials. Investigate relationship between microstructure and properties		
Prerequisite:	Completion of Campus Composition I requirement; MSE 307; and credit or concurrent registration in MSE 304 and 406. <i>3 hours</i> 2 hours lecture, 3 hours laboratory/week		
Textbook:	Lab Manual.		
References:	Listed in the Lab Manual (Numerous reference texts and Handbooks are also on reserve in Grainger Engineering Library).		
Course Topics:	Tensile Stress-Strain Relations Impact and Fracture Toughness Testing Precipitation Hardening and Microstructural Analysis Order-Disorder Transition I: Experiment (Cu3Au) Order-Disorder Transition II: Computer Simulation Diffusion in Solids I: Experiment (Decarburization of High Carbon Steel) Diffusion in Solids II: Computer Simulation Tensile Creep Ceramic Processing Electrical Properties of Materials		
Course Objectives:	 The overall objectives of this course are to provide students: (1) hands-on knowledge and experience in the measurement of various material properties; (2) tools for the analysis and interpretation of data and (3) opportunities and feedbacks to improve their technical writing skills. The specific objectives of each experiment are given below. Small groups of about 5 to 6 students participate as teams in each laboratory session with the reports prepared "independently" Tensile Stress-Strain Relations: To measure the tensile properties of several engineering materials. To investigate the relationship between strength, ductility, and fracture surface appearance in materials with a range of mechanical behaviors Impact and Fracture Toughness Testing: To measure and compare the impact toughness of several different materials. To become familiar with the standard toughness measuring tests. To investigate the ductile/brittle transition in engineering materials. Precipitation Hardening and Microstructural Analysis: To investigate age-hardening in aluminum alloy. To relate the microstructural changes with the aging curve. Order-Disorder Transition I: Computer Simulation: To introduce the basic concepts and the tools of computer simulation through simple exercises. To simulate order-disorder transition. To compare the simulation with the experimental results Diffusion in Solids I: Experiment (Decarburization of High Carbon Steel): To determine the diffusion coefficient of carbon in g-Fe. To compute the activation energy of carbon diffusion in g-Fe by measuring the diffusion in solids through simple exercises. To correlate the simulation and experimental results Tensile Creep: To observe various stages of creep in metals at different temperatures. To determine stress exponent and the activation enthalpy for creep in pure A Ceramic Processing: To introduce the basic concepts of slurry preparation, spray drying, dry pressing, binder burn-off and sinterin		

Course Outcomes:	Ability to prepare formal laboratory rep Ability to operate basic instruments in Ability to interpret the data from the ex-	ports describing the results of experiments; materials science and engineering; periments.
Assessment Tools:	 Direct supervision of lab sessions to enexperiment; Six laboratory reports and a final preserability to compose technical report After the first lab report has been grade assess the students composition ski 6-8 quizzes given throughout the semes understanding of the concepts and preserved. 	sure every student's participation and completion of each nation to assess the student's performance in the laboratory, and present technical results, and technical understanding. d a one-on-one meeting (1/2 hour) is held with each student to lls and to provide feedbacks to the students ter to assess student's preparation for individual labs and principles.
Professional Component:	100%	
	Prepared by: Jian Ku Shang	Date: April, 2007

MSE 395—Materials Design

Catalog Description;	Design of various engineering devices, objects, or systems. Teams of 2-5 students from different concentrations within the department work toward the development of materials-based solutions to problems originating from student, faculty, and industrial suggestions. Projects will be guided by various faculty within the department, with the teams presenting mid-term (oral) and final reports. Solutions are to be based on the knowledge, skills, and design experience acquired in earlier course work and incorporate engineering standards and realistic constraints including most of such factors as economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political concerns.		
Prerequisites:	One of MSE 422, MSE 441, MSE 453, MSE 460, MSE 462, MSE 470. <i>I hour</i> . Class meetings first week, midterm (progress report)s and during finals (final report); otherwise team meetings		
Textbook:	Class notes and notes from prior design courses (MSE 422, 441, 453, 460, 462 and 470)		
Course Topic:	Team based design project based on the knowledge and skills acquired in earlier course work and incorporating engineering standards and realistic constraints including most of such factors as economic, environmental, sustainability, manufacturability, ethical, health and safety, social, and political concerns. It complements MSE current concentration specific courses incorporating design, all of which are offered in the Fall semester, incorporate a concentration specific design project and thus serve as an introduction to design. The projects may include, e.g.;		
	 design of an artifact for a particular end use. design and evaluation of a material for a specific application; reverse engineering and design improvements involving materials; design and evaluation or optimization of a materials processing method; design of a method for determining, controlling, or selecting materials characteristics or properties; performance of a series of documented and evaluated design activities in these or other areas throughout a student's undergraduate program and continuing into the senior year as a culminating design experience that provides experience at least equivalent to a single, senior-level design project. 		
Course Objectives:	To work effectively in teams To apply the knowledge and skills acquired in earlier course work to an appropriate design project. To improve communication skills		
Course Outcomes:	Team presentation of design project. Evaluation of group member contributions.		
Assessment Tools:	Evaluation of individual contributions by other members of the team and the advisor. Final oral and "written" (with notes) Power Point report.		
Professional Component:	Engineering Topics 100%		
	Prepared by: Phillip Geil Date: March 2007		

MSE 401—Thermodynamics of Materials

Catalog Description	Examines basic thermodynamics p macroscopic properties of various transitions; emphasizes metals, cer to the application of phase diagram atomistic level.	rinciples including energy, entropy, and free energy; describes the materials systems such as equilibrium states, phases and phase amics, polymers, and electronic materials. Particular attention is paid s; introduces the statistical interpretation of thermodynamics on the
Prerequisites	<i>Prerequisite</i> : Chemistry 102, Phys discussion/week.	ics 107; and Mathematics 242 or 285 4 hours 4 hours lecture-
Textbook:	Introduction to the Thermodynami D. Gaskell, Taylor and Francis	cs of Materials, 3 rd edition
References:	DeHoff: Thermodynamics in Mate	rials Science
Course Topics	1 st and 2 nd Laws of Thermodynami Statistical interpretation of entropy Auxiliary functions: free energy, c Phase equilibria in one-component Behavior of solutions Free energy diagrams and phase di Reactions involving gases and gass Thermodynamics of point defects: Electrochemistry	cs hemical potential, etc. systems agrams es with condensed states one component and stoichiometric compounds
Course Objectives:	To provide a foundation for the pri To provide a firm understanding o To provide a working knowledge o To provide a consistent picture of To provide the background for oth	nciples of thermodynamics Funary and binary phase diagrams of chemical reactions: use of Ellingham diagrams hermodynamics concepts when applied to various topics er courses in the curriculum
Course Outcomes:	Given a physical situation, analyze Analyze unary and binary phase di Determine gaseous backgrounds a Understand thermodynamics for a electrochemistry	the conditions for phase equilibria agrams of any complexity opropriate for processing materials lvanced courses: thin film growth, kinetics, materials synthesis, and
Assessment Tools:	Homework problems Quizzes over each chapter Two hourly exams and one final e:	am.
Professional Component:	100%	
	Prepared by: Erik Luijten	Date: May 2007

MSE 402—Kinetic Processes in Materials

Catalog Description:	Studies kinetics of chemical reactions; rate equations, reaction mechanisms; transport processes; diffusion equations, atomic and molecular diffusion. Phase transformations; nucleation, crystallization, displacive, spinodal decomposition. Examines surface and interface phenomena; sintering, grain growth, recovery and recrystallization
Prerequisites:	MSE 200 and MSE 301 3 hours . 3 lecture-discussion hours/week.
Textbook:	Class handouts
Other Resources/References:	 D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys Chapman and Hall, 2nd edition, 1992. R. Philips, Crystals, defects, and microstructures, Cambridge Univ. Press, 2001 Robert Balluffi, Samuel Allen, W. Craig Carter, Kinetics of materials, Wiley, 2005 Philip Nelson, Biological physics : energy, information, life, W. H. Freeman, 2004 Joel Gersten and Frederick Smith, The physics and chemistry of materials, Wiley, 2001
Course Topics:	 Diffusion phenomenology: Fick's Laws, boundary value problems Atomic theory of diffusion: random walks, gases, liquids, metals, grain boundaries, chemical interdiffusion, ionic crystals Chemical rate theory: rate equations, defect annealing theory, vapor condensation Surfaces and Interfaces: surface energies, grain boundaries, coherency, thin film growth, grain growth, sintering Phase transformations: homo- and hetero-geneous nucleation, alloy solidification, diffusional transformations, martensitic transformations.
Course Objectives:	To provide a firm foundation of the materials science that underlies principles of kinetic behavior To provide a firm understanding of diffusion in various materials To provide a working knowledge of chemical rate theory To provide an introduction to microstructure design To provide a firm understanding of phase transformations
Course Outcomes:	Determine characteristic times for various kinetic processes Formulate and solve rate equations for various reactions Understand and apply basics of processing to fabricate materials with particular desired microstructures and structure-property relations Apply basic theory to solve practical problems
Assessment Tools:	Homework problems Midterm, final exam. Independent oral presentation project conducted by teams
Professional Component:	100%
	Prepared by: Steve Granick Date: May 2007

MSE 403—Synthesis of Materials

Catalog Description:	Studies fundamentals of the synthesis of materials. Examines principles of synthesis; processes, approaches, synthetic methodology and probes; methodologies in materials synthesis; polymerization, sol-gel processes, liquid and vapor phase synthesis, materials coupling reactions, and precursor-derived, radiation-induced and asymmetric synthesis
Prerequisites:	MSE 200 and credit or concurrent registration in MSE 301. <i>3 hours</i> 3 lecture-discussion hours/week.
Textbook:	Class notes
References/(Handouts):	 Materials Science and Engineering for the 1990's: Maintaining Competitiveness in the Age of Materials, Appendix A (Synthesis) & B (Processing), National Academy Press, Washington, D. C., 1989, ISBN: 0-309-03928-2. John Wilford, "Ancient King's Legendary Gold," NY Times, August 15th, 2000 Greg Olsen, "Designing a New Material World," Science, Vol. 288, 12 May 2000, pp. 993-998 H. Remy, Treatise on Inorganic Chemistry, Vol. II: Subgroups of the periodic table and general topics, Preparation of Metals, Elsevier, 1956. A. M. Buckley and M. Greenblatt, "The Sol-Gel Preparation of Silica Gels," Journal of Chemical Education, Vol. 71 #7, 1994, pp. 599-602 J. Livage, and C. Sanchez, "Sol-Gel Chemistry," Journal of Non-crystalline Solids, Vol. 145, 1992, pp. 11-19 J. Economy, "Now That's an Interesting Way to Make a Fiber!", Chemtech, Vol. 10, April 1980, pp. 240-247 Segal, <u>Chemical Synthesis of Advanced Ceramic Materials</u>, Chapter 6 P. Painter and M. Coleman, <u>Fundamentals of Polymer Science: An Introductory Text</u>, Chapters 1 & 2, Technomic, 1997 K. Chang, "A Prodigious Molecule and Its Growing Pains," NY Times, Oct. 10, 2000 Turner Bowden, <u>Electronic and Photonic Applications of Polymers</u>, Chapter 1, Section 1.1.1.1, pp. 4-11, ACS, 1998 B. G. Streetman, <u>Solid State Electronic Devices</u>, Fourth Edition, Chapter 1.3-1.4.4, Prentice Hall, 1995
Course Topics:	 Introduction and background to Materials Synthesis Principles of Synthesis (through case studies drawn from metal, ceramics and polymers) General Synthetic Methodologies: preparation of metals, sol-gel synthesis, chemical conversion of a precursor fiber, chemical vapor deposition and infiltration, polymer synthesis (including an introduction to classification, nomenclature and structure). High Strength/Modulus Materials-Synthesis and Structure Electronic Materials – Synthetic Challenges Design of Advanced Materials for Environmental Control Biomaterials – Synthetic Opportunities
Course Objectives:	 To present a systematic approach to the study of "synthesis" in the field of Materials Science and Engineering. To provide students with a broad knowledge of synthetic methodologies along with an understanding of critical needs. To provide students with examples of what's involved in designing and developing a new material through use of case studies. To provide students with a knowledge of the field of high strength/modulus materials including preparation of single crystal ceramics and metals, phase transformation toughened ceramic; composites (both fiber and matrix) with particular emphasis on the syntheses involved. To provide students with an understanding of the field of electronic materials and the role of synthesis in design of microelectronic chips and packaging systems.

	To provide students with an awareness of the critical needs for new materials in the fields of air and water contaminant removal.		
	To integrate knowledge concerning structure and property relationships and how opportunities can be addressed through innovations in synthesis and processing.		
	To challenge students to think about materials related problems in the world around them and to come up with new materials solutions.		
Course outcomes:	Given a material related problem, be able to come up with a solution by modifying the synthesis.		
	Given the discovery of a new or improved material, have an understanding of what is required to come up with a scalable synthesis.		
	From case studies on preliminary commercialization of three distinct materials, develop an understanding as to the importance of economics and design.		
	Given a need for a high strength/modulus product, be able to suggest an appropriate class of material.		
Assessment Tools:	Three written exams plus a final		
	Term paper on selected materials and their synthesis. Write-ups are made accessible to the students the web so that they can study all write-ups and be quizzed.		
	Some homework assignments and 3-5 minute oral quizzes at beginning of class.		
	Additional credit provided for student submitting a proposal for a synthetic solution to a problem.		
Professional Component	100%		
	Prepared by: James Economy Date: November 2000		

MSE 405—Microstructure Determination

Catalog Description:	Studies the fundamentals and applications of various forms of microscopy (image formation) and diffraction for characterization of the periodic structure and defect microstructure of materials and of various forms of spectroscopy for characterization of composition, chemical bonding, and molecular dynamics.
Prerequisites:	Physics 114, Chemistry 102, and Materials Science and Engineering 201. <i>3 hours</i> . 2 hours lecture, 3 hours laboratory/week.
Textbook:	"The Basics of Crystallography and Diffraction," by C. Hammond (2nd edition, Oxford University Press, 2001).
References:	 B. D. Cullity, "Elements of X-Ray Diffraction," Addison-Wesley, 1956. C. J. Ball, "An Introduction to the Theory of Diffraction," Pergamon Press, 1971. W. T. Welford, "Optics," Oxford University Press, 1981.
Course Topics:	Geometrical optics Crystal structures Complex notation for wave amplitudes and phase Diffraction from one-dimensional objects and crystals Diffraction from two- and three-dimensional crystals Reciprocal lattices and Ewald sphere constructions for x-ray and electron diffraction Resolution in microscopy Contrast in microscopy: bright-field, dark-field, and phase contrast Atomic scattering factors for photons, electrons, and neutrons Dynamical effects: index of refraction and extinction Core-level atomic physics and spectroscopic notation Cross-sections for core-level impact ionization and photoemission Microprobe analysis and x-ray photoelectron spectroscopy Raman vibrational spectroscopy Nuclear magnetic resonance spectroscopy and imaging.
Laboratory Work:	Optical diffraction and microscopy (a) geometrical optics of image formation (b) transmission and reflection microscopes (c) diffraction from a two-dimensional crystal (TEM grid) (d) diffraction from a one-dimensional object, coherent diffraction (e) resolution in microscopy; bright-field, dark-field contrast (f) characterization of colloidal crystals by optical microscopy and diffraction X-ray powder diffraction (a) fcc crystals and angular resolution of the diffractometer (b) random and systematic errors, lattice parameter refinement (c) structure factors and atomic scattering factors using NaCl structure crystals (d) strain and peak-widths due to inhomogeneous strain and finite crystal size (e) hcp crystals, preferred orientation in coatings (f) x-ray absorption Raman spectroscopy (a) computer modeling of IR and Raman spectra of molecules (b) Raman spectroscopy and vibrational modes of oxide and semiconductor crystals. MR spectroscopy (a) Pulse sequencing and the determination of T ₁ and T ₂ relaxation times (b) Application to the polymerization kinetics in self-healing polymers. Computer Usage: Extensive use of Windows PCs for data acquisition and analysis. Computer modeling of vibrational spectra of molecules.
Course Objectives:	To teach students the science of microscopy and diffraction based on the physical optics of scalar waves and elastic scattering of waves from atoms.To teach students how the design and performance of simple microscopes and diffractometers is based in the fundamentals of geometrical and physical optics.

	To teach students diffraction from simple objects To extend students knowledge of the mathematic	and crystals in one-, two-, and three-dimensions.	
	To give students hands-on experience in the operation of powder diffractometers for studying the microstructure of materials		
	To give students hands-on experience in the use of optical bench components for optical metrology. To teach students the fundamentals of core-level spectroscopy for microanalysis and surface analysis. To teach students the fundaments and applications of Raman vibrational spectroscopy. To teach students the fundaments of NMR spectroscopy including dynamics of nuclear spins.		
Course Outcomes:	Given a powder specimen of a material with a sin understand powder diffraction data.	nple crystal structure, be able to collect, analyze and	
	Be able to describe the construction of transmissi control resolution, and contrast mechanisms.	ion and reflection optical microscope, the factors that	
	Be able to calculate intensities of a microscope in bright-field, dark field, and phase contrast an	nage of a one-dimensional diffraction grating using ertures.	
	Be able to use Ewald sphere constructions and calculations of structure factors to predict diffraction conditions and intensities from a three-dimensional crystal.		
	Be able to calculate estimates of x-ray mass absorption coefficients at x-ray energies.		
	Be able to calculate estimates of electron extincti Be able to collect Raman spectra from polymeric vibrations of molecular units.	on lengths in transmission electron microscopy. materials and interpret these spectra in terms of the	
Assessment Tools:	Weekly problem sets (15%)		
	Bi-weekly laboratory reports (30%)		
	Weekly quizzes (25%)		
	Final exam (30%)		
Professional Component:	100%		
	Prepared by: David Cahill	Date: April 2007	

MSE 406—Thermal and Mechanical Behavior of Materials

Catalog Description:	Studies fundamentals of elastic, viscoelastic and plastic deformation of materials, elementary theory of statics and dynamics of dislocations; examines strengthening mechanisms and behavior of composites; fracture and fatigue behavior; fundamentals of thermal behavior: heat capacity, thermal expansion and conductivity; effects of thermal stress. Credit is not given for both MSE 406 and either ME 330 or TAM 324. MSE students will not receive credit for this course toward a graduate degree.	
Prerequisites:	TAM 206 and MSE 301, Math 225 (Linear Algebra). 3 hours 3 hrs. lecture-discussion/week.	
Current Assigned Text:	"Mechanical Behavior of Materials (2 nd Edition)," Courtney	
Reference Texts: (Available Reference Desk in Grainger)	 Mech. Behavior of Materials, M.A. Meyers and K.K. Chawla (Prentice-Hall, 1999) Mechanical Behavior of Materials, Thomas Courtney (2nd Edisiton, McGraw-Hill, 2000) Mechanical Metallurgy, George Dieter (McGraw-Hill); Materials Science and Engineering, William Callister, Jr. (Wiley); Engineering Materials 1, Michael Ashby and David Jones (Pergamon). Deformation and Fracture Mechanics of Engineering Materials, Richard W. Hertzberg, 4th Edition (Wiley & Sons, NY, 1996) 	
Course Topics:	Material Response to Stress. Linear Elastic Behavior Thermal Behavior Elements of Plasticity Viscoelasticity Behavior Dislocation Theory Strengthening Mechanisms Composite Behavior Fracture Fatigue Behavior	
Course Objectives:	 To give the students a fundamental understanding of the thermal behavior (e.g., thermal stresses) and mechanical behavior (e.g., stress-strain, fatigue and fracture: or materials, and to permit processing-structure-property correlations to be drawn in subsequent senior year and/or graduate courses. While atomistics of thermal behavior are discussed elsewhere, this course is concerned with the effects on properties and giving a general knowledge of the mechanical properties of materials. To know the generic behavior of stress-strain and thermal responses in metals, ceramics, and polymer (M-C-P), as well as the various similarities and differences of response in M-C-P. To know the atomic-scale origin for specific aspects of stress-strain and thermal responses in M-C-P. To connect materials response under specific conditions to actual experimental set-ups. To know differences and similarities of tensile and compressive stresses (or strains) in M-C-P and utilize concepts in plastic or brittle materials for expected stress-strain response. To utilize knowledge of stress-strain conditions (e.g., drawing and rolling, geometric and thermal constraints). To know and incorporate the effect and size of thermal stresses in responses of M-C-P. To introduce general states of stress and transformations of stress (including stress and strain invariants) for yielding and failure (e.g., Rankine, Tresca's and von Mises' criterion), necking, and response behavior of crystalline materials, as well as important differences in polymers. To relate point, line, and planar defects to materials response in M-C-P, and to utilize this knowledge to understand and control properties. To know how such defects can be 	
	created. To introduce and understand simple polymer, metal-matrix and ceramic-matrix composites	

	and their response to stress and strains	
	To introduce and apply fracture and fatigue behavior in M-C-P materials, with brief	
	introduction into its use for materials design.	
Course Outcomes:	Given type of material (metal, ceramic, or polymer), identify elastic, plastic, and fracture regions,	
	yielding, failure behavior, especially applied to specific scenarios of processing or pre-stress/strain conditions.	
	Calculate thermal residual stresses and additional loads required for, say, yielding.	
	Identify principal stresses, strains, and planes, and calculate the stress invariants and principal quantities, planar and normal stress components in general stress states. Utilize symmetric stresses and strains, and engineering strains in mechanical response, yielding and failure.	
	Identify types of defects. Know generic behavior of stress fields around and interaction of defects, such solute-dislocation and dislocation-dislocation, and their effects on mechanical response in materials.	
	Know general iso-strain or iso-load behavior of composites and calculate responses in simple composite materials, including unaligned cases and generic effects.	
	Apply simple concepts of fracture, stress concentrators, and fatigue. Identify and use these concepts in simple materials design and failure.	
Assessment Tools:	Homework problems involving fundamental knowledge and application of each topic. Three written examinations (two hourly and one comprehensive final) roughly divided into (1) Materials response to stress, Elasticity, Anisotropy, and Plasticity; (2) Dislocation Theory, Strengthening Mechanisms, and (3) Composite Behavior, Fracture and Fatigue. Exams are designed to test the student's understanding of concepts and their ability to apply his/her knowledge.	
Professional Component:	100%	
	Prepared by: Duane D. Johnson Date: April 2006	

MSE 420—Ceramics Materials and Properties

Catalog Description:	Basic principles and understanding of structure-property relations in ceramic materials. Examples will be drawn from both traditional and advanced ceramics. Knowledge of structure on multiple length scales (including atomic, grain boundary, and grain structure as well as the structure of clays and amorphous materials) and several properties (including electrical, magnetic, mechanical and thermal) will be gained.
Prerequisites:	MSE 182 or 200. 3 hour 3 lecture-discussion hours/week.
Textbook:	Kingery, Bowen, and Ulhmann, "Introduction to Ceramics"
Reference:	Chiang, Birnie, and Kingery, "Physical Ceramics"
Course Topics:	 Atomic structure, including ionic and covalent bonding, ceramic crystal structures, clay structures, and amorphous materials (network formers, modifiers and intermediate oxides). Atomic defects, including intrinsic and extrinsic point defects, Kroger-Vink notation, defect reaction equilibria. Electrical properties, including, dielectrics, piezoelectrics, ferroelectrics. Magnetic properties, including ferrimagnetic materials Microstructure development, including, solid- state sintering, densification vs. coarsening processes, grain boundary mobility, porosity evolution (stability/entrapment), viscous densification, liquid-phase sintering, constrained sintering. Thermal properties, including heat capacity, thermal conductivity, thermal expansion, creep, and thermal stresses. Mechanical properties including strength, toughness, and microstructural design.
Course Objectives:	 Develop understanding of the structure of ceramic materials on multiple length scales. Develop knowledge of point defect generation in ceramic materials, and their impact on transport properties. Develop knowledge of electrical properties including examples of ceramics applications in which behavior is governed by materials structure over varying length scales. Develop knowledge of structural evolution during sintering, including solid-state, viscous flow, and liquid- phase sintering. Develop understanding of the magnetic, thermal and mechanical properties of ceramics.
Course Outcomes:	 Knowledge of the crystal structures of a wide range of ceramic materials. Knowledge of the structure of clays, minerals, and glasses. Given a ceramic component be able to calculate its intrinsic and extrinsic defect populations. Design a suitable sintering schedule for heat-treating ceramics and understand the effects of existing microstructural features (e.g., porosity, impurities, etc.) on microstructural evolution during this process. Knowledge of properties of ceramics and their structural origin. Familiarization with a wide array of characterization techniques.
Assessment Tools:	Homework problems focused on ceramic structure, properties, or relations between these two topics. Two written hourly exams designed to test the student's ability to apply his/her knowledge. One comprehensive final exam designed to test the student's ability to apply his/her knowledge.
Professional Component:	100%
	Prepared by: David A. Payne Date: May 2007

MSE 421—Ceramic Processing and Microstructure Development

Catalog Description:	Basic principles and understanding of microstructure development and processing of ceramic materials will be addressed, with an emphasis on structure-property-processing relationships. Knowledge of a variety of processing methodologies and their effects on microstructural development will be gained. Examples of several ceramic components will be illustrated and discussed within this context		
Prerequisite:	MSE 320. <i>3 hours</i> . To receive the additional 1 credit hour a term paper is required. 3 hours lecture- discussion/week		
Textbook::	Class notes.		
References:	Reed, James; Principles of Ceramic Processing 2nd Ed. Evans, J. W./DE Jonghe, Lutgard C.; Production of Inorganic Materials Ring, T. A.; Fundamentals of Ceramic Powder Processing and Synthesis		
Course Topics:	 Microstructure Development including: solid state sintering, densification vs. coarsening processes, grain boundary mobility mechanisms, porosity evolution (stability/entrapment), viscous densification, liquid phase sintering, constrained sintering. Microstructure Characterization Methods including; microscopy techniques, quantitative image analysis (avg. grain size, distribution). Ceramic Powders and Characterization including: conventional powders, chemically-derived powders, particle size/morphology characterization, surface area characterization, purity analysis, surface chemistry/characterization, and calcination. Colloidal Processing including: interparticle forces, processing additives, spray drying, milling, and rheology Forming Science including: pressing operations (dry, iso-static), slip casting, tape casting, extrusion, injection molding, hot press, HIP, emerging routes (gel-based, SFF methods), and green body characterization methods Presintering Processes including: drying, binder removal 		
Course Objectives:	 Develop understanding of microstructural evolution of ceramic materials Develop working knowledge of the unit operations involved in processing ceramic materials Develop ability to select appropriate processing methodologies based on component quantity, cost, and structure-property-processing relationships, Develop knowledge of characterization methods used to determine microstructural features and effect of process variables Develop ability to critically evaluate processing literature through exploration of current research articles 		
Course Outcomes:	 Given an unknown ceramic powder be able to characterize its chemical and physical properties sufficient for its synthetic reproduction Given a ceramic component be able to design an appropriate processing methodology for fabricating this sample Design a suitable sintering schedule for heat treating ceramics and understand the effects of existing microstructural features (e.g., porosity, impurities, etc.) on microstructural evolution during this process Familiarization with a wide array of characterization techniques Ability to critically evaluate current literature in the area of ceramic processing 		
Assessment Tools:	Homework problems involving applications of ceramic processing topics Two written exams on course content designed to test the students ability to apply his/her knowledge. Written article summaries in which students must critically evaluate current journal papers published on various course topics		
Professional Component:	100%		
	Prepared by: Jennifer Lewis Date: January 2001		

MSE 422—Electrical Ceramics

Catalog Description:	Presents the subject of dielectric crystals and their electrical properties; discussion and correlation of ferroelectric and piezoelectric properties of several crystal classes; coverage in detail of the perovskite class of ferroelectric compounds; and discussion of spinel, garnet, and hexagonal type ferrimagnetic crystals and their properties.
Prerequisites:	MSE 420. 3 hours, 3 lecture-discussion hours/ week
Textbook:	"Electroceramics: Materials, Properties and Applications", A. J. Moulson and J. M. Herbert, Chapman & Hall, London, 1993 or latest edition, required; Class notes.
References:	"Ceramic Materials for Electronics", R. C. Buchanan (ed.), Marcel Dekker, New York, 1986. "Electronic Ceramics", L. Levinson (ed.), Marcel Dekker, New York, 1988. "Principles of Electronic Ceramics", L. L. Hench and J. K. West, Wiley Interscience, New York, 1990. "Piezoelectric Ceramics", B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Academic Press, London, 1971.
Course Topics:	 Introduction: Inorganic nonmetallic materials, historical developments of electrical ceramics, functionality, R, L & C, traditional and advanced, materials, applications, useful and enabling properties. Solid State ScienceReview: insulators, dielectrics, polarization, charge displacement, dispersion, relaxation, and temperature dependence. Perovskite structure, phase transformations, domains. Dielectric mixing rules. Processing and Fabrication: Processing cycle, materials selection, compositions, forming, thermal processing, electroding, characterization. Tape casting, mulilayers. Crystal growth. Conductors; Heating elements, electrodes, varistors, thermistors, PTCR, ionic conductors, sensors, superconductors Insulators and Dielectrics; Dielectric strength, capacitors, equivalent circuits, EIA classifications, high Q, temperature compensating, high -dielectric constant, boundary layer devices, design of temperature characteristics. Ferroelectricity, barium titanate. Piezoelectrics: Point groups, structure-property relations, direct and converse effects. Thermodynamics, Heckmann diagram. Field-induced strains, voltage generation, actuators, energy conversion, applications, PZT. Pyroelectric: Crystal systems, optical anisotropy, birefringence, indicatrix concepts, non-linear optics, linear and quadratic effects, SHG, devices, PLZT. Magnetics: Spinel, normal and inverse, Weiss domains, ferrites, soft and hard, super-exchange, garnets, temperature compensation, permeability, Q, microstructure-property relations, chemical substitutions, device performance, applications.
Course Objectives:	 To provide students with a basic understanding of electrical ceramic materials. To demonstrate interrelationships between structure-property relationships. To teach the importance of the processing cycle on materials selection, thermal processing conditions, phase and microstructure development, on properties and usage. To provide students an historical perspective of the development of functional (i.e., R, L, C) electrical ceramics. To provide students with an appreciation for recent developments in the electrical ceramics industry. To provide case histories of the logical design of electrical ceramics for new applications. To challenge the students on how to make new functional materials.
Course Outcomes:	To be able to apply the principles of physical sciences and engineering to electrical ceramic systems.To be able to integrate prior knowledge of materials science and engineering to composition-processing-structure-properties-performance relationships for electrical ceramic materials.To be able to apply modern characterization methods for the control of the processing cycle for the reproducible manufacture of reliable and consistent electrical ceramic products.To be able to relate important developments in the past with future needs in the electrical ceramics industry
Assessment Tools:	Frequent reading assignments from the required text, discussion in class. Homework assignments from the required text, after each chapter.

	Two hourly exams in class, written, closed book, designed to test the student's ability to apply his/her knowledge and solve problems.A final 3-hour exam in class, written, closed book, designed to test the student's comprehensive abilit apply his/her knowledge and solve problems.Design paper requirement of the student's choice, demonstrating the ability to design an electrical ceramic product to property specifications.	
Professional Component:	100%	
	Prepared by: D.A. Payne	Date: May 2007

Appendix 1—C: Course Descriptions

MSE 423—Ceramic Processing Laboratory

Catalog description:	(MSE 323) Experiments and demonstration methods will be conducted to devel materials, processing methods, micro- emphasizes the underlying physics routes to achieve desired material p	ions involving a wide range of modern op fundamental understanding of the r rostructural development, and physical and chemistry of processing, as well a roperties. Technical reports will be rec	a ceramic processing elationships between raw l properties. The lab s designing processing quired
Prerequisites:	MSE 421. 3 hours. 2 hours lecture and 3	3 hr. laboratory/wk.	
Textbook(s):	J. S. Read, <u>Introduction to the Principles</u> Second edition recommended.	of Ceramic Processing, Wiley-Intersc	ience, New York, 1995.
References:	 M.N. Rahaman, "Ceramic Processing and T. Ring," Fundamentals of Ceramic Power D. W. Richerson, "Modern Ceramic Enge Dekker (1982). J.W. Evans and L. C. DeJonghe, "Product C. G. Bergeron and S. H. Risbud, "Introde American Ceramic Society, Inc. (198) References to research publications taken 	d Sintering," Marcel Dekker, Inc. (199 der Processing and Synthesis," Acader ineering, Part I (chapters 5-7), Part II (tion of Inorganic Materials, MacMilla luction to Phase Equilibria in Ceramics (4).	5) nic Press (1996) Chapters 9-13) Marcel n (1991) s," Published by The ramic Society
Electronic teaching aids / computer usage:	The laboratory manual and collective da [http://MSE323.mse.uiuc.edu/] so that parameters varied and are able to write	ata from all of the class sections are postudents have an overview of the effect a comprehensive laboratory report bas	ested on the website, tof the different ed on a broad overview.
Course topics:	Powder Synthesis Powder Characterization Rheology of Colloidal Suspension Electrophoretic Deposition Slip Casting Pressure Filtration	Pressing Sintering Grain Growth Glass Processing/Meltin Glass Annealing Cementitious Materials	ng and Geopolymers
Course objectives:	The purpose of this course is to provid widely used procedures used in process the theory and principles behind the pro- in sequence, the four major steps require I. Preparation of Ceramic Pow II. Powder Characterization III. Forming Methods (Wet and IV. Thermal Processing	e students a hands-on familiarity with ing ceramic materials used by the ind cesses is also provided. The course is d to produce a ceramic component. vders Dry)	h the more important and ustry. An introduction to arranged to demonstrate,
Course outcomes:	Using ABET outcomes a, b, d, g, i, j, k.		
Assessment tools:	The grades will be computed as follows: Lab reports (@ 15% each)90% Pre-lab assignments and lecture hom The laboratory reports required will cove Powder Preparation and Characteriz Pressing and Dry Forming Methods; In addition there will be regular pre-lab a Penalties for missing the due date for ass 15%) is levied per each day that the r	eworks and quiz r: ation; Rheology, Slip Casting and Wo Solid State Sintering and Constrained ssignments. ignments and reports: A grade deduct report is late after the agreed upon sub-	10% et Forming Methods; Dry Sintering ion of 0.5 % (of the total mission date.
Professional component:	100%		
	Prepared by: Waltraud M. Kriven	Date: June 2007	

MSE 440: Advanced Mechanical Properties of Solids

Catalog Description:	Advanced treatment of the mechanical behavior of solids; examines crystal plasticity, dislocations, point defects and grain boundaries, creep and fatigue behavior, fracture	
Prerequisites:	MSE 406. 3 hours. 3hours lecture-discussion/week.	
Textbook:	R. W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials," 4 th Edition, Wiley 1996	
Course Topics:	Introduction Strength of solids a. Flaws in materials Brittle Fracture a. Griffith theory b. Fracture statistics Fracture with Limited Plasticity a. Linear elastic fracture mechanics b. Fracture toughness c. Microstructural aspects of fracture d. Environmental effects e. Elastic-plastic fracture	Fatigue a. Fatigue processes b. Fatigue crack initiation c. Fatigue crack propagation d. Overload effect e. Crack-size dependence High Temperature Failures a. Creep deformation b. High temperature fracture c. Creep design
Course Objectives:	 To provide an advanced treatment of mechanical properties of materials which is built on solid mechanics, defects theory, thermodynamic and kinetic principles. To examine the roles of material defects in mechanical response of materials. To derive the theoretical framework for analyzing the roles of material defects in influencing the mechanical properties of a solid. To apply materials science and mechanics principles to solve engineering design problems. To understand how mechanical behavior may be affected by microstructure, loading condition, and service environment. To present theoretical and empirical treatments of the effects of microstructure, loading condition and service environment on mechanical behavior of materials. To introduce students current research problems in mechanical behavior of materials. 	
Course Outcomes:	Able to determine dependence of material s Able to derive and apply the Griffith's theo Able to conduct the Weibull statistical anal Able to derive and apply the energy princip Able to derive linear elastic fracture mecha Able to determine fracture properties of a m Able to suggest microstructural changes for Able to solve engineering problems using f Able to analyze stress-corrosion cracking p Able to conduct fatigue analysis using stress Able to interpret fatigue data obtained unde Able to suggest microstructural developme Able to describe creep mechanims in crysta Able to interpret creep data and perform cree	strength on flaw geometry and size; ry of fracture. ysis of strengths. ble of fracture. nics principles. naterial. r improving fracture properties. racture mechanics principles. roblems. ss, strain and fracture mechanics approaches. er different mechanical loading conditions. nt to improve fatigue properties. dline solids. eep analysis.
Assessment Tools:	Weekly homework problems A midterm examination A comprehensive final examination.	
Professional Component:	100%	
	Prepared by: Darrell Socie	Date: May 2007

MSE 441—Metals Processing

Catalog Description:	Discussion of melt, mechanical, thermal, powder, and surface processing of metals. Extraction of metals, joining of metals, metal composites, and metal recycling are also reviewed. The relationships between the processing of metals, the microstructures that are produced, and the behavior of metal components are emphasized.
Prerequisites:	MSE 406. 3 hours. 3 lecture-discussion hours/week
Textbook(s):	Principles of Metal Manufacturing processes, Beddoes and Bibby
Other Resources/ References: (available at Grainger Library)	<u>ASM Handbook</u> , Desk Edition and vols. 1-20, Q.669.1Am35mabr (reference) <u>Manufacturing with Materials</u> , L. Edwards, M. Endean, 670.42M4181995 (reserve) <u>Manufacturing Processes and Systems</u> , P. Ostwald, J. Muñoz, 670.OS7M1997 <u>Mechanical Metallurgy</u> , Dieter, G. E., 3rd ed., 669.94D56m1986 (reserve) <u>Steels</u> , R.W.K. Honeycombe & H.K.D.H. Bhadeshia, 669.96142h757s1996 (reference) <u>An introduction to Metallurgy</u> , A. Cottrell, 2 nd ed., 1975, 669.c82I1995.
Course Topics:	 <u>Metal processing and manufacturing</u>: Materials used in manufacturing; rimary manufacturing processes- ironmaking and steelmaking; Primary manufacturing processes- aluminum production; Refining of materials <u>Solidification and casting processes</u>: Major casting techniques; Solidification mechanism; Solidification volume shrinkage; Heat Transfer during solidification; Casting defects; Shape casting materials <u>Bulk deformation processes</u>: Friction during bulk deformation; Forging; Extrusion and drawing; Rolling <u>Sheet forming processes</u>: Formability; Shearing; Bending; Stretch forming; Deep drawing; Effect of anisotropic sheet properties on formability <u>Heat treating</u>: Phase equilibrium in Fe-C alloys; Austenitization; Transformation of austenite; Hardening; Tempering; Other processes <u>Powder metallurgy</u>): Powder production; Powder characteristic; Powder compaction; <u>Machining</u>: Mechanical machining methods; Nontraditional machining processes <u>Joining processes</u>: Welding; Brazing; Soldering <u>Surface modification</u>: Types of wear; Diffusional processes; Flame and induction hardening; Plating and thin film coating
Course Objectives:	 To provide students with a broad knowledge of metals processing techniques commonly used in industry and in research laboratories, in particular extraction metallurgy, casting, forming, heat treating, powder metallurgy and surface processing. To provide students with the chemical, physical and mechanical principles underlying these processing techniques To demonstrate the correlation between processing conditions, microstructures and properties in common metallic materials. To review and explain the advantages and disadvantages of the different processes studied in class To give the students a direct contact with several processing techniques in their industrial context. To present methods to optimize processing parameters: work and slab methods for the calculation of forming loads, diffusion equations applied to heat treating and surface processing, chemical and electro-chemical equations to determine conditions for extraction and refining of metals from their ores or compounds. To help students improve their writing and oral skills.
Course Outcomes:	 For the following circumstance, the student should be able to: processing technique - indicate its domain of application, its advantages and its limitations). processing technique - identify the important chemical, physical and mechanical principles involved. amaterial and its specifications - propose appropriate processing routes to synthesize the part. For the student to have a comprehensive knowledge of steel processing, including iron making and steel making practices, rolling and heat treating. For the student to identify sources of scientific and technological information on a given topic. For the student to develop his/her writing and oral skills.

Assessment Tools:	20% Homework and participation40% Midterm exam – Friday March 1640% Final exam – during Finals week
Professional component:	100%
	Prepared by: Pascal Bellon

Date: May 2007

MSE 442—Metals Processing

	Prepared by: Robert Averback	Date: March 2007	
Professional Component:	100%		
Assessment Tools:	Written reports (executive summary forma Oral presentation of case study findings. Classroom discussion	t)	
	wear or failure. For the student to have a comprehensive ar including heat treating, thin film depos For the student to identify sources of scient For the student to learn how to design an ex For the students to develop their writing an For the students to develop their team work	d practical knowledge of a few materials processing, ition, and rolling. ific and technological information on a given topic. cperiment. d oral skills. cing skills	
Course Outcomes:	Given a metallic material be able to charac infer the processing conditions used to Given a characterization technique, be able Given a used material, its specifications an	terize the microstructure with appropriate methods and to obtain this microstructure. to identify its range of applicability and its limitations. d its service conditions, determine the origin of its corrosion.	
Course Objectives.	 To provide students with a hands-on experimentallic alloys, including optical microchardness and microhardness testing. To provide students with hands-on experime backscattering spectromretry, <i>in-situ</i> el To provide students with a hands-on experimentallic alloys, including casting, heat To determine the correlation between proceproperties in common metallic materia To apply the knowledge gained in previous corrosion of metallic alloys. To give the students an opportunity to worl and to interact with engineers in the correlation for the students improve their writing, or an anticipation of the students in the correlation of the students improve the students in the correlation of the students improve the students in the correlation of the students improve the stud	scopy, scanning electron microscopy, x-ray diffraction, nee with thin metal films and characterization: Rutherford ectrical resistivity – van der Pauw method ence of a few processing techniques commonly used for treatment, and rolling. essing conditions, microstructures, phase evolution, and ls. courses on metals processing, mechanical properties, and c on real-life problems (case studies, mostly failure analysis) mpanies providing the case studies. I, and organizational skills.	
Course Objectives:	 Austernite transformation: heat treatment low-alloy, medium carbon steel; 2) Consensitization screening test of a stainless rolling, heat treating, hardness measured recrystallization and grain growth micro- specimens: silicide formation and cryst study investigation, followed by results 6) Sand casting of Al alloys. 	ence of characterization techniques commonly used for	
References:	ASM Handbook, in particular vols. 4,9,10,13; handouts – various Electronic teaching aids / computer usage: Simulation tools and data analysis software		
Textbook:	Class notes		
Prerequisites:	MSE 307, MSE 308, and MSE 440. 3 hours. 3 lecture-discussion hours/week.		
Catalog Description:	Advanced metallurgy laboratory. Examines effects of heat treatment; mechanical testing, phase transitions; oxidation and corrosion; failure analysis; and metallography of selected alloys.		

MSE 443—Design of Engineering Alloys

Catalog Description:	Examines the application of science and engineering principles to the design, selection and performance of engineering alloys. Studies alloy classes, design, effect of alloying elements, relation to processing variables and structure-property relationships; design project.		
Prerequisites:	MSE 340, Advanced Mechanical Pr	operties of Solids. 3 hours . 3 lectures per week.	
Textbook:	Vol. 1 and 2, ASM Handbook, ASM International, 1990		
References:	other ASM Handbooks handouts of ASTM standards, journal articles		
Course Topics:	The Design Process Steel Cast Iron Stainless Steel Nickel Alloys and Superalloys Aluminum Alloys Copper Alloys Titanium Alloys Magnesium Alloys Refractory Metals Intermetallic Compounds		
Course Objectives:	Description of how alloy design rel: Application of physical metallurgy performance relationship Interrelationship between processin Illustration of alloy development to	tes to component design principles to the understanding of the structure-property- g, composition and properties optimize processing and properties	
Course Outcomes:	Importance of simultaneous design Knowledge of characteristics of var Understanding of physical metallurg Selection of alloys for specific appli Sense of direction of alloy and proc	of alloy and processing ous alloy systems and specific alloys within a given system. y principles through their application to real systems. cations. sss development and needs for the future	
Assessment Tools:	Hour exams (3) Term paper (one, 10-15 pages on to Oral presentation of progress in des	pic of student's choosing) gn of specific alloys and processes (20 minutes)	
Professional Component:	100%		
	Prepared By: Carl Altstetter	Date: March 2001	

MSE 444—Welding and Joining Processes

Catalog Description:	Same as CEE 375. The physical principles of fusion welding; heat flow; thermal cycles; physical metallurgy and mechanical properties of welded joints; applications of welding to large structures; testing of welds; nondestructive testing; design, economics and weld specifications; and laboratory experiments in welding.		
Prerequisites:	TAM 226, 206 or equivalent. 3 hours. 3 hours lecture-discussion/week plus laboratory time		
Textbook:	Cary, Modern Welding Technology, 4th Ed		
References:	Lancaster, The Metallurgy of Welding Brazing and Soldering		
Course Topics:	 Introduction: history of welding, survey of welding processes, welding terminology, welding symbols. Common Industrial Welding Processes: oxyacetylene welding, shielded metal arc welding, gas tungsten arc welding, gas metal arc welding, resistance spot welding. Physics of Welding: the welding arc, electrical machinery and behavior, process control, cost estimation, heat flow and temperature distributions, weld metal phenomena, contractions and residual stresses. Weld Defects: weld cracking, weld defects, welding codes, contractions and residual stresses. Weld Defects: weld cracking, methods, radiographic nondestructive testing, ultrasonic nondestructive testing, quality control and assurance. Metallurgy of Welding: weldability of mild steel, weldability of stainless steel, weldability aluminum alloys, weldability of cast iron. Mechanical Properties of Weldments: static design concepts, fracture mechanics, fracture control concepts, fatigue of welds. 		
Course Objectives:	Survey important ideas and concepts associated with welding technology; Provide a bridge between the academic and real world; Act as a capstone course by integrating knowledge from many areas of natural science and engineering through the wide range of issues that arise in a discussion of welding technology; Provide a limited amount of experience welding.		
Course Outcomes:	 Students are familiar with all the common welding process and common welding problems associated with welding ferrous materials and aluminum alloys. Students are aware of factors which control the cost of welding. Students are exposed to industrial welding practices and problems during a field trip to Caterpillar Decatur that concludes the course. This field trip proves to the students that all the concepts covered in the course are critical in the manufacturing of quality heavy equipment. Students are exposed the static and fatigue strength of weldments - one of the most important applications of fracture mechanics and the science of metallic fatigue - in the last part of the course. The students are asked to become thoroughly familiar with and comment on one of the classical studies of the failure of welded structure at the conclusion of the course. Topics such as plasma physics, heat flow, physical metallurgy, nondestructive testing, fracture mechanics, economics, industrial safety, physical chemistry, thermodynamcs, and electrical circuits arise in the course and are integrated thorugh s in a rational discussion of welding. Students appreciate the great skill of good welders after their attempts at welding. Students become aware of the difficulty of making good welds and why weld defects occur as frequently as they do. 		
Assessment Tools:	Knowledge of welding ideas tested in two hour exams and a final.Weekly quantitative homework underscores underlying physical principles.Bridge between academic and real world is provided by many case studies presented in lecture.The hand-on laboratory experience with welding that includes the preparation of a weldment, which is radiographed and tested to failure in tension. Grade on this laboratory assignment is based on the quality of the weld produced.A thorough metallurgical study of a weldment is executed by teams of students who must cooperate and write a single, well prepared report.		
Professional Component:	100%		
	Prepared by: Frederick Lawrence Date: March 2001		

MSE 445—Corrosion of Metals

Catalog Description:	This course deals with the principles that determine the corrosion behavior of metals. Topics include electrochemistry, thermodynamics, and kinetics of corrosion. Behavior of ferrous and nonferrous metals, corrosion rates, corrosion control, cathodic and anodic protection, high-temperature corrosion, corrosion testing, and electrolytic machining methods are also discussed.
Prerequisites:	Introductory materials science course, freshman chemistry and physics. <i>3 hours</i> . 4 lecture hours wk 11 weeks)
Textbook:	Denny Jones, Principles and Prevention of Corrosion, McGraw-Hill, 1996
References and Supplementary Reading:	 Corrosion E. Bardal, Corrosion and Protection, Springer Verlag, New York, 2004 H. Kaesche, Corrosion of Metals, Springer Verlag, New York, 2003 E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemcial Corrosion, ASM International, Materials Park, OH, 2000 D.A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 1996 David Talbot and James Talbot, Corrosion Science and Technology, CRC Press, New York, 1998 J.C. Scully, The Fundamentals of Corrosion, 3rd ed., Pergamon Press, New York, 1990 K.R. Tretheway and J. Chamberlain, Corrosion, J. Wiley and Sons, New York, 1986 J.M. West, Basic Corrosion Engineering, 3rd ed., McGraw-Hill, New York, 1986 J.M. West, Basic Corrosion and Oxidation, 2nd ed, J. Wiley and Sons, New York, 1986 Journals Corrosion; Corrosion Science; Materials Protection; J. Electrochemical Societ ; J. Applied Electrochemistry; J. Power Sources Handbooks Gorrosion, ASM Handbook, Vol. 13 (1987), 13A(2003), 13B(2006), 13C(2006), ASM International, Materials Park, OH G. Kreysa and M. Schutze, eds., Corrosion Handbook, second edition, Dechema, Frankfurt, 2004 R.W. Revie, ed., Uhlig's Corrosion Handbook, J. Wiley and Sons, New York, 1993 E. Verink, Procedure for Constructing Pourbaix Diagrams, J. Educational Modules for Materials Science, Volume 1, No. 3, 1979 Electrochemistry and Corrosion Science, Nestor Perez, Kluwer/Springer, New York, 2004 Electrochemistry and Corrosion Science, McGraw-Hill, New York, 2004 Electrochemistry and Corrosion Science, Nestor Perez, Kluwer/Springer, New York, 2004 Electrochemistry and Corrosion Science, Nestor Perez, Kluwer/Springer, New York, 2004 Electrochemistry and Corrosion Science, McGraw-Hill, New York, 2004 Electrochemistry and Corrosion Science, McGraw-Hill, New York, 2004 Electrochemistry and Corrosi

Course Topics:	Introduction Electrochemical Thermodynamics Electrochemical Kinetics Batteries and Fuel Cells Electrochemical Corrosion Corrosion Prevention Environmental Effects on Mechanical Behavior High Temperature Corrosion
	Case Studies: Use of the case studies to illustrate design or corrosion-resistant systems and measurement of corrosion in situ.
Course Objectives:	Understanding of basic electrochemical reaction thermodynamics and kinetics. Application to understanding batteries, fuel cells and sensors Rationalization of corrosion phenomena in terms of mechanism Introduction to corrosion measurement techniques Use of principles to understand how corrosion can be prevented or ameliorated Demonstration of effects of materials composition and processing in specific systems Survey of experience on the effect of environment on mechanical failure. Introduction to oxidation and high temperature corrosion mechanisms. Case studies of application of corrosion principles to real situations.
Course Outcomes:	Calculation of cell potential for various electrodes, electrolytes, temperatures and pressures Factors in the design of batteries and fuel cells for various applications Use of Pourbaix diagrams to understand corrosion and active-passive behavior Use of Tafel plots and Evans diagrams to predict component behavior. Relation between immersion testing, electrochemical measurements and material performance Assessment of alloy selection vs. coatings vs. cathodic protection vs. inhibitors to solve corrosion problems.
Assessment Tools:	Homework (3 sets) Hour exams (2) Term paper (one, 10-15 pages on topic of student's choosing)
Professional Component:	100 %
	Prepared by: Carl Altstetter Date: March 2007

MSE 450—Introduction to Polymer Science and Engineering

Catalog Description:	Fundamentals of polymer science and engineering. Polymer solution properties, conformation and molecular weight characterization. Rheological and viscoelastic behavior: relaxations and transitions, rubber elasticity. Crystallinity, morphology and deformation of crystalline polymers. Blends and composites. Methods of fabrication.
Prerequisites:	Advanced undergraduate or graduate standing. Students in the polymer area in materials science and engineering may not receive graduate credit for this course without the permission of the instructor. <i>3 hours (undergraduate students), or</i> 3 or 4 hours (graduate students). 3 lecture hours/week.
Optional Textbooks:	"Introduction to Polymers", 2nd Ed. R. J. Young and P. A. Lovell and "Polymer Science & Technology", 2nd Ed., J. R. Fried.
References:	 Fundamentals of Polymer Science: An Introductory Text, 2nd ed – P. C. Painter, M. M. Coleman Giant Molecules Here There and Everywhere, A. Y. Grosberg and A. R. Khokhlov Introduction to Physical Polymer Science, 3nd ed. – L. H. Sperling Principles of Polymer Chemistry – Paul J. Flory Viscoelastic Properties of Polymers – John Ferry Rubberlike Elasticity: A Molecular Primer – James E. Mark Physics of Polymers, 2nd ed. – G. R. Strobl Polymer Chemistry: The Basic Concepts – P. C. Hiemenz Polymer Physics – U. W. Gedde Introduction to Polymers, 2nd ed. – R. J. Young and P. A. Lovell
Course Topics:	polymer nomenclature polymerization chain growth (mechanism and systems) step growth (mechanism and chain size distribution) molecular weight distributions (definition and measurement) polymer solutions (Flory-Huggins model and application to polymer blends) polymer chain conformations calculation of end-to-end distribution function W(r) for short range interaction chains calculation of end-to-end distribution function W(r) for short range interaction chains calculation of mrs end-to-end distance <r2> flexibly-jointed chain, freely rotating chain, hindered rotation chain rotational isomeric state scheme and temperature dependence chain with long range interactions (excluded volume effect) radius of gyration the amorphous state of polymers the glass transition (configurational entropy model) effect of polymer structure effect of additives such as plasticizers polymer crystallization (measurement, unit cell, morphology and kinetics) mechanical properties of amorphous polymers rubber elasticity (theory and experiment) bulk viscosity temperature dependence (WLF equation, time-temperature equivalence) molecular weight dependence (reptation model) viscoelasticity creep, stress relaxation, dynamic mechanical response engineering (springs and dashpot models (Maxwell, Voigt, 4-Parameter model)) molecular (Rouse model)</r2>
Course Objectives:	 To introduce students to the science and engineering of polymers, including: To have students be able to read trade literature knowledgeably To teach students the mechanisms of polymer synthesis and its effect on configuration, molecular weight and properties. To derive, from a physical (statistical) model the effect of polymer solvent and polymer-polymer interactions on the phase structure. To teach students the effect of interactions on the conformation of a polymer molecule in solution and the melt.

	To teach students the meaning and To have the students develop an un- resulting conformation, crysta thereof, and the effect on prop To have the students develop an un- amorphous polymer above and melting point.	effect on properties of the glass transition (Tg). derstanding of the basis for the ability of a polymer to crystallize, the structures and morphology. Including means of characterization rties. derstanding of the molecular basis of the mechanical properties of an below Tg and of a semi-crystalline polymer above and below the
Course Outcomes:	Given the chemical structure of a resulting configuration and po	nonomer(s) and a polymerization mechanism, be able to predict the ential for crystallization.
	Given a mixture of 2 or more poly polydispersity of the mixture.	ners of known molecular weight, be able to calculate the Mn, Mw and
	For a given value of c be able to pa	edict the miscibility of a polymer and a potential solvent.
	Be able to use solvent parameter ta	bles to predict the solubility of any polymer in various solvents.
	Be able to predict the size (end to solution under various molecu	nd distance and radius of gyration) of a polymers molecule in a ar constraints and interactions
	Be able to describe the effect of T ₂ temperature.	on the mechanical properties of a polymer as a function of
	Be able to measure the crystallinit	of a polymer and predict its effect on mechanical properties.
	Be able to predict the long time be	avior of a polymer on the basis of short time measurements.
	Be able to calculate the restoring f	rce of an elastomer as a function of extension.
Assessment Tools:	Homework problems assigned we	kly
	3 closed book, written exams.	
Professional Component:	100%	
	Prepared by: Paul Braun	Date: April 2007

MSE 451—Introduction to Polymer Synthesis

Catalog Description:	Fundamentals of polymer synthesis and configuration characterization. Examines step-growth, addition and coordination polymerization; kinetics and molecular weight distributions. Studies co-polymers; applications of IR, NMR, and ESCA to configuration characterization. Credit is not given for both MSI 451 and MSE 403.		
Prerequisite:s	Concurrent registration in MSE 45). <i>I hour</i> . 2 lecture hours/week, 8 weeks	
Textbook:	Class Notes		
References:	Recommended if you want to buy a text <u>Polymer Chemistry</u> Stevens (used for MSE 457) or <u>Polymer Chemistry: An Introduction</u> , Seymour and Carraher		
Course Topics:	Introduction to polymers, Definition Condensation Polymerization Addition Polymerization Coordination Polymerization Copolymers Chemical Characterization	ns	
Course Objectives:	To complement MSE 450 for grad introduction to polymer synthesis synthesis To briefly introduce students to po To teach students, in greater detail synthesis and their effect on co To teach students the effect of mor To teach students the basics of mer	ate students and undergraduates desiring a more complete and for chemistry students wanting an introduction to polymer ymers if not taking MSE 450 than MSE 450, the mechanisms of the major types of polymer onfiguration, molecular weight and properties omer reactivity on co-polymer configuration and composition. ns of polymer composition and configuration characterization.	
Course Outcomes:	 Be able to predict molecular weigh polymerizations. Understand differences in terms of coordination addition polymer polymerization. Be able to predict composition and reactivity and feed ratios and Understand the basis for mass spect spectroscopy and NMR measurement. 	ts from polymerization kinetics for condensation and addition polymerization mechanism and product of a) free radical versus ization and b) bulk, solution, suspension and emulsion addition configuration of free radical polymerized co-polymers in terms of inderstand how to measure needed factors. trometry, ESCA, UV and visible spectroscopy, FTIR and Raman irements of polymer composition and configuration.	
Assessment Tools:	1. Homework problems assigned for 2. One, open book, written exam.	r each section	
Professional Component:	100%		
	Prepared by: Phillip Geil	Date: October 2006	

MSE 452—Polymer Characterization Laboratory

Catalog Description:	Characterizes polymer materials experimentally to investigate molecular, microstructural, and macroscopic aspects of their mechanical, thermal, electrical, and optical properties. A team project is an integral part of this course.	
Prerequisites:	Materials Science and Engineering 350. 4 hours project/week.	1 hour lecture, 4 hours lab, 3 hours independent
Textbook:	Class notes	
References:	Notes from MSE 350. Collins, Bares and Billmeyer, "Experiments in Polymer Science," Wiley-Interscience, New York, 1973	
Course Topics:	Polymer synthesis—free radical polymerization, Characterization—dilute solution viscometry; gel gel electrophoresis; differential scanning calo Processing—compression molding; influence of Mechanical behavior—dynamic mechanical spec Electronic properties—field effect transistors and	copolymerization. permeation chromatography; infrared spectroscopy; rimetry processing on density. troscopy; time-temperature superposition. light emitting diodes
Course Objectives:	 To teach students a hands-on acquaintance with in synthesis, characterization, processing, and m To teach students to analyze and interpret results evaluations of both positive results (results th were not as expected). To teach students techniques of experimental data of plotting and analysis of data; and effective laboratory report. To teach students to design and implement in a gr the predesigned aspect of this laboratory; to p To teach the students some basics of polymer electron of the student of the stude	nportant modern polymer laboratory techniques of echanical behavior. of laboratory experiments; to formulate critical at were as expected) and negative results (results that a acquisition (manual and computer-based); techniques communication of findings in the form of a concise roup setting an open-ended team project to complement repare a written and oral presentation of this project. etronics device processing and test
Course Outcomes:	 Given an unidentified polymer sample, be able to solubility, and flammability. Given an unidentified polymer sample, be able to distribution, and chemical composition. Be able to predict the influence on mechanical and molecular weight and molecular weight distri Given a desired range of operating temperature, be chemical makeup will give it desirable thermatransition temperature) and whose molecular mechanical and electrical relaxation processes Given an open-ended request to perform as a team content during the limited time of the semester design and execute this project, summarize it 	determine its thermal transition temperatures, determine its molecular weight, molecular weight d processing properties of changing the sample's bution. e able to predict how to select a polymer sample whose al relaxation properties (melting temperature, glass makeup will give it desirable processability, s (rate dependence of relaxation functions). n of 2-3 students a laboratory project of unspecified er and with the resources available to the laboratory, in written form, and communicate it orally to the class.
Assessment Tools:	A laboratory report on each of the predesigned lab students. An oral and written presentation of the open-ende Pre-lab quizzes administered from time to time ju	boratory projects, written by the laboratory team of 2-3 d team project. st before the laboratory begins.
Professional Component:	100%	
	Prepared by: John A. Rogers	Date: May 2007

MSE 453—Plastics Engineering

Catalog Description:	An introductory course to plastics engineering. Examines components of plastics and data banks; viscoelasticity, yield, and fracture; reinforced polymers; and forming, design (project), and current advances MSE 450. <i>3 hours</i> . 3 lecture-discussion hours/week.	
Prerequisites:		
Textbook::	Class notes	
References: (on reserve in library, * available in office)	ey, Haworth and Batchelor, Physics of Plastics, Hanser * Crum, Buckley and Bucknall, Principles of Polymer Engineering, Oxford * ler, Intro. to Plastics and Composites: Mechanical Properties and Eng. Applications, Dekker wford, Plastics Engineering, Pergamon (Chem.) * gelhof and Throne, Polymer Engineering Principles, Hanser (Chem). hardson and Lokensgard, Industrial Plastics, 3rd Edition, Delmar Pub.,Albany, NY 1997* ong, Plastics: Materials and Processing, Prentice Hall, 2000, Upper Saddle River, NJ* E 450 Introduction to Polymers notes, P. Geil*	
Course Topics:	Review of Polymer Science and Engineering fundamentals; Design and design examples Material selection a. Data sheets b. Polymer families (class presentations) Process selection a. Introduction b. Processing techniques (class presentations) Cost modeling Life cycle analysis, recycling Environmental resistance Term project presentations Discussions of Modern Plastics, Plastics News and Plastics Engineering articles as appropriate	
Course Objectives:	 To review engineering aspects of polymer processing-structure-property relationships. To describe and demonstrate methods of plastics design To evaluate usefulness and drawbacks of plastics data sheets. To evaluate plastics company's web sites for design data and information. To evaluate properties, processing methods, cost, etc. of commercial plastics and plastics systems. (student presentations) To evaluate different methods of processing plastics in terms of method, advantages and disadvantages (student presentation) To teach students various methods of cost analysis. To provide students with an appreciation of problems and perspectives in environmental, life cycle and recycling aspects of plastics use. To develop an appreciation of current trends in plastics engineering To design a product based on plastics taking into consideration (but not limited to) mechanical, thermal, environmental, cost, manufacturability, sustainability, and life cycle factors. 	
Course Outcomes:	Ability to evaluate company supplied information for design purposes. Knowledge of uses and techniques of plastics processing, including limitations Ability to "cost" plastics products, including life cycle analysis. Recognition of means to develop life-long learning habits in the area of plastics engineering. The appropriate design of a "plastics part"	
Assessment Tools:	 Oral (Power Point) presentations on a. a family of polymers b. a plastics company web site (when time permits) c. processing techniques d. design project Two written exams, including questions submitted by the students on their oral presentations and drawn from assigned articles in Modern Plastics, Plastics News, Plastics Engineering, etc. 	

Student evaluations of the oral presentations before and during presentation. Design project report

Professional Component: 100%

Prepared by: Phillip Geil

Date: March 2007

MSE 455—Polymer Physics I, Structure and Properties

Catalog Description:	Techniques and applications of polymer crystal structure and morphology observation; x-ray, electron, light and neutron scattering and diffraction; light and electron microscopy. Morphology-processing-property relationships of crystalline polymers, blends and copolymers; liquid, plastic and condis crystals; deformation mechanisms and orientation characterization; relaxations and transitions; crystallization theory		
Prerequisites:	MSE 450 3 hours, 3 lecture-discussion hours/week		
Textbook:	Class notes and distributed (out of print) texts.		
References:	 K. C. Holmes and D. M. Blow, The use of X-ray Diffraction in the Study of Protein and Nucleic Acid Structure, Interscience Reprint, New York 1966 (distributed) B. K. Vainshtein, Diffraction of X-rays by Chain Molecules, Elsevier, Amsterdam, 1966 D. C. Bassett, "Principles of Polymer Morphology," Cambridge Univ. Press, Cambridge 1981 (distributed). P. H. Geil, Polymer Single Crystals, Interscience-Wiley, New York, 1963 (CD distributed) 		
Course Topics:	 Techniques of structure observation a. microscopy: OM, SEM, TEM and SPM; resolution, sample preparation; dark field; interpretation b. diffraction: electron, x-ray and neutron, sphere of reflection, effects of helical conformation, defects and crystal size on diffraction pattern, simulation of unit cell, crystallinity and orientation characterization, SAXD. Polymer morphology and relationship to properties: solution crystallization of single crystals; melt crystallization of single crystals, hedrites and spherulites; effect of annealing; kinetic theory of crystallization; "morphology" of amorphous polymers; crystallization from the glassy and oriented states. Deformation of crystalline polymers; mechanisms, morphological aspects and models; effect of annealing; effect on properties; Relaxations and transitions; methods of measurement and relationship to molecular structure, morphology and properties Polymer blends and co-polymers: effect of processing and composition on morphology and properties 		
Course Objectives:	 To demonstrate the correlation between, and advantages and disadvantages of, microscopy and diffraction methods of polymer structure characterization. To describe and demonstrate methods of sample preparation for TEM, including interpretation of micrographs thereof. To derive, from a physical basis, scattering equations for, in order, atoms, particles, molecules (helical in particular) and unit cells. To teach students the relationship of observed X-ray and ED patterns to reciprocal space and the sphere of reflection, including effects of crystal size and type I and II paracrystalline defects. To provide students with a detailed, current understanding of the morphology of crystalline polymers, as crystallized from solution, melt, glass and oriented melt and of the effect of annealing. To reach students knowledge of the techniques, and limitations thereof, for characterization of degree of crystallinity and orientation. To extend student's knowledge of methods of measurement and interpretation, in terms of molecular motions, degree of crystallinity and morphology, of polymer relaxations and transitions. To teach students the effect of composition and processing history on morphology and properties of block copolymers and blends. 		
Course Outcomes:	Given a polymer sample, be able to suggest methods (and potential limitations) of sample preparation for morphology observation by TEM.Given an oriented polymer sample, be able to suggest appropriate techniques for characterization of the orientation of the crystalline and amorphous segments therein.Given a polymer fiber x-ray diffraction pattern, be able to determine the physical and chemical repeat distances and the unit cell parameters.Given polymer x-ray diffraction scans, be able to calculate relative degrees of crystallinity, crystal size and defect content.		

	Be able to describe the effect of crystallization co and pressure, on the crystallinity, morphology diffusion) for representative crystallizable po Given the DMA or dielectric spectroscopy curve terms of transition and relaxation processes. Given the composition of a block copolymer and morphology.	nditions, including degree of supercooling, orientation, y and physical properties (modulus and small molecule lymers. for a polymer, be able to suggest an interpretation in method of sample preparation, be able to predict its
Assessment Tools:	 Homework problems involving application of the diffraction topics A written, open book exam on the first part of the course (Topic 1) designed to test the student's ability to apply his/her knowledge. An oral exam on Topics 2-5 based on a more extensive set of outcomes that are distributed to the students. 	
Professional Component:	100%	
	Prepared by: Phillip Geil	Date: May 2007

MSE 457/CHEM 457—Polymer Chemistry

Catalog Description:	Comprehensive overview and examination of the methods used to synthesize macromolecules. Both descriptive and mechanistic organic chemistry, as it relates to polymer synthesis, will be discussed.		
Prerequisites:	Senior standing in MSE or CHEM. 3 hours. 3 lecture-discussion hours/week		
Textbook:	Stevens, Malcolm P. Polymer Chemistry: an introduction, 3rd Edition, Oxford: New York 1999		
References:	Odian, G. Principles of Polymerization, Third ed.; Wiley: New York, 1991. Flory, P. J. Principles of Polymer Chemistry, University Press: Ithaca, 1953. Painter, P. C.; Coleman, M.M. Fundamentals of Polymer Science, Technomic: Lancaster, PA, 1994. Encyclopedia of Polymer Science and Engineering, Second ed.; 1985-1990. Editors: Mark, H. F., Bikales, N. M.; Overberger, C. G. and Menges, G.		
Course Topics:	 INTRODUCTION a. Historical notes b. Survey of polymerization type c. Chemical and physical differed. Biopolymers vs. synthetic pole Polymers as materials: Case 3 CHARACTERIZATION OF Mathematical and synthesis and molecular b. Molecular mass and molecular b. Molecular size and shape chately be the molecular size and shape chately be molecular distance of the molecular size and shape chately be molecular distance of the molecular size and shape chately be molecular and shape chately be molecular size and shape chately be molecular stere of the molecular stere of the molecular stere of the supramolecular stere supramolecular stere	es and macromolecular architectures ences between small molecules and macromolecules lymers Study, Kevlar®, Spectra [™] and Spider Silk ACROMOLECULES ar mass distribution racterization ution and stereochemistry XNTHETIC HIGH POLYMERS erbranched polymers gineering ion ttion ns s s olymerizations try ER CHEMISTRY) interactions naterials pramolecular chemistry	
Course Objectives:	 To review those aspects of polymer results of polymer synthesis. To have the students develop an polymerization mechanisms a To have the students understand process, and supermolecular statements. 	her characterization relevant to developing an understanding of the understanding of the relationship between the various common ad resulting products. The relationship between configuration, as detemined by the synthesis ructure.	
Course Outcomes:	 Ability to describe representative Ability to suggest (design) one o product. Ability to describe how the prop transparency, etc) can be varied 	reactions for each of the polymerization mechanisms. more polymerization reactions, including monomers, for desired erties of a polymer (e.g., molecular weight, crystallinity, d by control of the polymerization	
Assessment Tools:	3 written exams; 10 homework assi	gnments	
Professional Component:	100%		
	Prepared by: Paul Braun	Date: April 2007	

MSE 458/CHEM 482—Polymer Physical Chemistry

Catalog Description:	Intermediate level introduction to the fundamental physical chemistry of polymer systems. Focus is on equilibrium conformation, structure, properties, and phase transitions of polymer solutions, dense melts, liquid crystals, mixtures, block copolymers, surfaces and interfaces, and electronic polymers	
Prerequisites:	00-level course in thermodynamics, statistical thermodynamics or physical chemistry. <i>3 hours or 4 hours</i> . 3 lecture-discussion hours/week	
Textbook:	M. Rubinstein and R. H. Colby, "Polymer Physics"	
References:	 A.Y Grosberg and A.R.Khoklov, Statistical Physics of Macromolecules, AIP Press, New York, 1994. PG. deGennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979. P.J.Flory, Statistical Mechanics of Chain Molecules, Hansen Publishers, New York, 1969. P.C.Hiemenz, Polymer Chemistry - The Basic Concepts, Marcel Dekker, New York, 1984. 	
Course Topics:	 Polymer structure and conformational statistics; chemically realistic models versus coarse-grained descriptions. Dilute solution conformation and solvent quality; excluded volume and chain swelling; theta state and collapse to globule in poor solvents; charged polyelectrolytes and coil-to-rod transition. Dense solutions, melts, gels and rubber networks; dilute, semidilute, concentrated and melt regimes; scaling concepts; gelation and pecolation concepts; classical theory of rubber elasticity. Polymers near and tethered to surfaces, and in confined spaces; conformation and film thickness; physical adsoprtion; grafted polymer brushes, colloidal stability. Liquid crystalline phases; mesogenic molecules; nematic and smectic order; role of different intermolecular forces; Onsager theory of lyotropic rigid rods; thermotropics; semiflexibility effects on phase diagrams. Liquid-liquid phase separation; mixture thermodynamics and regular solution theory; Flory-Huggins theory of polymer solutions and blends; interface widths in phase-separated morphologies. Self-assembly and microphase separation; copolymer molecular structure; order-disorder phase transition, ordered phase symmetries, domain sizes; micelle formation in selective solvents. 	
Course Objectives:	 Conjugated and conducting polymers, electron delocalization, optical properties, doping, electrical conductivity and transport mechanisms. To fundamentally understand and derive the connection between monomer structure, temperature, solution conditions, degree of polymerization and 3-dimensional conformation. To understand and derive how charging polymers can result in fundamental property changes. To understand and derive the physical basis for thermodynamic, conformational and structural changes in polymers solutions and melts. To understand the physical origin of rubber elasticity and gelation. To understand the conformation of polymers adsorbed on surfaces, and trapped between surfaces, and the influence of solvent quality and polymer-surface attractive interactions. To learn about liquid crystalline phases, their symmetry characterization, and the physical forces which control phase diagrams. To learn about phase separation in polymer solutions and blends, and the basic theoretical understanding. To learn about microphase separated copolymer structures, the structure of phase separated blends, and the influence of thermodynamics and molecular weight on these questions. To introduce the student to electroactive polymers, and the conformational, optical, and electrical properties in synthetic metals. 	
Course Outcomes:	 To understand the diverse equilibrium experimental behavior of polymers in the solution, melt, rubbery, and confined state. To be able to qualitatively think at the molecular level about physical polymer behavior and processes. To be able to quantify with simple physical ideas(statistical thermodynamic) the competing entropic and enthalpic aspects of a multitude of physical processes. To expose the student to both classical, and modern, theoretical concepts in physical polymer science and how they can be used to make experimentally testable predictions. To provide the fundamental equilibrium foundation for learning about polymer dynamics and rheology. 	
Assessment Tools:	Homework problems involving application, and extension, of concepts and calculational methods presented in class.	

Written open book midterm and (comprehensive) final exams. For 4 hours credit, a ~10 page term paper on a subject in physical polymer science of interest to the student and relevance to the class subject matter.

Professional Component: 100%

Prepared by: Kenneth Schweizer

Date: March 2007

ECE 440—Solid State Electronic Devices

Catalog Description:	Semiconductor materials and the junctions; transistors; junction fit circuits. Credit is not given towa	r electronic properties and applications to electronic devices; p-n eld effect transistors and MOS devices; and introduction to integrated d graduate degrees in Electrical and Computer Engineering
Prerequisites:	<u>Physics</u> 214 - University Physics Introduction to Electromagnetic	Quantum Physics; credit or concurrent registration in ECE 229 - Fields. 3 hours. Lecture: 3 hr/week.
Textbook(s):	Ben G. Streetman, Solid State E	ectronic Devices, 5 th ed., Prentice Hall
Course Topics:	Crystal structure, orientations and planes of semiconductors (1 hr) Carriers, carrier distribution, carrier generation and recombination and energy bands (11 hrs) Carrier transport drift and diffusion (6 hrs) p-n junction, contact potential, carrier injection and diode equation (5 hrs) Breakdown and capacitance of p-n junction (2 hrs) Metal-semiconductor contact, Schottky barrier diode and heterojunction (2 hrs) Junction field effect transistor, metal-on-semiconductor (MOS) capacitor and MOSFET (10 hrs) Bipolar junction transistor (3 hrs) Optoelectronic devicesphotodetector, light emitting diode and laser (2 hrs)	
Course Objectives:	The purpose of this course is to p materials and a basic understand required for a successful career in junction transistors, field effect to These topics are important to the utilized in almost every area of e provide the background that will and limits of improved devices th engineer. (1, 4)	rovide the student with the essential background on semiconductor ng of the following semiconductor electronic devices that will be a electrical engineering: p-n junctions, Schottky barrier diodes, bipolar ansistors and optoelectronic devices. professional electrical or computer engineer because these devices are ectrical or computer engineering. The material in this course will give the student the ability to learn and understand the performance iat will be required throughout the career as an electrical or computer
Course Outcomes:	A student completing this course Identify crystalline planes and c Calculate the intrinsic carrier co and space charge neutrality to semiconductor samples. Compute the electron and hole of Fermi or quasi-Fermi level in Calculate the recombination cha low-level injection condition. Determine the drift and diffusion Calculate the contact potential a Calculate the excess carrier con neutral n- and p-type regions Distinguish between the current currents in a forward or rever Predict whether a metal-semico on the metal work function an Estimate the drain current of a J Calculate the threshold voltage MOS transistor above threshof	should at a minimum be able to: irections in a crystal lattice in terms of Miller Indices. ncentration in semiconductors, and apply the concept of compensation o calculate the electron and hole concentrations in extrinsic concentrations if the Fermi or quasi-Fermi level is given; determine the a semiconductor if the carrier concentration is given. racteristics and excess carrier concentrations as a function of time for in a semiconductor. n components of electron and hole currents. nd the maximum electrical field in a p-n junction in equilibrium. centrations at the boundaries between the space-charge region and the of a p-n junction for either forward or reverse bias. conduction mechanisms and calculate the minority and majority carrier se biased p-n junction diode. nductor contact will be a rectifying contact or an ohmic contact based ad the semiconductor electron affinity and doping. FET below and above pinch-off. of a non-ideal MOS transistor, and estimate the drain current of an old for low drain voltage and at pinch-off. rs of a BJT in terms of the material properties and device structure.
Assessment Tools:	Exams and homework assignment	ts.
Professional Component:	100%	
	Prepared by: K.C. Hsieh	Date: March 2001

MSE 460—Electronic Materials and Processing I: Semiconductors and Semiconductor Processing

Catalog Description:	Introduces senior engineers and new graduate students to the materials science, engineering, and processing of semiconductors. The structure and chemistry of semiconductors are related to the electronic and optical properties. Includes: how semiconductors are produced and how to control processing to achieve desired materials properties; how to design and produce novel materials to obtain superior performance from electronic devices.
Prerequisites:	Senior standing in Materials Science and Engineering. Strongly recommended: MSE 304, PHYCS 460 or equivalent and ECE 440 or equivalent. <i>3 hours</i> , 3 lecture hours/week.
Textbook:	Angus A Rockett, "The Materials Science of Semiconductors", Kluwer, in final editing for publication, and course notes.
References:	 M.A. Herman and H. Sitter, Molecular Beam Epitaxy Fundamentals and Current Status (Springer-Verlag). J.Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy. Linda M. Miller and James J. Coleman, "Metalorganic Chemical Vapor Deposition", CRC Critical Reviews. J.W. Matthews, Epitaxial Growth, Part B (Academic). A.W. Adamson, Physical Chemistry of Surfaces (John Wiley). Ben G. Streetman, Solid State Electronic Devices (Prentice-Hall). Keshra Sangwal, Etching of Crystals (North Holland). S.M. Sze, VLSI Technology (McGraw-Hill). R.A. Levy, Microelectronic Materials and Processes (Kluwer). R.E. Hummel, Electronic Properties of Materials (Springer-Verlag).
Course Topics:	 Overview of the Physics of Solids a. Crystallography and diffraction in electronic materials b. Energy band structures, capacitance, conductivity. Overview of Diodes, Schottky Barriers, and Heterojunctions Semiconductor Crystal Growth (Basic mechanisms of growth, Czochralsky method, molecular beam epitaxy, chemical vapor deposition) Physics of Semiconductors (Band theory, semiconductor design based on bond chemistry, semiconductor alloy design, amorphous semiconductors, defects in semiconductors and their engineering) Amorphous semiconductors Organic Light Emitting Materials
Course Objectives:	 To provide an in-depth description of the materials science that underlies the semiconductors in microelectronic devices. (In particular, structure-processing-properties relationships.) To describe and provide a fundamental understanding of techniques for design and engineering of semiconductors for microelectronics. To teach students the physical processes which underlie the optoelectronic behavior of semiconductors. To teach students the three primary methods of growing crystals in microelectronics with emphasis on the relationship of process parameters to the materials properties that result. To illustrate the application of basic materials science to electronic materials design (alloy theory and phase diagrams, point and extended defects in materials and their thermodynamics, process kinetics, polymer science. To challenge students with open ended design questions integrating the course material with materials from previous classes.
Course Outcomes:	 Given a hypothetical or real problem with an electronic materials device or process, explain the cause of the problem and propose solutions to the problem. Prepare a high quality term paper on a subject of relevance to electronic materials and processing. Explain, based on the energy/momentum diagrams for a solid or the atomic orbital energies, the nature of a semiconductor (bonding character, optoelectronic properties, band edge offsets, etc) or the nature of expected defects in the material (level depth, hydrogenic or deep level character). Recommend processes or conditions for a given process for fabrication of semiconductors.

	Given the performance of an electron giving rise to these. Recommend Understand the design of organic ligh and luminescent die materials.	c device, diagnose problems and predict the nature of the defects methods for improvement. t emitting and conductive polymers and the engineering of contacts
Assessment Tools:	Homework problems involving open-ended questions and design problems. Three closed book exams designed to test the student's ability to apply his/her knowledge. A term paper graded on effectiveness, content, organization, and English composition. An oral summary of the term paper and answers to questions from the class. Team learning approach. Students work with partners on homeworks and term paper.	
Professional Component:	100%	
	Prepared by: Angus Rockett	Date: May 2007

MSE 461—Electronic Materials and Processing II: Non-semiconductor materials and processing

Catalog Description:	Introduction to the materials science, engineering, and processing of microelectronic materials including especially conductors and dielectrics. The course makes use of the concepts developed in materials science to understand why certain materials make acceptable contacts and dielectrics while others do not. Demonstrates how manufacturing problems can be overcome with careful materials design and processing. Examines some of the processing techniques commonly used in microelectronic circuit manufacture during metallization, dielectric formation and lithography.	
Prerequisites:	Senior or graduate standing in MSE. 3 hours, 3 lecture-discussion hours/week	
Textbook:	James W. Mayer and S.S. Lau, "Electronic Materials Science for Integrated Circuits in Si and GaAs," MacMillan and course notes.	
References:	 Shyam P. Murarka and Martin C. Peckerar, Electronic Materials Science and Technology, Academic Press, 1989. Shyam P. Murarka, Silicides for VLSI Applications, Academic Press, 1983. Ben G. Streetman, Solid State Electronic Devices (Prentice-Hall). Keshra Sangwal, Etching of Crystals (North Holland). S.M. Sze, VLSI Technology (McGraw-Hill). 	
	R.A. Levy, Microelectronic Materials and Processes (Kluwer). R.E. Hummel, Electronic Properties of Materials (Springer-Verlag).	
Course Topics:	Conductors for Integrated Circuits (simple metals, metal alloys, electromigration resistant materials, compounds, silicide nucleation and reaction kinetics, interface stability criteria, transparent conductors)	
	 Sputter Deposition of Thin Films Dielectrics for Integrated Circuits (Silicon dioxide, oxidation kinetics, process additives and how they influence properties, nitrides, plasma-enhanced deposition, high k materials, low k materials) Chemical mechanical polishing Rapid thermal processing Introduction to litheorophy. 	
	Photoresists (single and multicomponent, dyes, contrast enhancers, photoactivated compounds, dissolution inhibitors) Reactive Ion Etching	
Course Objectives:	To provide an in-depth description of the materials science that underlies the non-semiconductor materials in microelectronic devices. (In particular, interfacial stabilities, process chemistries, and reaction kinetics)	
	To describe and provide a fundamental understanding of techniques for design and engineering of non- semiconductor materials for microelectronics	
	To teach students methods for design of metals and dielectrics for nanoscale electronic applications To teach students the two primary methods of processing materials in microelectronics (sputtering and reactive ion etching)	
	phase diagrams, point and extended defects in materials and their thermodynamics, process kinetics,	
	To challenge students with open ended design questions integrating the course material with materials from previous classes.	
Course Outcomes:	Given a hypothetical or real problem with an electronic materials device or process, explain the cause of the problem and propose solutions to the problem	
	Prepare a high quality team-oriented project on a subject of relevance to electronic materials and processing. This project requires the team to make a recommendation to a "Vice President for Technology" at a hypothetical microelectronics company concerning a decision among current technology options. The team prepares the project together, is self-organized, presents a team	
	Understand how materials interact at the nanoscale, what makes an interface stable, and how to design for stability.	

	Recommend processes or conditions for a Given the performance of an electronic de giving rise to these. Recommend meth Understand the design of advanced multic	given process for fabrication of semiconductors. vice, diagnose problems and predict the nature of the defects nods for improvement. omponent photoresists.
Assessment Tools: Homework problems involving open-ended question Three closed book exams designed to test the studen A term project graded on effectiveness, content, orga An oral summary of the team project poster and answ Team learning approach. The project teams are eval interactions.		ed questions and design problems. the student's ability to apply his/her knowledge. ontent, organization, and English composition. er and answers to questions from the class. ns are evaluated on their effectiveness as a team and their
Professional Component:	100%	
	Prepared by: Angus Rockett	Date: May 2007

MSE 462—Electronic Materials Laboratory

Catalog Description:	Introduces seniors and new graduate students to the instrumentation, characterization, and experimental analysis and properties of thin film materials through a combination of lectures and experiments. Covers both the principles and practice of: (a) deposition of thin film materials by vacuum evaporation, sputtering and plasma assisted processes: (b) modification of properties by thermal reaction, surface treatment, etc., and (c) characterization of key properties including electrical conductivity, optical properties, and stress. Methods to optimize the film microstructure and engineering properties via growth techniques are emphasized.	
Prerequisites:	MSE 460 or 461 3 hours	
Textbook:	Class notes.	
References:	 J. L. Vessel and W. Ken, "Thin film processes", Academic Press Milton Ohring, "The Materials Science of Thin Films", Academic Press (1992) J. R. Taylor, "Error Analysis", University Science Books, Sausalito, CA (1982) 	
Course Topics:	Introduction: thin films and vacuum Deposition principles and processes: fr PA-CVD 4 Thermal Reactions: annealing, oxidati Properties: microstructure, stress, hard	ormation from the vapor state, thermal evaporation, sputtering, on ness, optical, electrical, magnetic
Course Objectives:	 To teach students the relationship betw To demonstrate the role of mechanical systems. To teach students the advantages of the inaccuracies introduced by typical voltages. To provide students with the hands-on To describe typical processing issues for To provide students with an opportunit constraints. To teach students role of calibration tea for instrumentation. 	een microstructure and electronic properties. stress in the reliability issues for microelectronics thin film use of correct experimental design in order to circumvent eal instrumentation including correction of offsets and thermal opportunity to grow thin films under high vacuum environment. r thin film deposition and annealing steps. v to design their own materials solutions for a given set of device hniques and steps for defining sensitivity and accuracy criterion
Course Outcomes:	 Given a thin film of metal on a Si wafe during thermal annealing. Given an unknown semiconductor be a Effect measurements. Given a thin film sample determine the Given an evaporation system determine geometrical considerations. Show how a thin-film system can exhile extended temperature range. Given thermocouple system demonstrat measurement. 	suggest ways of measuring strain and stress of the thin film ble to determine the carrier concentration and mobility using Hall sheet resistance and contact resistance of the system. the degree of spatial uniformity of the thin film using it both elastic and plastic deformation characteristics over an e the role of the junction properties on the accuracy of the
Assessment Tools:	Three reports with properly formatted and annotated figures and tables. Three oral exams on each of the experiment modules	
Professional Component:	100%	
	Prepared by: Leslie Allen	Date: May 2007

MSE 470—Design and Application of Biomaterials

Catalog description:	 Provides an introduction to the characterization and use of biomaterials in medical applications. Presents concepts of biocompatibility in terms of structure and properties of materials and interactions between materials and proteins, cells, and tissue. Credit is not given for both MSE 470 and MSE 471 MSE 403; credit or concurrent registration in MCB 252. <i>3 hours</i>. 3 hours lecture-discussion. 		
Prerequisites:			
Textbook(s):	"Biomaterials Science: An introduction to Materials in Medicine. Second Edition. Edited by Buddy Ratner and others."		
Course topics:	Introduction: Biomaterials Cell-Biomaterials Biopolymers-1: Introduction Biopolymers-2: preparation Biopolymers-3: Hydrogel and Smart system Bioconjugation techniques Drug Delivery using biomaterials –small molecule delivery Drug Delivery using biomaterials –gene delivery Drug Delivery using biomaterials –gene delivery Biocompatibility In vivo degradation of materials Hard biomaterials Medical device design and implant Evaluation of biomaterials Micro- and nano- biomaterials In vitro and in vivo imaging and diagnosis Biomaterial in tissue engineering		
Course objectives:	This course is intended to provide t language associated with current bi	the student an understanding of the fundamental principles and commaterials research and to understand the issues associated with	
Course outcomes:	I expect the students to understand biomaterials and the connection of and biomedical applications.	the fundamental principles and language associated with current biomaterials design with their function, properties, biocompatibility	
Assessment tools:	Three tests and one final exam will One final presentation is required.	be given.	
Professional component:	100%		
	Prepared by: Jianjun Cheng	Date: June 2007	

MSE 472—Biomaterials Laboratory

Catalog description:	Explore various areas in biomaterials science and learn the fundamental disciplines, build lab skills, and enhance analytical thinking through experiments, demonstrations and scientific writing.		
Prerequisites:	Credit or registration in MSE 470. 3 hours.		
Textbook(s):	Biomaterials Science: An Introduction to Materials in Medicine (Edited by Ratner et al, 2 nd Edition) (A lab manual will be put together for next year.)		
Other resources:	Recent review papers on select topics from major journals		
Course topics:	Experiments are organized into modules and each module has a central theme. Modules include: <u>Drug Delivery:</u> Controlled release of encapsulated protein from biodegradable microspheres <u>Biocompatibility Testing:</u> Cytotoxicity assay of various materials using <i>in vitro</i> cell cultures <u>Natural Biomaterials:</u> Purification and characterization of collagen from bovine calf skin <u>Tissue Engineering:</u> Organotypic culture of skin tissue <u>Bioceramics:</u> Fabrication of porous and biodegradable polymer-hydroxyapatite composite		
Course objectives:	Achieve deeper understanding of the concepts and fundamental principles in biomaterials science; learn lab skills in materials science, chemistry, physics, biochemistry, and cell biology; learn to analyze and solve problems; learn to report experimental results in scientific writing.		
Course outcomes:	The objectives are mostly achieved. Students from the past semesters have performed experiments successfully, and their lab reports have shown good grasp of the concepts and approaches of the experiments, rational interpretation of the results, and thoughtfulness in discussion.		
Assessment tools:	A mid-term exam, a final exam, a lab report for each module, and inspection of the student's lab notebook.		
Professional component:	100%		
	Prepared by: Wujing Xian Date: April 2007		

MSE 473—Biomolecular Materials Science

Catalog Description:	This one-semester class will cover the chemical and physical foundations of biomolecular materials science. The course will consist of a series of modules on the structures and functions of basic classes of biological molecules, including lipid membranes, nucleic acids, proteins, and sugars. In a series of examples, we will study how biological and biomimetic systems self-assemble into their functional forms, and how these structures impart biological activity, by examining the specific and non-specific interactions between them over a wide range of length-scales. We will end the class with a final project, which will be a case study of your choice
Prerequisites:	None. 3 hours. 3 lecture-discussion hours/week.
Textbook:	None. (Course will be based entirely on lectures.)
Course Topics:	Basic classes of biomolecular materials: Nucleic acids Structure & function of DNA and RNA Sequencing technologies Biology and mechanics of DNA bending Physical description of semiflexible polymers Proteins Hierarchical organization Physical basis of secondary structures Examples of relationship between structure and function How to estimate persistence of lengths Lipids & membranes Gel phase membranes Gel phase membranes Helfrich elasticity of membranes Interactions between biomolecular materials: specific & non-specific Van der Waals interactions Dipole-induced dipole interactions Dipole-induced dipole interactions Electrostatic interactions Stape dependence of van der Waals interactions Electrostatic interactions Screening and dielectric constant Osmotie effects Poisson Boltzmann formalism Physical origins of electrostatics in water Structure & dynamics of water Hydrogen bonding & hydrophobic interactions Polymer-mediated and colloid mediated interactions Polymer-mediated and colloid mediated interactions Polymer-mediated and colloid mediated interactions Depletion interactions Polymer-mediated and colloid mediated interactions Polymer-mediated and colloid mediated interactions Depletion interactions
	interactions, lock-and-key, biological 'recognition' processes
Course Objectives:	 To review physics and chemistry necessary for an understanding of biomaterials. To teach students the basic interactions governing biology from the nanoscale to the mesoscale. To teach students the basic materials science of the membrane. To teach students the basic materials science of nucleic acids. To teach students the basic materials science of proteins. Give students an opportunity to give oral presentations in the standard format of contributed talks at research meetings. Give students an opportunity for teamwork in research Give students practice in basic expository technical writing.

Course Outcomes:	 Given a type of material, be able to make educated guesses about its bonding scheme, and estimate its Young's modulus. Be able to describe its physical origin of different types of bonds, as well as estimate its strength. Be able to solve simple elasticity problems with semiflexible polymers such as DNA and protein filaments. Be able to solve simple elasticity problems with fluid membranes. Be able to make simple scaling arguments in order to make simple estimates (such as bending modulus, persistence length, radius of gyration for polymers) on new materials systems. Be able to describe qualitatively the ways in which electrostatic interactions are altered in water, based on Poisson Boltzmann formalism. Be able to describe qualitatively hydrogen bonding and the hydrophobic effect 					
				Assessment Tools:	Homework	40%
					Midterm	30%
	Final project & presentation	30%				
Professional Component:	100%					
	Prepared by: G.C.L. Wong	Date: May, 2007				

MSE 480/CHEM 488—Surfaces and Colloids

Catalog Description:	Introduction to the chemistry and physics of surfaces and interfaces, with emphasis on behavior in liqui media; major areas include surface composition, surface and interfacial forces, colloidal stability and flocculation, and amphiphilic molecules		
Prerequisite:	MSE 301, CHEM 342, or PHYCS 3 physical chemistry. <i>3 hours</i> 3 lecture	61; or equivalent undergraduate course in thermodynamics or re-discussion hours/week	
Textbook:	Class notes.		
References:	"Principles of Colloid and Surface C 1997.	nemistry," 3rd Ed., Hiemenz and Rajagopalan, Marcel Dekker,	
	"Intermolecular and Surface Forces, Electronic Teaching Aids/Comp	' 2nd Ed., J. N. Israelachvili, Academic Press, 1991. iter Usage: as needed in homework problems	
Course Topics:	Basic concepts of surfaces general principles; surface structure; surface thermodynamics; curvature; adsorption. Forces between surfaces		
	use of colloids; varieties of interp potential; examples.	article forces; van der Waals forces; electrostatic forces; zeta	
	Forces due to liquid structure Polymers; structured liquids (sma Forward look	ll molecules); tribology and adhesion.	
	summary and review; diffusion, v	iscoelasticity; frontier areas.	
Course Objectives:	To teach a firm foundation of the ma and colloids, with emphasis on c	terials science and engineering that underlies the field of surfaces eveloping intuition and problem-solving techniques.	
	To teach students to analyze and interphenomena; to recognize and un	rpret the common themes that underly seemingly disparate derstand the unifying themes in different areas of applications.	
	To develop the expertise to know wl in this class.	ere to look to find out more about any of the areas that were treated	
	To teach students to implement an in	dependent semester-long research and assessment project.	
Course Outcomes:	A general understanding of surface e characteristic behavior as between	nergy, adsorption, relaxation, and reconstruction and their different in the general classes of materials (atomic and molecular).	
	A general understanding of the main owing to liquid structure) and th	types of surface forces (van der Waals, electrostatic, steric, forces e reasons that these forces exist.	
	Ability to read the literature criticall about this, and to express these of extended term paper and homew	in the field of surfaces and colloids, to develop informed opinions pinions and reasons for them persuasively in the form of an ork open-ended essay problems.	
	Given an engineering situation, the a manipulate the magnitudes and r	bility to develop an informed approach to methods by which to anges of the interaction forces.	
Assessment Tools:	Two hour-long examinations, the se A written presentation of an open-en-	cond one cumulative for the entire semester. ded term paper on a subject of the student's choosing.	
Professional Component:	100%		
	Prepared by: Steve Granick	Date : May 2007	

MSE 481—Electron Microscopy and Diffraction Theory

Catalog Description:	Theory and application of transmission electron microscopy and diffraction with emphasis on thin crystals; electron optics, interference phenomena, interpretation of images and diffraction patterns, specimen preparation, etc.		
Prerequisites:	MSE 305 or equivalent. Credit: 3 hours. 3 lecture/discussion hours per week.		
Textbook:	 D. B. Williams and C. B. Carter, "Transmission Electron Microscopy," Books 1 to 4, Plenum Press (1996) Class notes and handouts 		
References:	A number of references are used		
Course Topics:	 Basics of electron microscopy: Introduction to SEM and TEM; Scattering and diffraction; Elastic scattering; Inelastic scattering and beam damage; Electron sources; Optics; Lenses, apertures and resolution; The instrument and electron optics; Specimen preparation Diffraction: Diffraction patterns: Thinking in reciprocal space; Diffraction from crystals; Diffraction from small volumes; Stereograms, planar and directional for general symmetry; Indexin diffraction patterns, the general method; Kikuchi diffraction; Obtaining CBED patterns; Using convergent beam techniques Imaging: Imaging in the TEM; Thickness and bending effects; Dark field and weak beam technique Microchemical analysis by energy dispersive spectroscopy: X-ray spectrometry; The EDS-TEM interface; Qualitative X-ray analysis 		
Course Objectives:	 To understand the principles of optics, the different types of glass lenses and how they work, and how they can be combined to form real and virtual images. To understand the physics of different types of scattering events, viz., elastic, plastic, coherent, incoherent, forward and back scattering. Review the dual (particle and wave) nature of electrons. Review the principles of crystallography and systematic extinctions. To understand how an electromagnetic lens works, the coupling of electromagnetic lenses, and effect of lens defects. The construction of an SEM, TEM and STEM, including the function and positioning of apertures, stigmators, deflectors and detectors. Know how to prepare thin TEM specimens of metals, ceramics, polymers and combinations of them (composites), using standard techniques. To be able to take bright field, dark field, centered dark field and weak beam images, while correcting for astigmatism. To be able to take a selected area diffraction pattern (SAD), convergent beam (CBED), Kossel-Möllenstedt patterns, as well as Kikuchi patterns, and use the latter as guides for orientation in reciprocal space. To have some familiarity with the techniques of electron backscattered diffraction patterns (EBPD's) or orientation imaging microscopy (OIM) in SEM. To plot and manipulate both planar and directional stereograms, and use them to both predict, as well as to analyze, SAD or Kikuchi patterns for any crystal system (including non-orthogonal systems such as monoclinic and triclinic). To know the ethod of microchemical analyses by energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive spectroscopy (WDS). Students should be familiar with both the standard (K-factor ratio) and standardless methods for quantitative evaluation of elements present in a specimen. 		

Course Outcomes:	an understanding of image formation by glass and an understanding of the physics of scattering an understanding of the construction of various ty various parts and methods of image formation an understanding of methods of sample preparation ability to index electron diffraction patterns and in ability to utilize EDS and WDS results for micros	d electromagnetic lenses. ppes of electron microscopes, the function of the n. on for SEM and TEM. nterpret Kossel- Möllenstedt and Kikuchi patterns. chemical analysis.
Assessment Tools:	 Seven sets of homework problems were formulated by the instructor, complemented by teams of 3 students each. The students prepared questions on any topic covered or any topic that could re more attention for the sake of clarity. The final questions were prepared in consultation with e team by the instructor. The students graded each homework assignment, and explained the sol and common mistakes before the class. Subsequent, more involved and challenging homework projects were prepared by the instructor. One 1 and 1/2 to 2 hour mid-term exam and a 3-hour final exam. One project (sometimes written, always oral, sometimes a poster) was done by each student. The project was relevant to the undergraduate student's interest or to the graduate student's researc topic. 	
Professional Component:	100%	
	Prepared by: Waltraud Kriven	Date: March 2001

MSE 484—Composite Materials

Catalog Description:	Introduction to metal, ceramic, and polymer-matrix composites, with an emphasis on understanding the interrelationships among processing, microstructure and properties. The basis for selecting these system for different engineering applications are considered.		
Prerequisites:	Senior standing in Engineering. 3 <i>hours</i> required. 3 lecture-discussion hours/we	. To receive 1 unit credit a comprehensive term paper is k	
Textbook:	Lecture Notes.		
Recommended Text:	Composite Materials: Engineering and Science F. L. Matthews and R. D. Rawlings, Chapman & Hall 1994		
Course Topics:	Introduction Reinforcements: Fibers; Strengths of F Composite Interfaces: Bonding Mecha Polymer Matrix Composites: Polymer Carbon Fiber Composites Metal Matrix Composites: Metal Matri Discontinuously Reinforced Compo Ceramic Matrix Composites: Ceramic Glass Matrix Composites Composite Properties: Elastic Propertie	bers hisms; Bond Strength; Interfacial Toughness Matrices; Processing Techniques; Glass Reinforced Plastics; ces; Processing Techniques; Interfacial Controls; sites; Fiber Composites Matrices; Processing Techniques; Alumina Matrix Composites; s; Composite Strengths	
Course Objectives:	To describe synthesis, processing and p To examine bonding and properties of c To provide guidelines for selection of th To describe key processing techniques f To demonstrate the relationship among To analyze the mechanics of the compo To provide theoretical treatment of the c	roperties of fibers for composite reinforcements. omposite interfaces e matrix materials. or producing metal-, ceramic-, and polymer-matrix composites. synthesis, processing, and properties in composite materials site materials. omposite properties.	
Course Outcomes:	 Able to explain how common fibers are internal structure. Able to explain how interfacial bonding Able to suggest and analyze the method Able to select matrices for composite method Able to describe key processing method Able to explain how key processing part Able to analyze the mechanics of the conduct the able to explain the anisotropy in the elaboration. 	produced and how the properties of the fibers are related to the may be achieved between two materials. s for determining mechanical properties of interfaces. aterials in different applications. s for fabricating composites. ameters affect composite properties. mposite materials. stic properties and strengths of the composite.	
Assessment Tools:	Weekly homework problems Two midterm examinations 3. Final examination.		
Professional Component:	100%		
	Prepared by: Jian-ku Shang	Date: April 2007	

MSE 485/CSE 485/Phys 466—Atomic-Scale Simulations

Catalog Description:	To learn and apply some of the fundame in (primarily classical) simulations in or systems in materials science, physics, ch between simulation results and real prop statistical and systematic error estimatio simulation project composed of scientifi	ental techniques of Monte Carlo and Molecular Dynamics used der to help understand and predict properties of microscopic nemistry, and biology. Numerical algorithms, connections serties of materials (structural or thermodynamic), as well as n using real simulation programs will be emphasized. A c research, algorithm development, and presentation is required
Prerequisites:	A course in statistical mechanics, or stat C, C++, or Fortran. <i>3 hour</i> . 3 lecture ho	istical thermodynamics, and prior experience in programming in urs/week
Textbook:	"Understanding Molecular Simulations"	by Frenkel and Smit
Supplementary Text:	Computer Simulation of Liquids, M.P. Allen and D.J. Tildesley (Oxford Univ. Press) 1997	
Course Objectives:	Important areas of emphasis will be connections between the simulation results and real p of materials (structural or thermodynamic quantities), as well as numerical algorithms and sys and statistical error estimations. Methods and applications include:	
	 Introduction to concepts, use, limitation integration algorithms, static and dyn transport. Introduction to concepts, use, limitation including variance reduction, random Introduction to concepts, use, limitation Brownian motion, etc. Simulations of Phase Transitions (melti Simulations of Polymers (growth and e Quantum Simulation Zero temperature Optimization techniques, such as simul (Choice of Kinetic Monte Carlo or Qua 	as, and applications of Molecular Dynamics, including namic correlations functions and their connection to order and as, and applications of Monte Carlo and Random Walks, an number generation, and Metropolis algorithms. as, and applications of Kinetic Monte Carlo, heat diffusion, ing-freezing, calculating free energies) quilibrium structure) and finite temperature methods. ated annealing, genetic algorithms. untum Monte Carlo is by instructor.)
Course Outcomes:	 Familiarity with the basic concepts, use, methods for simulation of materials application of methods. Introduced to and application of concept estimation, and variance reduction. Application of methods to phase transiti difficulties and limitations of methods Introduced to optimization ideas and tech 	and limitations of Molecular Dynamics and Monte Carlo properties through both theoretical development and personal s of random number generation, statistical and systematic error ons, polymer growth, and kinetic MC, and familiarity with ds for such. chniques via simplistic homework simulation.
Assessment Tools:	 Homework problems (including computer simulation using Engineering WorkStations) involving fundamental knowledge and application of each topic. Submit and orally defend proposed group project due at end of semester. Written mid-term examination on fundamentals of subset of topics. Final Group Project, in lieu of Final Exam, designed to test the student's understanding of concepts their ability to apply his/her knowledge. Project is graded on any pertinent algorithmic and scie content and on both oral and electronic report presentations. 	
Professional Component:	100%	
	Prepared by: Duane D. Johnson	Date: March 2001