EGo TRANSMISSION
LINES

In Chap. 4 we studied the principles of uniform plane wave propagation in
free space. In Chap. 5 we extended the study of wave propagation to material
medja. In both chapters we were concerned with propagation in unbounded
media. In this and the next chapters we shall consider guided wave propaga-
tion, that is, propagation of waves between boundaries. The boundaries are
generally provided by conductors, whereas the media between the boundaries
are generally dielectrics. There are two kinds of waveguiding systems. These
are transmission lines and waveguides. A transmission line consists of two
or more parallel conductors, whereas a waveguide is generally made up of
one conductor. Our goal in particular in this chapter is to learn the prin-
ciples of transmission lines.

We shall introduce the transmission line by considering a uniform plane
wave and placing two parallel plane, perfect conductors such that the fields
remain unaltered by satisfying the “boundary conditions” on the perfect
conductor surfaces, which we will derive at the outset. The wave is then guided
between and parallel to the conductors, thus leading to the parallel-plate
line. We shall learn to represent a line by the “distributed” parameter equiv-
alent circuit and discuss wave propagation on the line in terms of voltage
and current. We shall learn to compute the circuit parameters for the parallel-
plate line and then extend the computation to the general case of a line of
arbitrary cross section. We shall discuss the “standing wave” phenomenon
by considering the short-circuited line and reflection and transmission of
waves at the junction between two lines in cascade.
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6.1 BOUNDARY CONDITIONS ON
A PERFECT CONDUCTOR SURFACE

In Sec. 5.6 we learned that the fields inside a perfect conductor are zero,
as illustrated in Fig. 6.1. In this section we shall use this property to derive
the “boundary conditions” for the fields on the surface of a perfect conductor.

Perfect
Conductor

Figure 6.1. Showing that the fields inside a perfect conductor are zero.

Boundary conditions are simply a set of relationships relating the field com-
ponents at a point adjacent to and on one side of the boundary between two
different media to the field components at a corresponding point adjacent to
and on the other side of the boundary. These relationships arise from the
fact that Maxwell’s equations in integral form involve closed paths and sur-
faces and they must be satisfied for all possible closed paths and surfaces
whether they lie entirely in one medium or encompass a portion of the bound-
ary between two different media. In the latter case, Maxwell’s equations in
integral form must be satisfied collectively by the fields on either side of the
boundary, thereby resulting in the boundary conditions. To derive these
boundary conditions, we recall that Maxwell’s equations in integral form are
given by

d
Eedl=—2% | B.ds (6.12)
§C dr | .
§H-dl=fJ-dS+diJ.D-dS (6.1b)
c s ¢
jﬁ D.dszfpdv (6.1¢)
S 14
ff;B-dS:O (6.1d)
5

We shall apply these equations, one at a time, to a closed path or a closed

198



SEC. 6.1 BouNDARY CONDITIONS ON A PERFECT CONDUCTOR SURFACE 199

surface encompassing the surface of a perfect conductor and derive the
corresponding boundary conditions.

Considering Faraday’s law in integral form, that is, (6.1a) first and apply-
ing it to an infinitesimal rectangular closed path abeda chosen such that ab
and cd are very close to and on either side of the perfect conductor surface
as shown in Fig. 6.2, we have

or

b ¢ d 3
fE-d1+fE.d1+fE-dl+fE.d1:~E B.dS (6.2
a b ¢ d

abed

Figure 6.2. For deriving the boundary condition for the tangential com-
ponent of E on a perfect conductor surface.

But [/E « dl = 0 since E is zero inside the perfect conductor. If we now
let ad and bc — 0 by making ab and cd almost touch each other but remain-
ing on either side of the boundary, the quantities [{ E - dl, [E«dl, and
Jusea B * dS all tend to zero, leaving us

L” E«dl—0 (6.3)

Since ab is infinitesimal in size, we can write (6.3) as
E,(ab) =0 6.4)
where E,, is the component of E on the perfect conductor surface along the
line ab. Thus we obtain
E,—=0 6.5
Since we can choose the rectangle abcda with any orientation, it follows that
E,, is zero for any orientation of ab. Hence we obtain the first boundary

condition that “the tangential component of E at a point on a perfect con-
ductor surface is equal to zero.” We can express this statement concisely in
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vector form as
i,xE=0 (6.6)

on the perfect conductor surface where i, is the unit normal vector to the con-
ductor surface, as shown in Fig. 6.2,

Considering next Ampere’s circuital law in integral form, that is, (6.1b),
and applying it to the rectangular path abcda of Fig. 6.2, we have

H-dl:f J-dS—{—diJ D.dSs
abed t

abeda abed

or

b ¢ d a
fH-dl—l—fH-dl—l—fH-dl—l—fH-dl
a b ¢ d

— | 7.as+2( p.as ©.7)

abed abed

But [{H « d1 = 0 since H is zero inside the perfect conductor. If we now let
ad and bc — 0 as before, the quantities [* H + dl, [fH .« dl,and [, ,D + dS
all tend to zero, but [,, . J + dS does not necessarily tend to zero since there
can be a surface current enclosed by the area abcd although the area abced
tends to zero, as shown in Fig. 6.3(a). If & is the angle between the surface

(a)

(b)

Figure 6.3. For deriving the boundary condition for the tangential com-
ponent of H on a perfect conductor surface.

current density vector Jg and the unit normal vector iy to the area abcd,
directed in the right-hand sense, as shown in Fig. 6.3(b), then

J « dS = Jg(ab cos &) (6.8)

abed
Thus we obtain

b
f H « dl = Jg(ab cos &)
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or
H ,(ab) = Js(ab cos )

H, = Jscosua (6.9)

The maximum value of H,,, that is, the tangential component H, of H on
the conductor surface is obtained for o equal to zero, that is, when ab is
oriented perpendicular to Jg and then

H, =Js (6.10)

Hence we obtain the second boundary condition that “the tangential com-
ponent of H at a point on a perfect conductor surface is perpendicular (in
the right-hand sense) to the surface current density at that point and is equal
in magnitude to the surface current density.” We can express this statement
concisely in vector form as

i x H=1J (6.11)

on the perfect conductor surface where i, is again the unit normal vector to
the conductor surface pointing out of the conductor, as shown in Fig. 6.3(a).

Considering now Gauss’ law for the electric field in integral form, that
is, (6.1¢), and applying it to an infinitesimal rectangular box abedefgh chosen
such that the surfaces abed and efgh are very close to and on either side of the
perfect conductor surface, as shown in Fig. 6.4, we have

Al L

volume
of the of the
box box
or
D.dS + D - dS + D-dszj pdv  (6.12)
abed side efgh volume

surfaces of the
box

Figure 6.4. For deriving the boundary conditions for the normal com-
ponents of D and B on a perfect conductor surface.
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But {,. . D« dS = 0 since D is zero inside the perfect conductor. If we now
let the side surfaces — 0 by making abed and efgh almost touch each other
but remaining on either side of the boundary, [, D . dS tends to zero
and J.volume

surfaces
p dv tends to the surface charge enclosed by the box. If the
of the box
surface charge density is pg, then the surface charge enclosed by the box is
ps(abed). Thus we obtain

D« dS = pilabed)
or
Dn(ade) = pS
Dn = Ps (6'13)

where D, is the normal component of D. Hence we obtain the third boundary
condition that “the normal component of D at a point on a perfect conductor
surface is equal to the surface charge density at that point.” We can express
this statement concisely in vector form as

i, D= pg (6.14)

on the perfect conductor surface.

Considering finally Gauss’ law for the magnetic field in integral form,
that is, (6.1d), and applying it to the rectangular box abcdefgh of Fig. 6.4,
we have

3€f B.dS=0

of the
box

or

B.dS+ B.dS+ [ B.dsS=0 (6.15)
aed :Ldr?aces bl

But {,.., B« dS =0 since B is zero inside the perfect conductor surface.
If we now let the side surfaces — 0 as before, j B « dS tends to zero.

side
surfaces

Thus we obtain

B.4d4S=0
abed
or
B,(abed) = 0
B,=0 (6.16)

where B, is the normal component of B. Hence we obtain the fourth boundary
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condition that “the normal component of B at a point on a perfect conductor
surface is equal to zero.” We can express this statement concisely in vector
form as

i,  B=20 6.17)

on the perfect conductor surface.
Summarizing the four boundary conditions for the field components ona
perfect conductor surface, we have

i, xE=0
i, x H=Jg
i, D= ps
i,»B=20

where i, is the unit normal vector pointing out of the conductor, Jg is the
surface current density, and pj is the surface charge density on the conductor
surface.

Example 6.1. Let us consider a perfect dielectric medium z <0 bounded
by a perfect conductor z > 0, as shown in Fig. 6.5. Let the fields in the dielec-
tric medium be given by the superposition of (4) and (—) uniform plane
waves propagating normal to the conductor surface, that is,

E = E, cos (0t — B2)i, + E, cos (ot + f2)i,

H= %cos (ot — B2)i, — %cos (ot + B2)1,

where f = wa/p€ and 5 = ./ ufe. We wish to investigate the relationship
between E, and E;.

z<0 z>0
Perfect . Perfect
Dielectric : Conductor
T :
x
z
y

Figure 6.5. A perfect dielectric medium bounded by a perfect conductor.
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Since E, is tangential to the perfect conductor surface, the boundary
condition for the tangential component of E given by (6.6) requires that

[Ex]z=0 s 0
or

[E, cos (wt — fz) + E, cos (wf + f2)],-, = 0
E, coswt + E,coswt =0 for all ¢

Thus we obtain the required relationship to be
Ez . _El

Proceeding further, we obtain the total electric field in the dielectric as
given by
E = E, cos (ot — fz)i, — E, cos (wt + B2) i,

= 2E1 sin wt sin fz 1,

and the total magnetic field in the dielectric as given by

H= % cos (wt — fz)i, +=Lcos (wt + B2)1i,

2
2B} cos oot cos fiz i,

These expressions for E and H correspond to standing waves. We shall discuss
the standing wave phenomenon in Sec. 6.4.

Now, from the boundary condition for the tangential component of H
given by (6.11), we obtain

Jsl-o =1, X [H],., = —i, x [H],-,

==, x%cosa)tiy

_2E
“cosoti, -

6.2 PARALLEL-PLATE TRANSMISSION LINE

In the previous section we introduced the boundary conditions for the
field components on the surface of a perfect conductor. We learned that the
tangential component of the electric field intensity and the normal component
of the magnetic field intensity are zero on the perfect conductor surface. Let
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us now consider the uniform plane electromagnetic wave propagating in the
z direction and having an x component only of the electric field and a y
component only of the magnetic field, that is,

E=E/(z,1)i,
H=H/z 1],

and place perfectly conducting sheets in two planes x = 0 and x = d, as
shown in Fig. 6.6. Since the electric field is completely normal and the magne-
tic field is completely tangential to the sheets, the two boundary conditions
referred to above are satisfied, and hence the wave will simply propagate,
as though the sheets were not present, being guided by the sheets. We then
have a simple case of transmission line, namely, the parallel-plate transmis-
sion line.

x=0

xH | x | x | x|x|x]|x| x| x X

P 3 iZ

X X x | x|x|x|x]| x X X
e

X X x | x[x|x| x| x X X

YE \ 4 Y Y Y 1L Y VY Y Y Y
x=d

Figure 6.6. Uniform plane electromagnetic wave propagating between two
perfectly conducting sheets.

According to the remaining two boundary conditions, there must be
charges and currents on the conductors. The charge densities on the two
plates are

[pS]x=0 - [in * D]x=0 e ix N 6Exix =l fEx (6.183.)
[pS]x=d i [in N D]x=d 5 _ix . EExix e _eEx (6'18b)

where ¢ is the permittivity of the medium between the two plates. The current
densities on the two plates are

Feloo = [i, x Hl,oo = i, x H,i, = H,j, (6.19)
[JS]x=d = [in X H]x=d — _ix X Hyiy - _Hyiz (6'19b)

In addition, there is conduction current in the medium between the plates
flowing from one plate to the other with density given by

J.=0oE =0FE,i, (6.20)
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where ¢ is the conductivity of the medium. In (6.18)~(6.20) it is understood
that the charge and current densities are functions of z and ¢ as E, and H,
are. Thus the wave propagation along the transmission line is supported by
charges and currents on the plates, varying with time and distance along the
line, as shown in Fig. 6.7.

Figure 6.7. Charges and currents on the plates of a parallel-plate trans-
mission line,

Let us now consider finitely sized plates having width w in the y direction,
as shown in Fig. 6.8(a), and neglect fringing of the fields at the edges or
assume that the structure is part of a much larger-sized configuration. By
considering a constant z plane, that is, a plane “transverse” to the direction
of propagation of the wave, as shown in Fig. 6.8(b), we can find the voltage
between the two conductors in terms of the line integral of the electric field
intensity evaluated along any path in that plane between the two conductors.
Since the electric field is directed in the x direction and since it is uniform in
that plane, this voltage is given by

Viz, t) = j"a Ez, 0 dx = E(z, 1) jdo dx — dE(z,1)  (6.21a)

Thus each transverse plane is characterized by a voltage between the two
conductors which is related simply to the electric field as given by (6.21a).
Each transverse plane is also characterized by a current I flowing in the
positive z direction on the upper conductor and in the negative z direction
on the lower conductor. From Fig. 6.8(b), we can see that this current is
given by

I(z, 1) = J.”;O Js(z, ) dy = f:o Hyz, i = Hyz 1) J.io dy
— wH(z, 1) (6.21b)

since H, is uniform in the cross-sectional plane. Thus the current crossing
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[IX

x=0
e, 06 0 ,0,0 0 0 0, 06<—]
Zz
0) > H g
EJ,
.| - _,}_ SN U N Y PN
ARRRARRRARCE ) ¥

\

w

F 3

Figure 6.8. (a) Parallel-plate transmission line, (b) A transverse plane of
the parallel-plate transmission line,

a given transverse plane is related simply to the magnetic field in that plane
as given by (6.21b).

Proceeding further, we can find the power flow down the line by evaluat-
ing the surface integral of the Poynting vector over a given transverse plane.
Thus

P(z,1) =| (E x H) + dS

transverse
plane

d w
= [ [ BB dxdyi,
x=0 Jy=0

g Y V(z, ) Iz, 1)
s e

= V(z, )I(z, D) (6.22)

which is the familiar relationship employed in circuit theory.
We now recall from Sec. 5.4 that E, and H, satisfy the two differential
equations

JE, B, 0H,
gz~ ot Har (6268)
oH, aD, JE,
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From (6.21a) and (6.21b), however, we have
(6.24a)
(6.24b)

Substituting for E, and H, in (6.23a) and (6.23b) from (6.24a) and (6.24b),
respectively, we now obtain two differential equations for voltage and cur-
rent along the line as

25)- -3 =
Rt I

or
‘;_’z/ _ _</‘7d) ‘Z_{ (6.262)

These equations are known as the “transmission-line equations.” They
characterize the wave propagation along the line in terms of line voltage
and line current instead of in terms of the fields.

We now define three quantities familiarly known as the “circuit parame-
ters.” These are the inductance, the capacitance, and the conductance (reci-
procal of resistance) per unit length of the transmission line in the z direction
and are denoted by the symbols £, @, and G, respectively. The inductance per
unit length, having the units henries per meter (H/m), is defined as the ratio
of the magnetic flux per unit length at any value of z to the line current at
that value of z. Noting from Fig. 6.8 that the cross-sectional area normal to
the magnetic field lines and per unit length in the z direction is (d)(1) or d,
we find the magnetic flux per unit length to be B,d or uH,d. Since the line
current is H,w, we then have

£— %H_vyvd _ %’ (6.272)
y

The capacitance per unit length, having the units farads per meter (F/m), is
defined as the ratio of the charge per unit length on either plate at any value
of z to the line voltage at that value of z. Noting from Fig. 6.8 that the cross-
sectional area normal to the electric field lines and per unit length in the z
direction is (w)(1) or w, we find the charge per unit length to be pgw or
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€E.w. Since the line voltage is E.d, we then have

e EEw _ ew (6.27b)

The conductance per unit length, having the units mhos per meter (U/m),
is defined as the ratio of the conduction current per unit length flowing from
one plate to the other at any value of z to the line voltage at that value of z.
Noting from Fig. 6.8 that the cross-sectional area normal to the conduction
current flow and per unit length in the z direction is (w)(1) or w, we find the
conduction current per unit length to be J_w or ¢ E,w. We then have

g 9Ew _ ow (6.27¢)

We note that £, €, and § are purely dependent on the dimensions of the line
and are independent of E, and H,. We further note that

(6.28a)

[
=
™

(6.28b)

~|Q

We now recognize the quantities in parentheses in (6.26a) and (6.26b)
to be £, G, and €, respectively, of the line. Thus we obtain the transmission-
line equations in terms of these parameters as

14 oI

5= L (6.292)
oI v
= —grv—e ' (6.29b)

These equations permit us to discuss wave propagation along the line in
terms of circuit quantities instead of in terms of field quantities. It should,
however, not be forgotten that the actual phenomenon is one of electromag-
netic waves guided by the conductors of the line.

It is customary to represent a transmission line by means of its circuit
equivalent, derived from the transmission-line equations (6.29a) and (6.29b).
To do this, let us consider a section of infinitesimal length Az along the line
between z and z -+ Az. From (6.29a), we then have

Lim V(iz + Az, ) — V(z,t) _ e (91‘(92; t)

Az—0 AZ
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or, for Az— 0,
V(z-F Az, 1) — V(z, 1) — —& Az 01((;—2,’0 (6.30)
This equation can be represented by the circuit equivalent shown in Fig.

6.9(a) since it satisfies Kirchhoff’s voltage law written around the loop abcda.
Similarly, from (6.29b), we have

Lim Iz + Az, 1) — I(z, 1) _ Lim [—QV(Z LA —e vV (z+ Az, t)—)

Az—0 Z Az—0 dt

or, for Az — 0,

Izt Az f) — Iz, £) = —G Az V(z -+ Az, 1) — € Az "V(—ZEAZ—”) (6.31)

b £Az o Iz, t) [(z+Az1) £4z
—_— 2 2 +o #
I 1(z, 8) +T T : |
L | |
1 : ) | |
= ) gary L | '
= : | I
i |
Y- - = l I
O e O O & O <> - ‘#’

a d d o

(a) (b) (¢ ZTAz

Figure 6.9. Development of circuit equivalent for an infinitesimal length
Az of a transmission line.

This equation can be represented by the circuit equivalent shown in Fig. 6.9(b)
since it satisfies Kirchhoff’s current law written for node ¢. Combining the
two equations, we then obtain the equivalent circuit shown in Fig. 6.9(c)
for a section Az of the line. It then follows that the circuit representation for
a portion of length / of the line consists of an infinite number of such sections
in cascade, as shown in Fig. 6.10. Such a circuit is known as a “distributed
circuit” as opposed to the “lumped circuits” that are familiar in circuit theory.
The distributed circuit notion arises from the fact that the inductance, capac-
itance, and conductance are distributed uniformly and overlappingly along
the line.

A more physical interpretation of the distributed circuit concept follows
from energy considerations. We know that the uniform plane wave propaga-
tion between the conductors of the line is characterized by energy storage
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LAz LAz LAz
Y Y Y\ *— —
CAz CAz CAz oo
cAz gAz gAz -

Figure 6.10. Distributed circuit representation of a transmission line.

in the electric and magnetic fields and power dissipation due to the conduc-
tion current flow. If we consider a section Az of the line, the energy stored in
the electric field in this section is given by

W, = %fEi‘ (volume) = %eEi(a’w Az)
—r By Az = —e Az V? (6:32)

The energy stored in the magnetic field in that section is given by

W % UH? (volume) = uH 2 (dw Az)
_ L rdg e A — L 2
=5 (Hw)* Az = 3 LAz (6.33)

The power dissipated due to conduction current flow in that section is given
by

P, = oE2 (volume) = oE2 (dw Az)
= E}(Exd)z Az =GAzV? (6.34)

Thus we note that £, @, and G are elements associated with energy storage in
the magnetic field, energy storage in the electric field, and power dissipation
due to the conduction current flow in the dielectric, respectively, for a given
infinitesimal section of the line. Since these phenomena occur continuously
and since they overlap, the inductance, capacitance, and conductance must
be distributed uniformly and overlappingly along the line. In actual practice,
the conductors of the transmission line are imperfect, resulting in slight
penetration of the fields into the conductors, in accordance with the skin
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effect phenomenon. This gives rise to power dissipation and magnetic field
energy storage in the conductors, which are taken into account by including
a resistance and additional inductance in the series branch of the transmis-
sion-line equivalent circuit (see Problem 6.9).

6.3 TRANSMISSION LINE WITH AN
ARBITRARY CROSS SECTION

In the previous section we considered the parallel-plate transmission line
made up of perfectly conducting sheets lying in the planes x = 0 and x = d
so that the boundary conditions of zero tangential component of the electric
field and zero normal component of the magnetic field are satisfied by the
uniform plane wave characterized by the fields

E=E(z0i,
H=H/z0ni,

thereby leading to the situation in which the uniform plane wave i1s guided
by the conductors of the transmission line. In the general case, however, the
conductors of the transmission line have arbitrary cross sections and the
fields consist of both x and y components and are dependent on x and y
coordinates in addition to the z coordinate. Thus the fields between the con-
ductors are given by

E=E@(yz i, + E(x¥yz i,
H=H.(x.p,z,0)i,+ H/(x,», 2, 1)1,

These fields are no longer uniform in x and y but are directed entirely trans-
verse to the direction of propagation, that is, the z axis, which is the axis of
the transmission line. Hence they are known as “transverse electromagnetic
waves,” or “TEM waves.” The uniform plane waves are simply a special case
of the transverse electromagnetic waves.

To extend the computation of the transmission line parameters £, €, and
G to the general case, let us consider a transmission line made up of parallel,
perfect conductors of arbitrary cross sections, as shown by the cross-sectional
view in Fig. 6.11(a). Let us assume that the inner conductor is positive with
respect to the outer conductor and that the current flows along the positive
z direction (into the page) on the inner conductor and along the negative z
direction (out of the page) on the outer conductor. We can then draw a
“field map,” that is, a graphical skeich of the direction lines of the fields
between the conductors, from the following considerations: (a) The electric
field lines must originate on the inner conductor and be normal to it and
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must terminate on the outer conductor and be normal to it since the tangential
component of the electric field on a perfect conductor surface must be zero.
(b) The magnetic field lines must be everywhere perpendicular to the electric
field lines; although this can be shown by a rigorous mathematical proof, it is

intuitively obvious since, first, the magnetic field lines must be tangential
near the conductor surfaces and, second, at any arbitrary point the fields

Conductors

(a)

H line

(@)

(e) ()

Figure 6.11, Construction of a transmission line field map consisting of
curvilinear rectangles.
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correspond to those of a locally uniform plane wave. Thus suppose that we
start with the inner conductor and draw several lines normal to it at several
points on the surface as shown in Fig. 6.11(b). We can then draw a curved
line displaced from the conductor surface and such that it is perpendicular
everywhere to the electric field lines of Fig. 6.11(b), as shown in Fig. 6.11(c).
This contour represents a magnetic field line and forms the basis for further
extension of the electric field lines, as shown in Fig. 6.11(d). A second mag-
netic field line can then be drawn so that it is everywhere perpendicular to
the extended electric field lines, as shown in Fig. 6.11(e). This procedure is
continued until the entire cross section between the conductors is filled with
two sets of orthogonal contours, as shown in Fig. 6.11(f), thereby resulting
in a field map made up of curvilinear rectangles.

By drawing the field lines with very small spacings, we can make the
rectangles so small that each of them can be considered to be the cross section
of a parallel-plate line. In fact, by choosing the spacings appropriately, we
can even make them a set of squares. If we now replace the magnetic field
lines by perfect conductors, since it does not violate any boundary condition,
it can be seen that the arrangement can be viewed as the parallel combination,
in the angular direction, of m number of series combinations of # number of
parallel-plate lines in the radial direction, where m is the number of squares
in the angular direction, that is, along a magnetic field line, and # is the num-
ber of squares in the radial direction, that is, along an electric field line. We
can then find simple expressions for £, €, and G of the line in the following
manner.

Let us for simplicity consider the field map of Fig. 6.12, consisting of
eight segments 1,2, ..., 8 in the angular direction and two segments ¢ and
b in the radial direction. The arrangement is then a parallel combination, in
the angular direction, of eight series combinations of two lines in the radial
direction, each having a curvilinear rectangular cross section. Let I, I, . . .,
I; be the currents associated with the segments 1, 2, .. ., 8, respectively, and
let w, and y, be the magnetic fluxes per unit length in the z direction associ-
ated with the segments a and b, respectively. Then the inductance per unit
length of the transmission line is given by

oY _ Wa ¥,
I &Y., T1,
! 1
= eIy
L L I, L 1 Iy
%+%+“% %+mm+%
1 1
= A — T (6.35)

| 1
s.te, T Ty, Ete, Tt
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y
Figure 6.12. For deriving the expressions for the transmission-line para-
meters from the field map.
Let Q,, Q,, ..., Qs be the charges per unit length in the z direction associ-

ated with the segments 1,2, ..., 8, respectively, and let ¥, and V, be the
voltages associated with the segments a and b, respectively. Then the capaci-

tance per unit length of the transmission line is given by

e=Q Q0+ +0

V,+ V,,
. 1 1 1
AN U AR A
0, "0 0. Q. Qs (s
- 1 1 1
—1+L+1+1Jr TTT 635
ela elb e?.a eZb esa esb
Let I, Ly, . . -, Ly be the conduction currents per unit length in the z direc-
tion associated with the segments 1, 2, ..., 8, respectively. Then the con-

ductance per unit length of the transmission line is given by
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SZLZ_ICI +_102+-'_'+108
vV V,+V,
I 1 1
T Rt mt et m
‘,::1 Icl 1:2 lc! !:B Jrcs
1 1 1
PSS s e S o (6.35¢0)
gla glh 9211 gzb gBa gﬂb

Generalizing the expressions (6.35a), (6.35b), and (6.35¢c) to m segments
in the angular direction and n segments in the radial direction, we obtain

. i
=TT (6.360)
=] oc”
n |
C=XTT (6.36b)
j=1 eij
g=31_1_
AL 1 (6.36¢)
J=1 g:‘j

where £;;, €;;, and G,; are the inductance, capacitance, and conductance per
unit length corresponding to the rectangle ij. If the map consists of curvil-
inear squares, then £,;, €,;, and G, are equal to u, €, and o, respectively,
according to (6.27a), (6.27b), and (6.27c), respectively, since the width w
of the plates is equal to the spacing d of the plates for each square. Thus we

obtain simple expressions for £, €, and § as given by

—un

S=u (6.37a)
Gze% (6.37b)
9:0% (6.37¢)

The computation of £, €, and G then consists of sketching a field map con-
sisting of curvilinear squares, counting the number of squares in each direc-
tion, and substituting these values in (6.37a), (6.37b), and (6.37c). Note that
once again

£

S
e

@

(6.38a)

®
m

(6.38b)

a|Q
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We shall now consider an example of the application of the curvilinear squares
technique.

Example 6.2. The coaxial cable is a transmission line made up of parallel,
coaxial, cylindrical conductors. Let the radius of the inner conductor be a
and that of the outer conductor be b. We wish to find expressions for £, @,
and G of the coaxial cable by using the curvilinear squares technique.

Figure 6.13 shows the cross-sectional view of the coaxial cable and the
field map. In view of the symmetry associated with the conductor configura-
tion, the construction of the field map is simplified in this case. The electric
field lines are radial lines from one conductor to the other, and the magnetic
field lines are circles concentric with the conductors, as shown in the figure.

Figure 6.13. Field map consisting of curvilinear squares for a coaxial cable.

Let the number of curvilinear squares in the angular direction be m. Then
to find the number of curvilinear squares in the radial direction, we note that
the angle subtended at the center of the conductors by adjacent pairs of
electric field lines is equal to 2z/m. Hence at any arbitrary radius » between
the two conductors, the side of the curvilinear square is equal to r(2z/m).
The number of squares in an infinitesimal distance dr in the radial direction
is then equal to _dr_ orﬂﬂ. The total number of squares in the radial
rQr/m) 2w r
direction from the inner to the outer conductor is given by

" mdr_ m, b

n=| " umha
The required expressions for £, @, and G are then given by

_ P _HEpb
L= By = In B (6.39a)
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m 2ne

C = 67 = I () (6.39b)
m 2rno

§=0 n I (b/a) (6.390)

These expressions are exact. We have been able to obtain exact expressions
in this case because of the geometry involved. When the geometry is not so
simple, we can only obtain approximate values for £, €, and G. m

We have just discussed an example of the determination of the transmis-
sion-line parameters £, @, and G for a coaxial cable. There are other con-
figurations having different cross sections for which one can obtain the
parameters either by the curvilinear squares technique or by other analytical
or experimental techniques. We shall, however, not pursue the discussion of
these techniques any further. With the understanding that different transims-
sion lines are characterized by different values of £, @, and G, which can be
computed from the formulas, we now recall that the voltage and current on
the line are governed by the transmission-line equations

v 24

=% (6.40a)
oI v
5= —gy—e fr (6.40b)

For the sinusoidally time-varying case, the corresponding differential equa-
tions for the phasor voltage ¥ and phasor current / are given by

O — —joci (6.41a)
0l _ _op _ jpei — e 6.41bp
g, — 9V —JjotV = —(§ + jwC) (6.41by

Combining (6.41a) and (6.41b) by eliminating I, we obtain the wave
equation for V as

277 [ -
O = —joe% = joc@ + joe)?

yv (6.42)

where
7 = JJo&(G + jot) (6.43)
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is the propagation constant associated with the wave propagation on the line.
The solution for V is given by

V(z) = Ae 7" + Be™ (6.44)

where 4 and B are arbitrary constants to be determined by the boundary
conditions. The corresponding solution for [ is then given by

1(z) = “jwfdz = _jco£( §Ae 7 -+ §Be™)
G+ J0C, 15 e
= 08 (de™?* — Be'?)
1,7, =
— = (de? — Be* 6.45
Zo( e e’’) (6.45)
where
Z, =] A8 (6.46)

G - jot

is known as the “characteristic impedance” of the transmission line.

The solutions for the line voltage and line current given by (6.44) and
(6.45), respectively, represent the superposition of (+) and (—) waves, that
is, waves propagating in the positive z and negative z directions, respectively.
They are completely analogous to the solutions for the electric and magnetic
fields in the medium between the conductors of the line. In fact, the propaga-
tion constant given by (6.43) is the same as the propagation constant
~/jou(e 1 jwe), as it should be. The characteristic impedance of the line is
analogous to (but not equal to) the intrinsic impedance of the material me-
dium between the conductors of the line. We note that for a perfect dielectric
medium between the conductors, that is, for ¢ = 0, § = 0 and

7, iz = 4/% (6.47)

is purely real. For example, for the coaxial cable of Example 6.2, with a
perfect dielectric between the conductors,

4/ = ’\/27z / lnz(’lzja)

1 /u, b
E¢?ln7 (6.43)
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For u = u,, € = 2.25¢,, and bja = 3.67, the characteristic impedance of the
coaxial cable is approximately 52 ohms.

6.4 SHORT-CIRCUITED TRANSMISSION LINE

In the previous section we found the general solutions for the complex
voltage and complex current ¥ and I, respectively, on a transmission line.
For a “lossless line,” that is, for a line consisting of a perfect dielectric medium
between the conductors, § = 0, and

F=o+ jB = /oL joC = jo./LC (6.49)

Thus the attenuation constant ¢ is equal to zero, which is to be expected, and
the phase constant § is equal to w./£€. We can then write the solutions
for V and I as

V(z) = Ae~'Pz - Belt: (6.502)

i(z) = ZLO(Je-fﬂz — Berry (6.50b)

where Z, = ./£/€ as given by (6.47).

Let us now consider a lossless line short circuited at the far end z = 0,
as shown in Fig. 6.14(a), in which the double-ruled lines represent the con-
ductors of the transmission line. Tn actuality, the arrangement may consist,
for example, of a perfectly conducting rectangular sheet joining the two con-
ductors of a parallel-plate line as in Fig. 6.14(b) or a perfectly conducting
ring-shaped sheet joining the two conductors of a coaxial cable as in Fig.
6.14(c). We shall assume that the line is driven by a voltage generator of
frequency o at the left end z = —/ so that waves are set up on the line. The
short circuit at z = 0 requires that the tangential electric field on the surface
of the conductor comprising the short circuit be zero. Since the voltage
between the conductors of the line is proportional to this electric field which
is transverse to them, it follows that the voltage across the short circuit has
to be zero. Thus we have

7(0) = 0 (6.51)

Applying the boundary condition given by (6.51) to the general solution
for V" given by (6.50a), we have

V(0) = Ae~/8® | Bel#® — (
or

B= -4 (6.52)
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1(z)
——
[y 3—
+
7(2)
L y—
z=—/ —_— z=0
()

Figure 6.14. Transmission line short-circuited at the far end.

Thus we find that the short circuit gives rise to a (—) or reflected wave whose
voltage is exactly the negative of the (+4) or incident wave voltage, at the
short circuit. Substituting this result in (6.50a) and (6.50b), we get the par-
ticular solutions for the complex voltage and current on the short-circuited
line to be

V(z) = Ae~ 18 — Ae’?* = —2jd sin fz (6.53a)

i) = ZLO(A'e—fﬂz 1 Aoty = 27“(1) cos Bz (6.53b)

The real voltage and current are then given by

V(z, ) = Re[V(2)e’*] = Re(2e~/"2 4e’® sin Bz /")
= 24 sin Bz sin (et + 0) (6.54a)

I(z, 1) = Re[l(z)e] = Re[ZiAe” cos fz e’“":l
o

= 2Z—A cos Bz cos (wt + 6) (6.54b)
0
where we have replaced A by Ae’® and —j by e~/*%, The instantaneous power
flow down the line is given by
P(z, 1) = V(z,)I(z, 1)

= % sin fz cos Bz sin (et + 6) cos (wt + 6)
0

— &% sin 22 sin 2ot - 6) (6.54c)
0
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These results for the voltage, current, and power flow on the short-
circuited line given by (6.54a), (6.54b), and (6.54c), respectively, are illus-
trated in Fig. 6.15, which shows the variation of each of these quantities with
distance from the short circuit for several values of time. The numbers
1,2,3,...,9 beside the curves in Fig. 6.15 represent the order of the curves

NAH

224

[=)
Voltage

424

(@) ' b2y

.

(b) 24
2,6

by
™

1,3,5,7,9

4,8
| | 1

5y - IE
4 4

N> =
Al
(o]

Figure 6.15. Time variations of voltage, current, and power flow asso-
ciated with standing waves on a short-circuited transmission line,
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corresponding to values of (wt + @) equal to 0, z/4, /2, . . ., 2z, It can be
seen that the phenomenon is one in which the voltage, current, and power
flow oscillate sinusoidally with time with different amplitudes at different
locations on the line, unlike in the case of traveling waves in which a given
point on the waveform progresses in distance with time. These waves are
therefore known as “standing waves.” In particular, they represent “complete
standing waves” in view of the zero amplitudes of the voltage, current, and
power flow at certain locations on the line, as shown by Fig. 6.15.

The line voltage amplitude is zero for values of z given by sin fz =0
or fz=—mr,m=1,2,3,...,0orz= —mAf2,m=1,2,3,...,thatisat
multiples of A/2 from the short circuit. The line current amplitude is zero
for values of z given by cos fz = 0 or fz = —(@2m + Dn/2, m =0, 1,2, 3,
c..,0or z=—Cm -+ Di4, m=0,1,2,3,...,that is, at odd multiples
of A/4 from the short circuit. The power flow amplitude is zero for values of
z given by sin 28z =0 or fz= —mn/2, m=1,2,3,...,01r z = —ml/4,
m=1,2,3,...,thatis, at multiples of 1/4 from the short circuit. Proceed-
ing further, we find that the time-average power flow down the line, that is,
power flow averaged over one period of the source voltage, is

T 2n/w

w
Pz,tdtz—-f P(z, ) dt
PG odi=g | PG

=

1
®=7 |
' 2 2w

D 2 sin2p: f sin 2(t + 0) dt — 0 (6.55)
0

t=0

Thus the time average power flow down the line is zero at all points on the
line. This is characteristic of complete standing waves.

From (6.53a) and (6.53b) or (6.54a) and (6.54b), or from Figs. 6.15(a)
and 6.15(b), we find that the amplitudes of the sinusoidal time-variations of
the line voltage and line current as functions of distance along the line are

|7(2)| = 24| sin Bz| = 24sin ZT"z (6.562)

)| = 24 _ 24| o 2
II(z)l—Zlcos Bz = Zo{cos R (6.56b)

Sketches of these quantities versus z are shown in Fig. 6.16. These are known
as the “standing wave patterns.” They are the patterns of line voltage and
line current one would obtain by connecting an a.c. voltmeter between the
conductors of the line and an a.c. ammeter in series with one of the conduc-
tors of the line and observing their readings at various points along the line.
Alternatively, one can sample the electric and magnetic fields by means of
probes.
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Figure 6.16. Standing wave patterns for voltage and current on a short-
circuited line.

Returning now to the solutions for ¥(z) and I(z) given by (6.53a) and
(6.53b), respectively, we can find the input impedance of the short-circuited
line of length / by taking the ratio of the complex line voltage to the complex

line current at the input z = —/. Thus
5 V(=D _ —2jdsin p(=1)
L)) 24 cos B(—1)
Z,

= jZ, tan Bl = jZ, tan 277:1

— jZ, tan 2] (6.57)
,Up

We note from (6.57) that the input impedance of the short-circuited line is
purely reactive. As the frequency is varied from a low value upward, the
input reactance changes from inductive to capacitive and back to inductive,
and so on, as illustrated in Fig. 6.17. The input reactance is zero for values
of frequency equal to multiples of v,/2/. These are the frequencies for which
! is equal to multiples of 4/2 so that the line voltage is zero at the input and
hence the input sees a short circuit. The input reactance is infinity for values
of frequency equal to odd multiples of v,/4l. These are the frequencies for
which /is equal to odd multiples of 1/4 so that the line current is zero at the
input and hence the input sees an open circuit.

Example 6.3. From the foregoing discussion of the input reactance of the
short-circuited line, we note that as the frequency of the generator is varied
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Figure 6.17. Variation of the input reactance of a short-circuited trans-
mission line with frequency.

continuously upward, the current drawn from it undergoes alternatively
maxima and minima corresponding to zero input reactance and infinite input
reactance conditions, respectively. This behavior can be utilized for deter-
mining the location of a short circuit in the line.

Since the difference between a pair of consecutive frequencies for which
the input reactance values are zero and infinity is v,/4/, as can be seen from
Fig. 6.17, it follows that the difference between successive frequencies for
which the currents drawn from the generator are maxima and minima is
v,/4l. As a numerical example, if for an air dielectric line, it is found that
as the frequency is varied from 50 MHz upward, the current reaches a mini-
mum for 50.01 MHz and then a maximum for 50.04 MHz, then the distance
! of the short circuit from the generator is given by

21’7:(5004—5001)>< 106 = 0.03 x 10° = 3 x 10¢

Since v, = 3 X 10° m/s, it follows that

3x10° _ 9500m — 2.5 km

I=ix3x10° =

Example 6.4. We found that the input impedance of a short-circuited line
of length / is given by

Z,. = jZ, tan Bl

Let us investigate the low-frequency behavior of this input impedance.
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First, we note that for any arbitrary value of 8/,
tan BI = I + 4 (B + (B + ...

. 2n A v
For g/« 1, 1.e.,Tl<<10rl<<2—z orf<<ﬁ’

tan fl =~ fl
Zin ~jZfl = jA/%coﬂ/,G—Gl = jobl
Thus for frequencies ' < v,/2z/, the short-circuited line as seen from its input

behaves essentially like a single inductor of value £/, the total inductance of
the line, as shown in Fig. 6.18(a).

£1
£/
O Y Y Y O
1
§el
(a) (b)

Figure 6.18. Equivalent circuits for the input behavior of a short-circuited
transmission line.

Proceeding further, we observe that if the frequency is slightly beyond
the range for which the above approximation is valid, then

tan Bl ~ Bl + L (1)’
_ 1 pars
Zu ~ 2o (Bl + 5 B°P)
J—] E CE 1 3 03/203/2]3
—J E(wJ£GI+Tw £e l)
= jco£1<1 A %wZDBGlZ)
1

)7 (1 + ?aﬂmﬂ)'l
1
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Thus for frequencies somewhat above those for which the approximation
f< v,[2al is valid, the short-circuited line as seen from its input behaves

like an inductor of value £/ in parallel with a capacitance of value iGI, as

3
shown in Fig. 6.18(b).

These findings illustrate that a physical structure that can be considered
as an inductor at low frequencies f< v,/2nl no longer behaves like an
inductor if the frequency is increased beyond that range. In fact, it has a
“stray” capacitance associated with it. As the frequency is still increased, the
equivalent circuit becomes further complicated. Thus conventional circuit
theory considerations of physical structures are strictly valid only for
<K v,/2nl, or | K 4/2m. -

6.5 BOUNDARY CONDITIONS AT
A DIELECTRIC DISCONTINUITY

In Sec. 6.1 we derived the boundary conditions for the field components
at a perfect conductor surface by applying Maxwell’s equations in integral
form to infinitesimal closed paths and closed surfaces encompassing the
boundary and by using the fact that the fields inside the perfect conductor
are zero. In this section we shall derive the boundary conditions at an inter-
face between two different perfect dielectric media by similarly considering
the Maxwell’s equations in integral form one at a time. We shall note, how-
ever, that fields exist on either side of the boundary and that there cannot
be any surface charge or surface current on the boundary in view of the per-
fect dielectric nature of the two media. We shall then use these boundary
conditions in the following section to study reflection and transmission at
the junction of two transmission lines having different dielectrics.

Thus let us consider a plane boundary between two different dielectric
media 1 and 2 characterized by €,, , and €,, i, respectively, as shown in
Fig. 6.19. Then, applying Faraday’s law in integral form (6.1a) to the infini-
tesimal rectangular path abeda as shown in Fig. 6.19, we have

b c d a
fE-dl+fE-dl+fE-dl+fE-dl:—;t B+ dS
a b c d abed
(6.58)
In the limit that ad and bc — 0, we obtain
E,(ab) + E.fcd) =0
E,(ab) — E;(cd)=0 or E, = Ey; (6.59)

Since this is true for any orientation of the rectangle, it follows that “the tan-
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gential component of E is continuous at the dielectric interface.” Thus
E,=E, o i,x(E, —E,)=0 (6.60)

where the subscript ¢ denotes “tangential” and i, is the unit normal vector
to the boundary, as shown in Fig. 6.19.

Medium 2
€: iy

|
|
IDnZ’B

1n2

Figure 6.19. For deriving the boundary conditions at the interface between
two perfect dielectric media.

Similarly, applying Ampere’s circuital law in integral form (6.1b) to the
rectangular path abcda, we have

LbH~dl+ L°H-d1+f:H- dl-+ ["H- dl

= J-dS—I—%f D . dS (6.61)

abed abed
In the limit that ad and b¢c — 0 and noting that there is no current enclosed
by abed, we obtain
H,y(ab) + H y(cd) =0
H,(ab) — H;(cd)=0 or H,=H, (6.62)

Since this is true for any orientation of the rectangle, it follows that “the
tangential component of H is continuous at the dielectric interface.” Thus

Hy=H, or i,x(H, —H,) =0 (6.63)

Considering next Gauss’ law for the electric field in integral form (6.1¢c)
and applying it to the infinitesimal rectangular box abcdefgh, as shown in
Fig. 6.19, we have
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j D . dS + D.dS+ D-dS:J‘ pdv  (6.64)
abecd volume

side efgh
surfaces & of the
box

In the limit that the side surfaces — 0 and noting that there is no charge
enclosed by the box, we obtain

D, (abed) — D,,(efghy =0 or D, = D, (6.65)

where the subscript # denotes “normal,” and D, and D,, are both directed
into medium 1. Thus “the normal component of D is continuous at the dielec-
tric interface.” In vector form, we have

i,+(MD, —D,)=0 (6.66)

Similarly, applying Gauss’ law for the magnetic field in integral form
(6.1d) to the rectangular box abcdefgh, we have

B.dS -+ B-.dS+ B.dS=0 (6.67)
fhes :iudrefaces Es

In the limit that the side surfaces — 0, we obtain
B,,(abed) — B,,(efgh) =0 or B, = B, (6.68)

Thus “the normal component of B is continuous at the dielectric interface.”
In vector form, we have

i, (B, —B,) =0 (6.69)

Summarizing the boundary conditions for the field components at a
dielectric interface, we have

i,x((E, —E)=0
i, x (H; —H,;) =0
i,+D; —D;)=0
in'(Bl—BZ):O
Example 6.5. At a particular instant of time the fields at point 1 in Fig. 6.20

are given by
El = E0(3ix + iz)

H, = H,y(2i,)

where E, and H, are constants. Let us find the fields at point 2, lying adjacent
to point 1 and on the other side of the interface between media 1 and 2.



230 CH. 6 TRANSMISSION LINES

Medium 1
€o» Ky
1 ®
x=0 : 2
2% Medium 2 : Y
3ey, 2p0

Figure 6.20. For illustrating the application of boundary conditions at
the interface between two perfect dielectric media.

From (6.66), we have

D,, = D\, = €,(3E,;) = 3¢,E,

_ Dy 3e,Ey
2% 360 3e, Eo
From (6.60), we get
E,,=E,=0
E22 - Elz - EO

From (6.69), we obtain
Bax =B, = U(0) =0
_ Bax _
Hzx = 2”0 B 0
From (6.63), we find

H,,= H,, — 2H,

Thus we obtain the rqeuired fields at point 2 to be

E2 = EO(ix + iz)
H, = H,(2i,) =

6.6 TRANSMISSION-LINE DISCONTINUITY

Let us now consider the case of two transmission lines 1 and 2 having
different characteristic impedances Z,, and Z,,, respectively, and phase con-
stants #, and f,, respectively, connected in cascade and driven by a generator
at the left end of line 1, as shown in Fig. 6.21(a). Physically, the arrangement
may, for example, consist of two parallel-plate lines or two coaxial cables of
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|
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#llel

(b) (c)

Figure 6.21. Two transmission lines connected in cascade.

different dielectrics in cascade, as shown in Figs. 6.21(b) and 6.21(c),
respectively. In view of the discontinuity at the junction z = 0 between the two
lines, the incident (4) wave on the junction sets up a reflected (—) wave in
line 1 and a transmitted (4) wave in line 2. We shall assume that line 2 is
infinitely long so that there is no (—) wave in that line.

We can now write the solutions for the complex voltage and complex
current in line 1 as

7.(2) = Piep + Vit (6.702)
i) = Trern 1. Frem
= - (Fre-trs — Viems) (6.70b)
01

where 7, 71, I}, and I} are the (++) and (—) wave voltages and currents at
z — 0— in line 1, that is, just to the left of the junction. The solutions for
the complex voltage and current in line 2 are

Vi(z) = Vie It (6.71a)

L) = ;e it = — Ve P (6.71b)

1
ZOZ
where V; and I; are the (<) wave voltage and current at z = 0-+ in line 2,
that is, just to the right of the junction.

At the junction the boundary conditions (6.60) and (6.63) require that
the components of E and H tangential to the dielectric interface be contin-
wous, as shown, for example, for the parallel-plate arrangement in Fig.
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(a) (b)

Figure 6.22. Application of boundary conditions at the junction between
two transmission lines.

6.22(a). These are, in fact, the only components present since the transmission
line fields are entirely transverse to the direction of propagation. Now, since
the line voltage and current are related to these electric and magnetic fields,
respectively, it then follows that the line voltage and line current be con-
tinuous at the junction, as shown in Fig. 6.22(b). Thus we obtain the bound-
ary conditions at the junction in terms of line voltage and line current as

Viloo- = [Valezos (6.72a)
Uilemo- = [Dlomos (6.72b)

Applying these boundary conditions to the solutions given by (6.70a) and
(6.70b), we obtain

Vi+Vi=V; (6.73a)
_ 1y
ZOI(V1 Vl)—Z—OZVz (6.73b)

Eliminating ¥ ; from (6.73a) and (6.73b), we get

= 1 1 = 1 []
Pz = 20) iz ) <O
Zos Loy + i Zoz_l_zol
or

(6.74)

We now define the voltage reflection coefficient at the junction, Iy, as
the ratio of the reflected wave voltage (V'7) at the junction to the incident wave
voltage (V1) at the junction. Thus
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Vl_ ZOZ _ZOI

= 6.75
Vi Zey + Zy, (e

The current reflection coefficient at the junction, T*;, which is the ratio of the
reflected wave current (I7) at the junction to the incident wave current (1)
at the junction is then given by

F,=£=__V1_—/Z‘”=—§=—Fy (6.76)

If VilZo, Vi

We also define the voltage transmission coefficient at the junction, 7, as the
ratio of the transmitted wave voltage (V1) at the junction to the incident wave
voltage (V1) at the junction. Thus

PR Y AW IR AR R (6.77)

The current transmission coefficient at the junction, 7, which is the ratio of
the transmitted wave current (I3) at the junction to the incident wave current
(I7) at the junction is given by

4 + — -
,IZQZL_LL:“F%: . o (6.78)
1

We note that for Z,, = Zy,, I'y = 0, T'; = 0, 1, = 1, and 7; = 1. Thus the
incident wave is entirely transmitted as we may expect since there is no
discontinuity at the junction.

Example 6.6. Let us consider the junction of two lines having characteristic
impedances Z,; = 50 ohms and Z,, = 75 ohms, as shown in Fig. 6.23, and
compute the various quantities.

|
[®]

|

Line | |[ Line 2

Zm = 50 ohms l Z02 =75 ohms
|
|
|

(@]

Figure 6.23. For the computation of several quantities pertinent to
reflection and transmission at the junction between two transmission lines.
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From (6.75)-(6.78), we have

r,=—1“y——%, I_T:_%ir
G=1+Ty=l+g=2; Vi=37t
y=1-Ty=1—g=" It=2If

The fact that the transmitted wave voltage is greater than the incident wave
voltage should not be of concern since it is the power balance that must be
satisfied at the junction. We can verify this by noting that if the incident
power on the junction is P;, then

1

reflected power, P, = Iy T/ P, = — 75

P,

24

255

transmitted power, P, = 7,T,P;, =

Recognizing that the minus sign for P, signifies power flow in the negative z
direction, we find that power balance is indeed satisfied at the junction. u

Returning now to the solutions for the voltage and current in line 1 given
by (6.70a) and (6.70b), respectively, we obtain by replacing V1 by I,V {,

Vi(z) = Vie it 4 T, Viet=

_ 1+ ,p,z(l 4T eﬂﬂn’) (6793)
1@ = g-(Prems — TP te)
Vi
~ Zu,

01

e=Ihe(] — Tyel2h) (6.79b)

The amplitudes of the sinusoidal time-variations of the line voltage and line
current as functions of distance along the line are then given by

II;1(Z)| = |I71+ e8| 1 + T'yel28|

= |V ||1 + Tycos 2B,z + jTy sin 28,z|
= |V |/TFTZ+ 2Ly cos 2B,z (6.80a)
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- +
| 1,(2)| = Zol | le=7#:2 || 1 — Tye/2P#|

P

= l;” [l — Ty cos2f,z— jTysin2f,z|
01

_ l;” JTFTT =T, cos 28,2 (6.80b)
01

From (6.80a) and (6.80b), we note the following:

1. The line voltage amplitude undergoes alternate maxima and minima
equal to |7;|(1 + |T]) and |P{|(1 — |Ty|), respectively. The line
voltage amplitude at z = 0 is a maximum or minimum depending on
whether T, is positive or negative. The distance between a voltage
maximum and the adjacent voltage minimum is 7/2f8, or 4;/4.

2. The line current amplitude undergoes alternate maxima and minima

Vi |7i] : ;
equal to Lot1(1 + |, ]) and L2241 (1 — [Ty |), respectively. The line
ZOI ZOI

current amplitude at z = 0 is a minimum or maximum depending on
whether T, is positive or negative. The distance between a current
maximum and the adjacent current minimum is z/2, or 4,/4.

Knowing these properties of the line voltage and current amplitudes, we now
sketch the voltage and current standing wave patterns, as shown in Fig. 6.24,
assuming I, > 0. Since these standing wave patterns do not contain perfect
nulls, as in the case of the short-circuited line of Sec. 6.4, these are said to
correspond to “partial standing waves.”

We now define a quantity known as the “standing wave ratio” (SWR) as
the ratio of the maximum voltage, V.., to the minimum voltage, V., of the
standing wave pattern. Thus we find that

SWR = Vmax — |IZI+|(1 + erl) — 1 + |FV|
Vmin IV1+|(1_|FVD I—Ier

(6.81)

The SWR is an important parameter in transmission-line matching. It is an
indicator of the degree of the existence of standing waves on the line. We
shall, however, not pursue the topic here any further. Finally, we note that
for the case of Example 6.6, the SWR in line 1 is (1 -+ —é—)/(l — %) or
1.5. The SWR in line 2 is, of course, equal to 1 since there is no reflected

wave in that line.
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A Voltage
|VI|(1 +1r,n
It -1r,n
1 1 1 1 1 1 L |
_m B 5N 3N A 0
4 4 4 3
Current
v+
15530 +1r, )
Zy i
7] a-ir,n
Zyy g
| | ] 1 1 1 ! |
=27, _Eﬁ - A 0
T2

Figure 6.24. Standing wave patterns for voltage and current on a trans-
mission line terminated by another transmission line.

6.7 SUMMARY

In this chapter we studied the principles of transmission lines by extend-
ing our knowledge of uniform plane wave propagation gained in the previous
two chapters. To introduce the transmission line, we first derived the bound-
ary conditions required to be satisfied by the field components at a perfect
conductor surface. These boundary conditions, which follow from the appli-
cation of Maxwell’s equations in integral form to infinitesimal closed paths
and surfaces straddling the boundary and from the property that the fields
inside a perfect conductor are zero, are given in vector form by

i,xE=0 (6.82a)
i, x H=Jg (6.82b)
i, D= pg (6.82¢)
i, B=0 (6.824d)

where i, is the unit normal vector to the conductor surface and directed into
the field region. Equations (6.82a) and (6.82d) state that the electric field be
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completely normal and that the magnetic field be completely tangential at
a point on the conductor surface. The normal displacement flux density and
the tangential magnetic field intensity are then related to the surface charge
density and the surface current density as given by (6.82c) and (6.82b),
respectively.

We used the boundary conditions (6.82a)-(6.82d) to illustrate that the
placing of perfect conductors in planes normal to the electric field and hence
tangential to the magnetic field of a uniform plane wave does not alter the
field distribution and the wave is simply guided between and parallel to the
conductors supported by the charges and currents on the conductors, as
though they were not present, thereby constituting a parallel-plate transmis-
sion line. We then showed that wave propagation on a transmission line can
be discussed in terms of voltage and current, which are related to the electric
and magnetic fields, respectively, by deriving the “transmission-line equa-
tions”

oV al
0l av
= =—gr—eZl (6.83b)

which then led us to the concept of the distributed circuit.

The parameters £, €, and G in (6.83a) and (6.83b) are the inductance,
capacitance, and conductance per unit length of line, which differ from one
line to another. For the parallel-plate line having width w of the plates and
spacing d between the plates, they are given by

e — 4

w
_ &
=
_ow
§=7

where 4, €, and ¢ are the material parameters of the medium between the
plates, and fringing of the fields is neglected. We learned how to compute
£, @, and G for a line of arbitrary cross section by constructing a field map
of the transverse electromagnetic wave fields, consisting of curvilinear squares
in the cross-sectional plane of the line. If m is the number of squares tangential
to the conductors and #» is the number of squares normal to the conductors,
then

£:,u%
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e
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By applying this technique to the coaxial cable, we found that for a cable of
inner radius a and outer radius b,

_Hpb
= 2n n a
_ 2me

= In(b/a)
2no
S =t @)

The general solutions to the transmission-line equations (6.83a) and
(6.83b), expressed in phasor form, that is,

g_‘z’ — jofl (6.842)
%:—gﬁ—p@7 (6.84b)
are given by _ _ _
7(z) = Ae* 4 Ber (6.852)
f(z) = Z_L(A'e-fz — Ber) (6.85b)

0
where

P = njo&(§ + jo®)  [= A/jouo + jwe)]

5 _ JoL Jou ]
Zo=4gT jue [i 7T joe

are the propagation constant and the characteristic impedance, respectively,
of the line. For a lossless line (§ = 0), these reduce to

P =Jo/EC (= jos/ p1e)
Z-o = \/ % (# A/ ufe)
The solutions given by (6.85a) and (6.85b) represent the superposition

of (-+) and (—) waves propagating in the medium between the conductors
of the line, expressed in terms of the line voltage and current instead of in
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terms of the electric and magnetic fields. By applying these general solutions
to the case of a lossless line short circuited at the far end and obtaining the
particular solutions for that case, we discussed the standing wave pheno-
menon and the standing wave patterns resulting from the complete reflection
of waves by the short circuit. We also examined the frequency behavior of
the input impedance of a short-circuited line of length /, given by

Ziw = jZ, tan Bl

and (a) illustrated its application in a technique for the location of short
circuit in a line, and (b) learned that for a circuit element to behave as
assumed by conventional (lumped) circuit theory, its dimensions must be a
small fraction of the wavelength corresponding to the frequency of operation.
To extend the discussion of the reflection phenomenon to one of partial
reflection and transmission, we first derived the boundary conditions at the
interface between two dielectric media. These are given in vector form by

i x (E, —E)=0 (6.862)
i x (H, —H) =0 (6.86b)
i (D, —D,)=0 (6.860)
i (B, —B,)=0 (6.86d)

where i, is the unit normal vector to the interface and directed into the
medium having the subscript 1 for the fields. These boundary conditions
point to the continuity of the tangential component of E, the tangential
component of H, the normal component of D, and the normal component
of B, at a point on the interface.

We used the boundary conditions (6.86a)—(6.86d) to investigate reflection
and transmission of waves at a junction between two lossless lines. By apply-
ing them to the general solutions for the line voltage and current on either
side of the junction, we deduced the ratio of the reflected wave voltage to
the incident wave voltage, that is, the voltage reflection coefficient, to be

I“V - ZOZ _ ZOI

ZOZ + ZOI
where Z,, is the characteristic impedance of the line from which the wave is
incident and Z,, is the characteristic impedance of the line on which the wave
is incident. The ratio of the transmitted wave voltage to the incident wave
voltage, that is, the voltage transmission coefficient, is given by

T, =1+T%
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The current reflection and transmission coefficients are given by

F):_FV
7,=1—-T,

Finally, we discussed the standing wave pattern resulting from the partial
reflection of the wave at the junction and defined a quantity known as the
standing wave ratio (SWR), which is a measure of the reflection phenomenon.
In terms of T, it is given by

_ 1+ [Ty
SWR = T—T,|
In retrospect, it can be seen that the discussion of the standing wave
phenomenon and reflection and transmission at the junction of two lines is
equally applicable to the solution of analogous uniform plane wave problems
involving media unbounded in the two dimensions normal to the direction
of propagation of the wave.

REVIEW QUESTIONS

6.1. What is a boundary condition? How do boundary conditions arise ?

6.2. State the boundary conditions for the electric field components at the surface
of a perfect conductor.

6.3. State the boundary conditions for the magnetic field components at the sur-
face of a perfect conductor.

6.4. Summarize in vector form the boundary conditions at a perfect conductor
surface, indicating correspondingly the Maxwell’s equations in integral form
from which they are derived.

6.5. Discuss the guiding of a uniform plane wave by a pair of parallel-plane, per-
fectly conducting sheets.

6.6. How is the voltage between the two conductors in a given cross-sectional
plane of a parallel-plate transmission line related to the electric field in that
plane?

6.7. How is the current flowing on the plates across a given cross-sectional plane
of a parallel-plate transmission line related to the magnetic field in that plane ?

6.8. What are transmission-line equations ? How are they obtained from Maxwell’s
equations ?

6.9. How is £, the inductance per unit length of a transmission line, defined ? What
is it equal to for a parallel-plate transmission line ?

6.10. How is €, the capacitance per unit length of a transmission line, defined ? What
is it equal to for a parallel-plate transmission line?
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6.11.

6.12.

6.13.

6.14.

6.15.

6.16.
6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

6.28.

6.29.

6.30.

How is G, the conductance per unit length of a transmission line, defined ?
What is it equal to for a parallel-plate transmission line ?

Are the three quantities £, €, and G independent ? If not, how are they depen-
dent on ecach other?

Draw the transmission-line equivalent circuit. How is it derived from the
transmission-line equations ?

Discuss the concept of the distributed circuit and compare it to a lumped
circuit.

Discuss the physical phenomena associated with each of the elements in the
transmission-line equivalent circuit.

What is a transverse electromagnetic wave?

What is a field map ? Describe the procedure for drawing the field map for a
transmission line of arbitrary cross section.

Draw a rough sketch of the field map for a line made up of two identical par-
allel cylindrical conductors with their axes separated by four times their radii.

Describe the procedure for computing the transmission line parameters £,
@, and § from the field map.

How does a field map consisting of curvilinear squares simplify the computa-
tion of the line parameters?

Discuss the determination of £, @, and G for a coaxial cable by using the cur-
vilinear squares technique.

By consulting an appropriate reference book, prepare a list of the expressions
for £, @, and G for two or more transmission lines other than the parallel-
plate and coaxial lines.

Discuss your understanding of the characteristic impedance of a transmis-
sion line. Why is it not equal to the intrinsic impedance of the medium between
the conductors of the line?

What is the boundary condition to be satisfied at a short circuit on a line?

For an open-circuited line, what would be the boundary condition to be satis-
fied at the open circuit ?

What is a standing wave? How do complete standing waves arise ? Discuss
their characteristics and give an example in mechanics.

What is a standing wave pattern? Discuss the voltage and current standing
wave patterns for the short-circuited line.

What would be the voltage and current standing wave patterns for an open-
circuited line?

Discuss the variation with frequency of the input reactance of a short-circuited
line and its application in the determination of the location of a short circuit.

Can you suggest an alternative procedure to that described in Example 6.3 to
locate a short circuit in a transmission line ?
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6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.
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Under what condition do circuit elements behave as assumed by conventional
(lumped) circuit theory?

State the boundary conditions for the electric field components at the inter-
face between two dielectric media.

State the boundary conditions for the magnetic field components at the inter-
face between two dielectric media.

Summarize in vector form the boundary conditions at the interface between
two dielectric media, indicating correspondingly the Maxwell’s equations in
integral form from which they are derived.

What are the boundary conditions for the voltage and current at the junction
between two transmission lines ?

What is the voltage reflection coefficient at the junction between two trans-
mission lines ? How are the current reflection coefficient and the voltage and
current transmission coefficients related to the voltage reflection coefficient ?

What is the voltage reflection coefficient at the short circuit for a short-cir-
cuited line?

Can the transmitted wave current at the junction between two transmission
lines be greater than the incident wave current ? Explain.

What is a partial standing wave ? Discuss the standing wave patterns corres-
ponding to partial standing waves.

Define standing wave ratio (SWR). What are the standing wave ratios for (a)
an infinitely long line, (b) a short-circuited line, (c) an open-circuited line, and
(d) a line terminated by its characteristic impedance?

PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

The plane x 4 2y + 3z = 5 defines the surface of a perfect conductor. Find
the possible direction(s) of the electric field intensity at a point on the con-
ductor surface.

Given E = yi, -+ xi,, determine if a perfect conductor can be placed in the
surface xy = 2 without disturbing the field.

A perfect conductor occupies the region x 4+ 2y < 2. Find the suface cur-
rent density at a point on the conductor at which H = Hoi,.

The displacement flux density at a point on the surface of a perfect conductor
is given by D = Dg(i, + /31, + 24/31i,). Find the magnitude of the sur-
face charge density at that point.

It is known that at a point on the surface of a perfect conductor D =
Do(i, + 2i, + 2i,), H = Hy(2i, — 2i, + i;), and ps is positive. Find ps and
Js at that point.
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6.6. Two infinite plane conducting sheets occupy the planes x = 0and x = 0.1 m.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

An electric field given by
E = E; sin 107mx cos 3w X 10%¢1,

where E, is a constant, exists in the region between the plates, which is free
space. (a) Show that E satisfies the boundary condition on the sheets. (b)
Obtain H associated with the given E. (¢) Find the surface current densities on
the two sheets,

A parallel-plate transmission line is made up of perfect conductors of width
w = 0.1 m and lying in the planes x = 0 and x = 0.02 m. The medium be-
tween the conductors is a perfect dielectric of 4 = uo. For a uniform plane
wave having the electric field

E = 1007 cos (21 x 106¢ — 0.0272) i, V/m

propagating between the conductors, find (a) the voltage between the conduc-
tors, (b) the current along the conductors, and (c) the power flow along the
line.

A parallel-plate transmission line made up of perfect conductors has £ equal
to 1077 H/m. If the medium between the plates is characterized by o =
10~1! mho/m, € = 6€,, and g = p,, find © and § of the line.

If the conductors of a transmission line are imperfect, then the transmission-
line equivalent circuit contains a resistance and additional inductance in the
series branch. Assuming that the thickness of the (imperfect) conductors of
a parallel-plate line is several skin depths at the frequency of interest, show
from considerations of skin effect phenomenon in a good conductor medium
that the resistance and inductance per unit length along the conductors are
2/o 0w and 2/wao 0w, respectively, where o, is the conductivity of the (imper-
fect) conductors, w is the width and § is the skin depth. The factor 2 arises
because of two conductors.

Show that for a transverse electromagnetic wave, the voltage between the
conductors and the current along the conductors in a given transverse plane
are uniquely defined in terms of the electric and magnetic fields, respectively,
in that plane.

By constructing a field map consisting of curvilinear squares for a coaxial
cable having b/a = 3.5, obtain the approximate values of the line parameters
&£, @, and G in terms of u, €, and @ of the dielectric. Compare the approximate
values with the exact values given by expressions derived in Example 6.2.

Figure 6.25 shows the cross section of a parallel-wire line, that is, a line having
two cylindrical conductors of radii a and with their axes separated by 2d. For
dfa = 2, construct a field map consisting of curvilinear squares and obtain
approximate values for the line parameters £, €, and §. Compare the
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6.13.

6.14.

6.15,

6.16.

6.17.
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- 2d o

Figure 6.25. For Problem 6.12.

approximate values with the exact values given by expressions available from
Sec. 10.6.

For a transmission line of arbitrary cross section and with the medium be-
tween the conductors characterized by 0 = 10716 mho/m, € = 2.5€,, and
M = Mo, it is known that € = 10719 F/m, (a) Find £ and G. (b) Find Z, for
f=10¢ Hz.

For a coaxial cable employing air dielectric, find the ratio of the outer to the
inner radii for which the characteristic impedance of the cable is 75 ohms.

Show that for the parallel-plate line, the characteristic impedance is d/w
times the intrinsic impedance of the medium between the conductors of the
line.

The strip line, employed in microwave integrated circuits, consists of a center
conductor photoetched on the inner faces of two substrates sandwiched be-
tween two conductors, as shown by the cross-sectional view in Fig. 6.26. For
the dimensions shown in the figure, construct a field map consisting of curvi-
linear squares and compute £, @, and Z,, considering the substrate to be a
perfect dielectric having € = 9€y and u = Ho. Assume for simplicity that the
field is confined to the substrate region.

14———7 0.1 in.

Figure 6.26. For Problem 6.16.

Consider a transmission-line equivalent circuit having impedance Z dz in the
series branch and admittance Y dz in the shunt branch. (a) Write the trans-
mission-line equations. (b) Show that § = »/ZY and Z, = +/Z[Y. ) If Z
is the impedance of an inductor £; and ¢Y is the admittance of the parallel
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6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

combination of an inductor £, and a capacitor €, find ¥ and discuss the
propagation characteristics along the line.

Using the general solutions for the complex line voltage and current on a
lossless line given by (6.50a) and (6.50b), respectively, obtain the particular
solutions for the complex voltage and current on an open-circuited line. Then
find the input impedance of an open-circuited line of length 1.

Solve Example 6.3 by considering the standing wave patterns between the
short circuit and the generator for the two frequencies of interest and by
deducing the number of wavelengths at one of the two frequencies.

For an air dielectric short-circuited line of characteristic impedance 50 ohms,
find the minimum values of the length for which its input impedance is equiva-
lent to that of (a) an inductor of value 0.25 x 10-6 H at 100 MHz and (b) a
capacitor of value 10-1° F at 100 MHz.

A transmission line of length 2 m having a nonmagnetic (% = u,) perfect
dielectric is short-circuited at the far end. A variable-frequency generator is
connected at its input and the current drawn is monitored. It is found that the
current reaches a maximum for /= 500 MHz and then a minimum for f =
525 MHz. Find the permittivity of the dielectric.

A voltage generator is connected to the input of a lossless line short circuited
at the far end. The frequency of the generator is varied and the line voltage and
line current at the input terminals are monitored. It is found that the voltage
reaches a maximum value of 10 V at 405 MHz and the current reaches a maxi-
mum value of 0.2 amp at 410 MHz. (a) Find the characteristic impedance of
the line. (b) Find the voltage and current values at 407 MHz.

Assuming that the criterion f < v,/27%l is satisfied for frequencies less than
0.1 v,/27l, compute the maximum length of an air dielectric short-circuited
line for which the input impedance is approximately that of an inductor of
value equal to the total inductance of the line for f = 100 MHz.

A lossless transmission line of length 2 m and having £ = 0.54, and € =
18€, is short circuited at the far end. (a) Find the phase velocity, v,. (b) Find
the wavelength, the length of the line in terms of the number of wavelengths,
and the input impedance of the line for each of the following frequencies:
100 Hz; 100 MHz; and 12.5 MHz.

In Fig. 6.20, assume that medium 1 is characterized by € = 126, and u =
21, and that medium 2 is characterized by € = 9€, and u = po. If E; =
Ey(3i, -+ 2i, — 6i,) and if H; = Hy(2i, — 3i,), find E, and H,.

In Fig. 6.20, assume that medium 1 is characterized by € = 4€pand u = 34,
and that medium 2 is characterized by € =166, and u =9u,. If
D, = Dy(i, — 2i, + i;) and if B; = By(i, + 2i, + 3i,), find D, and B,.

Region 1 defined by x -+ 2y < 2 is free space and region 2 defined by x 4 2y
> 2 is a perfect dielectric medium having € = 6€, and g = 2,. Determine if

the fields Ey = Egl, and H, = Ho, and the fields E; = 5°(—i, +,) and
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6.28.
6.29.

6.30.

6.31.

6.32.
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H, = H,i, at points 1 and 2, respectively, lying adjacent to and on either side
of the boundary, satisfy the boundary conditions.

Repeat Example 6.6 with the values of Zy; and Z,, interchanged.

In the transmission-line system shown in Fig. 6.27, a power P, is incident on
the junction from line 1. Find (a) the power reflected into line 1, (b) the power
transmitted into line 2, and (c) the power transmitted into line 3.

1 S
0@ WS
\,\‘/‘ © o
T /
Line 1 P /
Z,, = 50 ohms {
7
803 s e
25
%%,
g

Figure 6.27. For Problem 6.29.

Show that the voltage minima of the standing wave pattern of Fig. 6.24 are
sharper than the voltage maxima by computing the voltage amplitude halfway
between the locations of voltage maxima and minima.

A line assumed to be infinitely long and of unknown characteristic impedance
is connected to a line of characteristic impedance 50 ohms on which standing
wave measurements are made. It is found that the standing wave ratio is 3 and
that two consecutive voltage minima exist at 15 cm and 25 cm from the junc-
tion of the two lines. Find the unknown characteristic impedance.

A line assumed to be infinitely long and of unknown characteristic impedance
when connected to a line of characteristic impedance 50 ohms produces a
standing wave ratio of value 2 in the 50-ohm line. The same line when con-
nected to a line of characteristic impedance 150 ohms produces a standing
wave ratio of value 1.5 in the 150-ohm line. Find the unknown characteristic
impedance.



