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In Chapter 4 we introduced wave propagation in free space by considering
the infinite planc current sheet of uniform, sinusoidally time-varying current
density. We learned that the solution for the electromagnetic ficld due to the
infinite plane current sheet represents uniform plane electromagnetic waves
propagating away from the sheet to either side of it. With the knowledge of
the principles of uniform plane wave propagation in free space, we are now
ready to consider wave propagation in material media, which is our goal in
this chapter. Materials contain charged particles that respond to applied
electric and magnetic fields and give rise to currents, which modify the
properties of wave propagation from those associated with free space.

We shall learn that there are three basic phenomena resulting from the
interaction of the charged particles with the electric and magnetic fields.
These are conduction, polarization, and magnetization. Although a given
material may exhibit all three properties, it is classified as a conductor, a
dielectric, or a magnetic material depending on whether conduction, polariza-
tion, or magnetization is the predominant phenomenon. Thus we shall
introduce these three kinds of materials one at a time and develop a set of
relations known as the constitutive relations which enable us to avoid the
necessity of explicitly taking into account the interaction of the charged
particles with the fields. We shall then use these constitutive relations together
with Maxwell’s equations to first discuss uniform plane wave propagation in
a general material medium and then consider several special cases.
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5.1 CONDUCTORS

We recall that the classical model of an atom postulates a tightly bound,
positively charged nucleus surrounded by a diffuse cloud of electrons spin-
ning and orbiting around the nucleus. In the absence of an applied elec-
tromagnetic field, the force of attraction between the positively charged
nucleus and the negatively charged electrons is balanced by the outward
centrifugal force to maintain stable electronic orbits. The electrons can be
divided into “bound” electrons and “free” or “conduction” electrons. The
bound electrons can be displaced but not removed from the influence of the
nucleus. The conduction electrons are constantly under thermal agitation,
being released from the parent atom at one point and recaptured by another
atom at a different point.

In the absence of an applied field, the motion of the conduction electrons
is completely random ; the average thermal velocity on a “macroscopic” scale,
that is, over volumes large compared with atomic dimensions, is zero so that
there is no net current and the electron cloud maintains a fixed position. With
the application of an electromagnetic field, an additional velocity is superim-
posed on the random velocities, predominatly due to the electric force. This
causes drift of the average position of the electrons in a direction opposite to
that of the applied electric field. Due to the frictional mechanism provided by
collisions of the electrons with the atomic lattice, the electrons, instead of
accelerating under the influence of the electric field, drift with an average drift
velocity proportional in magnitude to the applied electric field. This phenome-
non is known as “conduction,” and the resulting current due to the electron
drift is known as the “conduction current.”

In certain materials a large number of electrons may take part in the
conduction process, but in certain other materials only a very few or negligible
number of electrons may participate in conduction. The former class of
materials is known as “conductors,” and the latter class is known as “dielec-
trics” or “insulators.” If the number of free electrons participating in conduc-
tion is N, per cubic meter of the material, then the conduction current
density is given by

J, = N.,ev, 5.1

where e is the charge of an electron, and v, is the drift velocity of the electrons.
The drift velocity varies from one conductor to another, depending on the
average time between successive collisions of the electrons with the atomic
lattice. It is related to the applied electric field in the manner

Vo= —4.E (.2)
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where u, is known as the “mobility” of the electron. Substituting (5.2) into
(5.1), we obtain

Jc = _ﬂeNeeE . ﬂeNe Iel E (53)

Semiconductors are characterized by drift of “holes,” that is, vacancies
created by detachment of electrons from covalent bonds, in addition to the
drift of electrons. If N, and N, are the number of electrons and holes, respec-
tively, per cubic meter of the material and if u, and u, are the electron
and hole mobilities, respectively, then the conduction current density in the
semiconductor is given by

Jo= (u.N. el + mN,y | eDE 4

Defining a quantity g, known as the “conductivity” of the material, as
given by

_ [u.N.|e] for conductors 5.5)
uN.|le| + uNy,\el for semiconductors '
we obtain the simple and important relationship
J, =0oE (5.6)

for the conduction current density in a material. Equation (5.6) is known as
Ohm’s law applicable at a point from which follows the familiar form of
Ohm'’s law used in circuit theory. The units of ¢ are mhos/meter where a mho
(“ohm” spelled in reverse and having the symbol U) is an ampere per volt.
Values of ¢ for a few materials are listed in Table 5.1. In considering elec-
tromagnetic wave propagation in conducting media, the conduction current
density given by (5.6) must be employed for the current density term on the
right side of Ampere’s circuital law. Thus Maxwell’s curl equation for H for

TABLE 5.1. Conductivities of Some Materials

Conductivity Conductivity
Material mhos/m Material mhos/m
Silver 6.1 x 107 Sca water 4
Copper 5.8 x 107 Intrinsic germanium 2.2
Gold 4.1 x 107 Intrinsic silicon 1.6 X 1073
Aluminum 3.5 x 107 Fresh water 10-3
Tungsten 1.8 x 107 Distilled water 2 x 10~4
Brass 1.5 x 107 Dry earth 10-5
Solder 7.0 x 106 Bakelite 109
Lead 4.8 x 106 Glass 10-10-10-14
Constantin 2.0 X 106 Mica 10-11-10-15
Mercury 1.0 x 106 Fused quartz 0.4 x 10717
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a conducting medium is given by

oD

VtzJC—I—W—aE—i-aD

3 5.7

5.2 DIELECTRICS

In the previous section we learned that conductors are characterized by
abundance of “conduction” or “free” electrons that give rise to conduction
current under the influence of an applied electric field. In this section we turn
our attention to dielectric materials in which the “bound” electrons are
predominant. Under the application of an external electric field, the bound
electrons of an atom are displaced such that the centroid of the electron cloud
is separated from the centroid of the nucleus. The atom is then said to be
“polarized,” thereby creating an “electric dipole,” as shown in Fig. 5.1(a).
This kind of polarization is called “electronic polarization.” The schematic
representation of an electric dipole is shown in Fig. 5.1(b). The strength of the
dipole is defined by the electric dipole moment p given by

p=20d (5.8)

where d is the vector displacement between the centroids of the positive and
negative charges, each of magnitude Q coulombs.

In certain dielectric materials, polarization may exist in the molecular
structure of the material even under the application of no external electric
field. The polarization of individual atoms and molecules, however, is
randomly oriented, and hence the net polarization on a “macroscopic™ scale
is zero. The application of an external field results in torques acting on the
“microscopic” dipoles, as shown in Fig. 5.2, to convert the initially random
polarization into a partially coherent one along the field, on a macroscopic
scale. This kind of polarization is known as “orientational polarization.” A
third kind of polarization known as “ionic polarization” results from the
separation of positive and negative ions in molecules formed by the transfer
of electrons from one atom to another in the molecule. Certain materials

£ Q
d
-0
(a) (b)

Figure 5.1. (a) An electric dipole. (b) Schematic representation of an
electric dipole.
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QE

Figure 5.2. Torque acting on an electric dipole in an external electric
field.

exhibit permanent polarization, that is, polarization even in the absence of an
applied electric field. Electrets, when allowed to solidify in the applied electric
field, become permanently polarized and ferroelectric materials exhibit
spontaneous, permanent polarization.

On a macroscopic scale, we define a vector P, called the “polarization
vector,” as the “clectric dipole moment per unit volume.” Thus if N denotes
the number of molecules per unit volume of the material, then there are N Av
molecules in a volume Av and

NAv

P— Av > p, = Np (5.9)

where p is the average dipole moment per molecule. The units of P are
coulomb-meter/meter? or coulombs per square meter, It is found that for
many dielectric materials the polarization vector is related to the electric field
E in the dielectric in the simple manner given by

P=¢yxE (5.10)

where y,, a dimensionless parameter, is known as the “electric susceptibility.”
The quantity , is a measure of the ability of the material to become polarized
and differs from one dielectric to another.

To discuss the influence of polarization in the dielectric upon electromag-
netic wave propagation in the dielectric medium, let us consider the case of
the infinite plane current sheet of Fig. 4.8, radiating uniform plane waves,
except that now the space on either side of the current sheet is a dielectric
medium instead of being free space. The electric field in the medium induces
polarization. The polarization in turn acts together with other factors to
govern the behavior of the electromagnetic field. For the case under considera-
tion, the electric field is entirely in the x direction and uniform in x and y.
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Thus the induced electric dipoles are all oriented in the x direction, on a
macroscopic scale, with the dipole moment per unit volume given by

P=P,i, = e,x.E.d, (5.11)

where E, is understood to be a function of z and ¢.

If we now consider an infinitesimal surface of area Ay Az parallel to the yz
plane, we can write E, associated with that infinitesimal area to be equal to
E, cos wt where E, is a constant. The time history of the induced dipoles
associated with that area can be sketched for one complete period of the
current source, as shown in Fig. 5.3. In view of the cosinusoidal variation of

wt=—2—

Figure 5.3. Time history of induced electric dipoles in a dielectric material
under the influence of a sinusoidally time-varying electric field.
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the electric field with time, the dipole moment of the individual dipoles varies
in a cosinusoidal manner with maximum strength in the positive x direction
at ¢ = 0, decreasing sinusoidally to zero strength at t= m/20 and then
reversing to the negative x direction, increasing to maximum strength in that
direction at t = 7/, and so on.

The arrangement can be considered as two plane sheets of equal and
opposite time-varying charges displaced by the amount § in the x direction,
as shown in Fig. 5.4. To find the magnitude of either charge, we note that the
dipole moment per unit volume is

P, = €yx.E, cos wt (5.12)

/ 0, = €y Ey cos wrt AyAz

\ Ay

\
A

Az \
Q2 =—Q

Figure 5.4. Two plane sheets of equal and opposite time-varying charges
equivalent to the phenomenon depicted in Fig. 5.3.

1-4—-:»—0-

1

Since the total volume occupied by the dipoles is § Ay Az, the total dipole
moment associated with the dipoles is €,x.E, cos wt (§ Ay Az). The dipole
moment associated with two equal and opposite sheet charges is equal to the
magnitude of either sheet charge multiplied by the displacement between the
two sheets. Hence we obtain the magnitude of either sheet charge to be
€ox.E, cos wt Ay Az. Thus we have a situation in which a sheet charge
0, = €,x.E, cos wt Ay Az is above the surface and a sheet charge Q, =
—Q, = —€,).E, cos wt Ay Az is below the surface. This is equivalent to a
current flowing across the surface, since the charges are varying with time.

We call this current the “polarization current” since it results from the
time variation of the electric dipole moments induced in the dielectric due to
polarization. The polarization current crossing the surface in the positive x
direction, that is, from below to above, is

1

px

- % — —eyx.Eow sin ot Ay Az (5.13)
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where the subscript p denotes polarization. By dividing I,, by Ay Az and
letting the area tend to zero, we obtain the polarization current density
associated with the points on the surface as

Jow = Idying A;MAZ = —€ox.E,m sin wt
Az—0
d 0P,
= W(GO}(EEO cos W) = 3 (5.14)
or
P
T %_t (5.15)

Although we have deduced this result by considering the special case of the
infinite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a dielectric medium,
the polarization current density given by (5.15) must be included with the
current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.28), we have

VxH=J+J,+ %(GOE) (5.16)
Substituting (5.15) into (5.16), we get

VxH:J+%—|—g—t(eoE)

:J+0§t(eoE+P) (5.17)

In order to make (5.17) consistent with the corresponding equation for free
space given by (3.28), we now revise the definition of the displacement vector
D to read as

D=¢E+P (5.18)
Substituting for P by using (5.10), we obtain

D = €,E 4 €,x.E
= €y(1 + x)E
= €,6,E
=¢E (5.19)
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where we define

e, =14y, (5.20)
and

€ = €,€, (5.2D

The quantity €, is known as the “relative permittivity” or “dielectric
constant” of the dielectric, and ¢ is the “permittivity” of the dielectric. The
new definition for D permits the use of the same Maxwell’s equations as for
free space with €, replaced by € and without the need for explicitly considering
the polarization current density. The permittivity € takes into account the
effects of polarization, and there is no need to consider them when we use €
for €,! The relative permittivity is an experimentally measurable parameter
and its values for several dielectric materials are listed in Table 5.2.

TABLE 5.2. Relative Permittivities of Some Materials

Relative Relative
Material Permittivity Material Permittivity
Air 1.0006 Dry earth 5
Paper 2.0-3.0 Mica 6
Teflon 2.1 Neoprene 6.7
Polystyrene 2.56 Wet earth 10
Plexiglass 2.6-3.5 Ethyl alcohol 24.3
Nylon 35 Glycerol 42.5
Fused quartz 3.8 Distilled water 81
Bakelite 4.9 Titanium dioxide 100

Equation (5.19) governs the relationship between D and E for dielectric
materials. Dielectrics for which € is independent of the magnitude as well as
the direction of E as indicated by (5.19) are known as “linear isotropic
dielectrics.” For certain dielectric materials, each component of the polariza-
tion vector can be dependent on all components of the electric field intensity.
For such materials, known as “anisotropic dielectric materials,” I is not in
general parallel to E and the relationship between these two quantities is
expressed in the form of a matrix equation as

D, €xx €xy €y |[ Ex
D,|=|€, €, €:|E (5.22)
_D: 6_zx Ezy 6:2_ Ez

The square matrix in (5.22) is known as the “permittivity tensor” of the
anisotropic dielectric.
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Example 5.1. An anisotropic dielectric material is characterized by the
permittivity tensor

Te, 26, O
[e]=|2¢, 4€, O
0 0 3¢

Let us find D for several cases of E.
Substituting the given permittivity matrix in (5.22), we obtain

D, ="Te,E, + 2¢,E,
D, = 2¢,E, -+ 4€,E,
Dz = 3€0Ez

For E = E; cos wti,, D = 3€,E, cos @t i,; D is parallel to E.

For E = E, cos @t i,, D = Te E, cos wt i, + 2€,E, cos wti,; D is not
parallel to E.

For E = E, cos wti,, D = 2¢e,E; cos wt i, + 4e,E, cos wti,; D is not
parallel to E.

For E = E, cos ot (i, + 2i,), D = 1le,E, coswt i, 4+ 10¢,E; cos wt i, ;
D is not parallel to E.

For E = E; cos wt (2i, 4 i,), D = 16¢€,E, cos @t i, 4 8¢,E, cos et i, =
8¢,E; D is parallel to E and the dielectric behaves “effectively” in the same
manner as an isotropic dielectric having the permittivity 8¢,, that is, the
“effective permittivity” of the anisotropic dielectric for this case is 8¢,.

Thus we find that in general D is not parallel to E but for certain polariza-
tions of E, D is parallel to E. These polarizations are known as the charac-
teristic polarizations. -

5.3 MAGNETIC MATERIALS

The important characteristic of magnetic materials is “magnetization.”
Magnetization is the phenomenon by means of which the orbital and spin
motions of electrons are influenced by an external magnetic field. An elec-
tronic orbit is equivalent to a current loop, which is the magnetic analog of an
electric dipole. The schematic representation of a magnetic dipole as seen
from along its axis and from a point in its plane are shown in Figs. 5.5(a) and
5.5(b), respectively. The strength of the dipole is defined by the magnetic
dipole moment m given by

m = Idi, (5.23)
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Figure 5.5. Schematic representation of a magnetic dipole as seen from
(a) along its axis and (b) a point in its plane,

where A is the area enclosed by the current loop and i, is the unit vector
normal to the plane of the loop and directed in the right-hand sense.

In many materials the net magnetic moment of each atom is zero, that is,
on the average, the magnetic dipole moments corresponding to the various
electronic orbital and spin motions add up to zero. An external magnetic field
has the effect of inducing a net dipole moment by changing the angular
velocities of the electronic orbits, thereby magnetizing the material. This kind
of magnetization, known as “diamagnetism,” is in fact prevalent in all
materials. In certain materials known as “paramagnetic materials,” the
individual atoms possess net nonzero magnetic moments even in the absence
of an external magnetic field. These “permanent” magnetic moments of the
individual atoms are, however, randomly oriented so that the net magnetiza-
tion on a macroscopic scale is zero. An applied magnetic field has the effect
of exerting torques on the individual permanent dipoles as shown in Fig. 5.6
to convert, on a macroscopic scale, the initially random alignment into a
partially coherent one along the magnetic field, that is, with the normal to the
current loop directed along the magnetic field. This kind of magnetization is
known as “paramagnetism.” Certain materials known as “ferromagnetic,”
“antiferromagnetic,” and “ferrimagnetic” materials exhibit permanent
magnetization, that is, magnetization even in the absence of an applied
magnetic field.

On a macroscopic scale we define a vector M, called the “magnetization

IdlxB

IdlxB

Figure 5.6. Torque acting on a magnetic dipole in an external magnetic
field,
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vector,” as the “magnetic dipole moment per unit volume.” Thus if N denotes
the number of molecules per unit volume of the material, then there are N Av
molecules in a volume Av and

M— L5 N 5.04
:M,:Zim’_ m (5.24)

where m is the average dipole moment per molecule. The units of M are
ampere-meter?/meter? or amperes per meter. It is found that for many
magnetic materials, the magnetization vector is related to the magnetic field
B in the material in the simple manner given by

B
M—_-Xn 2 5.25
U+ xm o ( )

where y,,, a dimensionless parameter, is known as the “magnetic susceptibil-
ity.” The quantity y,, is a measure of the ability of the material to become
magnetized and differs from one magnetic material to another.

To discuss the influence of magnetization in the material on electromag-
netic wave propagation in the magnetic material medium, let us consider the
case of the infinite plane current sheet of Fig. 4.8, radiating uniform plane
waves, except that now the space on either side of the current sheet possesses
magnetic material properties in addition to dielectric properties. The magnetic
field in the medium induces magnetization. The magnetization in turn acts
together with other factors to govern the behavior of the electromagnetic
field. For the case under consideration, the magnetic field is entirely in the y
direction and uniform in x and y. Thus the induced dipoles are all oriented
with their axes in the y direction, on a macroscopic scale, with the dipole
moment per unit volume given by

M= M, — —Xn_Bs; (5.26)

where B, is understood to be a function of z and ¢.

Let us now consider an infinitesimal surface of area Ay Az parallel to the
yz plane and the magnetic dipoles associated with the two areas Ay Az to the
left and to the right of the center of this area as shown in Fig. 5.7(a). Since B,
is a function of z, we can assume the dipoles in the left area to have a different
moment than the dipoles in the right area for any given time. If the dimen-
sion of an individual dipole is § in the x direction, then the total dipole
moment associated with the dipoles in the left arca is [M,],_A,» 6 Ay Az
and the total dipole moment associated with the dipoles in the right area is
[My]z+Az/2 0 Ay Az.

The arrangement of dipoles can be considered to be equivalent to two
rectangular surface current loops as shown in Fig. 5.7(b) with the left side
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Figure 5.7. (a) Induced magnetic dipoles in a magnetic material. (b)
Equivalent surface current loops.

current loop having a dipole moment [M,], 4., 6 Ay Az and the right side
current loop having a dipole moment [M,],,4,,» & Ay Az. Since the magnetic
dipole moment of a rectangular surface current loop is simply equal to the
product of the surface current and the cross-sectional area of the loop, the
surface current associated with the left loop is [M,),_4.,» Ay and the surface
current associated with the right loop is [M,],,4.,2 Ay. Thus we have a stitua-
tion in which a current equal to [M,],_,/» Ay is crossing the area Ay Az in the
positive x direction, and a current equal to [M,], 4./, Ay is crossing the same
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area in the negative x direction. This is equivalent to a net current flowing
across the surface.

We call this current the “magnetization current” since it results from the
space variation of the magnetic dipole moments induced in the magnetic
material due to magnetization. The net magnetization current crossing the
surface in the positive x direction is

Imx e [My z—Az/2 Ay = [My]z+Az/2 Ay (5'27)

where the subscript m denotes magnetization. By dividing I,,, by Ay Az and
letting the area tend to zero, we obtain the magnetization current density
associated with the points on the surface as

me — le Imx = le [My z—Az/2 [My]z+Az/2

ﬁﬁ:g Y AZ Az—0 Az
oM
e (5.28)
or
i,ooi, i,
.l a4 o
me]x - 0_x a—y E
0 M, 0
or
J =VxM (5.29)

Although we have deduced this result by considering the special case of the
infinite plane current sheet, it is valid in general.

In considering electromagnetic wave propagation in a magnetic material
medium, the magnetization current density given by (5.29) must be included
with the current density term on the right side of Ampere’s circuital law. Thus
considering Ampere’s circuital law in differential form for the general case
given by (3.28), we have

vxB_y4y, 4%

" ¥ (5.30)

Substituting (5.29) into (5.30), we get

B JD
V><E~J—|—V><M+W

or
B _ a dD
V x ( M) J+ T (5.31)

0
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In order to make (5.31) consistent with the corresponding equation for free
space given by (3.28), we now revise the definition of the magnetic field
intensity vector H to read as

H=2 _ M (5.32)
Ho

Substituting for M by using (5.25), we obtain

B X B
H=—— m__ =
Ho 14 Xm Mo
- B
ﬂo(l + Xm)
_ B
ﬂOlur
B
e 5.33
e (5.33)
where we define
te=14 gn (5.34)
and
B= polt, (5.35)

The quantity g, is known as the “relative permeability” of the magnetic
material and g is the “permeability” of the magnetic material. The new
definition for H permits the use of the same Maxwell’s equations as for free
space with u, replaced by u and without the need for explicitly considering
the magnetization current density. The permeability x4 takes into account the
effects of magnetization, and there is no need to consider them when we use
u for u,! For anisotropic magnetic materials, H is not in general parallel to
B and the relationship between the two quantities is expressed in the form of a
matrix equation as given by

B, B Hay U || Ha
B, |=|tx Uy UW.|H, (5.36)
B, Wew Moy Mo, || H,

just as in the case of the relationship between D and E for anisotropic dielectric
materials.

For many materials for which the relationship between H and B is linear,
the relative permeability does not differ appreciably from unity, unlike the
case of linear dielectric materials, for which the relative permittivity can be
very large, as shown in Table 5.2. In fact, for diamagnetic materials, the
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magnetic susceptibility y,, is a small negative number of the order —10~* to
—10-8 whereas for paramagnetic materials, y,, is a small positive number of
the order 1073 to 10-7. Ferromagnetic materials, however, possess large values
of relative permeability on the order of several hundreds, thousands, or more.
The relationship between B and H for these materials is nonlinear, resulting
in a nonunique value of u, for a given material. In fact, these materials are
characterized by hysteresis, that is, the relationship between B and H depen-
dent on the past history of the material.

A typical curve of B versus H, known as the “B—H curve” or the “hystere-
sis curve” for a ferromagnetic material, is shown in Fig. 5.8. If we start with
an unmagnetized sample of the material in which both B and H are initially
zero, corresponding to point ¢ in Fig. 5.8, and then magnetize the material,

AB b

c

e

Figure 5.8. Hysteresis curve for a ferromagnetic material.

the manner in which magnetization is built up initially to saturation is given
by the portion ab of the curve. If the magnetization is now decreased gradually
and then reversed in polarity, the curve does not retrace ab backward but
instead follows along bcd until saturation is reached in the opposite direction
at point e. A decrease in the magnetization back to zero followed by a
reversal back to the original polarity brings the point back to b along the curve
through the points f and g, thereby completing the loop. A continuous
repetition of the process thereafter would simply make the point trace the
hysteresis loop bedefgh repeatedly.

5.4 WAVE EQUATION AND SOLUTION

In the previous three sections we introduced conductors, dielectrics, and
magnetic materials. We found that conductors are characterized by conduc-
tion current, dielectrics are characterized by polarization current, and
magnetic materials are characterized by magnetization current. The conduc-
tion current density is related to the electric field intensity through the
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conductivity ¢ of the conductor. To take into account the effects of polariza-
tion, we modified the relationship between D and E by introducing the
permittivity ¢ of the dielectric. Similarly, to take into account the effects of
magnetization, we modified the relationship between H and B by introducing
the permeability u of the magnetic material. The three pertinent relations,
known as the “constitutive relations,” are

J, = oE (5.372)

D = ¢E (5.37b)
B

) § 5.37
i (5.37¢)

A given material may possess all three properties although usually one of
them is predominant. Hence in this section we shall consider a material
medium characterized by o, €, and u. The Maxwell’s curl equations for such
a medium are

9B H

VxE= -5 = S0 (5.38)

., dD D JE
VxH=J+52=1J 22 =0k + % (5.39)

To discuss electromagnetic wave propagation in the material medium, let us
consider the infinite plane current sheet of Fig. 4.8, except that now the
medium on either side of the sheet is a material instcad of free space, as shown
in Fig. 5.9.

The electric and magnetic fields for the simple case of the infinite plane

A X

g,€u

Figure 5.9, Infinite plane current sheet imbedded in a material medium.
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current sheet in the z = 0 plane and carrying uniformly distributed current in
the negative x direction as given by

Jo= —Jg, cos wt i, (5.40)

are of the form
E = E,(z, i, (5.41a)
H = H/(z, 1), (5.41b)

The corresponding simplified forms of the Maxwell’s curl equations are

JE, _ 0H,

= T H e Ehe)
0£y — —0E, —¢ "ﬁx (5.43)

We shall make use of the phasor technique to solve these equations. Thus
letting

E(z,t) = Re [E (2) /] (5.44a)

Hy(z,t) = Re[H2) e/ (5.44b)

and replacing E, and H, in (5.42) and (5.43) by their phasors E,and H,,

respectively, and d/dt by jow, we obtain the corresponding differential equa-
tions for the phasors E, and H, as

JE,

0z

— —joul, (5.45)

0H,
dz

oE, — jweE, = —(o + jwe)E, (5.46)

Differentiating (5.45) with respect to z and using (5.46), we obtain

25 7 -
% = —jou B—}f = jou(o + joe)kE, (5.47)
Defining
7 = /joulo -+ jowe) (5.48)

and substituting in (5.47), we have

PE, o as
o = PE, (5.49)

Equation (5.49) is the wave equation for E, in the material medium and
its solution is given by



SEC. 5.4 WAVE EQUATION AND SOLUTION 179

E(2) = Ae* + Be’ (5.50)

where 4 and B are arbitrary constants. Noting that 7 is a complex number and
hence can be written as

7—a+jB (5.51)

and also writing 4 and B in exponential form as 4e’ and Be’$, respectively,
we have
E (z) = Ae®e~=e~I%= | Beide*7eif?
or
E.(2,t) = Re[E,(2) ]
= Re[Ade®e=*?e /f2giot | Belte*ze/fzelwt]

= Ae~** cos (wt — fz + 0) + Be** cos (wt + Pz + ¢) (5.52)

We now recognize the two terms on the right side of (5.52) as representing
uniform plane waves propagating in the positive z and negative z directions,
respectively, with phase constant 8, in view of the factors cos (wt — fz + 6)
and cos (wt + fiz + @), respectively. They are, however, multiplied by the
factors e=*¢ and e**, respectively. Hence the peak amplitude of the field
differs from one constant phase surface to another. Since there cannot be a
positive going wave in the region z < 0, that is, to the left of the current sheet,
and since there cannot be a negative going wave in the region z > 0, that is, to
the right of the current sheet, the solution for the electric field is given by

Ae ** cos (ot — Bz + 0) forz >0

(5.53)
Be** cos (@t + Bz + ¢) forz <0

Efz,t) = {

To discuss how the peak amplitude of E, varies with z on either side of
the current sheet, we note that since , €, and u are all positive, the phase
angle of jou(e + jowe) lies between 90° and 180° and hence the phase angle of
7 lies between 45° and 90°, making & and # positive quantities. This means
that e~** decreases with increasing value of z, that is, in the positive z direc-
tion, and e** decreases with decreasing value of z, that is, in the negative z
direction. Thus the exponential factors e~** and e** associated with the
solutions for E, in (5.53) have the effect of reducing the amplitude of the field,
that is, attenuating it as it propagates away from the sheet to either side of it.
For this reason, the quantity & is known as the “attenuation constant.” The
attenuation per unit length is equal to e*. In terms of decibels, this is equal to
20 log,, e* or 8.686¢ db. The units of & are nepers per meter. The quantity 7
is known as the “propagation constant™ since its real and imaginary parts, &
and f, together determine the propagation characteristics, that is, attenuation
and phase shift of the wave.
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Returning now to the expression for § given by (5.48), we can obtain the
expressions for ¢ and f# by squaring it on both sides and equating the real and
imaginary parts on both sides. Thus

P = (& + jp)* = joulo + jwe)
or
— p* = —w?ue (5.54a)
208 = wuo (5.54b)

Now, squaring (5.54a) and (5.54b) and adding and then taking the square
root, we obtain

o? + f2 = coz,uex/l + (&)2 (5.55)

From (5.54a) and (5.55), we then have

Ao TG
- Hforwe one 5

Since & and f are both positive, we finally get

“_w«/uf[\/ n (coe) _ il”z (5.56)
ﬁ:ai“//—é‘-f[\/l i (&> i 1]” (5.57)

We note from (5.56) and (5.57) that & and f§ are both dependent on o through
the factor o/we. This factor, known as the “loss tangent,” is the ratio of
the magnitude of the conduction current density ¢ E, to the magnitude of the
displacement current density jweE, in the material medium. In practice, the
loss tangent is, however, not 'simply inversely proportional to « since both
o and ¢ are generally functions of frequency.

The phase velocity of the wave along the direction of propagation is given

by
- % . %[\/1 n (6%)2 + 1]—“2 (5.58)

We note that the phase velocity is dependent on the frequency of the wave.
Thus waves of different frequencies travel with different phase velocities, that
is, they undergo different rates of change of phase with z at any fixed time.

<
L)



SEC. 54 WAVE EQUATION AND SOLUTION 181

This characteristic of the material medium gives rise to a phenomenon known
as “dispersion.” We shall discuss dispersion in Chap. 7. The wavelength in the
medium is given by

BT T e

Having found the solution for the electric field of the wave and discussed
its general properties, we now turn to the solution for the corresponding
magnetic field by substituting for E, in (5.45). Thus

= 1 9E

H, = —]w—,ud_zx _M(Ae 7 Be’)
;LmE(Ae‘" l}'ef’)
i %(A_e‘f’ — Ber) (5.60)
where
7= oSOk (5.61)

o -+ joe

is the intrinsic impedance of the medium. Writing

7= |7e" (5.62)

we obtain the solution for H,(z, ¢) as

H(z,f) = Re [H(2) e/

= Re —_1——., Aelfeze IFzglot ~—_1—.,Be’¢e°"ef”'e"‘":|
7]’ 71’

. (0t — Bz 46 —17) —

7 e**cos (ot + fz+¢ — 1)

It "I
(5.63)

Remembering that the first and second terms on the right side of (5.63)
correspond to (4) and (—) waves, respectively, and hence represent the
solutions for the magnetic field in the regions z > 0 and z < 0, respectively,
and recalling that the solution for H, adjacent to the current sheet is given by

J;" cos wt for z = 0+

H,= (5.64)

JS“ cos ot for z = 0—
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we obtain
A— |’7IZJS°, =1 (5.65a)
B— |'7|2’s0, 6=1 (5.65b)

Thus the electromagnetic field due to the infinite plane current sheet
in the xy plane having

Jg= —Js coswt i,

and with a material medium characterized by o, €, and x on either side of it is
given by

E(z, t) = |ﬁ|2JS°e”’ cos (ot F fz+ 1)i, forzz=0 (5.66a)
H(z, 1) — i%ew cos (ot F f2)i, forz=0 (5.66b)

We note from (5.66a) and (5.66b) that wave propagation in the material
medium is characterized by phase difference between E and H in addition to
attenuation. These properties are illustrated in Fig. 5.10, which shows
sketches of the current density on the sheet and the distance—variation of the
electric and magnetic fields on either side of the current sheet for a few values
of 1.

Since the fields are attenuated as they progress in their respective direc-
tions of propagation, the medium is characterized by power dissipation. In
fact, by evaluating the power flow out of a rectangular box lying between z
and z + Az and having dimensions Ax and Ay in the x and y directions,
respectively, as was done in Sect. 4.6, we obtain

jf Poas =LAy Az = L (g1 ) A0
S

= ( xd;{y + HyaaE ) Av
- [Ex(—aEx — 60(5") ( ,u a7 ):‘ Av

:—aEiAv—(%(l €E2 Av) — gt(lumAv) (5.67)

The quantity g E2 Av is obviously the power dissipated in the volume Aw due

to attenuation and the quantities %eE2 Av and < o ,uH 2 Av are the energies



Js = —JSO cos wii,

Figure 5.10. Time history of uniform plane electromagnetic wave radiating
away from an infinite plane current sheet imbedded in a material medium.
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stored in the electric and magnetic fields, respectively, in the volume Aw. It
then follows that the power dissipation density, the stored energy density
associated with the electric field and the stored energy density associated with
the magnetic field are given by

P, — oE? (5.68)

We = 5 €E3 (5.69)
and

Wy = % uH? (5.70)

respectively. Equation (5.67) is the generalization, to the material medium, of
the Poynting’s theorem given by (4.71) for free space.

5.5 UNIF ORI(’[ PLANE WAVES IN DIELECTRICS

In the previous section we discussed electromagnetic wave propagation
for the general case of a material medium characterized by conductivity o,
permittivity €, and permeability 4. We found general expressions for the
attenuation constant ¢, the phase constant f, the phase velocity v,, the
wavelength 1, and the intrinsic impedance 7. These are given by (5.56), (5.57),
(5.58), (5.59), and (5.61), respectively. For ¢ = 0, the medium is a “perfect
dielectric,” having the propagation characteristics

% =0 (5.71a)
B = w./ue (5.71b)
v, — Jl/z_e (5.71¢)
e ﬁ}_ﬁ (5.71d)
7 — g (5.71e)

Thus the waves propagate without attenuation as in free space but with €, and
U, replaced by € and u, respectively. For nonzero o, there are two special
cases: (a) imperfect dielectrics or poor conductors and (b) good conductors.
The first case is characterized by conduction current small in magnitude
compared to the displacement current; the second case is characterized by
just the opposite. We shall consider the first case in this section and the
second case in the following section.
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Thus considering the case of “imperfect dielectrics,” we have |6E,| <
|jweE, |, or a/we < 1. We can then obtain approximate expressions for o, 3,
v,, A, and # as follows:

_ w«/ﬁéw (1)2 _ ]‘”
- W€
o N 1+ 1
I g2 at 1/2
2 L +2w262_8w464+"'—1]

xw/\/l} o I—l— o2 ]1/2
2 A/ 2wel 4w2e?

-5/~ o)
- T
NCO,\/EI:Z + 20-2 ]1/2

. 2
~ Wue(l + ga) (5.72b)

el @) ]
Va2 ]

e~ (1_ 02) (5.726)
VT 8w?e? '

L T ]
S~/ ue o) T
~ 77l ~ o)
F/ue\  sate
— ]CO,U - M( __—a-_>—1/2
" Yo + joe — V jowe 1 Jcoe
_ |k o 3 o ]
- 6|:1+j2606 8 w2
~ JH[(1 -3 _6_2_) j_] 2
N*/e ‘:(1 8 w2e? T T 30e G128)
In (5.72a)-(5.72¢) we have retained all terms up to and including the second
power in o/we and have neglected all higher-order terms. For a value of o/we
equal to 0.1, the quantities f, »,, and 4 are different from those for the

corresponding perfect dielectric case by a factor of only 0.01/8 or g Whereas
the intrinsic impedance has a real part differing from the intrinsic impedance

v, =

2

),:

(5.72d)
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of the perfect dielectric medium by a factor of g5 and an imaginary part
which is 515 of the intrinsic impedance of the perfect dielectric medium, Thus
the only significant feature different from the perfect dielectric case is the

attenuation.

Example 5.2. Let us consider that a material can be classified as a dielectric
for /we << 0.1 and compute the values of the several propagation parameters
for three materials: mica, dry earth, and sea water.

Denoting the frequency for which o/we = 1 as f,, we have f, = o/2re,
assuming that ¢ and € are independent of frequency. Values of o, €, and £,
and approximate values of the several propagation parameters for f > 10f,
are listed in Table 5.3, in which ¢ is the velocity of light in free space and g,

TABLE 5.3. Values of Several Propagation Parameters for Three
Materials for the Dielectric Range of Frequencies

o Ja o 7
Material UO/m e Hz Np/m BlBo  wplc AfAy  ohms
Mica 10-11 6 3 x 1072 77 x 10-11 245 0.408 0.408 153.9
Dry earth  10-5 5 3.6 X104 84 x 1073 224  0.447 0.447 168.6
Sea water 4 80 0.9 x 10° 84.3 894 0.112 0.112 42.15

and A, are the phase constant and wavelength in free space for the frequency
of operation. It can be seen from Table 5.3 that mica behaves as a dielectric
for almost any frequency, but sea water can be classified as a dielectric only
for frequencies above approximately 10 GHz. We also note that because of
the low value of &, mica is a good dielectric, but the high value of & for sea
water makes it a poor dielectric. m

5.6 UNIFORM PLANE WAVES IN CONDUCTORS

In the previous section we considered the special case of imperfect
dielectrics. Turning now to the case of “good conductors,” we have |¢E, | >
| jeE, |, or a/we > 1. We can then obtain approximate expressions for o, §,
v,, A, and n as follows:

“:w&/g_e[«/l+(&>2_l]1/z

OJUe [o _ [ous
~73 V=2
= /7fHo (5.732)
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ﬁ:wA/ue ’\/1_‘_(606) +1]1/2

coJ ue | a
2 We
= /nfuo (5.73b)

U= Jue[\/ i (co6> 1]-1/2

N2 «/ we _ 2co

0

22

— 4nf
=N (5.730)

f«/uf[‘/ i (mf l] N

dn
S i 5.73d
fuo ( )

Jou x/jwu
o - joe

=1+ j)J @ (5.73¢)

fi—=

We note that &, f, v,, and # are proportional to ,/ f , provided that o and x
are constants.

To discuss the propagation characteristics of a wave inside a good
conductor, let us consider the case of copper. The constants for copper are
o = 5.80 x 107 mho/m, € = €,, and u = u,. Hence the frequency at which
o is equal to we for copper is equal to 5.8 X 107/2ze, or 1.04 X 10'% Hz.
Thus at frequencies of even several gigahertz, copper behaves like an excellent
conductor. To obtain an idea of the attenuation of the wave inside the
conductor, we note that the attenuation undergone in a distance of one
wavelength is equal to e~** or e~2*, In terms of decibels, this is equal to
20 log,, €** = 54.58 db. In fact, the field is attenuated by a factor e™! or
0.368 in a distance equal to 1/&. This distance is known as the “skin depth”
and is denoted by the symbol d. From (5.73a), we obtain

1
R (5.74)
~ Tf o
The skin depth for copper is equal to
1 _0.066

TR X0 X358 X10 S
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Thus in copper the fields are attenuated by a factor e~! in a distance of 0.066
mm even at the low frequency of 1 MHz, thereby resulting in the concentra-
tion of the fields near to the skin of the conductor. This phenomenon is
known as the “skin effect.” It also explains “shielding” by conductors.

To discuss further the characteristics of wave propagation in a good
conductor, we note that the ratio of the wavelength in the conducting medium
to the wavelength in a dielectric medium having the same ¢ and g as those of
the conductor is given by

Aconductor = /\/47t/f,u0' _ 47tf€ . «/@ 5 75
ldie]ectric l/f,\/E - /\/ c ag ( ) )

Since g/me > 1, Awnguctor € Agieteotrics FOr example, for sea water, o =
4 mhos/m, € = 80¢,, and x4 = u, so that the ratio of the two wavelengths for
S =25kHz is equal to 0.00745. Thus for f = 25 kHz, the wavelength in sea
water is 11 of the wavelength in a dielectric having the same € and 4 as those
of sea water and a still smaller fraction of the wavelength in free space.
Furthermore, the lower the frequency, the smaller is this fraction. Since it is
the electrical length, that is, the length in terms of the wavelength, instead of
the physical length that determines the radiation efficiency of an antenna, this
means that antennas of much shorter length can be used in sea water than in
free space. Together with the property that & oc ./ f, this illustrates that low
frequencies are more suitable than high frequencies for communication under
water, and with underwater objects.

Equation (5.73e) tells us that the intrinsic impedance of a good conductor
has a phase angle of 45°. Hence the electric and magnetic fields in the medium
are out of phase by 45°. The magnitude of the intrinsic impedance is given by

191 = |0ty 2| = 2 (576)

As a numerical example, for copper, this quantity is equal to

Inf X 4w X 1077

sgqor — = 369 % 10-7,/ f ohms

Thus the intrinsic impedance of copper has as low a magnitude as 0.369 ohms
even at a frequency of 102 Hz. In fact, by recognizing that

we note that the magnitude of the intrinsic impedance of a good conductor
medium is a small fraction of the intrinsic impedance of a dielectric medium
having the same ¢ and u. It follows that for the same electric field, the
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magnetic field inside a good conductor is much larger than the magnetic field
inside a dielectric having the same € and z as those of the conductor.

Finally, for ¢ = oo, the medium is a “perfect conductor,” an idealization
of the good conductor. From (5.74), we note that the skin depth is then equal
to zero and that there is no penectration of the fields. Thus no fields can exist
inside a perfect conductor.

57 SUMMARY

In this chapter we studied the principles of uniform plane wave propaga-
tion in a material medium. Material media can be classified as (a) conductors,
(b) dielectrics, and (c) magnetic materials, depending on the nature of the
response of the charged particles in the materials to applied fields. Conductors
are characterized by conduction which is the phenomenon of steady drift of
free electrons under the influence of an applied electric field. Dielectrics are
characterized by polarization which is the phenomenon of the creation and
net alignment of electric dipoles, formed by the displacement of the centroids
of the electron clouds from the centroids of the nucleii of the atoms, along the
direction of an applied electric field. Magnetic materials are characterized by
magnetization which is the phenomenon of net alignment of the axes of the
magnetic dipoles, formed by the electron orbital and spin motion around the
nucleii of the atoms, along the direction of an applied magnetic field.

Under the influence of applied electromagnetic wave fields, all three
phenomena described above give rise to currents in the material which in turn
influence the wave propagation. These currents are known as the conduction,
polarization, and magnetization currents, respectively, for conductors,
diclectrics, and magnetic materials. They must be taken into account in the

first term on the right side of Ampere’s circuital law, that is, j J+dS in

the case of the integral form and J in the case of the differential form. The
conduction current density is given by

J, =0oE (5.78)
where ¢ is the conductivity of the material. The conduction current is taken
into account explicitly by replacing J by J... The polarization and magnetiza-
tion currents are taken into account implicitly by revising the definitions of
the displacement flux density vector and the magnetic field intensity vector
to read as

D=¢E+P (5.79)

B
H=—-M 5.80
Ho Q80
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where P and M are the polarization and magnetization vectors, respectively.
For linear isotropic materials, (5.79) and (5.80) simplify to

D = ¢E (5.81)
B
H== 5.82
I (5.82)
where
€ = €,€,
u= Ui,

are the permittivity and the permeability, respectively, of the material. The
quantities €, and u, are the relative permittivity and the relative permeability,
respectively, of the material. The parameters &, €, and u vary from one
material to another and are in general dependent on the frequency of the
wave. Equations (5.78), (5.81), and (5.82) are known as the constitutive
relations. For anisotropic materials, these relations are expressed in the form
of matrix equations with the material parameters represented by tensors.

Together with Maxwell’s equations, the constitutive relations govern the
behavior of the electromagnetic field in a material medium. Thus Maxwell’s
curl equations for a material medium are given by

___dB_ JH
VxE= 3= Hor

. dD JE
VxH=J, + 5 =0k + e~

We made use of these equations for the simple case of E = E,(z, #)i, and
H = H(z, /)i, to obtain the uniform plane wave solution by considering the
infinite plane current sheet in the xy plane with uniform surface current
density

Js = —Jg, cos ot i,

and with a material medium on either side of it and finding the electromag-
netic field due to the current sheet to be given by

E = l’ﬂ"‘s”e:‘“ cos (wt F fz + 1)i, forzz=0 (5.83a)

2
H = 75067 cos (et T f2)i, forz=0  (5.83b)

In (5.83a-b), & and B are the attenuation and phase constants given, respec-
tively, by the real and imaginary parts of the propagation constant, . Thus

7=a+ jB = /joulo + jwe)
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The quantities |7| and 7 are the magnitude and phase angle, respectively, of
the intrinsic impedance, #, of the medium. Thus

7 — 7| elt — Jop
f1=1I7le" = o & joe

The uniform plane wave solution given by (5.83a-b) tells us that the wave
propagaiion in the material medium is characterized by attcnuation as
indicated by e¥** and phase difference between E and H by the amount 7. We
learned that the attenuation of the wave results from power dissipation due to
conduction current flow in the medium. The power dissipation density is
given by

ps = OE}

The stored energy densities associated with the electric and magnetic fields in
the medium are given by

w, = =-€E?

ot NID—‘

Wy = 7.”H2
Having discussed uniform plane wave propagation for the general case of
a medium characterized by o, €, and u, we then considered several special
cases. These are discussed in the following:

PerrEcT DIELECTRICS: For these materials, ¢ = 0. Wave propagation
occurs without attenuation as in free space but with the propagation pa-
rameters governed by € and g instead of €, and u,, respectively.

IMPERFECT DIELECTRICS: A material is classified as an imperfect dielec-
tric for o < e, that is, conduction current density is small in magnitude
compared to the displacement current density. The only significant feature of
wave propagation in an imperfect dielectric as compared to that in a perfect
dielectric is the attenuation undergone by the wave.

Goob CONDUCTORS: A material is classified as a good conductor for
0 > we, that is, conduction current density is large in magnitude compared to
the displacement current density. Wave propagation in a good conductor
medium is characterized by attenuation and phase constants both equal to
~/7fuo. Thus for large values of fand/or g, the fields do not penetrate very
deeply into the conductor. This phenomenon is known as the skin effect.
From considerations of the frequency dependence of the attenuation and
wavelength for a fixed o, we learned that low frequencies are more suitable for
communication with underwater objects. We also learned that the intrinsic
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impedance of a good conductor medium is very low in magnitude compared
to that of a dielectric medium having the same ¢ and u.

PerrecT CONDUCTORS: These are idealizations of good conductors in
the limit & -— oo. For ¢ = oo, the skin depth, that is, the distance in which
the fields inside a conductor are attenuated by a factor e~!, is zero and hence
there can be no penetration of fields into a perfect conductor.

REVIEW QUESTIONS

5.1.
5.2,
5.3.

54.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.
5.11.

5.12.
5.13.

5.14.
5.15.
5.16.
5.17.

5.18.
5.19.

5.20.
5.21.

Distinguish between bound electrons and free electrons in an atom.
Briefly describe the phenomenon of conduction.

State Ohms’ law applicable at a point. How is it taken into account in Max-
well’s equations ?

Briefly describe the phenomenon of polarization in a dielectric material.
What is an electric dipole ? How is its strength defined ?

What are the different kinds of polarization in a dielectric?

What is the polarization vector ? How is it related to the electric field intensity ?
Discuss how polarization current arises in a dielectric material.

State the relationship between polarization current density and electric field
intensity. How is it taken into account in Maxwell’s equations ?

What is the revised definition of D ?

State the relationship between D and E in a dielectric material. How does it
simplify the solution of field problems involving dielectrics ?

What is an anisotropic dielectric material ?

When can an effective permittivity be defined for an anisotropic dielectric
material ?

Briefly describe the phenomenon of magnetization.
What is a magnetic dipole? How is its strength defined?
What are the different kinds of magnetic materials?

What is the magnetization vector? How is it related to the magnetic flux
density ?

Discuss how magnetization current arises in a magnetic material.

State the relationship between magnetization current density and magnetic
flux density. How is it taken into account in Maxwell’s equations ?

What is the revised definition of H?

State the relationship between H and B for a magnetic material. How does it
simplify the solution of field problems involving magnetic materials ?
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5.22.
5.23.
5.24.
5.25.

5.26.

5.27.
5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.
5.36.

5.37.
5.38.

5.39.

5.40.

What is an anisotropic magnetic material ?
Discuss the relationship between B and H for a ferromagnetic material.
Summarize the constitutive relations for a material medium.

What is the propagation constant for a material medium? Discuss the sig-
nificance of its real and imaginary parts.

Discuss the consequence of the frequency dependence of the phase velocity of
a wave in a material medium.

What is loss tangent ? Discuss its significance.

What is the intrinsic impedance of a material medium? What is the con-
sequence of its complex nature ?

How do you account for the attenuation undergone by the wave in a material
medium ?

What is the power dissipation density in a medium characterized by nonzero
conductivity ?

What are the stored energy densities associated with electric and magnetic
fields in a material medium?

What is the condition for a medium to be a perfect dielectric? How do the
characteristics of wave propagation in a perfect dielectric medium differ from
those of wave propagation in free space?

What is the criterion for a material to be an imperfect dielectric? What is the
significant feature of wave propagation in an impertect dielectric as compared
to that in a perfect dielectric?

Give two examples of matetials that behave as good dielectrics for frequencies
down to almost zero.

What is the criterion for a material to be a good conductor?

Give two examples of materials that behave as good conductors for frequen-
cies of up to several gigahertz.

What is skin effect ? Discuss skin depth, giving some numerical values.

Why are low-frequency waves more suitable than high-frequency waves for
communication with underwater objects?

Discuss the consequence of the low intrinsic impedance of a good conductor
as compared to that of a dielectric medium having the same € and .

Why can there be no fields inside a perfect conductor?

PROBLEMS

5.1.

Find the electric field intensity required to produce a current of 0.1 amp cross-
ing an area of 1 cm? normal to the field for the following materials: (a) cop-
per, (b) aluminum, and (c) sea water. Then find the voltage drop along a
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5.2,

5.3.

54.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.
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length of 1 cm parallel to the field, and find the ratio of the voltage drop to
the current (resistance) for each material.

The free electron density in silver is 5.80 x 1028 m~3. (a) Find the mobility of
the electron for silver. (b) Find the drift velocity of the electrons for an applied
electric field of intensity 0.1 V/m.

Use the continuity equation, Ohm’s law, and Gauss’ law for the electric field
to show that the time variation of the charge density at a point inside a con-
ductor is governed by the differential equation

o o, _
E_l_eop—o

Then show that the charge density inside the conductor decays exponentially
with a time constant €,/0. Compute the value of the time constant for copper.

Show that the torque acting on an electric dipole of moment p due to an
applied electric field E is p x E.

For an applied electric field E = 0.1 cos 2 x 10°¢i, V/m, find the polariza-
tion current crossing an area of 1 cm? normal to the field for the following
materials: (a) polystyrene, (b) mica, and (c) distilled water.

For the anisotropic dielectric material having the permittivity tensor given in
Example 5.1, find D for E = E; (cos wti, + sin ti,). Comment on your
result.

An anisotropic dielectric material is characterized by the permittivity tensor

4 2 2
[6]—:602 4 2
2 2 4

(a) Find D for E = Eyi,. (b) Find D for E = Ey(i, + i, + i,). (¢) Find E
which produces D = 4€,Ei..

An anisotropic dielectric material is characterized by the permittivity tensor

€vx €xy, O
[el=|€x €, O
0 0 ¢,

For E = (E.i, + E,i,) cos wt, find the value(s) of E,/E, for which D is paral-
lel to E. Find the effective permittivity for each case.

Find the magnetic dipole moment of an electron in circular orbit of radius a
normal to a uniform magnetic field of flux density B,. Compute its value for
a=10"3m and By = 5 X 1075 Wb/m?,

Show that the torque acting on a magnetic dipole of moment m due to an
applied magnetic field B is m x B. For simplicity, consider a rectangular loop
in the xp plane and B = B,i, + B,i, + B.i,.
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5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

For an applied magnetic field B = 1076 cos 2nzi, Wb/m?, find the magnetiza-
tion current crossing an area 1 cm?2 normal to the x direction for a magnetic
material having ¥,, = 1073,

An anisotropic magnetic material is characterized by the permeability tensor

7 6 0
(4] = uol 6 12 0
lo 0 3

Find the effective permeability for H = H,(3i, — 2i,) cos 1.
Obtain the wave equation for ﬁ, similar to that for E, given by (5.49).

Obtain the expression for the attenuation per wavelength undergone by a
uniform plane wave in a material medium characterized by o, €, and y. Using
the logarithmic scale for o/we, plot the attenuation per wavelength in decibels
Versus o/we.

For dry earth, ¢ = 10~5 mho/m, € = 5€,, and u = Uo. Compute &, B, vy A
and 7 for f = 100 kHz.

Obtain the expressions for the real and imaginary parts of the intrinsic im-
pedance of a material medium given by (5.61).

An infinite plane sheet lying in the xy plane carries current of uniform density
J¢ = —0.1cos 2w x 1067 i, amp/m

The medium on either side of the sheet is characterized by & = 10~3 mho/m,

€ = 18¢€,, and u = U,. Find E and H on either side of the current sheet.

Repeat Problem 5.17 for

Js = —0.1(cos 2 x 106ti, + cos 4m x 105¢1i,) amp/m

For an array of two infinite plane parallel current sheets of uniform densities
situated in a medium characterized by & = 103 mho/m, € = 18¢€,, and
I = MUo, find the spacing and the relative amplitudes and phase angles of the
current densities to obtain an endfire radiation characteristic for f = 106 Hz.

Show that energy is not stored equally in the electric and magnetic fields in a
material medium for o # 0.

The electric field of a uniform plane wave propagating in a perfect dielectric
medium having 4 = U, is given by

E = 10 cos (6w x 107¢ — 0.472) i, V/m
Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the
permittivity of the medium, and () the associated magnetic field vector H.

The electric and magnetic fields of a uniform plane wave propagating in a
perfect dielectric medium are given by
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5.23.

5.24.

5.25.

5.26.

5.27.

CH. S5 WAVE PROPAGATION IN MATERIAL MEDIA

E = 10cos (6 x 107t — 0.87z) i, V/m

H= %r cos (6m x 107¢ — 0.87z) i, amp/m

Find the permittivity and the permeability of the medium.

An infinite plane sheet situated in the xy plane carries a current of uniform
density

Js = —0.2cos 3n x 107¢i, amp/m

The medium on either side of the current sheet is a perfect dielectric having
€ = 8€yand u = 2u,. (a) Find H,B, M, and J,, for z > 0. (b) Find E, D, P,
and J, for z > 0.

Compute f; for each of the following materials: (a) fused quartz, (b) bakelite,
and (c) distilled water. Then compute for the imperfect dielectric range of
frequencies the values of &, f3, v,, 4, and 7 for each material.

For uniform plane wave propagation in fresh water (¢ = 103 mho/m,
€ = 80€y, U = Uy), find &, B, v,, A, and 7 for two frequencies: (a) 100 MHz,
and (b) 10 kHz.

Show that for a given material, the ratio of the attenuation constant for the
good conductor range of frequencies to the attenuation constant for the
imperfect dielectric range of frequencies is equal to »/2we/o where @ is in
the good conductor range of frequencies.

For a 25-kHz wave propagating in sea water, find the Doppler shift observed
by an observer, moving with a velocity 10 m/s along the direction of propaga-
tion of the wave.



