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In Chaps. 2 and 3 we learned Maxwell’s equations in integral form and in
differential form. We now have the knowledge of the fundamental laws of
electromagnetics that enable us to embark upon the study of the elements of
their applications. Many of these applications are based on electromagnetic
wave phenomena, and hence it is necessary to gain an understanding of the
basic principles of wave propagation, which is our goal in this chapter. In
particular, we shall consider wave propagation in free space. We shall then
in the next chapter consider the interaction of the wave fields with materials
to extend the application of Maxwell’s equations to material media and
discuss wave propagation in material media.

We shall employ an approach in this chapter that will enable us not
only to learn how the coupling between space-variations and time-variations
of the electric and magnetic fields, as indicated by Maxwell’s equations,
results in wave motion but also to illustrate the basic principle of radiation
of waves from an antenna, which will be treated in detail in Chap. 8. In this
process, we will also learn several techniques of analysis pertinent to field
problems. We shall augment our discussion of radiation and propagation
of waves by considering such examples as the principle of an antenna array
and the Doppler effect. Finally, we shall discuss power flow and energy storage
associated with the wave motion and introduce the Poynting vector.
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4.1 THE INFINITE PLANE CURRENT SHEE’f

In Chap. 3 we learned that the space-variations of the electric and mag-
netic field components are related to the time-variations of the magnetic
and electric field components, respectively, through Maxwell’s equations.
This interdependence gives rise to the phenomenon of electromagnetic wave
propagation. In the general case, electromagnetic wave propagation involves
electric and magnetic fields having more than one component, each dependent
on all three coordinates, in addition to time. However, a simple and very
useful type of wave that serves as a building block in the study of electro-
magnetic waves consists of electric and magnetic fields that are perpendicular
to each other and to the direction of propagation and are uniform in planes
perpendicular to the direction of propagation. These waves are known as
“uniform plane waves.” By orienting the coordinate axes such that the elec-
tric field is in the x direction, the magnetic field is in the y direction, and the
direction of propagation is in the z direction, as shown in Fig. 4.1, we have

E = E,(z, i, @.1)
H = Hz, )i, (4.2)

Uniform plane waves do not exist in practice because they cannot be
produced by finite-sized antennas. At large distances from physical antennas
and ground, however, the waves can be approximated as uniform plane waves.
Furthermore, the principles of guiding of electromagnetic waves along trans-
mission lines and waveguides and the principles of many other wave phenom-
ena can be studied basically in terms of uniform plane waves. Hence it is
very important that we understand the principles of uniform plane wave

propagation.
T x
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Figure 4.1. Directions of electric and magnetic fields and direction of
propagation for a simple case of uniform plane wave.
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In order to illustrate the phenomenon of interaction of electric and magne-
tic fields giving rise to uniform plane electromagnetic wave propagation, and
the principle of radiation of electromagnetic waves from an antenna, we shall
consider a simple, idealized, hypothetical source. This source consists of an
infinite sheet lying in the xy plane, as shown in Fig. 4.2. On this infinite plane

/)

Figure 4.2. Infinite plane sheet in the xy plane carrying surface current of
uniform density.

sheet a uniformly distributed current varying sinusoidally with time flows
in the negative x direction. Since the current is distributed on a surface, we
talk of surface current density in order to express the current distribution
mathematically. The surface current density, denoted by the symbol Js,
is a vector quantity having the magnitude equal to the current per unit width
(amp/m) crossing an infinitesimally long line, on the surface, oriented so as
to maximize the current. The direction of Jg is then normal to the line and
toward the side of the current flow. In the present case, the surface current
density is given by

Jo = —Jg, coswti, forz=0 4.3)

where J;, is a constant and e is the radian frequency of the sinusoidal time-
variation of the current density.

Because of the uniformity of the surface current density on the infinite
sheet, if we consider any line of width w parallel to the y axis, as shown in
Fig. 4.2, the current crossing that line is simply given by w times the current
density, that is, w/g, cos ot. If the current density is non-uniform, we have
to perform an integration along the width of the line in order to find the cur-
rent crossing the line. In view of the sinusoidal time-variation of the current
density, the current crossing the width w actually alternates between negative
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x and positive x directions, that is, downward and upward. The time history
of the current flow for one period of the sinusoidal variation is illustrated in
Fig. 4.3, with the lengths of the lines indicating the magnitudes of the current.

R T ] e

0 wt—» m wt —» 27

Figure 4.3. Time history of current flow across a line of width w parallel
to the y axis for the current sheet of Fig. 4.2,

42 MAGNETIC FIELD ADJACENT
TO THE CURRENT SHEET

In the previous section we introduced the infinite current sheet lying in
the xy plane and upon which a surface current flows with density given by

Jeg= —Jgcoswti, 4.4

Our goal is to find the electromagnetic field due to this time-varying current
distribution. In order to do this, we have to solve Faraday’s and Ampere’s
circuital laws simultaneously. Since we have here only an x component of the
current density independent of x and y, the equations of interest are

dE, 0B,

dz  or )
0H, oD,

0z _(J" T ) (4.6)

The quantity J, on the right side of (4.6) represents volume current density
whereas we now have a surface current density. Furthermore, in the free space
on either side of the current sheet the current density is zero and the differ-
ential equations reduce to

JE, 0B,

9 = o @7
o, 9D, (4.8)

To obtain the solutions for E, and H, on either side of the current sheet,
we therefore have to solve these two differential equations simultaneoulsy.
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To obtain a start on the solution, however, we need to consider the surface
current distribution and find the magnetic field immediately adjacent to the
current sheet. This is done by making use of Ampere’s circuital law in
integral form given by

§H-dl=fJ-dS+%fD-dS (4.9)
c S S

and applying it to a rectangular closed path abcda, as shown in Fig. 4.4, with
the sides ab and cd lying immediately adjacent to the current sheet, that is,
touching the current sheet, and on either side of it. This choice of the rectan-
gular path is not arbitrary but is intentionally chosen to achieve the task of
finding the required magnetic field. First, we note from (4.6) that an x-directed
current density gives rise to a magnetic field in the y direction. At the source
of the current, this magnetic field must also have a differential in the third
direction, namely, the z direction. In fact, from symmetry considerations, we
can say that H, on ab and cd must be equal in magnitude and opposite in
direction.

Y
N

Figure 4.4. Rectangular path enclosing a portion of the current on the
infinite plane current sheet.

If we now consider the line integral of H around the rectangular path
abcda, we have

H-dl:f:H-lerL°H-d1+fH-d1+L"H-d1 (4.10)

abcda

The second and the fourth integrals on the right side of (4.10) are, however,
equal to zero since H is normal to the sides bc and da and furthermore bc
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and da are infinitesimally small. The first and third integrals on the right
side of (4.10) are given by

[T« a1 = [H).u(ab)

[ "H.dl = —[H].(cd)
Thus
§; bod H . dl = [H ),)(ab) — [H,).cd) = 2[H,],,(ab) )

since [Hy]cd s _[Hy]ab'

We have just evaluated the left side of (4.9) for the particular problem
under consideration here. To complete the task of finding the magnetic field
adjacent to the current sheet, we now evaluate the right side of (4.9), which
consists of two terms. The second term is, however, zero since the area
enclosed by the rectangular path is zero in view of the infinitesimally small
thickness of the current sheet. The first term is not zero since there is a cur-
rent flowing on the sheet. Thus the first term is simply equal to the current
enclosed by the path abcda in the right-hand sense, that is, the current
crossing the width ab toward the negative x direction. This is equal to the
surface current density multiplied by the width ab, that is, Jg, cos w? (ab).
Thus substituting for the quantities on either side of (4.9), we have

2[H ], ,(ab) = Jg, cos wt (ab)

or
— JSO
[H].: = ' cos wt “4.12)
It then follows that
[H,J.s = — %5 cos ot 4.13)

Thus immediately adjacent to the current sheet the magnetic field intensity
has a magnitude ‘% cos et and is directed in the positive y direction on the

side z > 0 and in the negative y direction on the side z < 0. This is illustrated
in Fig. 4.5. It is cautioned that this result is true only for points right next to
the current sheet since if we consider points at some distance from the cur-
rent sheet, the second term on the right side of (4.9) will no longer be zero.

The technique we have used here for finding the magnetic field adjacent
to the time-varying current sheet by using Ampere’s circuital law in integral
form is a standard procedure for finding the static electric and magnetic
fields due to static charge and current distributions, possessing certain sym-
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z>0

\{]

Figure 4.5. Magnetic field adjacent to and on either side of the infinite
plane current sheet.

metries, by using Gauss’ law for the electric field and Ampere’s circuital law
in integral forms, respectively, as we have already demonstrated in Chap. 2.
Since for the static field case the terms involving time derivatives are zero,
Ampere’s circuital law simplifies to

fch-dlzLJ-ds

Hence, if the current distribution were not varying with time, then in order
to compute the magnetic field we can choose a rectangular path of any width
be and it would still enclose the same current, namely, the current on the
sheet. Thus the magnetic field would be independent of the distance away
from the sheet on either side of it. There are several problems in static fields
that can be solved in this manner. We shall not discuss these here; instead,
we shall include a few cases in the problems for the interested reader and we
shall continue with the derivation of the electromagnetic field due to our
time-varying current sheet in the following section.

43 SUCCESSIVE SOLUTION OF
MAXWELL’S EQUATIONS*

In the preceding section we found the magnetic field ajdacent to the

infinite plane sheet of current introduced in Sec. 4.1. Now, to find the solu-
tions for the fields everywhere on either side of the current sheet, let us first

*This section may be omitted without loss of continuity.
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consider the region z > 0. In this region the fields simultaneously satisfy the
two differential equations (4.7) and (4.8) and with the constraint that the
magnetic field at z = 0 is given by (4.12). To find the solutions for these
differential equations, we have a choice of starting with the solution for H,
given by (4.12) and solving them successively and repeatedly in a step-by-step
manner until the solutions satisfy both differential equations or of combining
the two differential equations into one and then solving the single equation
subject to the constraint at z = 0. Although it is somewhat longer and ted-
ious, we shall use the first approach in this section in order to obtain a feeling
for the mechanism of interaction between the electric and magnetic fields.
We shall consider the second and more conventional approach in the follow-
ing section.

To simplify the task of the repetitive solution of the two differential equa-
tions (4.7) and (4.8) we shall employ the phasor technique. Thus by letting

E (z,1) = Re [E,(2)e"] 4.14)
H/(z, 1) = Re [H(2)e’] 4.15)

where Re stands for “real part of” and E,(z) and H H (z) are the phasors cor-
responding to the time functions E,(z,¢) and H,(z, f), respectively, and
replacing the time functions in (4.7) and (4.8) by the corresponding phasor
functions and @/d¢ by jw, we obtain the differential equations for the
phasor functions as

9L, : — —joB, — —jouH, (4.16)
06_112’ — —jwD, = —jwe,E, (4.17)

We also note that since (4.12) can be written as
J
[H.s = Re (“52e")
the solution for the phasor 1-7, at z = 0 is given by

[H),.o= % (4.18)

We start with (4.18) and solve (4.16) and (4.17) successively and repeatedly,
and after obtaining the final solutions for E, and H,, we put them in (4.14)
and (4.15), respectively, to obtain the solutions for the real fields.

Thus starting with (4.18) and substituting it in (4.16), we get



SEC. 4.3 SUCCESSIVE SOLUTION OF MAXWELL’S EQUATIONS 129

JdE, Jso

s _Jwﬂo 2

Z

Integrating both sides of this equation with respect to z, we have
E, = —jop st + €

where C is the constant of integration. This constant of integration must,
however, be equal to [E,],., since the first term on the right side tends to
zero as z — 0. Thus

B, = —joue?SE + (B @19

Now, substituting (4.19) into (4.17), we obtain

3t = —jweo{—jwqusz"z + (B

= —jweE,).-o — wzuoeojs"z

& , = J
Hy s _JCO€OZ[Ex]z=o e CO Ho€o Soz +[ ylz=0

Jsoz Jso

. _ja)foz[Ex]z=o — W2 l,€ + 5

= —jwez[E,],-o + JS°( “’—"206—02—) (4.20)

We have thus obtained a second-order solution for ﬁy, which, however,
does not satisfy (4.16) together with the solution for E, given by (4.19). Hence
we must continue the step-by-step solution by substituting (4.20) into (4.16)
and finding a higher-order solution for E, and so on. Thus by substituting
(4.20) into (4.16), we get

JE, . . = Jsof1 _ ©o€oz>
9z ]w/‘o{ Jw€ Z[E,]. -0 + T(l —2—‘>}

- : 3
= ——Cl)zﬂofoz[Ex]z=0 _]CO# JSO <1 - a)—'u;’jz—)

txy
I

= 2 - J 2 3 .
x _wzﬂofo%[Ex]z 0 deu 50( Mgﬂz—) + [Ex]z=0

=[E,,- (1 _ wzﬂéfozz) _ .]'wﬂ;-]so (z _ wzﬂgfoza) @.21)
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From (4.17), we then have

0Hy — i 0 €022 O lo€ods0 (, _ O M€y
62 - JwGO[Ex]z=0 (I - P ) - 2 (Z 6 >

= 2 3
o _waO[Ex]z=0 (Z - M__gfi)

_ @ Ue€od s (ﬁ_ wzﬂofoz4) [H ]
2 2 24 ==0

L

- 2 3
= _jwe(![Ex]z=0 (Z - %)

(1 Cllseer” | IR “22)

Continuing in this manner, we will get infinite series expressions for E,
and H, as follows:

=[Ex]z=o[1—(gz,z+(—/fflx—...]

H, = 1B dena fr = B2 G2 ]
JS“[I (ﬂz)z + (32)4 ] (4.24)

where we have introduced the notations

B = on/ sk 4.29)
o = of £ (4.26)

It is left to the student to verify that the two expressions (4.23) and (4.24)
simultaneously satisfy the two differential equations (4.16) and (4.17). Now,
noting that

(B2)* | (B2)*

v T T

cos fz=1—

sin Bz = Bz — (ﬂz) (ﬂz) +.



SEC. 4.3 SUCCESSIVE SOLUTION OF MAXWELL’S EQUATIONS 131

and substituting into (4.23) and (4.24), we have

E, = [B),-o cos Bz — j1eJ50 sin pz 4.27)
7 _:legr o
H, = —Jn—[Ex]Fo sin fz + =3¢ cos pz (4.28)
0

We now obtain the expressions for the real fields by putting (4.27) and
(4.28) into (4.14) and (4.15), respectively. Thus

E(z,) = Re{[E_x]z=0 cos Bz elor — jﬂ% sin Bz ejwr}
= cos fz Re {[E,],- o’} + ”OTJSO sin Bz Re [e/@=/2)]

= cos Bz (C cos et + D sin wt) +- @% sin Bz sin ot 4.29)

Hz,t) = Re{_J—-[Ex], o sin fz e + JS" cos fiz ef“”}

= ?I_ sin Bz Re {[E-x]z=0 elt@t-m2} | % cos Bz Re [/
0

JS 0

= ﬂi sin Bz (C sin wt — D cos wt) + cos fzcoswt  (4.30)

0

where we have replaced the quantity Re {[E,],-,e’} by (C cos wt - D sin ot)
in which C and D are arbitrary constants to be determined. Making use of
trigonometric identities and proceeding further, we write (4.29) and (4.30) as

Mo

E(z,t)= cos (wt — pz) 2 Y cos (@t + fz)

2C | 1oJs0
4
+ g sin (@f — B2) -+ % sin (ot + 82) (4.31)
Hfz, 1) = 2C -+ nds, cos (wt — fz) — 2C — floJso cos (wt + f2)
4n, a1,
+ 2—];;— sin (wt — fz) — TR sm (wt + B2) 4.32)
0

Equation (4.32) is the solution for H, which together with the solution
for E, given by (4.31) satisfies the two differential equations (4.7) and (4.8)
and which reduces to (4.12) for z = 0. Likewise, we can obtain the solutions
for H, and E, for the region z < 0 by starting with [H,],-- given by (4.13)
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and proceeding in a similar manner. We shall however proceed with the
evaluation of the constants C and D in (4.31) and (4.32). In order to do this,
we first have to understand the meanings of the functions cos (w! F fz)
and sin (wt T= Bz). We shall do this in Sec. 4.5.

4.4 SOLUTION BY WAVE EQUATION

In Sec. 4.3 we found the solutions to the two simultaneous differential
equations (4.7) and (4.8) by solving them successively and repeatedly in a
step-by-step manner. In this section we shall consider an alternative and more
conventional method by combining the two equations into a single equation
and then solving it. We recall that the two simultaneous differential equations
to be satisfied in the free space on either side of the current sheet are

Oy 0D 95 (4.34)

Differentiating (4.33) with respect to z and then substituting for § H,/dz from
(4.34), we obtain

0%E, _ dHN_ _, 0 (9HN_ _ d( _JE,
92 _—""E(T)' ”°at<az)_ ”°oz( €o dr)
or
2 2
% . ,‘060% (4.35)

We have thus eliminated H, from (4.33) and (4.34) and obtained a single
second-order partial differential equation involving E, only.

Equation (4.35) is known as the “wave equation.” A technique of solving
this equation is the “separation of variables” technique. Since it is a differ-
ential equation involving two variables z and ¢, the technique consists of
assuming that the required solution is the product of two functions, one of
which is a function of z only and the second is a function of ¢ only. Denoting
these functions to be Z and T, respectively, we have

Ef(z,0) =Z(2) T@t) (4.36)

Substituting (4.36) into (4.35) and dividing throughout by u,€,Z(z) T(t), we
obtain

1 d?*Z 1 4*T
Uo€oZ dz2 — T di? (4.37)
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In (4.37) the left side is a function of z only and the right side is a function of
t only. In order for this to be satisfied, they both must be equal to a constant.
Hence setting them equal to a constant, say a2, we have

d*Z

Ez— = OCZ,UOGOZ (4'38a)
dT - wr (4.38b)

We have thus obtained two ordinary differential equations involving separ-
ately the two variables z and ¢; hence the technique is known as the “separa-
tion of variables” technique.

The constant 2 in (4.382) and (4.38b) is not arbitrary since for the case
of the sinusoidally time-varying current source the fields must also be sin-
usoidally time-varying with the same frequency although not necessarily in
phase with the source. Thus the solution for T'(f) must be of the form

T(t) = A cos wt + Bsinw!? 4.39)

where A and B are arbitrary constants to be determined. Substitution of (4.39)
into (4.38b) gives us a* = —w?. The solution for (4.38a) is then given by

Z(z) = A’ cos wa/ tho€oz + B’ sin wa/ to€oz
= A’ cos fz + B'sin fz (4.40)

where A’ and B’ are arbitrary constants to be determined and we have defined

B = o/ po€o (4.41)
The solution for E, is then given by
E, = (A’ cos Bz + B’ sin Bz)(A cos wt + B sin wt)
= C cos fz cos wt 4+ D cos Bz sin wt
+ C’sin Bz cos wt + D' sin fz sin ot (#.42)

The corresponding solution for H, can be obtained by substituting (4.42)
into one of the two equations (4.33) and (4.34). Thus using (4.34), we get

0H, _

9z —€y[—wC cos Bz sin wt + @D cos fz cos wt

—aC’ sin Bz sin wt + wD’ sin fz cos wt]
H,= %[C sin fz sin wt — D sin fz cos wt

—C’ cos Bz sin wt + D' cos fz cos wt]
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Defining

_ B _ o _ i
Mo we,  we, Vg (@)

we have
H,= ﬂi[C sin Bz sin ¢ — D sin fz cos wt
0
— C' cos fz sin wt + D’ cos fiz cos wt] (4.44)

Equation (4.44) is the general solution for H, valid on both sides of the
current sheet. In order to deduce the arbitrary constants, we first recall that
the magnetic field adjacent to the current sheet is given by

']—52 cos wt for z = 04
H,= (4.45)
—!‘29—0 cos wt for z = 0—

Thus for z > 0,

ﬂi[—C’ sin wt 4+ D’ cos wf] = ﬁcos wt
0

2
or
C'=0 and D' =T
giving us
H, = % cos fz cos wt -+ ;’1; sin Bz (Csin wt — Dcos wt)  (4.46)
E. = MoJso sin Bz sin @t + cos Bz (C cos wt -+ D sin wt) 4.47)

2

Making use of trigonometric identities and proceeding further, we write
(4.47) and (4.46) as

E(z,0) = 2C—+4’7LJS9 cos (wt — fz) - 2£_4ﬂ—°']s° cos (ot + f2)
D . D .
+ 7 sin (ot — Bz) + - sin (ot + B2) (4.48)
H/fz,t) = —2C_ZT”°JS° cos (wt — Bz) — 2—("—4717""&’ cos (ot + fz)
0 0

+ 2%0 sin (wt — Bz) — 2%0 sin (et - f2) 4.49)
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Equation (4.49) is the solution for H, which together with the solution
for E,_ given by (4.48) satisfies the two differential equations (4.7) and (4.8)
and which reduces to (4.12) for z = 0. Similarly, we can obtain the solutions
for H, and E, for the region z < 0 by using the value of [H,],_,- to evaluate
C’ and D' in (4.44). We shall, however, proceed with the evaluation of the
constants C and D in (4.48) and (4.49). In order to do this, we first have to
understand the meanings of the functions cos (wt F fz) and sin (@t F f2).
We shall do this in the following section.

4.5 UNIFORM PLANE WAVES

In the previous two sections we derived the solutions for E, and H,,
due to the infinite plane sheet of sinusoidally time-varying uniform current
density, for the region z > 0. These solutions consist of the functions
cos (et F Pz) and sin (et F fz), which are dependent on both time and dis-
tance. Let us first consider the function cos (wt — fz). To understand the
behavior of this function, we note that for a fixed value of time it varies in a
cosinusoidal manner with the distance z. Let us therefore consider three
values of time £ = 0, t = n/4w, and ¢t = n/2m and examine the sketches of
this function versus z for these three times. By noting that

fort =0, cos(wt — fz) = cos (—fz) = cos Bz

for t = %), cos (wt — fz) = cos (% - ﬁz)

=7 . = & m = s
for t = 7 €% (ot — Bz) = cos ( > ﬁz) sin fz

we draw the sketches of the three functions as shown in Fig. 4.6.

cos (wt — fz S _
|4 e t=0 T3 "= 26
0 } 4 1 -z
1 g 3% s ﬁr\
28 B 26 g 28

Figure 4.6. Sketches of the function cos (wt — fz) versus z for three values
of ¢.
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It is evident from Fig. 4.6 that the sketch of the function for ¢ = 7/4w is
a replica of the function for # = 0 except that it is shifted by a distance of
7/4B toward the positive z direction. Similarly, the sketch of the function
for t = z/2¢ is a replica of the function for ¢ = 0 except that it is shifted by
a distance of /2 toward the positive z direction. Thus as time progresses,
the function shifts bodily to the right, that is, toward increasing values of z.
In fact, we can even find the velocity with which the function is traveling by
dividing the distance moved by the time elapsed. This gives

Lo mB—a2f o _
velocity = RRBE0- B G/
N 1
~lo€o  A/Am X 1077 X 107°/36%
=3 X 10® m/s

which is the velocity of light in free space. Thus the function cos (wt — fz)
represents a “traveling wave” moving with a velocity w/f toward the direc-
tion of increasing z. The wave is also known as the “positive going” or
“(+) wave.”

Similarly, by considering three values of time ¢ = 0, t = n/4w, and t =
/2 for the function cos (w? + Bz), we obtain the sketches shown in Fig.
4.7. An examination of these sketches reveals that cos (wt -- fz) represents
a “traveling wave” moving with a velocity w/f toward the direction of de-
creasing values of z. The wave is also known as the “negative going” or
“(—) wave.” Since the sine functions are cosine functions shifted in phase by
7/2, it follows that sin (wt — fz) and sin (w? + fz) represent traveling waves
moving in the positive and negative z directions, respectively.

Acos (wt + fz)

1

3 2m 517\
28 B8 28

J
=
™|

Figure 4.7. Sketches of the function cos (wf + fz) versus z for three values
of 1.
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Returning to the solutions for E, and H, given by (4.31) and (4.32) or
(4.48) and (4.49), we now know that these solutions consist of superpositions
of traveling waves propagating away from and toward the current sheet. In
the region z > 0 we, however, have to rule out traveling waves propagating
toward the current sheet because such a situation requires a source of waves
to the right of the sheet or an object that reflects the wave back toward the
sheet. Thus we have

D=0
2C — foJgo =0 or C=”°TJS°
which give us finally

E. = ”0—2']“3 cos (wt — Bz)
forz>0 (4.50)

P

y = 5 Cos (ot — f2)

Having found the solutions for the fields in the region z > 0, we can now
consider the solutions for the fields in the region z < 0. From our discussion
of the functions cos (wt F fz), we know that these solutions must be of the
form cos (wt -+ fBz) since this function represents a traveling wave progress-
ing in the negative z direction, that is, away from the sheet in the region z < 0.
Recalling that the magnelic field adjacent to the current sheet and to the
left of it is given by

[H,];=¢- = %cos ot
we get

H, = Jso cos (@t + Bz)  forz <0 (4.512)

The corresponding E, can be obtained by simply substituting the result just
obtained for H, into one of the two differential equations (4.7) and (4.8).
Thus using (4.7), we obtain

JE. 9B,

TE= gt = —E"gico sin (wt + Bz)

E,. = %S—“—cﬁg cos (wt -+ f2)
ﬂogso cos (wt + f2) forz <0 (4.51b)

Combining (4.50) and (4.51), we find that the solution for the electro-
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magnetic ficld due to the infinite plane current sheet in the xp plane charac-
terized by

Js = —Jg coswti,
is given by
E= ”"ZJS" cos (ax T B2)i, forz=0 (4.52a)
H— :I:'—’;—° cos (@t F f2)i, forz=0 (4.52b)

These results are illustrated in Fig. 4.8, which shows sketches of the current
density on the sheet and the distance-variation of the electric and magnetic
fields on either side of the current sheet for a few values of ¢. It can be seen
from these sketches that the phenomenon is one of electromagnetic waves
“radiating” away from the current sheet to either side of it, in step with the
time-variation of the current density on the sheet.

The solutions that we have just obtained for the fields due to the time-
varying infinite plane current sheet are said to correspond to “uniform plane
electromagnetic waves” propagating away from the current sheet to either
side of it. The terminology arises from the fact that the fields are uniform
(that is, they do not vary with position) over the planes z = constant. Thus
the phase of the fields, that is, the quantity (w? + fz), as well as the ampli-
tudes of the fields, is uniform over the planes z = constant. The magnitude
of the rate of change of phase with distance z for any fixed time is §. The
quantity f§ is therefore known as the “phase constant.” Since the velocity of
propagation of the wave, that is, @/f, is the velocity with which a given con-
stant phase progresses along the z direction, that is, along the direction of
propagation, it is known as the “phase velocity” and is denoted by the
symbol v,. Thus

v, = % (4.53)
The distance in which the phase changes by 2z radians for a fixed time is

2z/B. This quantity is known as the “wavelength” and is denoted by the
symbol 4. Thus

2n
== 4.54
7 4.54)
Substituting (4.53) into (4.54), we obtain
2n v
A= =z
/v, f

or

Af =v, (4.55)



JS = _Jso cos Wiy,

Figure 4.8, Time history of uniform plane electromagnetic wave radiating
away from an infinite plane current sheet in free space.
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Equation (4.55) is a simple relationship between the wavelength A4 which is a
parameter governing the variation of the field with distance for a fixed time
and the frequency f which is a parameter governing the variation of the field
with time for a fixed value of z. Since for free space v, = 3 X 10® m/s, we
have

A in meters X fin Hz = 3 X 108
A in meters X fin MHz = 300 (4.56)
Other properties of uniform plane waves evident from (4.52) are that the
electric and magnetic fields have components lying in the planes of constant
phase and perpendicular to each other and to the direction of propagation.

In fact, the cross product of E and H results in a vector that is directed along
the direction of propagation, as can be seen by noting that

E x H=E.,i, x H,ji,

= £ MoT50 cos? (at F )i, for 220 (50

Finally, we note that the ratio of E, to H, is given by

E, { fo for z > 0, i.e., for the () wave (4.58)
H,  |—n, for z <0, i.e., for the (—) wave )

¥y

The quantity #, which is equal to ./ ,/€, is known as the “intrinsic imped-
ance” of free space. Its value is given by

_ [(4r x 10°7)H/m _ ] i
o = 4/ "(10-7/36m) Fjm = /(144n* x 10*) H/F

= 1207 ohms = 377 ohms 4.59)
Example 4.1. The electric field of a uniform plane wave is given by E =
10 cos (3n x 108t — zmz)i, V/m. Let us identify the various parameters asso-

ciated with the uniform plane wave.
We recognize that

w = 3n X 10% rad/s

f =% —15x 108 Hz = 150 MHz

2n
B = mrad/m
2n
A==5=2m
B
_ o 3mx10® 8
U”—ﬁ_——n =3 x 10® m/s
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Also, Af =v, =2 x 1.5 x 108 = 3 x 10® m/s. From (4.58) and since the
given field represents a (+) wave,

E.. 10 8,
n—oly 377 €08 3z x 10% — @z)i, amp/m -

H=
Example 4.2. An antenna array consists of two or more antenna elements
spaced appropriately and excited wilh currents having the appropriate ampli-
tudes and phases in order to obtain a desired radiation characteristic. To
illustrate the principle of an antenna array, let us consider two infinite plane
parallel current sheets, spaced A/4 apart and carrying currents of equal ampli-
tudes but out of phase by n/2 as given by the densities

Js, = —Jgo cos @t 1, =0
Js, — —Js, sin @t i — 4
52 = —Jso Sin wt i, 2=
and find the electric field due to the array of the two current sheets.
We apply the result given by (4.52) to each current sheet separately and
then use superposition to find the required total electric field due to the array

of the two current sheets. Thus for the current sheet in the z = 0 plane, we
have

MoJso cos (@t — fr)i,  forz >0
E, —
ﬁ‘gﬂ cos (wt -+ P2)1i, forz <0

For the current sheet in the z = 1/4 plane, we have

’h‘TJ”sin[cot—ﬂ(z——%)]ix forz>%

E,= szlﬂsin[wt“’ﬁ(z_%)]i" forz<—f1l
’7°'Is°s1n( t—[)’z—l—%)ix forz>%

- TIoTJsosin(a)f‘Fﬁz_%)ix forz<%
5o cos (@t — ) i for z > &

1 —ﬁ;ﬂ cos (@t - fz)i, for z < %
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Now, using superposition, we find the total electric field due to the two
current sheets to be

E—E, +E
Molso cos (@t — o), forz> %
oS50 sin ot sin fz i, for0 <z < %
0 forz <0

Thus the total field is zero in the region z << 0 and hence there is no
radiation toward that side of the array. In the region z > A/4 the total field
is twice that of the field due to a single sheet. The phenomenon is illustrated
in Fig. 4.9, which shows sketches of the individual fields E,, and E,, and
the total field E, = E,, + E,, for a few values of ¢. The result that we have
obtained here for the total field due to the array of two current sheets,
spaced 1/4 apart and fed with currents of equal amplitudes but out of phase
by n/2, is said to correspond to an “endfire” radiation pattern. =

Returning now to the solution for the electromagnetic field given by
(4.52), let us ask ourselves the question, “How does the phase associated
with the wave change with time as viewed by a moving observer ?” To answer
this question, let us consider the (4-) wave and an observer moving along the
positive z direction with a velocity v, m/s, starting at z = z, at t = 0. Then
the position of the observer as a function of time is given by z = z, + v,
and the phase of the wave at that position is given by

Bops = WF — P(zo + vot)
= (w — Bvy)t — Bz, (4.60)

Ignoring relativistic effects, the rate of change of phase with time or the
radian frequency of the wave viewed by the moving observer is

Wops = %[(w — foo)t — Pz]

:w—ﬂ’l}ozw—gvo

vl’
v
= CO( — —0—)
,UP

=B s(1-2)

T Vp

)
= f — -+ 4.61)

or
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Figure 4.9. Time history of individual fields and the total ficld due to an
array of two infinite plane parallel current sheets.

Thus the moving observer views a frequency that is different from that
of the source of the wave. This phenomenon of a shift in the frequency of
the wave is known as the “Doppler shift.” For an observer moving along
the direction of propagation, the Doppler-shifted frequency is less than the
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actual frequency by the amount fv,/v, or v,/A. For an observer moving oppo-
site to the direction of propagation of the wave, the Doppler-shifted frequency
is higher than the actual frequency by the same amount. The situation is
illustrated in Fig. 4.10 which depicts the wave motion as viewed by a sta-

Observer/ Stationary | \ Observer \ Wave
Motion | Observer ¢A \\Motion \\Moliun

|
|
\
|
RV 1 "‘LO
/ I \ \
X 0 3 X BE
TP 2 2

Figure 4.10. Wave motion as viewed by a stationary observer (4) and two
moving observers (O and R).
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tionary observer (4) and two moving observers (O and R), one moving along,
and the other moving opposite to the direction of propagation of the wave
with a velocity which, for simplicity, is assumed to be one-half the phase
velocity of the wave. From the series of sketches for one period of the wave,
it can be seen that observer A4 views a complete cycle of the wave whereas
observer O views only one-half cycle of the wave and observer R views one
and one-half cycles of the wave during that period. Thus the stationary
observer A views the same frequency as that of the wave, but moving observer
O views a frequency that is one-half that of the wave and moving observer R
views a frequency that is one and one-half that of the wave. The Doppler
shifts are greater when relativistic effects are included.

Example 4.3. Let us consider an automotive radar operating at a frequency
f= 9 GHz = 9000 MHz and determine the Doppler shift due to an auto-
mobile directly approaching the radar at a speed of 100 km/hr.

300 1

For the given frequency, 4 = 5000 ™ = 75 ™ Since v, = 100 km/hr =
10°

3600 m/s, the Doppler shift in frequency as given by (4.61) is

A=Y — 10 _333Hz

P74 3600 x (1/30)

Since the automotive radar operates on the signal reflected from the moving
automobile, the actual Doppler shift is 2 X 833.3 Hz or 1666.6 Hz. =

To discuss the phenomenon of Doppler shift further, let us consider the
case of a satellite that transmits electromagnetic waves at a radian frequency
@ and a receiver on the earth’s surface. For simplicity, we shall consider the
earth to be plane and the satellite orbit to be horizontal at a height & above
the earth, as shown in Fig. 4.11. Let the satellite be overhead at ¢ = 0 and its

Satellite
30
—_— —_— -
v, 1
\\ [
N |
N |
\\ | 7
vVt + n{‘*; 12 \\ ||
N |
N
S
\\\LReceiver

Figure 4.11. For the discussion of Doppler shift of a satellite signal.
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velocity be v, so that its horizontal distance from the overhead point is v,¢.
Although the satellite is a point source, the waves at a large distance from it
are approximately uniform plane waves with the constant phase surfaces
normal to the line joining the point of observation to the satellite. In the
present case, the distance between the satellite and the receiver is ./h2 + v2¢2.
The phase of the wave as observed at the receiver is therefore given by

¢obs =t — ﬁ’\/ hZ + ’U%ZZ + ¢0 (4'62)

where ¢, is the phase of the field at the satellite when it is at the overhead
point. Thus the Doppler-shifted frequency observed at the receiver is given by

wp = Bes — L (ot — f /T + ¢0)

Bt
A vEe?
— m(] ] ol

v, S hE v&r’)

A sketch of the variation of w, with 7 is shown in Fig. 4.12, Note that when
the satellite is overhead, there is no Doppler shift.

(4.63)

L]

Wp A vy
——————————— wll +—
N I'P

Lot}

Figure 4.12, Doppler-shifted frequency versus time for the satellite signal
of Fig. 4.11.

Example 4.4. Let us consider a satellite at a height of 1000 km, operating
at a frequency f = 40 MHz, and with an orbital velocity v, = 7 km/s and
find the maximum Doppler shift.

From (4.63), the maximum Doppler shift is given by

Y s Tx 10° _
[Afplas = [ = 40 X 10° X 35— = 933.3 Hz
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Proceeding further, the Doppler shifts are 933.3/,/5 and 933.3/,/2 or
417.4 Hz and 660.0 Hz when the horizontal distances of the satellite from the
overhead point are 500 km and 1000 km, respectively. =

4.6 POYNTING VECTOR AND
ENERGY STORAGE

In the preceding section we found the solution for the electromagnetic
field due to an infinite plane current sheet situated in the z = 0 plane. For
a surface current flowing in the negative x direction, we found the electric
field on the sheet to be directed in the positive x direction. Since the current
is flowing against the force due to the electric field, a certain amount of
work must be done by the source of the current in order to maintain the
current flow on the sheet. Let us consider a rectangular area of length Ax
and width Ay on the current sheet as shown in Fig. 4.13. Since the cur-

Figure 4.13. For the determination of power flow density associated with
the electromagnetic field.

rent density is Jg, cos et, the charge crossing the width Ay in time dt is
dq = Jg, Ay cos wt dt coulombs. The force exerted on this charge by the
electric field is given by

F=dgE =Jg Aycoswt dt E,i, 4.64)

The amount of work required to be done against the electric field in displac-
ing this charge by the distance Ax is

dw = F, Ax = J5E, cos ot dt Ax Ay (4.65)
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Thus the power supplied by the source of the current in maintaining the
surface current over the area Ax Ay is

‘2—‘; = JsoE, cos ot Ax Ay (4.66)
Recalling that E, on the sheet is r]o'% cos t, we obtain

dw _ o IS0 ocn

a7 — o=y cos wt Ax Ay 4.67)

We would expect the power given by (4.67) to be carried by the electro-
magnetic wave, half of it to either side of the current sheet. To investigate
this, we note that the quantity E x H has the units of

newtons _ amperes  newtons = coulomb meter

coulomb meter ~ coulomb *° second-meter © meter
__hewton-meters 1 watts
B second (meter)? = (meter)?

which represents power density. Let us then consider the rectangular box
enclosing the area Ax Ay on the current sheet and with its sides almost touch-
ing the current sheet on either side of it, as shown in Fig. 4.13. Recalling
that E x H is given by (4.57) and evaluating the surface integral of E x H
over the surface of the rectangular box, we obtain the power flow out of the
box as

2
§EXH-dS=no%’cosza)ti,-AxAyi,

4 (—ﬂnJ‘%cos2 wt i,> +(—Ax Api)

2
= 110'—]% cos? wt Ax Ay (4.68)

This result is exactly equal to the power supplied by the current source as
given by (4.67).

We now interpret the quantity E x H as the power flow density vector
associated with the electromagnetic field. It is known as the “Poynting vector”
after J. H. Poynting and is denoted by the symbol P. Although we have here
introduced the Poynting vector by considering the specific case of the electro-
magnetic fleld due to the infinite plane current sheet, the interpretation that

fﬁ E x H. dS is equal to the power flow out of the closed surface S is
s

applicable in the general case.



SEC. 4,6 POYNTING VECTOR AND ENERGY STORAGE 149

Example 4.5. Far from a physical antenna, that is, at a distance of several
wavelengths from the antenna, the radiated electromagnetic waves are approx-
imately uniform plane waves with their constant phase surfaces lying normal
to the radial directions away from the antenna, as shown for two directions
in Fig. 4.14. We wish to show from the Poynting vector and physical consid-
erations that the electric and magnetic fields due to the antenna vary inversely
proportional to the radial distance away from the antenna,

Constant Phase
Surfaces

Figure 4.14. Radiation of electromagnetic waves far from a physical
antenna.

From considerations of electric and magnetic fields of a uniform plane
wave, the Poynting vector is directed everywhere in the radial direction indi-
cating power flow radially away from the antenna and is proportional to
the square of the magnitude of the electric field intensity. Let us now consider
two spherical surfaces of radii r, and r, and centered at the antenna and insert
a cone through these two surfaces such that the vertex is at the antenna,
as shown in Fig. 4.14. Then the power crossing the portion of the spherical
surface of radius r, inside the cone must be the same as the power crossing
the portion of the spherical surface of radius r, inside the cone. Since these
surface areas are proportional to the square of the radius and since the sur-
face integral of the Poynting vector gives the power, the Poynting vector must
be inversely proportional to the square of the radius. This in turn means that
the electric field intensity and hence the magnetic field intensity must be
inversely proportional to the radius.

Thus from these simple considerations we have established that far from
a radiating antenna the electromagnetic field is inversely proportional to the
radial distance away from the antenna. This reduction of the field intensity
inversely proportional to the distance is known as the “free space reduction.”
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For example, let us consider communication from earth to the moon. The
distance from the earth to the moon is approximately 38 x 10* km or
38 x 107 m. Hence the free space reduction factor for the field intensity is
10-7/38 or, in terms of decibels, the reduction is 20log,, 38 x 107, or
171.6 db. =

Returning to the electromagnetic field due to the infinite plane current
sheet, let us consider the region z > 0. The magnitude of the Poynting vector
in this region is given by

T30 cos (ot — B2) (4.69)

P,=EH, =n, )

The variation of P, with z for = 0 is shown in Fig. 4.15. If we now consider
a rectangluar box lying between z = z and z = z + Az planes and having
dimensions Ax and Ay in the x and y directions, respectively, we would in
general obtain a nonzero result for the power flowing out of the box, since
dP,/0z is not everywhere zero. Thus there is some energy stored in the volume
of the box. We then ask ourselves the question, “Where does this energy
reside 7’ A convenient way of interpretation is to attribute the energy storage
to the electric and magnetic fields.

AP,

19 J30 )
4

/

e

R
]
)

|
|
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[N ppe—— Ry
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+ Az
Figure 4.15, For the discussion of energy storage in electric and magnetic

fields.

To discuss the energy storage in the electric and magnetic fields further,
we evaluate the power flow out of the rectangular box. Thus

§ P-dS=[Pl.s Ax Ay — [P, Ax Ay
R}

e [Pz]z Az [Pz]z
- +T Ax Ay Az

JP,
= (4.70)
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where Aw is the volume of the box. Letting P, equal E,H, and using (4.7) and
(4.8), we obtain

9
§SP +dS = 3 [EH,] Av

= (Hy% + Exaa—hz!y) Av
= (—HJ,(%z o E,,a£") Av

= — ,uoHy‘—{%' Av — eoE,,% Av

— S (Lumza) - & (Fearza) @M

Equation (4.71), which is known as Poynting’s theorem, tells us that the power
flow out of the box is equal to the sum of the time rates of decrease of the
quantities J€,E2 Av and 4 u, H} Av. These quantities are obviously the energies
stored in the electric and magnetic fields, respectively, in the volume of the
box. It then follows that the energy densities associated with the electric
and magnetic fields are J&,E2 and JuoH}, respectively. It is left to the student
to verify that the quantities }¢,E? and Ju,H* do indeed have the units J/m?,
Once again, although we have obtained these results by considering the
particular case of the uniform plane wave, they hold in general.

Summarizing our discussion in this section, we have introduced the
Poynting vector P = E x H as the power flow density associated with the
electromagnetic field characterized by the electric and magnetic fields, E and
H, respectively. The surface integral of P over a closed surface always gives
the correct result for the power flow out of that surface. There is energy
storage associated with the electric and magnetic fields with the energy
densities given by

W, = € 4.72)
and

W, = % o H? (4.73)
respectively.

4.7 SUMMARY

In this chapter we studied the principles of uniform plane wave propaga-
tion in free space. Uniform plane waves are a building block in the study of
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electromagnetic wave propagation. They are the simplest type of solutions
resulting from the coupling of the electric and magnetic fields in Maxwell’s
curl equations. We learned that uniform plane waves have their electric and
magnetic fields perpendicular to each other and to the direction of propaga-
tion. The fields are uniform in the planes perpendicular to the direction of
propagation.

We obtained the uniform plane wave solution to Maxwell’s equations by
considering an infinite plane current sheet in the xy plane with uniform sur-
face current density given by

Js = —Jgo cOs @t i, amp/m (4.74)

and deriving the electromagnetic field due to the current sheet to be given by

E= ”"TJS" cos (@t F fz)i,  forz=0 (4.75a)
H =+ %0 cos (ot F p)i,  forz=0 (4.75b)

In (4.75a) and (4.75b), cos (wt — fz) represents wave motion in the positive
z direction, whereas cos (w? + fz) represents wave motion in the negative z
direction. Thus (4.75a) and (4.75b) correspond to waves propagating away
from the current sheet to either side of it. Since the fields are independent of
x and p, they represent uniform plane waves.

The quantity f (= w/1.€,) 1 the phase constant, that is, the magnitude
of the rate of change of phase with distance along the direction of propaga-
tion, for a fixed time. The phase velocity v, that is, the velocity with which
a particular constant phase progresses along the direction of propagation, is
given by

v, = % (4.76)

The wavelength A, that is, the distance along the direction of propagation in
which the phase changes by 2z radians, for a fixed time, is given by

2n
= “@.77)

B
The wavelength is related to the frequency fin a simple manner as given by
v,=Af (4.78)

which follows from (4.76) and (4.77). The quantity 5, (== »/Ho/€,) is the
intrinsic impedance of free space. It is the ratio of the magnitude of E to the
magnitude of H and has a value of 120z ohms.
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In the process of deriving the electromagnetic field due to the infinite
plane current sheet, we used two approaches and learned several useful
techniques. These are discussed in the following:

1. The determination of the magnetic field adjacent to the current sheet
by employing Ampere’s circuital law in integral form: This is a com-
mon procedure used in the computation of static fields due to charge
and current distributions possessing certain symmetries. In Chap. 6
we shall derive the “boundary conditions,” that is, the relationships
between the fields on either side of an interface between two different
media, by applying Maxwell’s equations in integral form to closed
paths and surfaces straddling the boundary as we have done here in
the case of the current sheet.

2. The successive, step-by-step solution of the two Maxwell’s curl equa-
tions, to obtain the final solution consistent with the two equations,
starting with the solution obtained for the field adjacent to the current
sheet : This technique provided us a feel for the phenomenon of “radia-
tion” of electromagnetic waves resulting from the time-varying current
distribution and the interaction between the electric and magnetic
fields. We shall use this kind of approach and the knowledge gained
on wave propagation to obtain in Chap. 8 the complete electro-
magnetic field due to an elemental antenna, which forms the basis
for the study of physical antennas

3. The solution of wave equation by the separation of variables tech-
nique: This is the standard technique employed in the solution of
partial differential equations involving multiple variables. We shall
use it in Chap. 9 to solve Laplace’s equation in two dimensions.

4. The application of phasor technique for the solution of the differential
equations: The phasor technique is a convenient tool for analyzing
sinusoidal steady-state problems as we learned in Chap. 1. We shall
continue to use it in the following chapters.

We also learned that there is power flow and energy storage associated
with the wave propagation that accounts for the work done in maintaining
the current flow on the sheet. The power flow density is given by the Poynting
vector

P=ExH

and the energy densities associated with the electric and magnetic fields
are given, respectively, by
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The surface integral of the Poynting vector over a given closed surface gives
the total power flow out of the volume bounded by that surface.

Finally, we have augmented our study of uniform plane wave propaga-
tion in free space by illustrating (a) the principle of an antenna array, (b)
the Doppler effect, and (c) the inverse distance dependence of the fields far
from a physical antenna.

REVIEW QUESTIONS

4.1.
4.2
4.3.

4.4.

4.5.

4.6.
4.7.

4.8.

4.9,

4.10.

4.11.

4.12

4.13.

4.14.

4.15.

What is a uniform plane wave?
Why is the study of uniform plane waves important ?

How is the surface current density vector defined? Distinguish it from the
volume current density vector.

How do you find the current crossing a given line on a sheet of surface cur-
rent ?

Why is it that Ampere’s circuital law in integral form is used to find the mag-
netic field adjacent to the current sheet of Fig. 4.2?

Why is the path chosen to evaluate the magnetic field in Fig. 4.4 rectangular?

Outline the application of Ampere’s circuital law in integral form to find the
magnetic field adjacent to the current sheet of Fig. 4.2.

Why is the displacement current enclosed by the rectangular path abeda in
Fig. 4.4 equal to zero?

How would you use Ampere’s circuital law in differential form to find the
magnetic field adjacent to the current sheet ?

If the current density on the infinite plane current sheet of Fig. 4.2 were direct-
ed in the positive y direction, what would be the directions of the magnetic
field adjacent to the current sheet and on either side of it ?

Why are the results given by (4.12) and (4.13) for the magnetic field not valid
for points at some distance from the current sheet ?

Under what conditions would a result obtained for the magnetic field adjacent
to the infinite plane current sheet of Fig. 4.2 be valid at points distant from the
current sheet ?

Briefly outline the procedure involved in the successive solution of Maxwell’s
equations.

How does the technique of successive solution of Maxwell’s equations reveal
the interaction between the electric and magnetic fields giving rise to wave
propagation ?

State the wave equation for the case of E = E,(z, #)i,. How is it derived ?
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4.16.

4.17.

4.18.

4.19.

4.20.

4.21.
4.22.

4.23.
4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

4.30.
4.31.
4.32.

4.33.

4.34.
4.35.

Briefly outline the separation of variables technique of solving the wave
equation,

Discuss how the function cos (@t — fz) represents a traveling wave propagat-
ing in the positive z direction.

Discuss how the function cos (wf + fz) represents a traveling wave propa-
gating in the negative z direction.

Give some examples of nonsinuscidally time-varying functions representing
traveling waves propagating in the positive z direction.

Discuss how the solution for the electromagnetic field given by (4.52) cor-
responds to that of a uniform plane wave.

Why is the quantity 8 in cos (w¢ — fz) known as the phase constant?

What is phase velocity? How is it related to the radian frequency and the
phase constant of the wave?

Define wavelength. How is it related to the phase constant?

What is the relationship between frequency, wavelength, and phase velocity ?
What is the wavelength in free space for a frequency of 15 MHz?

What is the direction of propagation for a uniform plane wave having its
electric field in the negative y direction and its magnetic field in the positive z
direction?

What is the direction of the magnetic field for a uniform plane wave having
its electric field in the positive z direction and propagating in the positive x
direction ?

What is intrinsic impedance ? What is its value for free space?
Discuss the principle of an antenna array.

What should be the spacing and the relative phase angle of the current densi-
ties for an array of two infinite, plane, parallel current sheets of uniform den-
sities, equal in magnitude, to confine their radiation to the region between
the two sheets?

What is the Doppler effect ? Tllustrate with some examples.
When is the Doppler shift of a satellite signal frequency zero? Why?

How can a Doppler shift be observed for the case of a stationary transmitter
and a stationary receiver ?

Why is a certain amount of work involved in maintaining current flow on the
sheet of Fig. 4.2? How is this work accounted for?

What is a Poynting vector ? What is its physical significance?

What is the physical interpretation of the surface integral of the Poynting
vector over a closed surface?
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4.36.

4.37.

4.38.
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Discuss how the fields far from a physical antenna vary inversely proportional
to the distance from the antenna.

Discuss the interpretation of energy storage in the electric and magnetic fields
of a uniform plane wave.

What are the energy densities associated with the electric and magnetic fields ?

PROBLEMS

4.1.

4.2

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density Jg = —0.1i, amp/m. Find the currents crossing the following straight
lines: (a) from (0, 0, 0) to (0, 2, 0); (b) from (0, 0, 0) to (2,0, 0); (c) from
(0,0,0) to (2,2, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of non-
uniform density Jg = —0.1e~"7li, amp/m. Find the currents crossing the
following straight lines: (a) from (0, 0, 0) to (0, 1, 0); (b) from (0, 0, 0) to
(0, =0, 0); (c) from (0, 0, 0) to (1, 1, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density

Js =(—0.1coswti, + 0.1sin wti,) amp/m

Find the currents crossing the following straight lines: (a) from (0, 0, 0) to
0, 2,0); (b)from (0,0, 0) to (2, 0, 0); (c) from (0, 0, 0) to (2, 2, 0).

An infinite plane sheet lying in the z = 0 plane carries a current of uniform
density

Js = (—02cos wri, 4+ 0.2 sin wri,) amp/m

Find the magnetic field intensities adjacent to the sheet and on either side of
it. What is the polarization of the field ?

An infinite plane sheet lying in the z = 0 plane carries a current of non-
uniform density Jg = —0.2¢~" cos @z i, amp/m. Find the magnetic field
intensities adjacent to the current sheet and on either side of it at (a) the
point (0, 1, 0) and (b) the point (2, 2, 0).

Current flows with uniform density J = Joi, amp/m? in the region |z| < a.
Using Ampere’s circuital law in integral form and symmetry considerations,
find H everywhere.

Current flows with nonuniform density J = Jo(1 — |z|/a)i, amp/m? in the
region | z| < a, where J; is a constant. Using Ampere’s circuital law in inte-
gral form and symmetry considerations, find H everywhere.

For an infinite plane sheet of charge lying in the xy plane with uniform sur-
face charge density pgso C/m?2, find the electric field intensity on both sides of
the sheet by using Gauss’ law for the electric field in integral form and sym-
metry considerations.
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4.9.

4.10.

4.13.

4.14.

4.15.

4.16.

Charge is distributed with uniform density p = po C/m3 in the region le <a.
Using Gauss’ law for the electric field in integral form and symmetry con-
siderations, find E everywhere.

Charge is distributed with nonuniform density p = po(1 — [x|/a) C/m?3 in
the region | x| < a, where pq is a constant. Using Gauss’ law for the electric
field in integral form and symmetry considerations, find E everywhere.

. Verify that expressions (4.23) and (4.24) simultaneously satisfy the differential

equations (4.16) and (4.17).

. For the infinite plane current sheet in the z = 0 plane carrying surface current

of density Js = —Jgoti. amp/m, where Jg, is a constant, find the magnetic
field adjacent to the current sheet. Then use the method of successive solution
of Maxwell’s equations to show that for z > 0,

E, — <2C +4ﬂofso)(t _ ZM) + (20_j4”_°‘@)(t + za/ Uo€o)

H, = (%’M—M)( — za/ Wo€o) — (ZC—Z%’&)O + za/ tho€o)

where C is a constant.

For the infinite plane current sheet in the z = 0 plane carrying surface current
of density Jg = —Jsot2i, amp/m, where Jg, is a constant, find the magnetic
field adjacent to the current sheet. Then use the method of successive solution
of Maxwell’s equations to show that for z > 0,

B, — (A Is0) — o/ + (IR + 2/ Hatoy

i, = (R Ta) ¢ o/ — (EG TN + 2/

where C is a constant.

Verify that expressions (4.48) and (4.49) simultaneously satisfy the differential
equations (4.7) and (4.8), and that (4.49) reduces to (4.12) for z = 0+-.

Show that (t — za/Jo€0)> and (¢ -+ za/ lo€o)? are solutions of the wave
equation. With the aid of sketches, discuss the nature of these functions.

For arbitrary time-variation of the fields, show that the solutions for the
differential equations (4.33) and (4.34) are

E, = Af(t — za/Uo€0) + Be(t + za/ o€0)
- ;71—0[Af(t — 2/ ThoEs) — Be(t + 28/ Tafo)]

where A and B are arbitrary constants. Discuss the nature of the functions
f(t — 2/ Pho€o) and g(t - za/ Uo€o)-
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4.17. In Problems 4.12 and 4.13, evaluate the constant C and obtain the solutions
for E, and H, in the region z > 0. Then write the solutions for E, and H, in
the region z < 0.

4.18. The electric field intensity of a uniform plane wave is given by
E = 37.7cos (6m x 103t 4 27mz) i, V/m.

Find (a) the frequency, (b) the wavelength, (c) the phase velocity, (d) the
direction of propagation of the wave, and (e) the associated magnetic field
intensity vector H.

4.19. An infinite plane sheet lying in the z = 0 plane carries a surface current of
density

Js = (—0.2cos 6m x 103¢i, — 0.1 cos 127 x 108¢i,) amp/m

Find the expressions for the electric and magnetic fields on either side of the
sheet.

4.20. An infinite plane sheet lying in the z = 0 plane carries a surface current of
density Js = —Js(#)i., where J(?) is the periodic function shown in Fig. 4.16.
Find and sketch (a) H, versus ¢ for z = 0+, (b) E, versus ¢ for z = 150 m,
and (c) E, versus z for £ = 1 us.

A Jg, amp/m

-2 =] 0 ! 2

[, 1S

Figure 4.16. For Problem 4.20,

4.21. The time-variation of the electric field intensity E, in the z = 600 m plane of
a uniform plane wave propagating away from an infinite plane current sheet
lying in the z = 0 plane is given by the periodic function shown in Fig. 4.17.

TEX,V/m
75.4
= 5 ] 3 0 i |4 T |7 LM
a -3 g 3 3 3
-37.7

Figure 4.17. For Problem 4.21.
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4.22.

4.23.

4.24.

4.25.

4.26.

Find and sketch (a) E, versus ¢ for z = 200 m, (b) E; versus z for t = 0, and
(c) H, versus z for t =4 us.

The time-variation of the electric field intensity E, in the z = 300 m plane of a
uniform plane wave propagating away from an infinite plane current sheet
lying in the z = 0 plane is given by the aperiodic function shown in Fig. 4.18.
Find and sketch (a) E. versus ¢ for z = 600m, (b) E. versus z for t =
1 usec, and (c) H, versus z for t = 2 usec.

AE,, V/m

37.74

—> {, US

Figure 4.18. For Problem 4.22.

An array is formed by two infinite plane parallel current sheets with the cur-
rent densities given by

JSI = _JSO cos @t iy zZ =
Jga = —Jgo COS OF i z =

where Js, is a constant. Find the electric field intensity in all three regions:
(@) z <0; (b)0 <z <A2;(c)z> A2

Determine the spacing, relative amplitudes, and phase angles of current den-
sities for an array of two infinite plane parallel current sheets required to
obtain a radiation characteristic such that the field radiated to one side of the
array is twice that of the field radiated to the other side of the array.

For an atray of two infinite plane parallel current sheets with the current
densities given by

Jg1 = _JSO cos Ot i, zZ =
Jsz = —Jgo COS ¢ iy Z =

where Jo is a constant, find the electric field in all three regions: (a) z < 0;
B)0 <z <Af2; (©)z> A/2. Discuss the polarization of the field in all three
regions.
For an array of two infinite plane parallel current sheets with the current den-
sities given by

JSI = —Jgg COS WO ix zZ =

ENESgS

Jsz = '—Jso Ccos wtiy V4
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4.27.

4.28.

4.29.

4.30.

4.31.

4.32,

4.33.
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where Jg, is a constant, find the electric field in all three regions: (a) z < 0;
(b) 0 < z < A/4; (¢c) z > A/4. Discuss the polarization of the field in all three
regions. '

The electric field intensity of a uniform plane wave is given by
E = 37.7 cos (67 x 10%f — 2:z) i, V/m

(a) What is the Doppler shift for an observer moving in the positive x direc-
tion? (b) Find the Doppler shift for an observer moving in the positive z
direction with a velocity 3 km/s. (¢) Find the magnitude of the Doppler shift
for an observer moving along the straight line path x = y = z with a velocity
3 km/s.

Consider an observer moving on the circumference of a circle of radius « in the
xz plane with an angular velocity @, rad/s, in the field of a uniform plane wave
of frequency f propagating in the positive z direction. Find and sketch the
Doppler shift observed by the moving observer as a function of position on
the circle.

An experimental rocket is fired with an initial velocity »; m/s and making an
angle of 45° with the horizontal. Communication is maintained between the
rocket and the launching site. Show that the received frequency when the
rocket is at its apogee is Doppler shifted by the amount 0.6324 v, f/c where f
is the transmitted frequency and c is the velocity of light in free space. Assume
plane earth.

Show that the time-average value of the magnitude of the Poynting vector
given by (4.69) is one-half its peak value. For an antenna radiating a time-
average power of 150 kW, find the peak value of the electric field intensity at
a distance of 100 km from the antenna. Assume the antenna to be radiating
equally in all directions.

The electric field of a uniform plane wave propagating in the positive z direc-
tion is given by

E = Ej, cos (wt — fiz)i, + Eqsin (@t — f2)i,

where E; is a constant. (a) Find the corresponding magnetic field H. (b) Find
the Poynting vector.

Show that the quantities %EOE 2 and % UoH? have the units joules/m3.

Show that the energy is stored equally in the electric and magnetic fields of a
traveling wave.



