ePe MAXWELL’S
EQUATIONS
IN
DIFFERENTIAL
FORM

In Chap. 2 we introduced Maxwell’s equations in integral form. We
learned that the quantities involved in the formulation of these equations are
the scalar quantities, electromotive force, magnetomotive force, magnetic
flux, displacement flux, charge, and current, which are related to the field
vectors and source densities through line, surface, and volume integrals. Thus
the integral forms of Maxwell’s equations, while containing all the informa-
tion pertinent to the interdependence of the field and source quantities over a
given region in space, do not permit us to study directly the interaction
between the field vectors and their relationships with the source densities at
individual points. It is our goal in this chapter to derive the differential forms
of Maxwell’s equations that apply directly to the field vectors and source
densities at a given point.

We shall derive Maxwell’s equations in differential form by applying
Maxwell’s equations in integral form to infinitesimal closed paths, surfaces,
and volumes, in the limit that they shrink to points. We will find that the
differential equations relate the spatial variations of the field vectors at a
given point to their temporal variations and to the charge and current
densities at that point. In this process we shall also learn two important
operations in vector calculus, known as curl and divergence, and two related
theorems, known as Stokes’ and divergence theorems.
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31 FARADAY’S LAW

We recall from the previous chapter that Faraday’s law is given in
integral form by

d
E.-dl=—— | B.dS 3.1
§C dt Iy ( )

where S is any surface bounded by the closed path C. In the most general
case, the electric and magnetic fields have all three components (x, y, and z)
and are dependent on all three coordinates (x, y, and z) in addition to time
(¢). For simplicity, we shall, however, first consider the case in which the
electric field has an x component only, which is dependent only on the z
coordinate, in addition to time. Thus

E = E.(z, i, 3.2

In other words, this simple form of time-varying electric field is everywhere
directed in the x direction and it is uniform in planes parallel to the xy plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the xz plane and defined by the points (x, 2), (x, z + Az),
(x + Ax, z + Az), and (x + Ax, z) as shown in Fig. 3.1. According to

y > 2

(x,2) Az (x,z + Az)

Ax A ) YC
(x+Ax,z)  (x+Ax,z+Az)
Y«

Figure 3.1. Infinitesimal rectangular path lying in a plane parallel to the
xz plane.

Faraday’s law, the emf around the closed path C is equal to the negative of
the time rate of change of the magnetic flux enclosed by C. The emf is given
by the line integral of E around C. Thus evaluating the line integrals of E
along the four sides of the rectangular path, we obtain

(x,2+Az)
f( “Eedl=0 since E,—0 (3.3a)

X, 2)

84
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(x+Ax,z+Az)
f E«dl =[E]l.a Ax (3.3b)
(x,z+Az)
(x+Ax,z)
j E+dl—0 since E, =0 (3.3¢)
(x+Ax,z+Az)
(x,z
f " E.dl— —[E], Ax (3.3d)
{(x+Ax,z)

Adding up (3.3a)-(3.3d), we obtain

§ B dl=[E]sAx — [E,]. Ax
= ((E.Lsas — [E,]} Ax (3.4)

In (3.3a)-(3.3d) and (3.4), [E,], and [E,].. 4, denote values of E, evaluated
along the sides of the path for which z = z and z = z + Az, respectively.

To find the magnetic flux enclosed by C, let us consider the plane surface
S bounded by C. According to the right-hand screw rule, we must use the
magnetic flux crossing S toward the positive y direction, that is, into the page,
since the path C is traversed in the clockwise sense. The only component of B
normal to the area S is the y component. Also since the area is infinitesimal in
size, we can assume B, to be uniform over the area and equal to its value at
(x, 2). The required magnetic flux is then given by

j B . dS =[B,],.., Ax Az (3.5)
S

Substituting (3.4) and (3.5) into (3.1) to apply Faraday’s law to the
rectangular path C under consideration, we get

(Eds: — [EL} Ax = — (B ) Ax AZ)

or

[Ex]z+Az _ [Ex]z il 6[B.V](x,z
= T | 3.6)

Az

If we now let the rectangular path shrink to the point (x, z) by letting Ax and
Az tend to zero, we obtain

Lim [Ex]z+A2_ [Ex]z — —Lim 0[331(::,2)

Ax—0 ¥4 Ax—0
Az—0 Az—0

or
dE, 0B
9 = o (&0

Equation (3.7) is Faraday’s law in differential form for the simple case of
E given by (3.2). It relates the variation of E, with z (space) at a point to the
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variation of B, with ¢ (time) at that point. Since the above derivation can be
carried out for any arbitrary point (x, y, z), it is valid for all points. It tells us
in particular that a time-varying B, at a point results in an E, at that point
having a differential in the z direction. This is to be expected since if this is not
the case, § E » dl around the infinitesimal rectangular path would be zero.

Example 3.1. Given B = B, cosw! i, and it is known that E has an x
component only, let us find E,.
From (3.6), we have

0E, _ _0B, _
dz =~ ar

E,. = wByz sin wt

——%(B0 cos wi) = wB, sin wt

We note that the uniform magnetic field gives rise to an electric field varying
linearly with z.

Proceeding further, we can verify this result by evaluating ¢ E « dl around
the rectangular path of Example 2.8. This rectangular path is reproduced in
Fig. 3.2. The required line integral is given by

§Eeal=[ (Elodet [ [Blsdx

4] 1]
+ [ [Blegdz+ [ [Ediodx
z=b x=a
=0+ [wB, bsinwtla+0+0

= abB,w sin wt

x=0
¥ - >z
Yz=
z=04 z=k
xX=a
Yx

Figure 3.2. Rectangular path of Example 2.8.
which agrees with the result of Example 2.8. ™

We shall now proceed to generalize (3.7) for the arbitrary case of the
electric field having all three components (x, y, and z), each of them depending
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on all three coordinates (x, y, and z), in addition to time (¢), that is,
E = E (x, y, z, i, + E/(x,», z, )i, + E/(x, y, z, Di, (3.8)

To do this, let us consider the three infinitesimal rectangular paths in planes
parallel to the three mutually orthogonal planes of the Cartesian coordinate
system, as shown in Fig. 3.3. Evaluating § E . dl around the closed paths
abcda, adefa, and afgba, we gel

§abcda E.dl= [E.v (x,2) Ay + [Ez](x.y+Ay) Az

— [Esssan Ay = [Elis Az (3.92)
§ . Bedl=[Eluy Az + [Eosan Ax

~ [Ediean Az = [Eo, Ax (3.9)
§  Eedl=(ElonAx + [Blusan A7

— [Edosaro A% = (Bl By (399

d(x,y,z +Az) clx,y + Ay, z + Az)

/ Az
§e(x +Ax,y,z + Az) z

la(x,y, z) b(x,y + Ay, z2)

//// 4 '
Ax N

fox+Ax,y,2)  glx+Ax,y + Ay, 2)

Figure 3.3. Infinitesimal rectangular paths in three mutually orthogonal
planes.

In (3.9a)—(3.9c) the subscripts associated with the field components in the
various terms on the right sides of the equations denote the value of the
coordinates that remain constant along the sides of the closed paths corre-
sponding to the terms. Now, evaluating [ B « dS over the surfaces abcd,
adef, and afgb, keeping in mind the right-hand screw rule, we have

B. dS = [Bx](x,y,z) Ay AZ (3‘103)

abcd
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B« dS = [B,]xy,n Az Ax (3.10b)
adef

B+ dS = [B],.. Ax Ay (3.10¢)

afgh

Applying Faraday’s law to each of the three paths by making use of
(3.92)-(3.9¢) and (3.10a)—(3.10c) and simplifying, we obtain

[Ez](x,y+Ay) _ [Ez](x._v) . [Ey](x,z+Az) _ [Eyﬁ,z)

Ay Az
— _d[Bx(;;‘x.y,z) (3.113)
[Ex](y.z+Az) _ [Ex](.v.z) _ [Ez](x+Ax.J') —_ [Ez](x.J')
Az Ax
_ _5[Bya<tx.y.z> (3.11b)
[Ey (x+Ax,z) —_ [Ey](x,z) _ [Ex](_v+Ay.z) — [Ex](y,z)
Ax Ay
= _6[Bzg(tx.y 2 (3.11¢)

If we now let all three paths shrink to the point a by letting Ax, Ay, and Az
tend to zero, (3.11a)-(3.11c¢) reduce to

dE, JE, 4B, E
50 - Gl
dE, OE, 0B,

dz ~ dx ot e
dE, JE, 4B, (3.12¢)

9x  dy of

Equations (3.12a)-(3.12c) are the differential equations governing the rela-
tionships between the space variations of the electric field components and
the time variations of the magnetic field components at a point. An examina-
tion of one of the three equations is sufficient to reveal the physical meaning
of these relationships. For example, (3.12a) tells us that a time-varying B, at a
point results in an electric field at that point having y and z components such
that their net right-lateral differential normal to the x direction is nonzero.
The right-lateral differential of E, normal to the x direction is its derivative in
, affyz ; %. The right-lateral differ-
ential of E, normal to the x direction is its derivative in the i, x i,, or i

the i, x i,, or —i, direction, that is or —

14
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6E’. Thus the net right-lateral differential of the y and z

oy
components of the electric field normal to the x direction is (—%) + (0E’),

0z dy
dE, OE, N . . o
or ( W 9/ An example in which the net right-lateral differential is zero
although the individual derivatives are nonzero is shown in Fig. 3.4(a),
whereas Iig. 3.4(b) shows an example in which the net right-lateral differential
is nonzero.

direction, that is,

E}‘ E.V
—_— —_—
xI——> y Ezl . E, £ l . E,
z - JR———
E E
y y
(a) (b)

Figure 3.4. For illustrating (a) zero, and (b) nonzero net right-lateral
differential of E, and E, normal to the x direction.

Equations (3.12a)—~(3.12¢) can be combined into a single vector equation
as given by

|
0B,
— T

. 0By‘ oBz ]
L — 5720, — 5f (3.13)

This can be expressed in determinant form as

i i
9 9 d|_ B
T d 9|~ ar (314

or as

. d .4 .0 : . . B
(lx Ox + lya_y + 1, 0_2) x (E,j, + Ej, + Ei,) = —or (3.15)

The left side of (3.14) or (3.15) is known as the “curl of E,” denoted as
Y x E (del cross E) where V (del) is the vector operator given by

dJ 0

o X . 0
V—lxa-—x-l-l_,,—o—y-—FI,E (3.16)
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Thus we have

VxE— _‘39_'; G.17)

Equation (3.17) is Maxwell’s equation in differential form corresponding to
Faraday’s law. We shall discuss curl further in Sec. 3.3.

Example 3.2. Given A = yi, — xi, find V x A.
From the determinant expansion for the curl of a vector, we have

_ld @
VxA—a;a—y P

=i [0 ]|+ L[Z0)]+i[ED—20)]

3.2 AMPERE’S CIRCUITAL LAW

In the previous section we derived the differential form of Faraday’s law
from its integral form. In this section we shall derive the differential form of
Ampere’s circuital law from its integral form in a completely analogous
manner. We recall from Sec. 2.4 that Ampere’s circuital law in integral form
is given by

j;H-dl:fJ-dS—l—dit D.ds (3.18)
(o] S 8

where S'is any surface bounded by the closed path C. For simplicity, we shall
first consider the case in which the magnetic field has a y component only,
which is dependent only on the z coordinate, in addition to time. Thus

H = H,z, t)i, (3.19)

In other words, this simple form of the time-varying magnetic field is every-
where directed in the y direction and it is uniform in planes parallel to the xy
plane.

Let us now consider a rectangular path C of infinitesimal size lying in a
plane parallel to the yz plane and defined by the points (y, z), (v, z + Az),
(y + Ay,z+ Az) and (y + Ay, z) as shown in Fig. 3.5. According to
Ampere’s circuital law, the mmf around the closed path C is equal to the total
current enclosed by C. The mmf is given by the line integral of H around C.
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Ay
(y+Ay,z) (y+Ay,z+Az)

Ay A S Y¢

-

(r,2) Az (y,z+Az2)

X = Z

Figure 3.5. Infinitesimal rectangular path lying in a plane parallel to the
yz plane.

Thus evaluating the line integrals of H along the four sides of the rectangular
path, we obtain

§ Hedl= j("w") H.dl - .[((””'”“’ H-dl

¥, 2} Y+ Ay, z)

, Z+Az) w, 2]
_l_J.(y i H.dl+ ) H.d
(

y+ Ay, z+Az) ,z+Az)
=[H,]. Ay + 0 — [H,),+a; Ay + 0
{[ ]z+Az [IIy]z} AZ (3.20)

To find the total current enclosed by C, we consider the plane surface S
bounded by C. According to the right-hand screw rule, we must find the
current crossing S toward the positive x direction, that is, into the page, since
the path is traversed in the clockwise sense. This current consists of two parts:

[ 3+dS =y Az (3.21a)
N

d d 0 D],

4 L D-dS = LD, Ay Ay =B ppa: 321t

where we have assumed that since the area is infinitesimal in size, J, and D,
are uniform over the area and equal to their values at (v, 2).

Substituting (3.20), (3.21a), and (3.21b) into (3.18) to apply Ampere’s
circuital law to the rectangular path C under consideration, we get

~{(H s — (L} By =[ 7, +9D-  MyA
¥z
or

[Hy]m, [(H), __ [ L :I( ) (3.22)
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If we now let the rectangular path shrink to the point (y, z) by letting Ay and
Az tend to zero, we obtain

Lim [HJ' z+A3_ [H.v]z — —Lim I:Jx _|_ an:|
(y,2)

Ay—0 z Ay—0 ot
Az—~0 Az—-0
or
OH, D,
2=, — (3.23)

Equation (3.23) is Ampere’s circuital law in differential form for the simple
case of H given by (3.19). Tt relates the variation of H, with z (space) at a
point to the current density J, and to the variation of D, with ¢ (time) at that
point. Since the above derivation can be carried out for any arbitrary point
(x, y, 2), it is valid at all points. It tells us in particular that a current density
J, or a time-varying D, or a nonzero combination of the two quantities at a
point results in an H, at that point having a differential in the z direction.
This is to be expected since if this is not the case, § H « 4l around the infini-
tesimal rectangular path would be zero.

Example 3.3. Given E = E,z sin @t i, and it is known that J is zero and B
has a y component only, let us find B,.
From (3.23), we have

OH, oD, d , _
= —J, — i 0— m(eoEoz sin wf) = —wey Eyz cos wt
zZ
H,= —w60E07 cos wt
zZ
B, = pH, = —CoﬂofoE07 Cos ot

We note that the electric field varying linearly with z gives rise to a magnetic
field proportional to z2. In Example 3.1, however, an electric field varying
linearly with z was found to result from a uniform magnetic field, according
to Faraday’s law in differential form. The inconsistency of these two results
implies that neither the combination of E, and B, in Example 3.1 nor the
combination of E, and B, in this example simultaneously satisfies the two
Maxwell’s equations in differential form given by (3.7) and (3.23). The pair of
E, and B, in Example 3.1 satisfies only (3.7), whereas the pair of E, and B, in
this example satisfies only (3.23). In the following chapter we shall find a pair
of solutions for E, and B, that simultaneously satisfies the two Maxwell’s
equations. m
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Example 3.4. Let us consider the current distribution given by
J = Jil, for —a<z<a

as shown in Fig. 3.6(a), where J, is a constant, and find the magnetic field
everywhere.

Since the current density is independent of x and y, the field is also
independent of x and y. Also, since the current density is not a function of
time, the field is static. Hence (8.D,/d7) = 0, and we have

0H, __

dz I

Integrating both sides with respect to z, we obtain
H=—| J.d:+C

where C is the constant of integration,
The variation of J, with z is shown in Fig. 3.6(b). Integrating —J, with
respect to z, that is, finding area under the curve of Fig. 3.6(b) as a function of

JONix
A 1L T {L AAA AJ, (b)
J[l
>z
—a 0 a
A (c)
\‘Joa
. t = Z
z=-a z=0 z=a —;"\\ %
X \\ _y
n\oa
y z \\
(@) T 2/pa ===

Figure 3.6. The determination of magnetic field due to a current distribu-
tion.
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z, and taking its negative, we obtain the result shown by the dashed curve in
Fig. 3.6(c) for —fz J, dz. From symmetry considerations, the field must be

equal and opposite on either side of the current region —a < z < a. Hence
we choose the constant of integration C to be equal to J,a thereby obtaining
the final result for H, as shown by the solid curve in Fig. 3.6(c). Thus the
magnetic field intensity due to the current distribution is given by

Joai, forz < —a
H=4{—Jyzi, for—a<z<a
—Joai, forz>a

The magnetic flux density, B, is equal to z,H. -

We now generalize (3.23) for the arbitrary case of a magnetic field having
all three components, each of them depending on all three coordinates, in
addition to ¢, that is,

H= Hx(x5 Y 2, t)ix + Hy(x’ Vs Z, t)iy + Hz(x, Y, 2, t)iz (324)

We do this in exactly the same manner as for the case of Faraday’s law by
considering the three infinitesimal rectangular paths shown in Fig. 3.3.
Applying Ampere’s circuital law to each of the three paths and simplifying, we
obtain

[Hz](x.y+AJZ_ [H ](x »} [Hy](x.z+A1) — [Hy (x,2)

Az
—[7 ] 3.25a
I: —I_ 0t (x,¥,2) ( )
[Hx](y,z+Az) — [Hx](.v,z) = [Hz](x+Ax,J’) —— [Hz](x‘y)
Az Ax
aD,
3.25b
[ —I_ T (o, p,8) ( )
[Hy (x+Ax,z) ~ [H.v (x,2) __ [Hx]{rﬂ\r,.-} — [Hxlf.v.:}
Ax Ay
oD ]
=\|J, z 3.25¢
|: + 0t (x,»,2) ( )

If we now let all three paths shrink to the point a by letting Ax, Ay, and Az
tend to zero, (3.252)—(3.25¢) reduce to

OH, OH, . . oD,
TR I T

(3.26a)
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OH, 0H, , , 9D,
dz  dx =%+ gt (3.26D)
0H, O0H, oD,
dxy_ 3y =J, 4 o (3.26¢)

Equations (3.26a)—(3.26c) are the differential equations governing the
relationships between the space variations of the magnetic field components,
the components of the current density and the time variations of ihe electric
field components, at a point. They can be interpreted physically in a manner
analogous to the interpretation of (3.12a)-(3.12c) in the case of Faraday’s
law. .

Equations (3.26a)-(3.26c) can be combined into a single vector equation
in determinant form as given by

4 & i
3 9 D
L=+ 3.27)
\H, H, H.
- or
VxH=J+%—It) (3.28)

Equation (3.28) is Maxwell’s equation in differential form corresponding to
Ampere’s circuital law. The quantity dD/d¢ is known as the “displacement
current density.” We shall discuss curl further in the following section.

3.3 CURL AND STOKES’ THEOREM

In Secs. 3.1 and 3.2 we derived the differential forms of Faraday’s and
Ampere’s circuital laws from their integral forms. These differential forms
involve a new vector quantity, namely, the “curl” of a vector. In this section
we shall introduce the basic definition of curl and then present a physical
interpretation of the curl. In order to do this, let us, for simplicity, consider
Ampere’s circuital law in differential form without the displacement current
density term, i.e.,

VxH=1J (3.29)

We wish to express V x H at a point in the current region in terms of H at
that point. If we consider an infinitesimal surface AS at the point and take the
dot product of both sides of (3.29) with AS, we get

(VxH) - AS=J:AS (3.30)
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But J « AS is simply the current crossing the surface AS, and according to
Ampere’s circuital law in integral form without the displacement current
term,

3€ H-dl=J.AS (3.31)
C

where C is the closed path bounding AS. Comparing (3.30) and (3.31), we
have
(VxH)-AS=3§ H- dl
c
or

(VxH)-ASi, = §CH . dl (3.32)

where i, is the unit vector normal to AS. Dividing both sides of (3.32) by AS,
we obtain

H.dl

<VxH)-in=3£cA—S

(3.33)

The maximum value of (V x H) « i,, and hence that of the right side of
(3.33), occurs when i, is oriented parallel to V x H, that is, when the surface
AS is oriented normal to the current density vector J. This maximum value is

simply |V x H|. Thus
H . dl
— if;L (3.34)
IV x H| _[ A5 Lx

Since the direction of V x H is the direction of J, or that of the unit vector
normal to AS, we can then write

H.dl
VxH:[—ﬁgcAS } i, @39

Equation (3.35) is only approximate since (3.32) is exact only in the limit that
AS tends to zero. Thus

H.dl
= [} §c i (3.36)
ren-g| 3507

Equation (3.36) is the expression for V x H at a point in terms of H at that
point. Although we have derived this for the H vector, it is a general result
and, in fact, is often the starting point for the introduction of curl.
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Equation (3.36) tells us that in order to find the curl of a vector at a point
in that vector field, we first consider an infinitesimal surface at that point and
compute the closed line integral or circulation of the vector around the
periphery of this surface by orienting the surface such that the circulation is
maximum. We then divide the circulation by the area of the surface to obtain
the maximum value of the circulation per unit area. Since we need this
maximum value of the circulation per unit area in the limit that the area tends
to zero, we do this by graduaily shrinking the area and making sure that each
time we compute the circulation per unit area an orientation for the area that
maximizes this quantity is maintained. The limiting value to which the
maximum circulation per unit area approaches is the magnitude of the curl.
The limiting direction to which the normal vector to the surface approaches is
the direction of the curl, The task of computing the curl is simplified if we
consider one component of the field at a time and compute the curl corre-
sponding to that component since then it is sufficient if we always maintain
the orientation of the surface normal to that component axis. In fact, this is
what we did in Secs. 3.1 and 3.2, which led us to the determinant form of curl.

We are now ready to discuss the physical interpretation of the curl. We do
this with the aid of a simple device known as the “curl meter.” Although the
curl meter may take several forms, we shall consider one consisting of a
circular disc that floats in water with a paddle wheel attached to the bottom of
the disc, as shown in Fig. 3.7. A dot at the periphery on top of the disc serves
to indicate any rotational motion of the curl meter about its axis, i.e., the axis
of the paddle wheel. Let us now consider a stream of rectangular cross section
carrying water in the z direction, as shown in Fig. 3.7(a). Let us assume the
velocity v of the water to be independent of height but increasing uniformly
from a value of zero at the banks to a maximum value v, at the center, as
shown in Fig. 3.7(b), and investigate the behavior of the curl meter when it is
placed vertically at different points in the stream. We assume that the size of
the curl meter is vanishingly small so that it does not disturb the flow of water
as we probe its behavior at different points.

Since exactly in midstream the blades of the paddle wheel lying on either
side of the center line are hit by the same velocities, the paddle wheel does not
rotate. The curl meter simply slides down the stream without any rotational
motion, i.e., with the dot on top of the disc maintaining the same position
relative to the center of the disc, as shown in Fig. 3.7(c). At a point to the left
of the midstream the blades of the paddle wheel are hit by a greater velocity
on the right side than on the left side so that the paddle wheel rotates in the
counterclockwise sense. The curl meter rotates in the counterclockwise direc-
tion about ifs axis as it slides down the stream, as indicated by the changing
position of the dot on top of the disc relative to the center of the disc, as
shown in Fig. 3.7(d). At a point to the right of midstream, the blades of the
paddle wheel are hit by a greater velocity on the left side than on the right side
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0 ¥ a 0 3;2 a
(a) (b)

(c) (d) (e)

Figure 3.7. For explaining the physical interpretation of curl using the
curl meter.

so that the paddle wheel rotates in the clockwise sense. The curl meter
rotates in the clockwise direction about its axis as it slides down the stream,
as indicated by, the changing position of the dot on top of the disc relative to
the center of the disc, as shown in Fig. 3.7(e).

To relate the foregoing discussion of the behavior of the curl meter with
the curl of the velocity vector field of the water flow, we note that at a point in
midstream, the circulation of the velocity vector per unit area in the plane
normal to the axis of the paddle wheel, i.e., parallel to the surface of the
stream, is zero and hence the component of the curl along that axis, i.e., in
the x direction, is zero. At points on either side of midstream, however, the
circulation per unit area is not zero in view of the velocity differential along
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the y direction. Hence the x component of the curl is nonzero at these points.
Furthermore, the x component of the curl at points on the right side of
midstream is opposite in sign to that on the left side of midstream since the
velocity differentials are opposite in sign. These properties are exactly similar
to those of the rotational motion of the curl meter.

If we now pick up the curl meter and insert it in the water with its axis
parallel to the surface of the stream, the curl meter does not rotate because its
blades are hit with the same force on either side of its axis. This behavior of
the curl meter is akin to the property that the horizontal component of the
curl of the velocity vector is zero since the velocity differential along the x
direction is zero.

The foregoing illustration of the physical interpretation of the curl of a
vector field can be used to visualize the behavior of electric and magnetic
fields. Thus, for example, from

___dB
V % =

we know that at a point in an electromagnetic field at which dB/dt is nonzero,
there exists an electric field with nonzero circulation per unit area in the plane
normal to the vector dB/d¢. Similarly, from

VxH=J+%]7).

we know that at a point in an electromagnetic field at which J + dD/dt is
nonzero, there exists a magnetic field with nonzero circulation per unit area in
the plane normal to the vector J + dD/d.

We shall now derive a useful theorem in vector calculus, the “Stokes’
theorem.” This relates the closed line integral of a vector field to the surface
integral of the curl of that vector field. To derive this theorem, let us consider
an arbitrary surface S in a magnetic field region and divide this surface into a
number of infinitesimal surfaces AS,, AS,, AS;, . . ., bounded by the contours
C,, C,, Cs, ..., respectively. Then, applying (3.32) to each one of these
infinitesimal surfaces and adding up, we get

YV xH), ASi,=¢ Hedl+§ Hedl+... (337
J Ch Cs

where i,, are unit vectors normal to the surfaces AS; chosen in accordance
with the right-hand screw rule. In the limit that the number of infinitesimal
surfaces tends to infinity, the left side of (3.37) approaches to the surface
integral of V x H over the surface S. The right side of (3.37) is simply the
closed line integral of H around the contour C since the contributions to the
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line integrals from the portions of the contours interior to C cancel, as shown
in Fig. 3.8, Thus we get

VxH)-dS=¢ H.dl (3.38)
Js §C

Equation (3.38) is Stokes’ theorem. Although we have derived it by con-
sidering the H field, it is general and is applicable for any vector field.

V
Y
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Figure 3.8. For deriving Stokes’ theorem.
Example 3.5. Let us verify Stokes’ theorem by considering
A =yi, —xi,

and the closed path C shown in Fig. 3.9.

I 9%
b
C
A x2+y2=1
a - @ - X
o c

Figure 3.9. A closed path for verifying Stokes’ theorem.
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We first determine 3€ A « dl by evaluating the line integrals along the
[

three segments of the closed path. To do this, we first note that A.dl=
y dx — x dy. Then, fromato b, x =0,dx =0, A « dl=0

L”A-dlzo

Frombtoc, x> +yp*=1,y=./1—x%

dxdx+2ydy—0, dy—=-—X%_ X __gx
y 1 — x?
2 dx dx
Aedl=/T—x*d = =
x x+ﬂ—x2 1 — x?

¢ Voode T =
LAM—LJﬁﬁr{m;&_2
Fromctoa,y=0,dy=0,A+dl=0

j"A-dl:o
Thus ’
fch-dl:LbA-dH—J.:A-dl—rf:A-dl

=0+ 2 +0=7%

Now, to evaluate Sg A « dl by using Stokes’ theorem, we recall from
c
Example 3.2 that
VxA=Vx(Qi,—xi,)=—2i,

For the plane surface S enclosed by C,

dsS = —dx dyi,
Thus
(VxA)edS= —2i,«(—dxdyi)=2dxdy

[@xay-as=]_ LT2dx dy

7z=

= 2(area enclosed by C) = 2 X %

|

thereby verifying Stokes’ theorem. =
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Thus far we have derived Maxwell’s equations in differential form corre-
sponding to the two Maxwell’s equations in integral form involving the line
integrals of E ~nd H, that is, Faraday’s law and Ampere’s circuital law,
respectively. The remaining two Maxwell’s equations in integral form,
namely, Gauss’ law for the electric field and Gauss’ law for the magnetic
field, are concerned with the closed surface integrals of D and B, respectively.
We shall in this and the following sections derive the differential forms of
these two equations.

We recall from Sec. 2.6 that Gauss’ law for the electric field is given by

D.dS=( pav (3.39)
§S J.V

where V is the volume enclosed by the closed surface S. To derive the differ-
ential form of this equation, let us consider a rectangular box of infinitesimal
sides Ax, Ay, and Az and defined by the six surfaces x = x, x = x 4 Ax,
y=y,y=y-+ Ay, z=2z, and z=z + Az, as shown in Fig. 3.10, in a
region of electric field

D =D.(x, y, z, Di. + Dy(x, y, z, ), + D,(x,y, z, t)i, (3.40)

and charge of density p(x, y, z, ). According to Gauss’ law for the electric
field, the displacement flux emanating from the box is equal to the charge
enclosed by the box. The displacement flux is given by the surface integral of
D over the surface of the box, which is comprised of six plane surfaces. Thus
evaluating the displacement flux emanating out of the box over each of the
six plane surfaces of the box, we have

f D.dS = —[D,],. Ay Az for the surface x = x (3.41a)
f D« dS =1[D,], s Ay Az for the surface x = x + Ax  (3.41b)
J. D.dS= —[D), Az Ax for the surface y = y (3.41¢)
J- D« dS =[D,], s, Az Ax for the surface y =y + Ay (3.41d)
J D.dS=—[D],AxAy for the surface z — z (3.41¢)
j D . dS=1[D),.s,AxAy forthesurfacez—=z-+ Az  (3.41f)

102
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Figure 3.10. An infinitesimal rectangular box.

Adding up (3.41a)-(3.41f), we obtain the total displacement flux emanating
from the box to be
§SD +dS = {[Dx]x+Ax - [Dx]x} A.V Az
+ {[D.v]y+Ay . [Dy]y} AZ Ax
+ {[Dz]z+Az - [Dz]z} Ax Ay (3'42)

Now the charge enclosed by the rectangular box is given by
j padv=p(x,y,z,0 - Ax Ay Az= p Ax Ay Az (3.43)
14

where we have assumed p to be uniform throughout the volume of the box
and equal to its value at (x, y, z) since the box is infinitesimal in volume.

Substituting (3.42) and (3.43) into (3.39) to apply Gauss’ law for the
electric field to the surface of the box under consideration, we get

{[Dx]x+Ax ol [Dx]x} Ay AZ + {[Dy]y+Ay - [Dy]y} AZ Ax
+ {[D.).+a. — [D.1.} Ax Ay = p Ax Ay Az
or

[Dx]x+AXx_ [Dx]x + [Dy]y+AK; [DJ'].V _|_ [Dz]z+AZz_ [Dz]z =p (3.44)

If we now let the box shrink to the point (x, y, z) by letting Ax, Ay, and Az
tend to zero, we obtain

Lim [Dx]x+AZ —_ [Dx]x + Lim [Dy]y+A£; [Dy]y

Ax—0 X Ay—0

4 Lim Pederas = D) _ 1im p
Az—0 AZ el
Ay—0
Az—0
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or
dD,

VR (3.45)

ﬂyy + 02

Equation (3.45) tells us that the net longitudinal differential of the com-
ponents of D, that is, the algebraic sum of the derivatives of the components
of D along their respective directions is equal to the charge density at that
point. Conversely, a charge density at a point results in an electric field, having
components of D such that their net longitudinal differential is nonzero.
An example in which the net longitudinal differential is zero although some
of the individual derivatives are nonzero is shown in Fig. 3.11(a). Fig. 3.11(b)
shows an example in which the net longitudinal differential is nonzero. Equa-
tion (3.45) can be written in vector notation as

. d . . d : . .
<lx o + ly% +1, 0—2) (D, 4 Dj,+ D,ji,)=0p (3.46)

| I £ Y

(a) (b)

Figure 3.11. For illustrating (a) zero, and (b) nonzero net longitudinal
differential of the components of D.

The left side of (3.46) is known as the “divergence of D,” denoted as V « D
(del dot D). Thus we have

V.D=p (3.47)

Equation (3.47) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the electric field. We shall discuss divergence further in Sec. 3.6.

Example 3.6. Given A = 3xi, + (y — 3)i, + 2 — 2)i,,find V « A,
From the expansion for the divergence of a vector, we have

voa=(iLd +1yay+n,0) « B3xi, + (¢ — i, + 2 — 2]

d
=(ﬁ(3x)+@(y—3)+a—z(2—2)
=34+1—1=3 =
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Example 3.7. Let us consider the charge distribution given by

_[—pe for —a<x <0
’ po for0<x<a

as shown in Fig. 3.12(a), where p, is a constant, and find the electric field
everywhere.

Since the charge density is independent of y and z, the field is also inde-
pendent of y and z, thereby giving us dD,/dy = 0D,/dz =0 and reducing
Gauss’ law for the electric field to

D, _
ax P

Integrating both sides with respect to x, we obtain

D, = j pdx+C
where C is the constant of integration.

The variation of p with x is shown in Fig. 3.12(b). Integrating p with
respect to x, that is, finding the area under the curve of Fig. 3.12(b) as a

“Po Py Ar L
————I++++ Py
iy + 4+ +
——==]++++
—~——=++++ —

_-__'l++++ 0 a =X
-——— =1+ +++
-———=|++++
===+ +++
—=—==l++++ “Po
—--——-|++++
-—— -t +++
——— =ttt + A ©
—==== e+ + +
—— ==+ +++ - = e
-—==l++++
R
x=-a x=0 x=a
—_—X
T8

(a)

Figure 3.12. The determination of electric field due to a charge distribu-
tion,
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function of x, we obtain the result shown in Fig. 3.12(c) for fx p dx. The

constant of integration C is zero since the symmetry of the field required by
the symmetry of the charge distribution is already satisfied by the curve of
Fig. 3.12(c). Thus the displacement flux density due to the charge distribution
is given by

0 for x < —a
D— —po(x + ai, for —a<x<0
N Polx — i, for0<x<a
0 for x > a
The electric field intensity, E, is equal to D/e,. =

3.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous section we derived the differential form of Gauss’ law for
the electric field from its integral form. In this section we shall derive the
differential form of Gauss’ law for the magnetic field from its integral form.
We recall from Sec. 2.5 that Gauss’ law for the magnetic field in integral
form is given by

ffs B.dS=0 (3.48)

where S is any closed surface. This equation states that the magnetic flux
emanating from a closed surface is zero. Thus considering an infinitesimal
rectangular box as shown in Fig. 3.10 in a region of magnetic field

B = B.(x,y, z, )i, + B,(x, y, z, i, + B.(x, y, 2, 1)i, (3.49)

and evaluating the magnetic flux emanating out of the box in a manner
similar to that of the evaluation of the displacement flux in the previous
section, and substituting in (3.48), we obtain

{Blsrax — [B:]:} Ay Az -+ {[B)),a, — [B,),} Az Ax
+ {[Bli+a. — [B.L}Ax Ay =0 (3.50)

Dividing (3.50) on both sides by Ax Ay Az and letting Ax, Ay, and Az tend to
zero, thereby shrinking the box to the point (x, y, z), we obtain

3 [Bx]x+Ax — [-Bx]x 3 [By]y+Ay — [By]y
{;13} Ax Cx IZylE} Ay

3 [Bz]z+ z ~ [Bz]z -
+ Lim ——AAZ =0

Az—0
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or

JB
t+ay+0z (3.51)
Equation (3.51) tells us that the net longitudinal differential of the com-
ponents of B is zero. In vector form it is given by
V:B=0 (3.52)

Equation (3.52) is Maxwell’s equation in differential form corresponding to
Gauss’ law for the magnetic field. We shall discuss divergence further in the
following section.

Example 3.8. Determine if the vector A = yi, — xi, can represent a mag-
netic field B.

From (3.52), we note that a given vector can be realized as a magnetic
field B if its divergence is zero. For A = yi, — xi,,

VeA= 2oy L+ f@=0

Hence the given vector can represent a magnetic field B. =

3.6 DIVERGENCE AND THE DIVERGENCE THEOREM

In Secs. 3.4 and 3.5 we derived the differential forms of Gauss’ laws for
the electric and magnetic fields from their integral forms. These differential
forms involve a new quantity, namely, the “divergence” of a vector. The
divergence of a vector is a scalar as compared to the vector nature of the curl
of a vector. In this section we shall introduce the basic definition of divergence
and then present a physical interpretation for the divergence. In order to do
this, let us consider Gauss’ law for the electric field in differential form, that
is,

VeD=p (3.53)

We wish to express V « D at a point in the charge region in terms of D at that
point. If we consider an infinitesimal volume Av at the point and multiply both
sides of (3.53) by Av, we get

(VeD)Av = pAv (3.54)

But p Aw is simply the charge contained in the volume Av, and according to
Gauss’ law for the electric field in integral form,

5{5 D.dS=pAv (3.55)
S
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where S is the closed surface bounding Av. Comparing (3.54) and (3.55),
we have

(V.D)Av = ff D . dS (3.56)
N
Dividing both sides of (3.56) by Av, we obtain

§D-ds
_SAT_

VeD— (3.57)

Equation (3.57) is only approximate since (3.56) is exact only in the limit that
Av tends to zero. Thus

D.
V.D = Lim fﬁ_sA—d_S (3-58)

Ay—0 v

Equation (3.58) is the expression for V « D at a point in terms of D at that
point. Although we have derived this for the D vector, it is a general result
and, in fact, is often the starting point for the introduction of divergence.

Equation (3.58) tells us that in order to find the divergence of a vector at a
point in that vector field, we first consider an infinitesimal volume at that
point and compute the surface integral of the vector over the surface bounding
that volume, that is, the outward flux of the vector field emanating from that
volume. We then divide the flux by the volume to obtain the flux per unit
volume. Since we need this flux per unit volume in the limit that the volume
tends to zero, we do this by gradually shrinking the volume. The limiting
value to which the flux per unit volume approaches is the value of the
divergence of the vector field at the point to which the volume is shrunk.

We are now ready to discuss the physical interpretation of the divergence.
To simplify this task, we shall consider the differential form of the law of
conservation of charge given in integral form by (2.39), or

d
iJ dS = —7 J;p dv (3.59)

where S is the surface bounding the volume V. Applying (3.59) to an infini-
tesimal volume Av, we have

d ]
§SJ L dS = —Z(p Av) = —ZF Av

or

§ a-as _dp (3.60)
Av 0t
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Now taking the limit on both sides of (3.60) as Av tends to zero, we obtain

J.ds
) § _FF ap 3.61)
IZ,E% Av IZJE; 9
or
V.39 (.62)
ot )
or
v.3+9_o¢ (3.63)

Equation (3.63), which is the differential form of the law of conservation of
charge, is familiarly known as the “continuity equation.” It tells us that the
divergence of the current density vector at a point is equal to the time rate of
decrease of the charge density at that point.

Let us now investigate three different cases: (a) positive value, (b) negative
value, and (c) zero value of the time rate of decrease of the charge density ata
point, that is, the divergence of the current density vector at that point. We
shall do this with the aid of a simple device which we shall call the “divergence
meter.” The divergence meter can be imagined to be a tiny, elastic balloon
enclosing the point and that expands when hit by charges streaming outward
from the point and contracts when acted upon by charges streaming inward
toward the point. For case (a), that 1s, when the time rate of decrease of the
charge density at the point is positive, there is a net amount of charge stream-
ing out of the point in a given time, resulting in a net current flow outward
from the point that will make the imaginary balloon expand. For case (b), that
is, when the time rate of decrease of the charge density at the point is negative
or the time rate of increase of the charge density is positive, there is a net
amount of charge streaming toward the point in a given time, resulting in a
net current flow toward the point and the imaginary balloon will contract.
For case (c), that is, when the time rate of decrease of the charge density at the
point is zero, the balloon will remain unaffected since the charge is streaming
out of the point at exactly the same rate as it is streaming into the point.
These three cases are illustrated in Figs. 3.13(a), (b), and (c), respectively.

Generalizing the foregoing discussion to the physical interpretation of the
divergence of any vector field at a point, we can imagine the vector field to be
a velocity field of streaming charges acting upon the divergence meter and
obtain in most cases a qualitative picture of the divergence of the vector field.
If the divergence meter expands, the divergence is positive and a source of the
flux of the vector field exists at that point. If the divergence meter contracts,
the divergence is negative and a sink of the flux of the vector field exists at that
point. If the divergence meter remains unaffected, the divergence is zero and
neither a source nor a sink of the flux of the vector field exists at that point.
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Figure 3.13. For explaining the physical interpretation of divergence using
the divergence meter,

Alternatively, there can exist at the point pairs of sources and sinks of equal
strengths.

We shall now derive a useful theorem in vector calculus, “the divergence
theorem.” This relates the closed surface integral of the vector field to the
volume integral of the divergence of that vector field. To derive this theorem,
let us consider an arbitrary volume ¥ in an electric field region and divide this
volume into a number of infinitesimal volumes Av,, Av,, Av,, .. ., bounded
by the surfaces S, S,, S, . . ., respectively. Then, applying (3.56) to each one
of these infinitesimal volumes and adding up, we get

> (V.D),Av,=¢ D-dS+§ DedS+... (3.64)
J S Sz

In the limit that the number of the infinitesimal volumes tends to infinity, the
left side of (3.64) approaches to the volume integral of V « D over the volume
V. The right side of (3.64) is simply the closed surface integral of D over S
since the contribution to the surface integrals from the portions of the sur-
faces interior to S cancel, as shown in Fig. 3.14. Thus we get

[[(-D)yav=§ D.as (3.65)

Equation (3.65) is the divergence theorem. Although we have derived it by
considering the D field, it is general and is applicable for any vector field.

Example 3.9. Let us verify the divergence theorem by considering
A = 3xi, + (y — 3)i, + 2 — 2)i,

and the closed surface of the box bounded by the planes x =0, x = 1,y = 0,
y=2,z=0,and z = 3.

We first determine fﬁ A - dS by evaluating the surface integrals over the
N
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Figure 3.14. For deriving the divergence theorem.
six surfaces of the rectangular box. Thus for the surface x = 0,

A=y -3, +Q2—2)i, dS=—dydzi,
A.dS—0
jA-dS:O

For the surface x = 1,

A=3i,+ (y—3i,+ 2 —2i, dS=dydzi,
A.dS=3dydz

fA.dszLio Lioadydz= 18

For the surface y = 0,

A = 3xi, — 3i, + 2 — 2, dS = —dzdxi,
A+dS=3dzdx

fA-dS: J.:-=0 La=03dzdx=9

For the surface y = 2,

A =3xi, —i, -+ 2 — 2)i, dS = dz dxi,
AdS=—dzdx

IA «dS = L:O Lio —dzdx = —3
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For the surface z = 0,

A = 3xi, 4+ (y — 3)i, + 2i,, dS = —dxdyi,
A«dS=-2dxdy

[acas=[" [ —2avdy— —4
y=0 Jx=

For the surface z = 3,

A=3xi,4+ (y—3)i—i, dS=dxdyi,
A «dS = —dxdy

JA-dS=fi fl_o—dxdy=—2
Thus e
3§SA.dS=0+18+9—3—4—2=18

Now, to evaluate fﬁ A « dS by using the divergence theorem, we recall
N

from Example 3.6 that
VeA=V o [3xi, +(y — i, + 2 —2)i,]=3
For the volume enclosed by the rectangular box,

[V nyaw= Lio f;o L:O 3dxdydz — 18

thereby verifying the divergence theorem, =

37 SUMMARY

We have in this chapter derived the differential forms of Maxwell’s
equations from their integral forms, which we introduced in the previous
chapter. For the general case of electric and magnetic fields having all three
components (x, y, z), each of them dependent on all coordinates (x, y, z), and
time (¢), Maxwell’s equations in differential form are given as follows in words
and in mathematical form.

FARADAY’S LAW: The curl of the electric field intensity is equal to the
negative of the time derivative of the magnetic flux density, that is,

JdB

VXE= —3r (3.66)
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AMPERE’s CIRCUITAL LAW: The curl of the magnetic field intensity is
equal to the sum of the current density due to flow of charges and the dis-
placement current density, which is the time derivative of the displacement
flux density, that is,

VxH=J+%$ (3.67)

GaAuss’ LAw ror TIic ELecTrIC FIELD: The divergence of the displace-
ment flux density is equal to the charge density, that is,
VeD=p (3.68)

GAuss’ LAw FOR THE MAGNETIC FIELD: The divergence of the magnetic
flux density is equal to zero, that is,

V-.B=0 (3.69)
Auxiliary to (3.66)—(3.69), the continuity equation is given by

dp _
V.J+ = (3.70)
This equation, which is the differential form of the law of conservation of
charge, states that the sum of the divergence of the current density due to flow
of charges and the time derivative of the charge density is equal to zero. Also,
we recall that

D =¢,E (3.71)
B

— 3.72

Ko ( )

which relate D and H to E and B, respectively, for free space.

We have learned that the basic definitions of curl and divergence, which
have enabled us to discuss their physical interpretations with the aid of the
curl and divergence meters, are

[gﬁ A dl}
- 1 _—c 1
VxA=Lim “pe—| T

§ A.dS
VeA=Lim<s
Ay—0 Av

Thus the curl of a vector field at a point is a vector whose magnitude is the
circulation of that vector field per unit area with the area oriented so as to
maximize this quantity and in the limit that the area shrinks to the point. The
direction of the vector is normal to the area in the aforementioned limit and
in the right-hand sense. The divergence of a vector field at a point is a scalar
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quantity equal to the net outward flux of that vector field per unit volume in
the limit that the volume shrinks to the point. In Cartesian coordinates the
expansions for curl and divergence are

o d 4
A, A, 4,
(04, GAN: o (04,  OAN: | (04, 94
— \dy —W)l"_l_((?z B (9x>l”+(w_ 0y)l’
dAd, 04 dA4,
VA=t T

Thus Maxwell’s equations in differential form relate the spatial variations of
the field vectors at a point to their temporal variations and to the charge and
current densities at that point.

We have also learned two theorems associated with curl and divergence.
These are the Stokes’ theorem and the divergence theorem given, respectively,
by

ff;cA-dl:L(VxA)-dS
jSSA.dszjV(v-A)dv

Stokes’ theorem enables us to replace the line integral of a vector around a
closed path by the surface integral of the curl of that vector over any surface
bounded by that closed path, and vice versa. The divergence theorem enables
us to replace the surface integral of a vector over a closed surface by the
volume integral of the divergence of that vector over the volume bounded by
the closed surface, and vice versa.

In Chap. 2 we learned that all Maxwell’s equations in integral form are
not independent. Since Maxwell’s equations in differential form are derived
from their integral forms, it follows that the same is true for these equations.
In fact, by noting that (see Problem 3.32),

VeVXxA=0 (3.73)
and applying it to (3.66), we obtain

V-(-%-?):V-Vxlzzo

d _

V « B = constant with time (3.74)
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Similarly, applying (3.73) to (3.67), we obtain

v-(J+%$)=v-VxH=o

V-J+%(V.D):0

0p a .

¢ _
S(V-D—p)=0
V + D — p = constant with time 3.75

Since for any given point in space, the constants on the right sides of (3.74)

and (3.75) can be made equal to zero at some instant of time, it follows that

they are zero forever, giving us (3.69) and (3.68), respectively. Thus (3.69)

follows from (3.66), whereas (3.68) follows from (3.67) with the aid of (3.70).
Finally, for the simple, special case in which

E = E.(z i,
H = H,(z, 1i,

the two Maxwell’s curl equations reduce to

JE, 0B

PRk 3 (3.76)
OH, D,

= —J. =% (3.77)

In fact, we derived these equations first and then the general equations (3.66)
and (3.67). We will be using (3.76) and (3.77) in the following chapters to
study the phenomenon of electromagnetic wave propagation resulting from
the interdependence between the space-variations and time-variations of the
electric and magnetic fields.

REVIEW QUESTIONS

3.1. State Faraday’s law in differential form for the simple case of E = E,(z, f)i.
How is it derived from Faraday’s law in integral form ?

3.2. Discuss the physical interpretation of Faraday’s law in differential form for
the simple case of E = E,(z, t)i,.

3.3, State Faraday’s law in differential form for the general case of an arbitrary
electric field. How is it derived from its integral form?
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34.

3.5

3.6.

3.7.
3.8.
3.9.

3.10.
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3.12.

3.13.

3.14.

3.15.

3.16.

3.17.
3.18.

3.19.

3.20.

3.21.
3.22.

3.23.
3.24.
3.25.

3.26.

CH. 3 MAXWELL’S EQUATIONS IN DIFFERENTIAL FORM

What is meant by the net right-lateral differential of the x and y components
of a vector normal to the z direction ?

Give an example in which the net right-lateral differential of E, and E, normal
to the x direction is zero although the individual derivatives are nonzero.

If at a point in space B, varies with time but B, and B, do not, what can we
say about the components of E at that point?

What is the determinant expansion for the curl of a vector?

What is the significance of the curl of a vector being equal to zero?

State Ampere’s circuital law in differential form for the simple case of H =
Hy(z, t)i,. How is it derived from Ampere’s circuital law in integral form?
Discuss the physical interpretation of Ampere’s circuital law in differential
form for the simple case of H = H,(z, ti,.

State Ampere’s circuital law in differential form for the general case of an
arbitrary magnetic field. How is it derived from its integral form?

What is the significance of a nonzero net right-lateral differential of H, and
H, normal to the z direction at a point in space?

If a pair of E and B at a point satisfies Faraday’s law in differential form, does
it necessarily follow that it also satisfies Ampere’s circuital law in differential
form and vice versa?

State and briefly discuss the basic definition of the curl of a vector.

What is a curl meter ? How does it help visualize the behavior of the curlofa
vector field ?

Provide two examples of physical phenomena in which the curl of a vector
field is nonzero.

State Stokes’ theorem and discuss its application.

State Gauss’ law for the electric field in differential form. How is it derived
from its integral form?

What is meant by the net longitudinal differential of the components of a
vector field ?

Give an example in which the net longitudinal differential of the components
of a vector is zero, although the individual derivatives are nonzero.

What is the expansion for the divergence of a vector?

State Gauss’ law for the magnetic field in differential form. How is it derived
from its integral form?

How can you determine if a given vector can represent a magnetic field ?
State and briefly discuss the basic definition of the divergence of a vector.

What is a divergence meter ? How does it help visualize the behavior of the
divergence of a vector field?

Provide two examples of physical phenomena in which the divergence of a
vector field is nonzero.
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3.27.
3.28.

3.29.
3.30.
3.31.
3.32.

State the continuity equation and discuss its physical interpretation.

Distinguish between the physical interpretations of the divergence and the
curl of a vector field by means of examples.

State the divergence theorem and discuss its application.
What is the divergence of the curl of a vector?
Summarize Maxwell’s equations in differential form.

Are all Maxwell’s equations in differential form independent ? If not, which of
them are independent ?

PROBLEMS

3.1.

3.2.

3.3.

34.

3.5.

3.6

3.7.

3.8.

3.9.

Given B = Byz cos @t i, and it is known that E has only an x component, find
E by using Faraday’s law in differential form. Then verify your result by ap-
plying Faraday’s law in integral form to the rectangular closed path, in the
xz plane, defined by x =0, x =4,z =0,and z = b.

Assuming E = E,(z, 1)i, and considering a rectangular closed path in the yz
plane, carry out the derivation of Faraday’s law in differential form similar to
that in the text.

Find the curls of the following vector fields:

(@) zxi, + xpi, + yzi,; (b) ye~*i, — e™*i,.

For A = xy%, + x2i,, (2) find the net right-lateral differential of 4. and 4,
normal to the z direction at the pdint (2, 1, 0), and (b) find the locus of the
points at which the net right-lateral differential of A, and 4, normal to the z
direction is zero.

Given E = 10 cos (61 x 108 — 27z) i, V/m, find B by using Faraday’s law
in differential form,

9
dy
scalar function of x, y, and z, is zero. Then find the scalar function for which
Vf = yi, + xi,.

Given E = E,z2 sin @¢ i, and it is known that J is zero and B has only a y
component, find B by using Ampere’s circuital law in differential form. Then
find E from B by using Faraday’s law in differential form. Comment on your
result.

. 0 . . 0 . }
Show that the curl of (1x o 4 iy —— + i, 6'2) /, that is, Vf, where fis any

Assuming H = H,(z, 1) i, and considering a rectangular closed path in the xz
plane, carry out the derivation of Ampere’s circuital law in differential form
similar to that in the text.

-7
Given B = %— cos (61 x 108t — 27z) i, Wb/m? and it is known that J =0,
find E by using Ampere’s circuital law in differential form. Then find B from
E by using Faraday’s law in differential form. Comment on your result.
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

CH. 3 MaxweLL’s EQUATIONS IN DIFFERENTIAL FOrRM

Assuming J = 0, determine which of the following pairs of E, and H, simul-
taneously satisfy the two Maxwell’s equations in differential form given by
(3.7) and (3.23):

(@) E, — 10 cos 27z cos 6T X 1081,  H, — ——sin 27z sin 61 x 108¢

127
€
(b) E, = (t — za/ lto€0) H, = F[;(f — za/ [o€0)
(¢c) E, = z%sin wf, H, = —%23 cos Wt

A current distribution is given by

3 {—Joix for —a<z<0
N Jolix for0<z<a
where J, is a constant. Using Ampere’s circuital law in differential form and
symmetry considerations, find the magnetic field everywhere.

A current distribution is given by
J=J0< —%)ix for —a<z<a

where J, is a constant, Using Ampere’s circuital law in differential form and
symmetry considerations, find the magnetic field everywhere.

Assume that the velocity of water in the stream of Fig. 3.7(a) decreases linearly
from a maximum at the top surface to zero at the bottom surface, with the
velocity at the top surface given by Fig. 3.7(b). Discuss the curl of the velocity
vector field with the aid of the curl meter.

For the vector fieldr = xi, -+ yi, + zi,, discuss the behavior of the curl meter
and verify your reasoning by evaluating the curl of r.

Discuss the curl of the vector field yi, — xi, with the aid of the curl meter.

Verify Stokes’ theorem for the vector field A = yi, + zi, + xi, and the
closed path comprising the straight lines from (1,0, 0) to (0, 1, 0), from
(0, 1, 0) to (0, 0, 1), and from (0, 0, 1) to (1, 0, 0).

Verify Stokes’ theorem for the vector field A = e7%i, — xe™i, and any
closed path of your choice.

For the vector A = yzi, -+ zxi, -+ xyi,, use Stokes’ theorem to show that
ff A - dlis zero for any closed path C. Then evaluate [ A » dl from the origin
c

to the point (1,1, 2) along the curve x = 4/2 sin¢, y =4/2 sint, z =
(8/m)t.

Find the divergences of the following vector fields:

(@) 3xy%, + 3x2yi, + 23,5 (b) 2xpi. — ¥2,.

For A = xyi, + yzi, + zxi,, (a) find the net longitudinal differential of the
components of A at the point (1, 1, 1), and (b) find the locus of the points at
which the net longitudinal differential of the components of A is zero.
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3.21.

3.22.

3.23

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

3.30.

3.31.

3.32.

For each of the following vectors, find the curl and the divergence and discuss
your results: (a) xyi,; (b) yi,; () xiy; (d) yi, + xi,.
A charge distribution is given by

p=p0(1—lail) for —a<x<a

where p, is a constant. Using Gauss’ law for the electric field in differential
form and symmetry considerations, find the electric field everywhere.

A charge distribution is given by
x
p=p07 for —a<x<a

where p, is a constant. Using Gauss’ law for the electric field in differential
form and symmetry considerations, find the electric field everywhere.

Given D = x2yi, — »3i,, find the charge density at (a) the point (2, 1, 0) and
(b) the point (3, 2, 0).

Determine which of the following vectors can represent a magnetic flux density
vector B: (a) yi, — xi,; (b) xi. -+ yi,; (c) 23 cos ot i,.

Given J = e~*'i,, find the time rate of decrease of the charge density at (a)
the point (0, 0, 0) and (b) the point (1, 0, 0).

For the vector field r = xi, -+ yi, + zi,, discuss the behavior of the diver-
gence meter, and verify your reasoning by evaluating the divergence of r.

Discuss the divergence of the vector field yi, — xi, with the aid of the diver-
gence meter.

Verify the divergence theorem for the vector field A = xi, + yi, + zi; and
the closed surface bounding the volume within the hemisphere of radius unity
above the xy plane and centered at the origin.

Verify the divergence theorem for the vector field A = xyi, -+ yzi, + zxi,
and the closed surface of the volume bounded by the planes x =0, x =1,
y=0,y=1,z=0,andz=1

For the vector A = y%i, — 2yzi,, use the divergence theorem to show that

j; A + dSiszero for any closed surface S. Then evaluate | A « S over the sur-
S

facex +y+z=1,x>0,y>0,z>0.

Show that V+V x A =0 for any A in two ways: (a) by evaluating
V . V x A in Cartesian coordinates, and (b) by using Stokes” and divergence
theorems.



