2o MAXWELL’S
EQUATIONS
IN
INTEGRAL
FORM

In Chap. 1 we learned the simple rules of vector algebra and familiarized
ourselves with the basic concepts of fields, particularly those associated with
electric and magnelic fields. We now have the necessary background to
introduce the additional tools required for the understanding of the various
quantities associated with Maxwell’s equations and then discuss Maxwell’s
equations. In particular, our goal in this chapter is to learn Maxwell’s equa-
tions in integral form as a prerequisite to the derivation of their differential
forms in the next chapter. Maxwell’s equations in integral form govern the
interdependence of certain field and source quantities associated with regions
in space, that is, contours, surfaces, and volumes. The differential forms of
Maxwell’s equations, however, relate the characteristics of the field vectors at
a given point to one another and to the source densities at that point.

Maxwell’s equations in integral form are a set of four laws resulting from
several experimental findings and a purely mathematical contribution. We
shall, however, consider them as postulates and learn to understand their
physical significance as well as their mathematical formulation. The source
quantities involved in their formulation are charges and currents. The field
quantities have to do with the line and surface integrals of the electric and
magnetic field vectors. We shall therefore first introduce line and surface
integrals and then consider successively the four Maxwell’s equations in
integral form.
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2.1 THE LINE INTEGRAL

Let us consider in a region of electric field E the movement of a test
charge g from the point 4 to the point B along the path C as shown in Fig.
2.1(a). At each and every point along the path the electric field exerts a force
on the test charge and hence does a certain amount of work in moving the
charge to another point an infinitesimal distance away. To find the total
amount of work done from A to B, we divide the path into a number of
infinitesimal segments Al,, Al,, Al,, . .., Al,, as shown in Fig. 2.1(b), find the
infinitesimal amount of work done for each segment and then add up the
contributions from all the segments. Since the segments are infinitesimal in
length, we can consider each of them to be straight and the electric field at all
points within a segment to be the same and equal to its value at the start of the
segment.

E
n !}
4 E: [/bL ﬂciT
C E /,‘a"
g E, 3 & Ali

2 Q)
(a)

Figure 2.1. For evaluating the total amount of work done in moving a
test charge along a path C from point A to point B in a region of electric
field.

If we now consider one segment, say the jth segment, and take the com-
ponent of the electric field for that segment along the length of that segment,
we obtain the result E, cos a; where a; is the angle between the direction of
the electric field vector E; at the start of that segment and the direction of that
segment. Since the electric field intensity has the meaning of force per unit
charge, the electric force along the direction of the jth segment is then equal
to gE; cos a; where g is the value of the test charge. To obtain the work done
in carrying the test charge along the length of the jth segment, we then
multiply this electric force component by the length A/, of that segment. Thus
for the jth segment, we obtain the result for the work done by the electric field
as

AW, =qE; cos a; Al, 2.1

If we do this for all the infinitesimal segments and add up all the contributions,
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we get the total work done by the electric field in moving the test charge from
Ato Bas

We =AW, + AW, + AW, 4 ... + AW,
=qE, cosa, Al, + qE, cos &, Al, + qE; cos a5 Al,
+ ...+ ¢gE,cosa, Al,

—q3 E, cosa; Al, 2.2
i=1

In vector notation we make use of the dot product operation between two
vectors to write this quantity as

By Z: E, -+ Al Q.3)

Example 2.1. Let us consider the electric field given by
E =yi,
and determine the work done by the field in carrying 3 #C of charge from the

point 4(0, 0, 0) to the point B(1, 1, 0) along the parabolic path y = x2,z =0
shown in Fig. 2.2(a).

AY B

Ay

j20.01

(j— D?0.01

= X

(G-no1  joi
(b)

Figure 2.2. (a) Division of the path y = x2 from 4 (0,0, 0) to B (1,1, 0)
into ten segments. (b) The length vector corresponding to the jth segment
of part (a) approximated as a straight line.

For convenience, we shall divide the path into ten segments having equal
widths along the x direction, as shown in Fig. 2.2(a). We shall number the
segments 1,2, 3, . . ., 10. The coordinates of the starting and ending points of
the jth segment are as shown in Fig. 2.2(b). The electric field at the start of the
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Jth segment is given by
E, = (j — 12 0.0li,

The length vector corresponding to the jth segment, approximated as a
straight line connecting its starting and ending points is

Al = 0.1i, 4 [j2 — (j — 1)2] 0.01i,
— 0.1i, + (2j — 1) 0.01i,

The required work is then given by
10
W8=3x10"5 3 E, « Al
ji=1
1
=3x 10°°¢ Eo] [(j — 1)20.01i,] - [0.1i, - (2j — 1)0.01i,]
j=1

— 3% 1070 3 (j— DA — 1)
/1
=3 X 1071°[0 + 3 + 20 + 63 + 144 + 275 + 468 + 735
+ 1088 + 1539]
=3 X 1071° x 4335 = 1.3005 uJ -

The result that we have obtained in Example 2.1, for W3, is approximate
since we divided the path from A to B into a finite number of segments. By
dividing it into larger and larger numbers of segments, we can obtain more
and more accurate results. In fact, the problem can be conveniently for-
mulated for a computer solution and by varying the number of segments from
a small value to a large value, the convergence of the result can be verified.
The value to which the result converges is that for which n = oo. The summa-
tion in (2.3) then becomes an integral, which represents exactly the work done
by the field and is given by

B
W5 =q L E - dl 2.4)

The integral on the right side of (2.4) is known as the “line integral of E from
A to B.”

Example 2.2. We shall illustrate the evaluation of the line integral by
computing the exact value of the work done by the electric field in Example
2.1.

To do this, we note that at any arbitrary point (x, y, 0) on the curve
y = x2, z = 0, the infinitesimal length vector tangential to the curve is given
by
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dl=dxi, + dyi,
=dxi, + dx?)i,
=dxi, + 2x dxi,

The value of E « dl at the point (x, y, 0) is

E . dl = yi,» (dxi, - dyi,)
= x2i, o (dxi, + 2x dx i)
= 2x3 dx

Thus the required work is given by

B (1,1,0)
Wg:qLE-d|=3><10-6f 2x% dx

(0,0,0)

=3 10—6[2_"“}"‘1 —1.54]

4 x=0 ||

Dividing both sides of (2.4) by ¢, we note that the line integral of E from

A to B has the physical meaning of work per unit charge done by the field in

moving the test charge from A4 to B. This quantity is known as the “voltage

between A and B” and is denoted by the symbol [V13, having the units of
volts, Thus

V]E = E E - dl 2.5)

When the path under consideration is a closed path, as shown in Fig. 2.3,
the line integral is written with a circle associated with the integral sign in the

manner§ E . dl. The line integral of a vector around a closed path is known
[0}

as the “circulation” of that vector. In particular, the line integral of E around a
closed path is the work per unit charge done by the field in moving a test
charge around the closed path. It is the voltage around the closed path and is

Figure 2.3. Closed path C in a region of electric field.
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also known as the “electromotive force.” We shall now consider an example
of evaluating the line integral of a vector around a closed path.

Example 2.3. Let us consider the force field
F = xi

y

and evaluate ff; F . dl where C is the closed path ABCDA shown in Fig. 2.4.
&

AV
3,95
C
(1, 3)
D A
A B
1,1 G, D

=X

Figure 2.4. For evaluating the line integral of a vector field around a
closed path.

Noting that

5€ABCMF.d1=f;F.d1+f:F.d1+LDF.lerJ:F,dl 2.6)

we simply evaluate each of the line integrals on the right side of (2.6) and add
them up to obtain the required quantity. Thus for the side 4B,

y=1, dy=0, dl=adxi,+ O, =dxi,
Fedl=(xi)e(dxi,)=0
B
[[Feat=0
A
For the side BC,
= B dx =0, dl= ), + dyi, = dyi,
Fedl =QGi)e (dyi)=3dy
c 5
jlhdl:j 3dy =12
B 1
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For the side CD,

y=24x, dy = dx, dl = dxi, + dxi,
F o dl = (xi,)) « (dxi, + dxi,) = xdx

I:F-dlzj:xdx=—4

x=1, dx =0, dl = (0)i, + dyi,
Fedl=(,) @dyi)=dy

L’:F dl— j: dy — —2
Finally,

§ Fedl=0+12—4—2=6
ABCDA

2.2 THE SURFACE INTEGRAL

Let us consider a region of magnetic field and an infinitesimal surface at a
point in that region. Since the surface is infinitesimal, we can assume the
magnetic flux density to be uniform on the surface, although it may be non-
uniform over a wider region. If the surface is oriented normal to the magnetic
field lines, as shown in Fig. 2.5(a), then the magnetic flux crossing the surface
is simply given by the productof the surface area and the magnetic flux
density on the surface, that is, B AS. If, however, the surface is oriented
parallel to the magnetic field lines, as shown in Fig. 2.5(b), there is no

B B Normal B
A t f A
A 1.“ A A Lhu ‘MT An
d | AS A\
/ | AS /l 7AS
|1 | qrrl

(a) (b) (c)

Figure 2.5. An infinitesimal surface AS in a magnetic field B oriented (a)
normal to the field, (b) parallel to the field, and (c) with its normal making
an angle & to the field.
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magnetic flux crossing the surface. If the surface is oriented in such a manner
that the normal to the surface makes an angle & with the magnetic field lines
as shown in Fig. 2.5(c), then the amount of magnetic flux crossing the surface
can be determined by considering that the component of B normal to the
surface is B cos o and the component tangential to the surface is B sin a.
The component of B normal to the surface results in a flux of (B cosa) AS
crossing the surface whereas the component tangential to the surface does
not contribute at all to the flux crossing the surface. Thus the magnetic flux
crossing the surface in this case is (B cos &) AS. We can obtain this result
alternatively by noting that the projection of the surface onto the plane
normal to the magnetic field lines is AS cos a.

Let us now consider a large surface S in the magnetic field region, as
shown in Fig. 2.6. The magnetic flux crossing this surface can be found by

Normal

Figure 2.6. Division of a large surface S in a magnetic field region into a
number of infinitesimal surfaces.

dividing the surface into a number of infinitesimal surfaces AS,, AS,, AS,,
... AS, and applying the result obtained above for each infinitesimal surface
and adding up the contributions from all the surfaces. To obtain the con-
tribution from the jth surface, we draw the normal vector to that surface and
find the angle o, between the normal vector and the magnetic flux density
vector B, associated with that surface. Since the surface is infinitesimal, we
can assume B, to be the value of B at the centroid of the surface and we can
also erect the normal vector at that point. The contribution to the total
magnetic flux from the jth infinitesimal surface is then given by

Ay, = B, cosa,; AS; 2.7

where the symbol y represents magnetic flux. The total magnetic flux crossing
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the surface .S is then given by

wls = Ay, + Ay, + Ay, + ... + Ay,
= B, cos 0, AS, - B, cos &, AS, + B; cos 03 AS;
4+ ... B, cosa, AS,

— 3 B, cosa, AS, (2.8)
J—1

In vector notation we make use of the dot product operation between two
vectors to write this quantity as

[wls = le B, - AS,i,, (2.9)

where i,, is the unit vector normal to the surface AS,. In fact, by recalling that
the infinitesimal surface can be considered as a vector quantity having
magnitude equal to the area of the surface and direction normal to the
surface, that is,

AS, = AS, i, (2.10)

we can write (2.9) as
wls = JZZ]I B, . AS, .11

Example 2.4. Let us consider the magnetic field given by
B = 3xy2i, Wb/m?

and determine the magnetic flux crossing the portion of the xy plane lying
between x =0, x =1, y=0,and y = 1.

For convenience, we shall divide the surface into 25 equal areas as showi
in Fig. 2.7(a). We shall designate the squares as 11, 12, ..., 15,21,22, ..., 55
where the first digit represents the number of the square in the x direction and
the second digit represents the number of the square in the y direction. The
x and y coordinates of the midpoint of the ijth square are (2i — 1)0.1 and
(2j — 1)0.1, respectively, as shown in Fig. 2.7(b). The magnetic ficld at the
center of the ijth square is then given by

B, = 3(2i — 1)(2j — 1)20.001i,

Since we have divided the surface into equal areas and since all areas are in
the xy plane,

AS,; = 0.04i, for all i and j
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Figure 2.7, (a) Division of the portion of the xy plane lying between x = 0,
x =1,y =0, and y = 1 into 25 squares. (b) The area corresponding to the
ifth square.

The required magnetic flux is then given by

5 5

], = ZE ,; B, - AS,
5

3 3(2i — 1)(2j — 1)20.001i, » 0.04i,

1 /=1

0012 izi;l ; Qi — 12 — 1)?

0.0
0.00012(1 +3 4+ 547491 + 9+ 25+ 49 + 81)
0.495 Wb =

I
DM

i

The result that we have obtained for [y]s in Example 2.4 is approximate
since we have divided the surface S into a finite number of areas. By dividing
it into larger and larger numbers of squares, we can obtain more and more
accurate results. In fact, the problem can be conveniently formulated for a
computer solution, and by varying the number of squares from a small value
to a large value, the convergence of the result can be verified. The value to
which the result converges is that for which the number of squares in each
direction is infinity. The summation in (2.11) then becomes an integral that
represents exactly the magnetic flux crossing the surface and is given by

vls=[ B.ds (2.12)

where the symbol S associated with the integral sign denotes that the integra-
tion is performed over the surface S. The integral on the right side of (2.12) is
known as the “surface integral of B over S.” The surface integral is a double
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integral since dS is equal to the product of two differential lengths. In fact, the
work in Example 2.4 indicates that as 7 and j tend to infinity, the double
summation becomes a double integral involving the variables of integration
x and y.

Example 2.5. We shall illustrate the evaluation of the surface integral by
computing the exact value of the magnetic flux in Example 2.4

To do this, we note that at any arbitrary point (x, y) on the surface, the
infinitesimal surface vector is given by

dS =dxdyi,
The value of B « dS at the point (x, y) is

B« dS =3xy%, s dxdyi,
= 3xy? dx dy

Thus the required magnetic flux is given by

Wls= [ B-ds

- J.;O J'ylo 3xy*dxdy = 0.5Wb

When the surface under consideration is a closed surface, the surface
integral is written with a circle associated with the integral sign in the manner

fj; B . dS. The surface integral of B over the closed surface .S is simply the
S
magnetic flux emanating from the volume bounded by the surface. We shall
now consider an example of evaluating 5(; B . dS.

N
Example 2.6. Let us consider the magnetic field

B = (x + i, + (I — 3p)i, + 2zi,

and evaluate §; B« dS where S is the surface of the cubical box bounded by
S

the planes
=0, x=1
=0, y=1
z=20, z=1

as shown in Fig. 2.8,
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1

e f

X

Figure 2.8. For evaluating the surface integral of a vector field over a
closed surface.

Noting that

ffsB-dS:Lbch-dS—i- B-dS—I—LeMB-dS—[— B . dS

efgh bfec

+ Beas+ [ B.ds (2.13)

aefb dhge

we simply evaluate each of the surface integrals on the right side of (2.13) and
add them up to obtain the required quantity. In doing so, we recognize that
since the quantity we want is the magnetic flux out of the box, we should
direct the normal vectors toward the outside of the box. Thus for the surface
abed,

x=0, B=2 +(—3i +2z, dS=—dydzi,
B.dS=—2dydz

1 1
B-dS:J j (—2)dydz = —2
abcd z=0 vy=0
For the surface efgh,

x =1, B = 3i, + (1 — 3p)i, + 2zi,, dS =dydzi,
B.dS=3dydz

B-dS=LI=D L:osdydz=3

efegh
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For the surface aehd,

y=0, B=(c+i, +li,+ 2z, dS=—dzdxi,
B.dS= —dzdx

.Leth NS = L1=O J.;o (—Ddzdx =—1

For the surface bz,

y=1, B = (x + 2)i, — 2i, + 2zi,, dS = dz dx1i,
B.dS=—2dzdx

B.dszj’

bfegc x=0

f‘ (—2) dzdx = —2
z=0

For the surface aefb,
z=0, B = (x + 2)i, + (1 — 3y}, + 0i,, dS = —dxdyi,
B.dS=0
B.dS=0

aefbh

For the surface dhgc,
z=1, B=(x+2i, + 10— 3, +2i, dS=dxdyi,
B:dS=2dxdy
1 1
B ° — ==
J:ihgc dS J.J'=0 J;=0 2 dx dy 2
Finally,
§ BedS= 2]3-1-240+2=0
S

2.3 FARADAY'S LAW

In the previous sections we introduced the line and surface integrals. We
are now ready to consider Maxwell’s equations in integral form. The first
equation, which we shall discuss in this section, is a consequence of an
experimental finding by Michael Faraday in 1831 that time-varying magnetic
fields give rise to electric fields and hence it is known as “Faraday’s law.”
Faraday discovered that when the magnetic flux enclosed by a loop of wire
changes with time, a current is produced in the loop, indicating that a voltage
or an “clectromotive force,” abbreviated as emf, is induced around the loop.
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The variation of the magnetic flux can result from the time variation of the
magnetic flux enclosed by a fixed loop or from a moving loop in a static
magnetic field or from a combination of the two, that is, a moving loop in a
time-varying magnetic field.

Thus far we have merely stated Faraday’s finding without regard to the
polarity of the induced emf around the loop or that of the magnetic flux
enclosed by the loop. To clarify the point, let us consider a planar circular
loop in the plane of the paper as shown in Fig. 2.9. Then we can talk of emf
induced in the clockwise sense or in the counterclockwise sense. The emf
induced in the clockwise sense is the line integral of E (§ E « dl) evaluated by
traversing the loop in the clockwise direction, as shown in Figs. 2.9(a) and
2.9(b). The emf induced in the counterclockwise sense is the line integral of
E(§ E . dl) evaluated by traversing the loop in the counterclockwise direction,
as shown in Figs. 2.9(c) and 2.9(d). One is, of course, the negative of the other.
Similarly, we can talk of enclosed magnetic flux directed into the paper or out
of the paper. The enclosed magnetic flux into the paper is the surface integral
of B (j B . dS) evaluated over the plane surface bounded by the loop and with
the normal to the surface directed into the paper, as shown in Figs, 2.9(a) and
2.9(c). The enclosed magnetic flux out of the paper is the surface integral of
B (f B + dS) evaluated over the plane surface bounded by the loop and with
the normal to the surface directed out of the paper, as shown in Figs. 2.9(b)
and 2.9(d). One is, of course, the negative of the other.

(a) (b) () (d)

Figure 2.9. Four possible pairs of directions of traversal around a planar
circular loop and normal to the surface bounded by the loop.

If we do not pay any attention to the polarities, we can write four equa-
tions relating the emf around the loop to the magnetic flux enclosed by the
loop. These are

[emf]clockwise = %[magnetic ﬂux]into the paper (2'143)
[emf]clockwise = %[magnetic ﬂux]out of the paper (2'14b)
[emf]counterclockwisa = %[magnetic ﬂux]into the paper (2140)

[emf]counterclockwise == g?[magnetic ﬂux]out of the paper (2'14d)
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The fourth equation is, however, consistent with the first and the third
equation is consistent with the second. Thus we are left with a choice between
the first and the second. Only one of them can be correct since they provide
contradictory results for the emf. Faraday’s experiments showed that the
second equation is the one that should be used. Alternatively, if we wish to
work with clockwise induced emf and magnetic flux into the paper (or with
counterclockwise induced emf and magnetic flux out of the paper), we must
include a minus sign in front of the time derivative. This is, in fact, what is
done conventionally. The convention is to use that normal to the surface
which is directed toward the advancing direction of a right-hand screw when
it is turned in the sense in which the loop is traversed, as shown in Figs. 2.10(a)
and 2.10(b). This is known as the “right-hand screw rule” and is applied
consistently for all electromagnetic field laws. Hence, it is well worthwhile
digesting it at this early stage.

o 3

(a)

Figure 2.10. Right-hand screw rule convention employed in the formula-
tion of electromagnetic field laws.

We can now express Faraday’s law mathematically as

d
E-dl:-—fB-ds 2.15
§C dt S ( )

where S is a surface bounded by C. For the law to be unique, the surface S
need not be a plane surface and can be any curved surface bounded by C. This
tells us that the magnetic flux through all possible surfaces bounded by C must
be the same. We shall make use of this later. In fact, if Cis not a planar loop,
we cannot have a plane surface bounded by C. A further point of interest is
that C need not represent a loop of wire but can be an imaginary closed path.
It means that the time-varying magnetic flux induces an electric field in the
region and this results in an emf around the closed path. If a wire is placed in
the position occupied by the closed path, the emf will produce a current in the
loop simply because the charges in the wire are constrained to move along the
wire. Let us now consider some examples.

Example 2.7. A rectangular loop of wire with three sides fixed and the fourth
side movable is situated in a plane perpendicular to a uniform magnetic field
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<Y

X X X X X X X X

Figure 2,11. A rectangular loop of wire with a movable side situated in
a uniform magnetic field.

B = B,i,, asillustrated in Fig. 2.11. The movable side consists of a conducting
bar moving with a velocity v, in the y direction. It is desired to find the emf
induced in the loop.

Letting the position of the movable side at any time ¢ be y, + v,¢, we
obtain the magnetic flux enclosed by the loop and directed into the paper as

v = (area of the loop)B,
= l(y, + vot)B,

The emf induced in the loop in the clockwise sense is then given by

4
jﬁE-dl_ s

= — L1 + v0)By]
= —B,ly,

Thus if the bar is moving to the right, the induced emf produces a current in
the counterclockwise sense. Note that this polarity of the current is such that
it gives rise to a magnetic field directed out of the paper inside the loop. The
flux of this magnetic field is in opposition to the flux of the original magnetic
field and hence tends to decrease it. This observation is in accordance with
“Lenz’s law,” which states that the induced emf is such that it acts to oppose
the change in the magnetic flux producing it. The minus sign on the right side
of Faraday’s law ensures that Lenz’s law is always satisfied.

It is also of interest to note that the induced emf can also be interpreted
as due to the electric field induced in the moving bar by virtue of its motion
perpendicular to the magnetic field. Thus a charge Q in the bar experiences a
force F = Qv x B or Qv,i, x Byi, = Qv,Bi,. To an observer moving with
the bar, this force appears as an electric force due to an electric field F/Q =
vy Bi,. Viewed from inside the loop, this electric field is in the counter-
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clockwise direction and hence the induced emf is v,B,/ in that sense as
deduced above from Faraday’s law. This concept of induced emf is known
as the “motional emf concept,” which is employed widely in the study of
electromechanics. -

Example 2.8. A time-varying magnetic field is given by
B = B, cos ot i,

where B, is a constant. It is desired to find the induced emf around a rectan-
gular loop in the xz plane as shown in Fig. 2.12.

X X X X X X X
v x=0
2  ——
X X X X X X X
z=0 z=b
X A X X X X X ¥ X
X X X X X X X
< B, cos wf i,
x=a :
X l X X X X X X

X
Figure 2.12. A rectangular loop in the xz plane situated in a time-varying
magnetic field,

The magnetic flux enclosed by the loop and directed into the paper is given
by

b ]
v = LB + dS = J-FO x=0B0 coswt i, dxdzi,
b a
= B, cos wt J. dx dz = abB, cos wt
z=0 Jx=0

The induced emf in the clockwise sense is then given by

d
E'dl:—'— BodS
§C dt S

= — %[abB0 cos wt] = abB,w sin wt

The time variations of the magnetic flux enclosed by the loop and the
induced emf around the loop are shown in Fig. 2.13. It can be seen that when
the magnetic flux enclosed by the loop is decreasing with time, the induced
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Figure 2.13. Time variations of magnetic flux ¥ enclosed by the loop of
Fig. 2.12, and the resulting induced emf around the loop.

emf is positive, thereby producing a clockwise current if the loop were a wire.
This polarity of the current gives rise to a magnetic field directed into the
paper inside the loop and hence acts to increase the magnetic flux enclosed by
the loop. When the magnetic flux enclosed by the loop is increasing with time,
the induced emf is negative, thereby producing a counterclockwise current
around the loop. This polarity of the current gives rise to a magnetic field
directed out of the paper inside the loop and hence acts to decrease the
magnetic flux enclosed by the loop. These observations are once again con-
sistent with Lenz’s law. . ]

2.4 AMPERE’S CIRCUITAL LAW

In the previous section we introduced Faraday’s law, one of Maxwell’s
equations, in integral form. In this section we introduce another of Maxwell’s
equations in integral form. This equation, known as “Ampere’s circuital law,”
is a combination of an experiemental finding of Oersted that electric currents
generate magnetic fields and a mathematical contribution of Maxwell that
time-varying electric fields give rise to magnetic fields. It is this contribution
of Maxwell that led to the prediction of electromagnetic wave propagation
even before the phenomenon was discovered experimentally. In mathematical
form, Ampere’s circuital law is analogous to Faraday’s law and is given by

§ E-dl:fJ-dSJrifeoE-ds .16)
C S dt S

0
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where S is any surface bounded by C. Here again, in order to evaluate the
surface integrals on the right side of (2.16), we choose that normal to the
surface which is directed toward the advancing direction of a right-hand
screw when it is turned in the sense of C, just as in the case of Faraday’s law.
Also, both integrals on the right side of (2.16) must be evaluated on the same
surface, whatever be the surface chosen.

The quantity J on the right side of (2.16) is the volume current density
vector having the magnitude equai to the maximum value of curreni per unit
area (amp/m2) at the point under consideration, as discussed in Sec. 1.5.

Thus the quantity f J « dS, being the surface integral of J over S, has the
s

meaning of current due to flow of charges crossing the surface S bounded by
C. It also includes line currents, that is, currents flowing along thin filamentary
wires enclosed by C, and surface currents, that is, currents flowing along

ribbon-like wires enclosed by C. Thus f J » dS, although formulated in
S

terms of the volume current density vector J, represents the algebraic sum of
all the currents due to flow of charges across the surface S.

The quantity f €,E + dS on the right side of (2.16) is the flux of the vector
N

field €,E crossing the surface S. The vector €,E is known as the “displacement
vector” or the “displacement flux density vector” and is denoted by the
symbol D. By recalling from (1.52) that E has the units of (charge) per
[(permittivity)(distance)?], we note that the quantity D has the units of charge

per unit area or C/m2. Hence the quantity J. €,E « dS, that is, the displace-
S
ment flux has the units of charge, and the quantity%f €,E + dS has the
S

units of %(charge) or current and is known as the “displacement current.”

Physically, it is not a current in the sense that it does not represent the
flow of charges, but mathematically it is equivalent to a current crossing the
surface S.

B

The quantit
q y ffc s
vector field B/u, around the closed path C. We learned in Sec. 2.1 that the

« dl on the left side of (2.16) is the line integral of the

quantityff E - dl has the physical meaning of work per unit charge associat-
c

ed with the movement of a test charge around the closed path C. The quantity

§ L dl does not have a similar physical meaning. This is because magnetic
c Ko

force on a moving charge is directed perpendicular to the direction of motion
of the charge as well as to the direction of the magnetic field and hence does
not do work in the movement of the charge. The vector B/x, is known as the
“magnetic field intensity vector” and is denoted by the symbol H. By recalling
from (1.68) that B has the units of [(permeability)(current)(length)] per
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[(distance)?], we note that the quantity H has the units of current per unit

distance or amp/m. This gives the units of current or amp to fi; H.dl.In
c
analogy with the name “electromotive force” for 36 E « dl, the quantity
c

§ H . dlis known as the “magnetomotive force,” abbreviated as mmf.
c

Replacing B/u, and €,E in (2.16) by H and D, respectively, we rewrite
Ampere’s circuital law as

§Hdhﬁﬁuw+% D.ds @2.17)
(o) S S

In words, (2.17) states that “the magnetomotive force around a closed path C
is equal to the total current, that is, the current due to actual flow of charges
plus the displacement current bounded by C.” When we say “the total current
bounded by C,” we mean “the total current crossing any given surface S
bounded by C.” This implies that the total current crossing all possible sur-

faces bounded by C must be the same since for a given C, ff; H » dl must have
c

a unique value.

Example 2.9. An infinitely long, thin, straight wire situated along the z axis
carries a current J amperes in the z direction. It is desired to find 3@ H.dl
c

around a circle of radius a lying on the xy plane and centered at the origin as
shown in Fig. 2.14.

Let us consider the plane surface enclosed by C. The total current crossing
the surface consists entirely of the current 7 carried by the wire. In fact, since
the wire is infinitely long, the total current crossing any of the infinite number
of surfaces bounded by C is equal to I. The situation is illustrated in Fig,
2.14(a) for a few of the infinite number of surfaces. Thus, noting that the
current  is bounded by C in the right-hand sense, and that it is uniquely given,
we obtain

§JL&=I (2.18)

We can proceed further and evaluate H at points on the circular path from
symmetry considerations. In order for SF H . dl to be nonzero, H must be
c

directed (or have a component) tangential to the circular path and then from
symmetry considerations, it must have the same magnitude at all points on the
circle since the circle is centered at the wire. We, however, know from
elementary considerations of the magnetic field due to a current element that
H must be directed entirely tangential to the circular path. Thus let us divide
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a
L

(a) (b)

Figure 2.14. (a) For illustrating the uniqueness of a wire current enclosed
by a closed path for an infinitely long, straight wire. (b) For finding the
magnetic field due to the wire.

the circle into a large number of equal segments, say #, as shown in Fig.
2.14(b). Since the length of each segment is 2za/n and since H is parallel to
the segment, H ¢ dl for the segment is (2za/n)H and

ff H.dl= znﬂH (number of segments)
c

From (2.18), we then have
2naH =1

or
T
Hi—me

Thus the magnetic field intensity due to the infinitely long wire is directed
circular to the wire in the right-hand sense and has a magnitude I/2ra where
a is the distance of the point from the wire. The method we have discussed
here is a standard procedure for the determination of the static magnetic field
due to current distributions possessing certain symmetries. We shall include
some cases in the problems for the interested reader. =

If the wire of Example 2.9 is finitely long, say, extending from —d to +d
on the z axis, then the construction of Fig. 2.15 illustrates that for some
surfaces the wire pierces through the surface whereas for some other surfaces
it does not. Thus for this case there is no unique value of the wire current
alone that is enclosed by C. Hence there must be a displacement current
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Figure 2.15. For illustrating that the wire current enclosed by a closed path
is not unique for a finitely long wire,

through the surfaces in addition to the wire current so that the total current
enclosed by C is uniquely given. In fact, this displacement current is provided
by the time-varying electric field due to charges accumulating at one end and
depleting at the other end of the current-carrying wire. Thus considering, for
example, the surfaces S| and S; and setting the total currents through S, and
S; to be equal, we have

f J-ds+if D'dS=f J-ds+if D.dS (2.19)
5 dt Js, . at Js.
Now, since the wire pierces through S; in the right-hand sense,
JedS=1 (2.20)
S
The wire does not pierce through S,. Hence

JedS=0 (2.21)
83

Substituting (2.20) and (2.21) into (2.19), we get

d B d )
I+ £ SID-dS—O—I——dtL!D ds (2.22)
or
d d _
E SaD'dS—gt—J‘SlD'ds—I (2.23)

Reversing the sense of evaluation of the surface integral of D over S, and
changing the minus sign to a plus sign, we obtain
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7§
mtel D.dS=1 2.24)
dt Sa+81 (

Thus the displacement current emanating from the closed surface S; + S; is
equal to 1.

Another example in which the wire current enclosed by C is not uniquely
defined is shown in Fig. 2.16 which is that of a simple circuit consisting of a
capacitor driven by an alternating voitage source. Considering two surfaces
S, and S, where S, cuts through the wire and S, passes between the plates of
the capacitor, we have

JedS=1 (2.25)

81

and

JedS =0 (2.26)

1A

Figure 2.16. A capacitor circuit illustrating that the wire current enclosed
by a closed path is not unique.

If we neglect fringing and assume that the electric field in the capacitor is
contained entirely within the region between the plates, then

D.dS=0 2.27)

S

For ff H . dI to be unique,
c

fJ-dS—l—i D-dS=fJ-dS+ifD-dS (2.28)
S1 dt S S2 dt Sa

Substituting (2.25), (2.26), and (2.27) into (2.28), we obtain

d

%) D.dS—1 (2.29)
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Thus the displacement current, that is, the time rate of change of the displace-
ment flux between the capacitor plates, is equal to the wire current.

Example 2.10. A time-varying electric field is given by
E = E,zsin wt i,

where E, is a constant. It is desired to find the induced mmf around a rectan-
gular loop in the yz plane, as shown in Fig. 2.17.

J) X X X X
P
: Eyzsinwt i
X X X X
Z=Ojk Yz=5
X X [x x
~ —_— 7
X y=0
X X X X

Figure 2.17. A rectangular loop in a time-varying electric field.

The total current here is composed entirely of displacement current. The
displacement flux enclosed by the loop and directed into the paper is given by

LD-dSZfbofdoeoEozsmwtix-dydzix
el

] d
= €,E, sin wt J. f zdydz
z=0 Jy=0

2
. fol%i'Eg Sin wt

The induced mmf around C is then given by

ff; H-dlz% D . ds
(& s

2

= %(fob—on sin cot)

2
— Eodeng Cos !



2.5 GAUSS’ LAW FOR THE MAGNETIC FIELD

In the previous two sections we learned two of the four Maxwell’s equa-
tions. These two equations have to do with the line integrals of the electric
and magnetic fields around closed paths. The remaining two Maxwell’s
equations are pertinent to the surface integrals of the electric and magnetic
fields over closed surfaces. These are known as Gauss’ laws. The Gauss’ law
for the magnetic field states that “the total magnetic flux emanating from a
closed surface S is equal to zero.” In mathematical form, this is given by

§SB «dS=0 (2.30)

Equation (2.30) is not independent of Faraday’s law. This can be shown
by considering a closed path C and two surfaces S; and S,, both of which are
bounded by C as shown in Fig. 2.18. Applying Faraday’s law to C and S, we
have

jc E-dl:-if B . dS, .31)
c dt 51

where dS, is directed out of the volume bounded by the closed surface
S; + S,. Applying Faraday’s law to C and S,, we have

§E-dl=iJB-dS2 2.32)
c dt S

where dS, is directed out of the volume bounded by S; + §;. Combining
(2.31) and (2.32), we obtain

d

d | g.gs, =2 | B.ds, (2.33)
Sa

Tt g dt

Figure 2.18. A closed path C, and two surfaces S1 and S, bounded by C.

69
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or
d
4 B.dS—0 (2.34)
dt Si1+8
or
§ B « dS = constant with time (2.35)
S1+82

Since there is no experimental evidence that the right side of (2.35) is nonzero,
it follows that

§SB-dS=o

where we have replaced S; 4 S, by S.

In physical terms, (2.30) signifies that magnetic charges do not exist and
magnetic flux lines are closed. Whatever magnetic flux enters (or leaves) a
certain part of a closed surface must leave (or enter) through the remainder of
the closed surface.

2.6 GAUSS’ LAW FOR THE ELECTRIC FIELD

Gauss’ law for the electric field states that “the total displacement flux
emanating from a closed surface S is equal to the total charge contained
within the volume ¥V bounded by that surface.” This statement, although
familiarly known as Gauss’ law, has its origin in experiments conducted by
Faraday. In mathematical form, Gauss’ law for the electric field is given by

D.dS= | pav (2.36)
$, J,

where p is the volume charge density associated with points in the volume V.
The volume charge density at a point is defined as the charge per unit volume
(C/m?) at that point in the limit that the volume shrinks to zero. Thus

As an illustration of the computation of the charge contained in a given
volume for a specified charge density, let us consider

p=x+y—+zCm?

and the cubical volume ¥V bounded by the planes x =0, x=1, y =0,
y=1,z=0, and z = 1. Then the charge Q contained within the cubical
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volume is given by
Q=fpdv=f:= j1 fl (x+y+2)dxdydz

_f=0£ 0[xz—l—yz ];odxdy

= on= (45 + 5 ) dxdy

=£=0|:xy+ -|—— ; dx

_L_ (x + Ddx
2 1

=[5+,

_3

=3

Although the quantity on the right side of (2.36), that is, the charge
contained within the volume ¥ bounded by the surface S associated with the
quantity on the left side of (2.36) is formulated in terms of the volume charge
density, it includes surface charges, line charges, and point charges enclosed
by S. Thus it represents the algebraic sum of all the charges contained in the
volume V. Let us now consider an example.

Example 2.11. A point charge Q is situated at the origin. It is desired to
find ff D . 4S and D over the surface of a sphere of radius @ centered at the
s
origin.
According to Gauss’ law for the electric field, the required displacement
flux is given by

3€SD cdS=0 (2.38)

To evaluate D on the surface of the sphere, we note that in order for fl; D.dS
S

to be nonzero, D must be directed normal to the spherical surface. From
symmetry considerations, it must have the same magnitude at all points on the
spherical surface since the surface is centered at the origin. Thus let us divide
the spherical surface into a large number of infinitesimal areas, as shown in
Fig. 2.19. Since D is normal to each area, D « dS for each area is simply equal
to D dS. Hence
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D D

b~ ol

Figure 2.19. For evaluating the displacement flux density over the surface
of a sphere centered at a point charge,

fst-dS: DLdS

= D (surface area of the sphere)

= 4ga*D
From (2.38), we then have
4na*D = Q
or
p_ @

4na®

Thus the displacement flux density due to the point charge is directed away
from the charge and has a magnitude Q/4na? where qg is the distance of the
point from the charge. The method we have discussed here is a standard
procedure for the determination of the static electric field due to charge dis-
tributions possessing certain symmetries. We shall include some cases in the
problems for the interested reader. -

Gauss’ law for the electric field is not independent of Ampere’s circuital
law if we recognize that, in view of conservation of electric charge, “the total
current due to flow of charges emanating from a closed surface S is equal to
the time rate of decrease of the charge within the volume V bounded by S,”

that is,
d
J.dS = ——f dv
§S dt Vp

§J.ds+g_fpdv=0 2.39)
S t 14

or

This statement is known as the “law of conservation of charge.” In fact, it is
this consideration that led to the mathematical contribution of Maxwell to
Ampere’s circuital law. Ampere’s circuital law in its original form did not
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include the displacement current term which resulted in an inconsistency with
(2.39) for time-varying fields.

Returning to the discussion of the dependency of Gauss’ law on Ampere’s
circuital law through (2.39), let us consider the geometry of Fig. 2.18.
Applying Ampere’s circuital law to C and S, and to C and S, we get

jEH.dl: [ 5.as, +_fD ds, (2.402)
C
and
§H.d1:—f J.dsz—if D.ds, (2.40b)
[od S dt S

respectively. Combining (2.40a) and (2.40b), we obtain

jﬁ J.ds+%§ D-dS—0 (2.41)
S1+S3 S+ 82

Now, using (2.39), we have

d
— g )Pt g §D ds = 0
or
EH D-dS—J pdvi‘:O (2.42)
EARP ,

where we have replaced .S, + S, by S and where ¥ is the volume enclosed by
S, + S,. Thus from (2.42), we get

§ D.dS — [ pdv— constant with time (2.43)
s Jv

Since there is no experimental evidence that the right side of (2.43) is nonzero,
it follows that

f{;SD-dS:J.Vpdv

thereby giving Gauss’ law for the electric field.

2.7 SUMMARY

We first learned in this chapter how to evaluate line and surface integrals
of vector quantities and then we introduced Maxwell’s equations in integral
form. These equations, which form the basis of electromagnetic field theory,
are given as follows in words and in mathematical form and are illustrated in
Figs. 2.20 through 2.23.
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FARADAY’S LAW: The electromotive force around a closed path C is
equal to the negative of the time rate of change of the magnetic flux enclosed
by that path, that is,

ff E-dl:—ifB.ds (2.44)
c dt S

AMPERE’S CIRCUITAL LAw: The magnetomotive force around a closed
path C is equal to the sum of the current enclosed by that path due to the
actual flow of charges and the displacement current due to the time rate of
change of the displacement flux enclosed by that path, that is,

§H-dl=fJ»dS+%fD-dS (2.45)
(o4 S S

Figure 2.21. For illustrating Ampere’s circuital law,
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GAuss’ LAw ForR THE MAGNETIC FIELD: The magnetic flux emanating
from a closed surface S is equal to zero, that is,

ffs B.dS=0 (2.46)

Gauss’ Law For THE ELECTRIC FIELD: The displacement flux emanating
from a closed surface S is equal to the charge enclosed by that surface, that is,

§s D.dS—= L pdv (2.47)

The vectors D and H, known as the displacement flux density and the
magnetic field intensity vectors, respectively, are related to E and B, known
as the electric field intensity and the magnetic flux density vectors, respec-

Dy
// Fri \\

Figure 2.22. For illustrating Gauss® law for the magnetic field.

Figure 2.23. For illustrating Gauss’ law for the electric field.
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tively, in the manner

D = ¢,E (2.48)
B

H=— 2.49
Ho )

where €, and u, are the permittivity and the permeability of free space,
respectively. In evaluating the right sides of (2.44) and (2.45), the normal
vectors to the surfaces must be chosen such that they are directed in the right-
hand sense, that is, toward the side of advance of a right-hand screw as it is
turned around C, as shown in Figs. 2.20 and 2.21. We have also learned that
(2.46) is not independent of (2.44) and that (2.47) follows from (2.45) with the
aid of the law of conservation of charge given by

§J.ds+ifpdv:o (2.50)
S dt |4

In words, (2.50) states that the sum of the current due to the flow of charges
across a closed surface S and the time rate of increase of the charge within
the volume ¥ bounded by S is equal to zero. In (2.46), (2.47), and (2.50) the
surface integrals must be evaluated in order to find the flux outward from the
volume bounded by the surface.

REVIEW QUESTIONS

2.1. How do you find the work done in moving a test charge by an infinitesimal
distance in an electric field ?

2.2. What is the amount of work involved in moving a test charge normal to the
electric field ?

2.3. What is the physical interpretation of the line integral of E between two points
A and B?

2.4. How do you find the approximate value of the line integral of a vector along a
given path?

2.5. How do you find the exact value of the line integral ?

2.6. What is the physical significance of the line integral of the earth’s gravita-
tional field intensity ?

2.7. What is the value of the line integral of the earth’s gravitational field intensity
around a closed path?

2.8. How do you find the magnetic flux crossing an infinitesimal surface ?

2.9. What is the magnetic flux crossing an infinitesimal surface oriented parallel
to the magnetic flux density vector?
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2.10.

2.11.

2.12.
2.13.

2.14.
2.15.

2.16.
2.17.
2.18.

2.19.
2.20.
2.21.

2.22.
2.23.
2.24.
2.25.
2.26.

2.27.

2.28.

2.29

2.30.

2.31.

2.32.

2.33.

For what orientation of the infinitesimal surface relative to the magnetic flux
density vector is the magnetic flux crossing the surface a maximum?

How do you find the approximate value of the surface integral over a given
surface?

How do you find the exact value of the surface integral ?

Provide physical interpretations for the closed surface integrals of any two
vectors of your choice.

State Faraday’s law.

Why is it necessary to have the minus sign associated with the time rate of
increase of magnetic flux on the right side of Faraday’s law ?

What is electromotive force?
What are the different ways in which an emf is induced around a loop ?

To find the induced emf around a planar loop, is it necessary to consider the
nagnetic flux crossing the plane surface bounded by the loop?

Discuss briefly the motional emf concept.
What is Lenz’s law ?

How would you orient a loop antenna in order to obtain maximum signal
from an incident electromagnetic wave which has its magnetic field linearly
polarized in the north-south direction?

State three applications of Faraday’s law.

State Ampere’s circuital law.

What are the units of the magnetic field intensity vector ?
What are the units of the displacement flux density vector?

What is displacement current? Give an example involving displacement cur-
rent.

Why is it necessary to have the displacement current term on the right side of
Ampere’s circuital law?

When can you say that the current in a wire enclosed by a closed path is uni-
quely defined ? Give two examples.

Give an example in which the current in a wire enclosed by a closed path is not
uniquely defined.

Is it meaningful to consider two different surfaces bounded by a closed path
to compute the two different currents on the right side of Ampere’s circuital

law to find if; H . dl around the closed path?

Discuss briefly the application of Ampere’s circuital law to determine the
magnetic field due to current distributions.

State Gauss’ law for the magnetic field. How is it derived from Faraday’s law ?

What is the physical interpretation of Gauss’ law for the magnetic field ?
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2.34.
2.35.
2.36.
2.37.
2.38.

2.39.
2.40.
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State Gauss’ law for the electric field.

How is volume charge density defined ?

State the law of conservation of charge.

How is Gauss’ law for the electric field derived from Ampere’s circuital law ?

Discuss briefly the application of Gauss’ law for the electric field to determine
the electric field due to charge distributions.

Summarize Maxwell’s equations in integral form.

Which two of the Maxwell’s equations are independent ?

PROBLEMS

2.1.

2.2,

2.3.

24.

2.5.

2.6.

2.7.

2.8,

For the force field F = x2i,, find the approximate value of the line integral of
F from the origin to the point (1, 3, 0) along a straight line path by dividing
the path into ten equal segments.

For the force field F = x2i,, obtain a series expression for the line integral of
F from the origin to the point (1, 3, 0) along a straight line path by dividing
the path into # equal segments. Express the sum of the series in closed form
and compute its value for values of # equal to 5, 10, 100, and co.

For the force field F = x2i,, find the exact value of the line integral of F from
the origin to the point (1, 3, 0) along a straight line path.
(1,1,0)

Given E = yi, + xi,, find j( E . dl along the following paths: (a)

0,0,0)
straight line path y = x, z = 0, (b) straight line path from (0, 0, 0) to (1, 0, 0)
and then straight line path from (1, 0, 0) to (1, 1, 0), and (c) any path of your
choice.

Show that for any closed path C, .(j;c dl = 0 and hence show that for a uniform
field F, .‘f;c F.dl=0.

Given F = yi, — xi,, find Sgc F . dl where C'is the closed path in the xy plane

consisting of the following: the straight line path from (0, 0, 0) to (—1, 1, 0),
the straight line path from (—1, 1, 0) to (0, /2, 0), the straight line path
from (0, 4/ 2, 0) to (0, 1, 0), the circular path from (0, 1, 0) to (1, 0, 0) having
its center at (0, 0, 0), and the straight line path from (1, 0, 0) to (0, 0, 0).

Given F = xyi, + yzi, + zxi,, find '(J;c F « dl where C is the closed path com-

prising the straight lines from (0, 0, 0) to (1, 1, 1), from (1, 1, 1) to (1, 1, 0), and
from (1, 1, 0) to (0, 0, 0).

For the magnetic flux density vector B = x2¢~7i, Wb/m2, find the approxi-
mate value of the magnetic flux crossing the portion of the xy plane lying
between x =0, x = 1, y = 0, and y = 1, by dividing the area into 100 equal
parts.
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2.9.

2.10.

2.11.

212,

2.13.

2.14.

2.15.

2.16

2.17.

2.18.

2.19.

For the magnetic flux density vector B = x%~*i, Wb/m2, obtain a series
expression for the magnetic flux crossing the portion of the xy plane lying
between x =0, x = 1, y = 0, and y = 1, by dividing the area into n? equal
parts. Express the sum of the series in closed form and compute its value for
values of » equal to 5, 10, 100, and co.

For the magnetic flux density vector B = x2e™7i, Wb/m?, find the exact value
of the magnetic flux crossing the portion of the xy plane lying between x = 0,
x =1,y =0, and y = 1, by evaluating the surface integral of B.

Given A = xi, + yi, + zi,, find fSA + dS where S is the hemispherical sur-

face of radius 2 m lying above the xy plane and having its center at the origin.

Show that for any closed surface S, ffs dS = 0 and hence show that for a uni-

form field A, jgsA . dS —0.

Given J = 3xi, + (v — i, + (2 + 2)i, amp/m?, find f};sJ « dS, that is, the

current flowing out of the surface S of the rectangular box bounded by the
planessx =0, x =1,y =0,y =2,z =0,and z = 3.

Given E = (i, — xi,) cos 0t V/m, find the time rate of decrease of the
magnetic flux crossing toward the positive z side and enclosed by the path in
the xy plane from (0, 0, 0) to (1, 0, 0) along y = 0, from (1, 0, 0) to (1, 1, 0)
along x = 1, and from (1, 1, 0) to (0, 0, 0) along y = x?.

A magnetic field is given in the xz plane by B = %iy Whb/m2, where By is a

constant. A rigid rectangular loop is situated in the xz plane and with its cor-
ners at the points (xo, zg), (X0, Zo -+ B), (xo + a, 2o + b), and (xo + a, 2o)-
If the loop is moving in that plane with a velocity v = vi, m/s, where v, is a
constant, find by using Faraday’s law the induced emf around the loop in the
sense defined by connecting the above specified points in succession. Discuss
your result by using the motional emf concept.

Assuming the rectangular loop of Problem 2.15 to be stationary, find the

induced emf around the loop if B = —B;c—° cos wt i, Wb/m2.

Assuming the rectangular loop of Problem 2.15 to be moving with the velocity

v = vgi, m/s, find the induced emf around the loop if B = 1—;2 cos ot i, Wb/m?,

For B = B, cos wt i, Wb/m2, find the induced emf around the closed path
comprising the straight lines successively connecting the points (0, 0, 0),
@, 0, 0.01), (1, 1, 0.02), (0, 1, 0.03), (0, 0, 0.04), and (0, 0, 0).

Repeat Problem 2.18 for the closed path comprising the straight lines succes-
sively connecting the points (0,0, 0), (1,0,0.01), (1,1,0.02), (0, 1, 0.03),
(0, 0, 0.04), (1, 0, 0.05), (1, 1, 0.06), (0, 1, 0.07), (0, 0, 0.08), and (0, 0, 0), with
a slight kink in the last straight line at the point (0, 0, 0.04) to avoid touching
the point.
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2.20.

2.21.

2.22,

2.23.

2.24.

2.25

2.26.

2.27.

2.28

2.29.

2.30.

CH. 2 MaxweLL’s EQUATIONS IN INTEGRAL FOrRM

A rigid rectangular locp of area A is situated normal to the xy plane and
symmetrically about the z axis. It revolves around the z axis at @, rad/s in the
sense defined by the curling of the fingers of the right hand when the z axis is
grabbed with the thumb pointed in the positive z direction. Find the induced
emf around the loop if B = B, cos @t i, where B, is a constant, and show
that the induced emf has two frequency components (@, - @;) and
lCOl — @, I

For the revolving loop of Problem 2.20, find the induced emf around the loop
if B= Bo(COS it i. + sin [O2%3 iy).

For the revolving loop of Problem 2.20, find the induced emf around the loop
if B = Bo(cos w1, — sin @, 7i,).

A current I; amp flows from infinity to a point charge at the origin through a
thin wire along the negative y axis and a current I, amp flows from the point
charge to infinity through another thin wire along the positive y axis. From

considerations of uniqueness of fj; H . dl, find the displacement current ema-
Cc

nating from (a) a spherical surface of radius 1 m and having its center at the
point (2, 2, 2) and (b) a spherical surface of radius 1 m and having its center
at the origin.

A current density due to flow of charges is given by J = y cos @t i, amp/m?2.
From consideration of uniqueness of fﬁc H . dl, find the displacement current

emanating from the cubical box bounded by the planes x =0, x =1,y = 0,
y=1z=0,andz=1.

An infinitely long, cylindrical wire of radius a, having the z axis as its axis,
carries current in the positive z direction with uniform density J, amp/m?2,
Find H both inside and outside the wire.

An infinitely long, hollow, cylindrical wire of inner radius @ and outer radius
b, having the z axis as its axis, carries current in the positive z direction with
uniform density J, amp/m2, Find H everywhere.

An infinitely long, straight wire situated along the z axis carries current 7 amp
. o — (0,1,0)

in the positive z direction. What are the values of fu - H . dl along (a) the
circular path of radius 1 m and centered at the origin and (b) along a straight
line path?

Using the property that §S B.dS =0, find J- B - dS over that portion of the
surface y = sin x bounded by x =0, x =7, z=0, and z =1, for B =
Vi, — xi,.

Given D = yi,, find the charge contained in the volume of the wedge-shaped
box defined by the planes x =0, x - z=1,y =0,y =1,and z = 0.

Given p = xe~** C/m?, find the displacement flux emanating from the sur-
face of the cubical box defined by the planes x =0, x =1,y =0,y =1,
z=0,and z = 1.
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2.31.

2.32.

2.33.

2.34.

2.35.

Charge is distributed uniformly along the z axis with density pro, C/m. Using
Gauss’ law for the electric field, find the electric field intensity due to the line
charge.

Charge is distributed uniformly with density p, C/m? within a spherical vol-
ume of radius ¢ m and having its center at the origin. Using Gauss’ law for the
electric field, find the electric field intensity both inside and outside the charge
distribution.

A point charge Q C is situated at the origin. What are the values of the dis-
placement flux crossing (a) the spherical surface x2 4+ y? + z2 =1, x > 0,
y > 0,and z > 0 and (b) the planesurfacex +y +z=1,x > 0,y > 0,and
z>0?

Given J = xi, amp/m2, find the time rate of increase of the charge contained
in the cubical volume bounded by the planes x =0, x =1, y =0, y =1,
z=0,and z = 1.

Given J = xi, amp/m?, find the time rate of increase of the charge contained
in the volume of the wedge-shaped box that is defined by the planes x = 0,
x+z=1,y=0,y=1andz=0.



