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Preface 

This book is designed for an introductory undergraduate course in electro

magnetics. In view of the rapid growth of the several specialized branches 

of electrical engineering, a student may not have the opportunity to take 
advanced courses in field theory. On the other hand, electromagnetics is one 

of the fundamental subjects having a wide variety of applications, as evi

denced by its place in the undergraduate core curriculum. Hence, a thorough 

understanding of the basic concepts of electromagnetics must be imparted 

to the electrical engineering student in the introductory course itself. 

To facilitate the aforementioned task, an attempt is made in this book 
to present the basic field theory at an introductory level and at the same time 

in sufficient depth to establish the concepts firmly in the student's mind and 

to enable the interested student to use the advanced books without having 

to relearn the subject or reorient his understanding of the concepts. This 
is done by combining the classical approach of introducing field theory with 

statics and the modern approach of emphasizing dynamics to develop Max
well's equations and the associated constitutive relations in a gradual manner 

and finally use them to discuss several applications. A number of worked-out 
examples are distributed throughout the book to illustrate and, in some 

cases, extend the various concepts and to aid the student's grasp of the sub
ject matter. 

The book does not presuppose knowledge of vector analysis. Chapter 1 
contains the discussion of coordinate systems and vector analysis necessary 
and sufficient for the remaining chapters. Other mathematical tools such as 

the Dirac delta function and the phasor technique are introduced wherever 
necessary. 

ix 



x Preface 

Chapters 2 and 3 are devoted to static electric and magnetic fields, 
respectively, in free space. Starting with Coulomb's and Ampere's laws in 
chapters 2 and 3, respectively, Maxwell's equations for static fields are 
introduced in a logical manner. The coverage of static magnetic field in 
chapter 3 is as much detailed as the coverage of static electric field in chapter 2 
unlike the traditional mode of presentation in which the electric field topics 
are emphasized. 

Chapter 4 is devoted to the electromagnetic field in free space. Maxwell's 
equations for time-varying fields are introduced. Energy storage in electric 
and magnetic fields and power flow in electromagnetic field are discussed. 
The use of phasor technique in dealing with sinusoidally time-varying vector 
fields is illustrated. Maxwell's equations and the power and energy relations 
are then specialized for sinusoidally time-varying fields. 

The discussion in chapters 2, 3, and 4 is in terms of the field vectors 
E and B. Chapter 5 is devoted to the study of fields in the presence of mate
rials. The interaction between fields and charges in materials is discussed in 
terms of equivalent charge and current distributions which are related to 
the fields and act as though they were situated in free space, thereby entering 
into Maxwell's equations. By defining field vectors D and H and relating 
them to E and B, respectively, Maxwell's equations for free space developed 
in chapters 2, 3, and 4 are generalized so that they can be used for material 
media as well as for free space. The power and energy relations developed 
in chapter 4 are also generalized for material media. Boundary conditions 
are derived for the fields. 

Chapter 6 serves as an introduction to the applications of Maxwell's 
equations. A variety of topics providing a continuous coverage from statics 
to electromagnetic waves via quasistatics and distributed circuits are dis
cussed. The presentation is oriented towards introducing the fundamental 
concepts leading to and associated with the applications. For example, the 
circuit parameters conductance, capacitance, and inductance are introduced 
simultaneously so that the student can better appreciate the development of 
the frequency behavior of a physical structure made up of two parallel 
conductors leading to the concept of a distributed circuit. Yet another 
example is the introduction of waveguides by starting with uniform plane 
waves incident obliquely on a perfect conductor, which provides a physical 
understanding of the waveguiding phenomenon. 

There is enough material in this book for a two-semester course. How
ever, by deemphasizing certain topics and omitting certain other topics, it 
is possible to use this text for a one-semester course. In the latter case, 
the student can read the remaining material by himself with the aid of the 
answers.to the odd-numbered problems included at the end of the book. The 
many example problems throughout and the numerous homework problems 
at the end of each chapter make this book especially suitable for a course 
oriented towards problem solving. 





1 

VECTOR ANALYSIS 

Vector analysis is a shorthand notation by means of which we perform 
mathematical manipulations with quantities which have associated with them 
not only magnitude but also direction in space. Such quantities are known 
as vectors, in contrast to scalars which have only magnitude associated with 
them. Force and velocity are examples of vectors.· Mass and length are 
examples of scalars. The electric and magnetic fields are examples of vectors. 
Voltage and current are examples of scalars. Since this book is concerned 
with electric and magnetic fields, it is necessary that we first learn the nota
tion and certain rules of vector analysis. To distinguish vector quantities 
from scalar quantities, we use boldface type: A. Graphically, the vector A 
is represented by a line whose length is equal to the magnitude of A, denoted 
I A I or simply A, and with an arrowhead at the end of the line pointing 
toward the direction of A. If the top of the page is taken to be pointing toward 
the north, then Figs. l.l(a), (b), and (c) represent vectors A, B, and C directed 
north, northeast, and west-northwest, respectively. 

1.1 Some Simple Rules 

a. Equality of Vectors.

Two vectors A and B are equal if and only if their magnitudes as well
as directions are the same. 

1 



















10 Vector Analysis

1:----------- c 

I 
is 

C • is 

L iA 
--........- _____ J 

, _____ ,. -C•iA_J 

Chap. 1 

Fig. 1.11. Components of a vector 
along mutually perpendicular unit 
vectors. 

Likewise, if we have three mutually perpendicular unit vectors iA, iB, and ic 
drawn from a point, then the component vectors of a vector D along the 
unit vectors are (D • iA)iA, (D • iB)iB, and (D • ic)ic, respectively, so that 

D = (D • iA)iA + (D • iB)iB + (D • ic)ic 
Furthermore, 

1.2 Coordinate Systems 

In the previous section we discussed some simple rules of vector analysis 
without involving any coordinate system. In physical problems, we cannot 
simply go on describing vectors by symbols A, B, C, and so on, if we wish 
to simplify the geometry associated with the mathematical operations using 

these vectors. We need to describe a vector in terms of component vectors 
along a set of reference directions such as east, north, and upward. Although 
several different coordinate systems are in existence, we will be interested 
only in three: (a) the cartesian, (b) the circular cylindrical or simply cylin
drical, and (c) the spherical coordinate systems. Each coordinate system 
involves three surfaces which are mutually orthogonal. At any particular 
point, unit vectors can be drawn tangential to the curves of intersection of 
pairs of the three orthogonal surfaces. The three unit vectors drawn in this 
manner will be mutually perpendicular and will define the reference direc
tions at that point. Once such reference directions are defined everywhere 
in space, we can represent vectors in terms of their component vectors along 

the reference directions and use them for performing vector operations. We 
will discuss each coordinate system separately and then summarize the 
details in the form of a table. 

a. Cartesian Coordinate System.

For the cartesian coordinate system, the three mutually orthogonal 
surfaces are three planes. Let us consider three orthogonal planes which 



































































43 Volume, Surface, and Line Integrals 

Along path ef, y = 1/x, dy = -(l/x2) dx, F •di= (2/x)dx. 

ff 

J
I 2 F • di = -dx = 2 ln 2

e x= 1/2 X 

Along path/g, x = l, dx = 0, F •di= -dy. 

Jg 
f 112 1 

F •di= - dy =2
f y=I 

Along path ga, x = 2y, dx = 2 dy, F • di = 0. 

fF·dl=O 
g 

Sec. 1.7 

Finally, adding the values of f F • di for the seven paths, we obtain 
the total work done to be f + ,,/2' + 0 + 1 + 2 In 2 + -! + 0 � 4.634. 
The fact that the integrals along the paths cd and ga are zero is obvious if 
we note that F = yi

x 
- xi

y 
= -ri

<.l
. Thus the force vector is everywhere 

tangential to the circle with the center at the origin and, since cd and ga are 
radial to the origin, F • di = 0 for these paths. Hence f F • di is zero for the 
paths cd and ga. I

Integration of vectors is performed by expressing the integrand in terms 
of its components in cartesian coordinates, t�ereby reducing the problem to 
one of evaluating three scalar integrals. Thus, for example, 

f Adm= f (A)x + A
y
i
y 
+ A,i,) dm 

(1-84) 

where dm stands for dv, dS, or di, depending upon whether the integration 
is over a volume, surface, or along a line, respectively. Similar expressions 
using the components in cylindrical and spherical coordinate systems are 
not correct since some or all of the unit vectors in these coordinate systems 
are functions of the coordinates. For example, the magnitude of the sum 
of two component vectors along the unit vector i, at two different points is 
not, in general, the sum of the magnitudes of the two vectors since the two 
components are directed in different directions. For that matter, the direction 
of the sum of the two component vectors is not the direction of either of 
the component vectors. Thus 

f Adm =ft (f A, dm )i, + (f A<.l 
dm )i

<.l + (f A, dm )i, 

f Adm =ft (f A, dm )i, + (f A8 dm )i8 + (f A
\! 

dm )i
<.l 

(1-85a) 

(1-85b) 

The integrand must, in general, be expressed as the sum of its component 
vectors along t, i

y
, and i, for correct results. 



44 Vector Analysis 

1.8 Divergence and the Divergence Theorem 

Chap. I 

In Section 1.7 we introduced the concept of the surface integral. Let us 
consider a closed surface S enclosing a volume V in a region in which the 
current density vector J is specified. Then the amount of current emanating 
from this volume is given by 

I= Ts J • dS (1-86) 

where the integration is performed over the closed surface S. If we let this 
volume shrink to an infinitesimal value !iv, we obtain an infinitesimal amount 
of current flowing out of the surface AS bounding !iv. In the limit that 
we let the volume shrink to a point, the current emanating from the point 
may tend to zero. On the other hand, since the volume occupied by the 
point is zero, the ratio of the current emanating from the point to the 
volume occupied by the point can be nonzero; that is, although the quantity 
! J • dS may tend to zero in the limit !iv ---> 0, the quantity
:r.<\s

! J • dS
j as 

!iv 

can approach a nonzero value in the limit !iv ---> 0. The quantity 

!iv 

is the amount of current, or the flux of the quantity whose density vector is 
represented by J, per unit volume emanating from the infinitesimal volume 
!iv. The value that this quantity approaches as !iv tends to zero (i.e., shrinks 
to a point) is known as the divergence of the vector J. The divergence of J 
is represented as the dot product of the vector operator V and the vector 
J, that is, as V • J. Thus 

p J • dS
V • J = lim -="S::..._,.--

liv-o !iv 
(1-87) 

Since the surface integral results in a scalar, the divergence of a vector is 
a scalar. It is the flux emanating per unit volume as the volume shrinks to 
a point. Hence the concept of divergence is valid at a point. 

To make use of the concept of divergence of a vector, we need to derive 
expressions for it in terms of the components of the vector in different coor
dinate systems. Let us choose the cylindrical coordinate system for this 
purpose. The method of deriving the required expressions consists of follow
ing exactly the steps involved in the definition of divergence. First we choose 
an infinitesimal volume at an arbitrary point P(r 

0, <p0 , z0), as shown in Fig. 
1.26. The infinitesimal volume is formed by the surfaces r = r 0, r = r O + dr,
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cf, = cp0 , cf,= <p0 + def,, z = z
0

, and z = z
0 + dz. The resulting differential 

surfaces I, 2, 3, 4, 5, and 6 are given by -r 
O 

def, dz i,, (r 
O + dr) def, dz i,, 

-dr dz i
1
, dr dz i

1
, -r 

O 
def, dr iz, and r 

O 
def, dr i z• respectively. Expressing J

in terms of its components in cylindrical coordinates, we have

J = J,i, + J\bj\b + Jzjz (1-88) 

The next step is to evaluate the integral of J • dS over the surface bound
ing the differential volume. We do this by evaluating the surface inte
grals over the six surfaces separately and then adding them up. Over 

z 

----y 

x 

Fig. 1.26. For obtaining the expression for the divergence 
of a vector in cylindrical coordinates. 

each surface, we can assume that J is constant since the surface area is 
infinitesimal. Only one of the three components of J will contribute to the 
flux crossing a particular surface since the other two components are tangen
tial. Thus the flux leaving the volume from any surface is simply the 
product of the surface area and the normal component of the J vector 
evaluated on that surface or its negative, depending upon whether that com
ponent is directed out of or into the volume. In this manner we obtain 

and 
flux leaving the volume from surface 1 = -[J,],=,, r 

O 
def, dz (1-89) 

flux leaving the volume from surface 2 = [J,],=,,+a,(r
0 
+ dr) def, dz

(1-90) 
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From (1-89) and (1-90) we have 

Similarly, 

and 

net flux out of the volume due to surfaces 1 and 2 
= [J,],=,0+a,(r O + dr) d<f> dz - [J,],=ro r O d<f> dz
={[rJ,],=ro+dr - [rJ,],=,.} d<f> dz 

net flux out of the volume due to surfaces 3 and 4 
= {ViJ¢=¢o+d¢ - []¢]¢=¢.} dr dz 

net flux out of the volume due to surfaces 5 and 6 
= {[Jzlz=zo+dz - [Jzlz=z.l Yo dr d<f> 

(1-91a) 

(l-91b) 

(l-9lc) 
The total flux emanating from the differential volume is the sum of the 
expressions on the right sides of (1-91a), (1-91b), and (1-91c). Adding these 
three expressions and dividing by the differential volume, 

we obtain 
!1v = r

0 
dr d<f> dz (1-92) 

,C. J • dS j 68 _ [r J,]r= ro+dr - [r J,] r=ro
!1v - r

0 dr 

+ [J¢]¢=¢o+d,P - [J,p],t,=,Po (1-93) 
r

0 
dq> 

+ [Jzl z= zo+dz - [Jz]z=z,
dz 

By taking the limit of (1-93) as !1v---->O, we obtain V • J at P(r
0

, <f>o , z
0

) as 

f J • dS

[V • J]c,0,¢0,zol = lim t,.S 11 <!.v-o v 

= lim [rJ,],= ro+dr - [rJ,],=ro + lim [J¢J¢=¢,o+d,t, - [Jq1]¢=¢0 

a,-o r
0 dr d¢-o r

0 
d<f> 

+ lim [Jz]z= zo+dz - [Jz]z=zo 
dz-o dz 

= 1-[IcrJ )] + ..!_[a1,1,] + [a1z] Yo ar r r=ro Yo aq> ¢=¢0 az z= zo 

= [1- a 
(r J ) + ..!_ a_]_.. + aJz] Y err T Y a<f> az (ro, ¢0, zo) 

(1-94) 

Now, since (1-94) is valid for any (r
0

, <f>
0

, z0), we can generalize (1-94) by 
stating that at any point (r, <f>, z), 

V • J = ..!_ I(rJ) + ..!_ aJ,t, + aJZ (1-95; 
r ar r r a¢> az 

Similar expressions for the divergence can be derived in the cartesian and 







































65 Problems Chap. I 

1.13. Let A and B be vectors in the xy plane making angles ct and p with the x axis. 
With the aid of dot and cross products, prove the following trigonometric identi
ties: 

(a) cos(rt - P) = cos ct cos p + sin ct sin p.

(b) sin(rt - P) = sin ct cos p - cos ct sin p.

(c) cos(r:t + P) = cos ct cos P - sin ct sin p.

(d) sin(rt + P) = sin ct cos P + cos ct sin p.

1.14. Write an expression for the component of a vector A along the direction of another 
vector B without the use of a coordinate system. Then find the component of 
A = 2ix - 3iy + i, along the direction of B = 3ix - iy - 2i,. 

1.15. Using two vectors in the plane x + 2y + 3z = 3, find the unit vector normal to 
that plane. 

1.16. Show that the equation of the plane passing through the point (x0 , Yo, z0) and 
normal to the vector aix + bi

y 
+ ci, is 

a(x - Xo) + b(y - Yo) + c(z - z0) = 0 

1.17. For the following scalar functions, describe the shapes of the constant-magnitude 
surfaces: 

(a) T(x, y, z) = x2 + 4y2 + 9z2.

(b) U(r, if>, z) = (cos q>)/r.

(c) V(r, 0, q>) = (sin 0)/r.

1.18. Using a spherical coordinate system with the origin at the center of the earth, 
write a vector function for the linear velocity of points inside the earth due to its 
spin motion. Describe the constant-magnitude surfaces and direction lines. 

1.19. Using a spherical coordinate system with the origin at the center of the earth, 
write a vector function for the force experienced by a mass m in the gravitational 
field of the earth. Describe the constant-magnitude surfaces and direction lines. 

1.20. Discuss the following vector fields with the aid of sketches: 

(a) A(x, y, z) = (x - 2)ix.

(b) B(r, if>, z) = r(r - l)i
\l>.

(c) C(r, e, q>) = (1/r)ie,

(d) D(r, 0, q>) = ri,.

1.21. Derive the expressions listed in Table 1.6 for the partial derivatives of unit vectors 
with respect to the coordinates. 

1.22. Let r = xix + yiy + zi, = rci,c + zi, = rsi,s be the position vector of a point P 
moving in three dimensions. Obtain the expressions for the velocity v and accelera
tion a of the point in all three coordinate systems. 

1.23. (a) A point P moves along a curve in two dimensions such that its coordinates
are given by r = at and if> = bt, where a and b are constants. Find the velocity
and acceleration of the point.

(b) A point P moves along a curve in three dimensions such that its coordinates
are given by x = a cos rot, y = b sin rot, and z = ct, where a, b, c, and OJ 

are constants. Find the velocity and acceleration of the point.
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1.24. Verify Eqs. (1-63) and (1-64) by expansion in cartesian coordinates. 

Chap. I 

1.25. Find a unit vector normal to the surface r 2 cos 2¢ = 1 at the point (,/2, n/6, 0)
in the cylindrical coordinate system in two ways: (a) by using two vectors which 
are tangential to the surface at that point; and (b) by using the concept of the 
gradient of a scalar function. 

1.26. Find the scalar functions whose gradients are given by the following vector func
tions: 
(a) VT(x, y, z) = yzix + zxiy + xyi,. 

(b) VU(x, y, z) = 3x 2yz2ix + x3z2j
Y + 2x3yzi,. 

(c) VV(r, ¢, z) = (1/r2)(cos ¢ i, +sin ¢ i"'). 
(d) VW(r, (), ¢) = �nr/r n+ 2, where r is the position vector.

1.27. Make up a table of gradients of the scalar functions defining the orthogonal sur
faces in the three different coordinate systems. 

1.28. Find the component of the unit vector normal to the surface x2 - y2 = 3 at the 
point (2, 1, 1) in the direction of the vector joining the point (1, -2, 0) to the 
point (0, 0, 2). 

1.29. Find the rate of change of V = x2y + yz2 + zy2 in the direction normal to the 
surface x2y - yz + xz2 = 5 at the point (1, 2, 3). 

1.30. Find the equation of the plane tangential to the surface xyz = 1 at the point (-hi, 8). 

1.31. Evaluate the following volume integrals: 

(a) f
v 

xyz dv, where Vis the volume enclosed by the planes x = 0, y = 0, z = 0, 
and x + y + z = 1. 

(b) f v ! dv, where Vis the volume of a cylinder of radius a with the z axis as

its axis and of length l.

(c) f 
v 

x dv, where Vis that part of the volume of a sphere of radius unity lying 
in the first octant. 

1.32. Given A= x2yzix + y2zxi
y 

+ z2xyi,, evaluate §A· dS over the following closed 
· surfaces:

(a) The surface of the cubical box bounded by the planes
x = 0, x = 1 
y = 0, y = 1 
z = 0, z = 1 

(b) The surface of the box bounded by the planes
x = 0, y = 0, z = 0 

x + 2y + 3z = 3 
1.33. Given A = r cos ¢ i, - r sin ¢ i"' in cylindrical coordinates, evaluate § A • dS 

over the following surfaces: 



67 Problems Chap. I 

(a) The surface of the box bounded by the planes z = 0, z = !, and the cylinder
r = a.

(b) The surface of the box bounded by the planes x = 0, y = o; z = 0, z = !,

and the cylinder r = a.

1.34. Given · A = r2i, + r sin (J i9 in spherical coordinates, evaluate §A · dS over the 
following: 
(a) The surface of that part of the spherical volume of radius unity lying in the

first octant.
(b) The surface of a solid spherical shell lying between r = a and r = b, where

b > a (note that this surface consists of two disconnected surfaces; the normal
vectors to the surfaces must both be chosen to be away from or into the volume
bounded by the surfaces).

1.35. For the force vector F = yix + xiy, find the work done by the force vector from 
the origin to the point (n/2, 1, 0) along the following paths: 
(a) y = sin2 x, z = 0.
(b) y = (4/n2)x2, z = 0.
(c) x = (n/2)y2, z = 0.
(d) Any other path of your choice not necessarily in the z = 0 plane.

1.36. A certain vector field is given by
A = a2yix - b2xiy 

where a and b are constants. Evaluable f A · di from the origin to the point 
(1, 1, 1) along the following paths: 
(a) y = x = z2 .
(b) The path given by y = 0, z = 0, then x = 1, z = 0, and then x = y = 1. 
(c) The path given by y = x, z = 0, and then x = y = 1. 
(d) The path given by x = 0, z = 0, then y = 1, z = 0, and then x = y = 1. 
(e) x = y = z.

1.37. Given A = xyix + yziy + zxi,, evaluate the circulation § A · di around the con
tour abcda shown in Fig. 1.34. 

z 

' y 

Fig. 1.34. For Problem 1.37. 
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1.38 Given A= 2r cos <pi, + ri.p 
in cylindrical coordinates, find: 

(a) f c A • di, where C is the contour shown in Fig. l.35(a).

Chap. 1 

(b) ! A· di + ! A· di, where C1 and C2 are the contours shown in Fig. l.35(b).
1c1 1c2 

y y 

,l 
OD x x a b 

(a) (b) 

Fig. 1.35. For Problem 1.38. 

1.39.     Given A = (e-'/r)i8 in spherical coordinates, evaluate f A • di around the contour
abca shown in Fig. 1.36. 

x 

1.40. Evaluate the following vector integrals: 

Fig. 1.36. For Problem 1.39. 

(a) f c di, where C is any closed path of your choice.
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1.62. From the definition of V V, show that j 
c 
V V , di = 0, where C is any closed path.

Then use this result and Stoke's theorem to prove that V X VV = 0, without the 
implication of a coordinate system. 

1.63. Find the Laplacians of the following scalar and vector functions: 

(a) T(x, y, z) = x3
yz2.

(b) U(r, <p, z) = (cos <p)/r.
(c) V(r, 0, <p) = e-'/r.

(d) A(x, Y, z) = x2yzix + xy2ziy + xyz2i,.

1.64. Derive the expansion for the Laplacian of a vector in cartesian coordinates given 
by (1-139). 

1.65. Derive the expansion for the Laplacian of a vector in cylindrical coordinates given 
by (1-140). 

1.66. Derive the expansion for the Laplacian of a vector in spherical coordinates given 
by (1-141). 

1.67. Verify the general expressions for V V, V , J, V x F and V2 V given by (1-144), 
(1-145), (1-146), and (1-147), respectively. 

1.68. By expansion in cartesian coordinates, show that 

(a) V · UA =A· VU+ UV, A.

(b) V x UA = VU x A+ UV x A.

(c) V · (A x B) = B , V x A - A , V x B.

(d) V X (Ax B) =AV· B - B V ·A+ (B · V)A - (A· V)B.
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THE ST A TIC ELECTRIC FIELD 

In Chapter 1 we learned the mathematical language of vector analysis so 
that we are now ready to use it for the study of electromagnetic field theory. 
Electromagnetic field theory is built upon four equations known as Max
well's equations and an associated set of relations known as the constitu
tive relations. It is our goal to learn how to interpret these equations and 
to use them for various applications, important among them being elec
tromagnetic waves. Maxwell's equations, in their general form, relate the 
time-varying or dynamic electric and magnetic fields with one another and 
with the electric charges and currents present in the medium. It is possible 
to study electromagnetic theory by starting with Maxwell's equations and 
another equation known as the Lorentz force equation as postulates. The 
Lorentz force equation is the defining equation for the electric and magnetic 
fields in terms of the forces experienced by the charges. Alternatively, it is 
possible to develop Maxwell's equations gradually from the electric and 
magnetic field concepts based on forces. experienced by charges and currents 
and from a few experimental facts. We will take this latter approach. The 
electromagnetic field is one in which the electric and magnetic effects are 
coupled. Before we venture to discuss the electromagnetic field, we will study 
the electric and magnetic fields separately. This is best done by considering 
static or time-independent fields in free space. With this approach in mind, 
the present chapter is devoted to the static electric field in free space. 
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73 The Electric Field Concept 

2.1 The Electric Field Concept 

Sec. 2.1 

In the study of mechanics, we are familiar with the gravitational field as 
a force field associated with the mutual attraction of material bodies in 
space. For example, a small test mass m placed in the gravitational field of 
the earth experiences a force equal to mMG/r2 directed towards the center 
of mass of the earth, where Mis the mass of the earth, G is the constant of 
universal gravitation, and r is the distance of the test mass from the center 
of mass of the earth. We associate with every point in the vicinity of the earth 
a vector quantity g, known as the gravitational field intensity, having a mag
nitude MG/r2 and directed towards the center of the earth as shown in Fig. 
2.1. In terms of the value of the test mass and the force experienced by the 
test mass, the gravitational field intensity is given by 

Fig. 2.1. Gravitational. attraction 
of a test mass m towards the center 
of mass of the earth. 

g=m 
(2-1) 

Just as the gravitational field is associated with the physical property 
known as "mass," a force field is associated with the physical property 
known as "charge" merely by virtue of its existence. This force field is known 
as the electric field. We wiU learn in the next chapter that a second kind of 
force field known as the magnetic field exists when charges are set in motion. 
A few words about charge are now in order. Matter can be regarded as 
composed of three types of elementary particles, known as protons, neutrons, 
and electrons. These particles are charged positive, zero, and negative, 
respectively. Table 2.1 gives the charge and mass for each of these particles. 

TABLE 2.1. Charges and Masses of Elementary Particles 

Particle 

Proton 
Neutron 
Electron 

Charge, C 

1.6021 x 10-19 

0 

-1.6021 x 10-19

Mass, kg 

1.6724 x 10-27

1.6747 x 10-27 

9.1083 x 10-31 
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Charges are conserved; that is, they can neither be created nor destroyed. 
They can only be transferred from one body to another. A material body 
is uncharged if it has no net charge. If the body acquires excess negative 
charge by some means, it is said to be negatively charged. On the other hand, 
if it loses some negative charge, it is said to be positively charged. The unit 
of charge is the coulomb (abbreviated C). 

A small test charge q placed in the "electric field" of a larger charge Q 

experiences a force F given by 

F=qE (2-2) 

as shown in Fig. 2.2, where E is the intensity of the electric field, analogous 
to the gravitational field intensity g. Alternatively, we can say that if, in a 

Fig. 2.2. Force experienced by a 
test charge in an electric field. 

region of space, a test charge q experiences a force F, then the region is charac
terized by an electric field of intensity E given by 

F 
E=

q 
(2-3) 

Here we are assuming that the test charge q is so small that it does not alter 
the electric field in which it is placed. From a practical point of view, the 
test charge does influence the electric field irrespective of how small it is. 
However, theoretically, we can define E as the ratio of the force experienced 
by the test charge divided by the test charge in the limit that the test charge 
tends to zero; that is, 

E = Lim_!_ 
q-0 q

(2-4) 

The unit of electric field intensity is newton per coulomb (N/C). 

EXAMPLE 2-1. An electron placed at a point in an electric field experiences an 
acceleration of 105 m/sec2 along the positive x axis. (a) What is the electric 
field intensity E at that point? (b) What acceleration does a proton placed 
at that point experience? 

The force experienced by the electron is equal to -1.6 x 10- 19 E. This 
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is equal to the mass of the electron times the acceleration experienced by the 
electron. Hence 

-1.6 X 10- 19 E = 9.11 X 10- 31 X 105 ix 

E 9. 11 x 10-31 x 10s . -5.7 x 10-1 1·� N/C= -1.6 X 10- 19 
1
" 

� 

Thus the electric field intensity has a magnitude of about 5. 7 x 10-1 N/C and 
it is directed along the negative x axis. 

Now, if a proton is placed at the same point, the acceleration a exper
ienced by it is given by 

charge of proton x Ea mass of proton 
1.6 X 10- 19 X (-5.7 x 10-1)ix = _546. m/sec2 

1.67 X 10 27 
• Ix 

Thus the proton experiences an acceleration of about 54.6 m/sec2 along the 
negative x axis. I

2.2 Coulomb's Law 

In the previous section we introduced the concept of the. electric field from 
an analogy with the gravitational fie�d. It was mentioned that a small test 
charge placed in the electric field of a larger charge experiences a force. 
Actually, the larger charge also experiences a force just as two masses attract 
each other. This fact was proved experimentally by Coulomb. As a result of 
his experiments we have Coulomb's law, which relates the force between 
two charged bodies which are very small in size compared to their separation. 
Ideally, the charged bodies must be so small that they can be considered as 
"point charges." From Coulomb's experiments, the following conclusions 
were reached: 

1. Like charges repel whereas unlike charges attract.
2. The magnitude of the force is proportional to the product of the

magnitudes of the charges. 
3. The magnitude of the force is inversely proportional to the square

of the distance between the charges.
4. The direction of the force is along the line joining the charges.
5. The force depends upon the medium in which the charges are placed.
If we consider two point charges Q

1 
and Q

2 
C situated at points A and

B separated by a distance Rm, as shown in Fig. 2.3, we can express the
foregoing five statements in equation form as

FA= k Q
R�2iBA (2-5) 

(2-6) 
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/Fs 

/
a'"

Q,/
R 

/� 
/jBA 

FA 

Fig. 2.3. Forces of repulsion between two charges Q1 and Q2 

at points A and B. 

Chap .. 2 

where FA and Fs are the forces experienced by Q
1 

and Q
2

, respectively, 
i.sA and iAs are unit vectors along the line joining A and B (Fig. 2.3), and 
k is the constant of proportionality. Statement 1 is included in (2-5) and 
(2-6) since Q1 and Q

2 
represent the magnitudes as well as signs of the charges. 

If Q
I 
and Q 

2 
are both positive charges or both negative charges, their product 

will be positive and hence positive forces act along isA and iAs· If one of the 
two charges is negative, then the product Q 1 Q2 

will be negative; hence 
negative forces act along isA and iAs or positive forces act along directions 
opposite to isA and iAs, respectively. The constant of proportionality k is 
equal to 1/4nf0 for free space and in MKS rationalized units. The quantity 
fo is known as the permittivity 'of free space and its value is 8.854 x 10- 12 

or approximately equal to 10-9/3611:. Substituting fork in (2-5) and (2-6), 
we have 

(2-7) 

F -
Q

1 Q2 i (2-8) 
. s - 41tfoR2 AB 

Equations (2-7) and (2-8) represent Coulomb's law. From these equations, 
we note that f

0 has the units (coulombs)2 per [(newton)(meter)2]. these are 
commonly known as farads per meter (F /m). 

2.3 The Electric Field of Point Charges 

Let one of the two charges considered in the preceding section, say Q
2

, be 
a small test charge q. Then, from a knowledge of the force experienced by 
this test charge due to the presence of the charge Q

1
, we can obtain the ex

pression for the electric field intensity due to the charge Q 1 using (2-3). 
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According to Coulomb's law, the force experienced by the test charge is 
given by 

(2-9) 

From (2-3) we then have the electric field intensity E.a at point B due to the 
charge Q

1 
as 

(2-10) 

We can generalize this result by making R variable, that is, by moving the 
test charge around in the medium, writing the expression for the force 
experienced by it, and dividing the force by the test charge. The result is 
the same as (2-10) except that R is now a variable since point B is a variable. 
Thus, omitting the subscripts in (2-10), we write the electric field intensity 
E of a point charge Q as 

E- Q .
-4-R2 lR 1tfo 

(2-11) 

where R is the distance from the point charge to the point at which the field 
intensity is to be computed and i.R is the unit vector along the line joining the 
two points under consideration and directed away from the point charge. 
The electric field intensity of a point charge is thus directed everywhere 
radially away from the point charge, and on any spherical surface centered 
at the point charge its magnitude is constant. The situation is illustrated in 
Fig. 2.4. If the point charge is at the origin of a coordinate system, then we 
replace R by r and iR by i,. The field represented by (2-11) is also known as 
the Coulomb field of a point charge. 

If we now have several point charges Q 1
, Q

2
, Q3 , • • •  , Q

n 
located at 

different points as shown in Fig. 2.5, we can invoke superposition and state
that the force F experienced by a test charge situated at a point P is the vector

Fig. 2.4. The electric field of a 
point charge. 
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Fig. 2.5. Assembly of point charges and unit vectors along the 
direction of their electric field intensities at point P, due to the 
individual point charges. I 

sum of the forces experienced by the test charge due to the individual charges j
h . 

I t�� 

F = _Qtl__ i + _Q.tl__ i + -2..rl_ i + .. · + Qnq i (2 12) 4nf oRr R, 4n€ oRf R, 4n€ oRi R, 4n€ oR; R
n 

-

From (2-3) the electric field intensity E at the point P is 

E = _!_ - � i + __Qz_ + + Qn i 
q - 4nf oRr R, 4n€ Rf R, 

• • • 

4nf oR;; Rn 

- :t Qj i
- i-1 4n€0R7 R, 

(2-13) 

The electric field intensity due to the assembly of the point charges is thus 
the vector sum of the electric field intensities due to the individual point 
charges. Some examples are now in order. 

EXAMPLE 2-2. For a charge Q at an arbitrary point A(x', y', z'), obtain the x, y,

and z components of the electric field intensity at an arbitrary point B(x, y, z), 
as shown in Fig. 2.6. 

From Coulomb's law, the ,electric field intensity at point B is given by 

E = 4n€}
AB)2 iAB (2-14) 

where from Fig. 2.6, 
AB= ,J(x - x')2 + (y - y')2 + (z - z')2 

• _ (x - x')ix + (y - y')iY + (z - z')i,
IAB - ,J(x - x')2 + (y - y')2 + (z - z')2 

(2-15) 

(2-16) 
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z 

x 

ljAB 

• B(x,y,z) 

y 

Fig. 2.6. Geometry pertinent to the computation of 

the electric field of a point charge located at an arbitrary 

point. 

Substituting (2-15) and (2-16) into (2-14), we have 

E = .JL (x - x')t + (y - y')i
y 
+ (z - z')i, 

4nf
0 [(x - x')2 + (y - y')2 + (z - z')2p12

The x, y, and z components of E are therefore given by 

E - E . - Q (x - x')
x - • •x - 4nf0 

[(x - x')2 + (y - y')2 + (z - z')2]312

E - E • i - Q (y - y') 
Y - Y - 4n€0 [(x - x')2 + (y - y')2 + (z - z')2]312 

_ . _ Q (z - z') 
E, - E • I, - 4nfo [(x - x')2 + (y - y')2 + (z - z')p12

Sec. 2.3 

(2-17) 

(2-18a) 

(2-18b) 

(2-18c) 

In vector notation, if we denote r' as the position vector for the source 
point A and r as the position vector for the point B at which the field is 
desired, then AB = Ir - r' I and iAB = (r - r')/1 r - r' I so that 

Q r - r' Q (r r') E(r) = 
4nf0lr - r'l2 Ir - r'I 4nf0lr - r'l3 

-
(2-19) 

If a number of charges Q
i
, Q

2
, Q

3
, • • •  , Q

n 
are located at points defined 

by position vectors r',, r�, r;, ... , r�, respectively, then 
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E(r) = i: 4 ?J , l3 
(r - r�) 

1=1 7tf0 r - r
1 

where we have made use of superposition. I 

Chap. 2 

(2-20) 

EXAMPLE 2-3. Two equal and opposite point charges Q and-Qare situated on thel 
z axis at d/2 and -d/2, respectively, as shown in Fig. 2.7. Such an arrangement, 
is known as an electric dipole. It is desired to obtain the expression for thel 
electric field intensity due to the electric dipole at distances very large from 
the origin compared to the spacing d.

With reference to the geometry shown in Fig. 2.7, we note that the elec
tric field intensity at any point P has only r and e components if we use

1 

the spherical coordinate system, whereas it has all three components if we 
use the cartesian coordinate system. For fixed values of r and e the field 
intensity is independent of cf>; that is, it has circular symmetry about the 
z axis. Furthermore, we are interested only in the field' at large distances, 
from the dipole, that is, for r � d. Hence we use the spherical coordinate 
system. The electric field intensity E at P is the superposition of the electric 
field intensities due to the two charges. Thus, with reference to the notation 
in Fig. 2.7 we have 

x 

f 
d 

f 

z 

---- --------

Fig. 2.7. Geometry pertinent to the computation of the electric
field due to a dipole. 

(2-21) 

I 
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Now, the r component of Eis given by 
E, = E • i, 

= _Q_j .j - _Q_j .j 411:E 0r! '• ' 411:E 0r: '- ' 

= 4 Q 2 COSIX
+ 

- -4 Q 2 COSIX_
71:€0

r 
+ 71:€0r _ 

From the geometries of the triangles OAP and OBP, we have 
,2 

+ ,2 - (d/2)2 
COS IX = _+�----,ac--��'-

+ 2r+r 
_ r: + r2 

- (d/2)2 

COS IX_ - 2 r_r

Substituting (2-23) and (2-24) into (2-22), we obtain 

E = _Q_ ['! + r2 - (d/2)2 _ r: + r2 - (d/2)2
]' 411:E O 2r! r 2r:r 

= 811:Eo�!r:r 
(r - - r +) {r!r: + [,2 - ( g )

2

] (r: + _r _r + + r!)} 

=-Q-(r - r )(r2r2 
+ r2r2 

+ r2r r + r2r2 ) 8nE0
r1 - + + - - - + + 

= 2 Q 3 (r - - r +) = 2 Q 3 d cos e
71:€0

r 71:€0
r 

where we have used the approximations that, for r � d,

d 
r

+
=r-

2
cose 

dr_=r +
2

cose 

The e component of E is given by 
Ee= E • i8 

Thus 

= _Q_j .j - _Q_j .j411:E 0r! '• 8 411:E 0r: '- 8 

- Q . Q . . - 4-----z; Slll IX+ + 4-----z; Slll IX_ 
71:€0

r + 71:€0r _ 
Q = 

-2 2 
Slll IX+

71:E0
r 

= ___Q_ d sin e4nE0
r3 

E = 4 Qd 3 (2 cos 9 i, + sin 9 i8) 
71:€0r 

Sec. 2.3 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

Equation (2-27) can be considered as a solution for the electric field 
intensity at very large distances compared to a fixed spacing d between the 
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summations of a few terms since the distribution of charges is continuous 
instead of being discrete. We will illustrate this process by considering three 
examples: (a) infinitely long line charge, (b) infinite sheet charge, and (c) 
spherical volume charge. 

XAMPLE 2-4. An infinitely long line charge of uniform density ho C/m is situated
along the z axis as shown in Fig. 2.8. We wish to obtain the electric field 
intensity due to this line charge. 

I
A 

PLO dz 

z 

L oE=:=���;�-i, -E

B 

Line 
Charge 

Fig. 2.8. Geometry for computing the electric field of an 
infinitely long line charge of uniform density PLo C/m. 

First, we divide the line into a number of infinitesimal segments each of 
length dz, as shown in Fig. 2.8, such that the charge ho dz in each segment 
can be considered as a point charge. The electric field intensity due to each 
point charge is directed radially away from that point charge and varies 
inversely as the square of the distance from that charge. Now let us consider 
a point P at a distance r from the z axis, with the projection of the point 
P onto the z axis being the point 0. The electric field intensity vectors at 
point P due to the infinitesimal segment immediately above O and the infini
tesimal segment immediately below O · have equal magnitudes and make 
equal angles with the line OP as shown in Fig. 2.8. The components of these 
two vectors perpendicular to OP (parallel to the z axis) therefore cancel, 
whereas the components along OP add to each other. Thus the resultant 
electric field intensity at P due to the two segments, one directly above O and 
another directly below 0, is entirely directed along OP, that is, normal to 
the axis of the line charge. A similar argument can be made for the resultant 
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electric field intensity vector at point P due to any other two segments which 
are equidistant from O with one above it and the other below it. Now, since 
there are as many (semiinfinite) segments above O as there are below it, the 
resultant field intensity at point P due to the entire line charge is directed 
radially away from it. The situation remains unchanged if we move P up or

)down, keeping r constant, since there are always a semiinfinite number of

l 

segments above the projection of P onto the line charge as well as below it. 
Thus the electric field intensity of an infinite line charge of uniform density 
at any arbitrary point is directed radially away from the line charge and isl 
independent of the position of P parallel to the z axis. It is dependent only

l
' 

on the distance of P from the z axis. We have thus simplified the problem 
to one of finding the magnitude of the field intensity. 

To determine the magnitude of E, let us once again refer to Fig. 2.8,I 
and consider the segment at the point A at a distance z above 0. The electric 
field intensity at point P due to this segment is equal to 

PLo dz • 

41tfo(r2 + z2) •AP 

The component of this electric field intensity along OP is 

PLO dz i . i = PLo dz cos (I., = pLOr dz 
41t€o(r2 + z2) AP r 41t€o (r2 + z2 ) 41tfo(r2 + z2 )3/2

We need not consider the component normal to OP since it gets cancelled 
from the contribution due to another segment at the point B at a distance 
z below 0. The component along OP is, on the other hand, doubled from 
the contribution due to this second segment. Thus the magnitude of the 
resultant electric field intensity at P due to the two segments at A and B is 
given by 

dE = 2pLOr dz (2-29) 41tfo(r2 + z2 )3!2

The magnitude of the electric field intensity at P due to the entire line charge 
is now given by the integral of dE where the integration is to be performed 
between the limits z = 0 and z = =· Thus 

f= 2pLoY s= dz E = dE = 41tf (r2 + z2)3;2
z=O O z=O 

Introducing z = r tan rt in (2-30), we obtain 

E = PLO cos rtdrt = PLOfn/2 

2n€ 0r "= 
0 

2n€ 0r 

(2-30) 

(2-31) 

Recalling that E is directed radially away from the line charge, we have 

(2-32� 

Equation (2-32) indicates that the electric field intensity of an infinite line 
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rings, each of width dr, and divide each ring into angular increments of 
def>, thus creating infinitesimal areas r dr d</> having charges Psor dr d</> as 
shown in Fig. 2.9. 

Now, since each ring results in an electric field intensity at point P, only 
along OP, the field intensity due to the entire sheet charge will also be along 
the same direction. If we move P sideways while keeping z constant, the 
situation remains unchanged so that the field intensity is independent of 
the position of P in planes parallel to the sheet charge. Once again, we have 
reduced the problem to one of finding the magnitude of E. 

To find the magnitude of E, we note that the component along OP of 
the field intensity at P, due to the infinitesimal charge Psor dr def> at point A,

is given by 
dE = Psor dr d</> 

COS(!., = Psorz dr d</> (2-33) 4n€o(r
2 + z

2) 4n€o(r
2 + z2)312 

The resultant electric field intensity due to the ring of charge passing through 
A and Bis obtained by adding up all the contributions due to the infinitesimal 
areas on the ring, that is, by integrating (2-33) with respect to </> between 
the limits O and 2n. We then add up all the contributions due to the several 
rings by integrating this result with respect tor between the limits O and oo. 
We thus obtain a double integral for E as 

E - f = f Zn dE - f = f 2n PsoYZ dr d</> - - 4n€ (,2 + z2)Jf2 
r=O <f,=O r=O <f,=O O 

PsoZ s= rdr = 2€ (r
2 + z2)3/2 

O r=O 

Introducing r = z tan rt in (2-34), we obtain 

E = P so sin rt drt = P so 
f

n
/2 

2€o "'=o 2fo 

(2-34) 

(2-35) 

Recalling that E is directed normally away from the line charge, we have 

E= Pso j (2-36) 2€o n 

where i. = iz above the xy plane and i. = -iz below the xy plane in Fig. 
2.9. Equation (2-36) indicates that the electric field intensity due to an 
infinite sheet charge of uniform density is independent not only of the posi
tion of P in planes parallel to the sheet charge, but also of the distance away 
from the sheet charge. The field is thus uniform in magnitude and directed 
normally away from the sheet. If the sheet charge occupies the z = z

0 
plane, 

it follows from (2-36) that 

for z > z
0 

I 
for z < z

0 
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field intensity due to the entire spherical volume charge of radius a. The 
component, along OP, of the electric field intensity at P due to the infinite
simal charge at A is given by 

dE = p0r2 sin(} dr d(} dcp cos IX = p0(z - r cos fJ)r2 sin(} dr d(} dcp 
4n€0(r2 + z2 - 2rz cos(}) 4n€0(r2 + z2 - 2rz cos fJ)312 

(2-37)
The electric field intensity due to the entire spherical charge is then given by 

E = fa f" f 2" dE = f
a 

f" f 
2" Po(z - r COS fJ)r2 sin(} dr d(} dcp 

r=D 8=D ¢,=D r=D 8=o ¢,=o 4n€0(r2 + z2 - 2rz cos fJ)312 

= .&_ f
a f" (z - r cos fJ)r2 sin(} dr d(} 

2€0 r=o 8=0 (r2 
+ z2 - 2rz cos {})312 (2-38) 

Introducing s2 = r2 + z2 - 2r z cos(}, for integration with respect to (}, we
have 

. (}d(} sds sm =-
rz 
82 _ r2 + z2 

z - r cos (} = 
2z 

{
z - r for (} = 0, z > r

s = r
z 
-+ z

r 
for (} = 0, 0 < z < r 
for (} = n 

Substituting these into (2-38), we obtain, for z > a,

Po fa r dr 
f 

z+r s2 - ,2 + z2 E
=-2 -2 2 2 ds fo r=O z s=z-r S 

=.&_fa 4r2 dr _ (4na3/3)p0 

2€o r=D � - 41tfoZ2 

For O < z < a, we have 

(2-39a) 

(2-39b) 

(2-39c) 

(2-40) 

E = -0 
- ds + -0 

- ds p f 
z r dr f z+r s2 - y2 + z2 p fa r dr f 

z+r s2 - ,2 + z2 .
2t:o r=o2z2 s=z-r s2 2€0 r=z 2z2 s=r-z s2 

= .&_ f
z 4r2 dr + O = (4nz3/3)p0 

2€0 r=D 2z2 41tfoz2 (2-41) 

Equations (2-40) and (2-41) give the magnitude of E at any radial dis
tance z greater than a and less than a, respectively, from the center of the 
charge. Recalling that the direction of Eis radially away from the center of i 

the charge distribution and substituting r for z, we have 

1

(4na3/3)po i for r > a4n€ y2 r 
E= 

o 

(4nr 3/3)po. for r < a41t€ y2 I, 
0 

(2-42) 
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Noting that 4nr3 /3 is the volume of a sphere of radius r and that there is no 
charge in the region r > a, we can combine the two results on the right 
side of (2-42) as 

E(r) = charge enclosed by the spherical surface of radius r i (2_43) 4n€or2 r 

Viewed from any distance r from the center of the volume charge, the volume 
charge is equivalent to a point charge of value equal to the charge enclosed 
by the spherical surface of radius r. I

In the examples we have considered in this section, it was possible to 
determine the electric field intensity by evaluating a single scalar integral 
in each case because of the symmetries involved. In the general case, it would 
be necessary to. evaluate three scalar integrals. Furthermore, in order not 
to get confused between the field points (i.e., points at which the field is 
desired) and the source points (i.e., points in the volume, surface, or contour 
occupied by the charge distribution), we must use a notation which distin
guishes the two sets of points. Usually, the coordinates of the source points 
are denoted by primes, whereas the coordinates of the field points are un
primed. The integration is then to be performed with respect to the primed 
coordinates. This notation is known as the source point-field point notation. 
Thus, in general, if a line charge of density pir') occupies a contour C', 
where r' is the position vector in the source point coordinate system, then 
the electric field intensity E(r) at a field point defined by the position vector 
r is given by 

E(r) = _I_ f [pir') dl']\r
3

- r')
4n€ 0 

c' / r - r / (2-44a) 

The right side of Eq. (2-44a) is a vector integral and, in general, it requires 
the evaluation of three separate scalar integrals. Expressions similar to 
(2-44a) can be written for surface and volume charge distributions. Thus, 
for a surface charge of density p,(r') occupying a surface S', we have 

E(r) 
= _I_ f [p.(r') dS']�\- r')

4n€o s' / r - r / (2-44b) 

For a volume charge of density p(r') occupying a volume V', we have 

E(r) = _I_ f [p(r') dv'](� ;-- r')
4n€ 

0 
v' / r - r / (2-44c) 

We will use the source point-field point notation only wherever the same 
coordinate or coordinates for the source and field points appear in the 
integral. For example, if we wish to evaluate the electric field intensity due 
to a finitely long line charge along the z axis at a point (r, if,, z), then we will 
have to define the points occupied by the line charge using a z' coordinate 
so that no confusion arises with the z coordinate of the field point. 
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2.5 Direction Lines 

Chap. 2

In the previous two sections we obtained the expressions for the electric field 

intensities due to certain charge distributions both discrete and continuous. 
In simple cases, such as for the point charge and for the three examples of 

1

, 

the previous section, it is easy to visualize, from a glance at the field 

expression, the direction of the electric field intensity vector everywhere in 
space. However, in a case such as the electric dipole (Example 2-3), it is I 

not easy to visualize the direction of the electric field intensity vector by 
a glance at the field expression [Eq. (2-28)]. If we want to attack the prob
lem directly in such a case, we can assign numerical values for the coordi

nates in the field expression and compute the direction of the field 
intensity vector at several points in the medium and then draw arrows 
along the computed directions. Alternatively and more elegantly, we ask 
the question: Suppose we place a test charge at a point in the electric field, 

what is the direction along which it experiences acceleration? Obviously, 

the test charge experiences acceleration along the direction of the electric 
field intensity vector at that point. If we stop the test charge after each 
infinitesimal distance and trace its path in the limit that the infinitesimal 
distance tends to zero, we get a line along which the electric field is everywhere 
tangential to it. Such lines, called "direction lines," are of great help in under

standing the behavior of a given field, as suggested in Chapter 1. They are 
also known as "stream lines" and "flux lines." 

To develop the technique of sketching the direction lines for a given 
field, let us consider a small test charge placed at a point P(x, y, z) in the 
field as shown in Fig. 2.11. At the point P the force on the test charge is 

x 

z

� E 

.�I Q(x + �x,y + �y,z+ �z) 

I 
P(x,y,z) 

0 
\----,.-- __ ----? __ .,. y 

___
___ // __ _!///

/ 

Fig. 2.11. Illustrating the proportionality of the electric 
field intensity vector E and the infinitesimal vector dis
placement �I of a charge placed in the field. 
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directed along E. The test charge will travel for an infinitesimal distance Al 
in the direction of E to point Q(x + Ax, y + Ay, z + Az). The vector 
displacement of the test charge is then equal to Ax ix + Ay iy + Az i,. But 
this infinitesimal vector displacement is proportional to the force experienced 
by the charge which in turn is proportional to E = E)x + E)y + E,i,. Thus 

(2-45) 

Two vectors are proportional if and only if their respective components are 
proportional by the same amount. Hence we have, from (2-45), 

Ax Ay Az
Ex

= Ey 
= E, (2-46) 

But Eq. (2-46) is approximate since, in general, E varies continuously from 
point to point in magnitude and direction. However, it will be exact in the limit 
Ax, Ay, and Az all tend to zero. It then reduces to 

(2-47a) 

Knowing Ex, Ey, and E, for a particular field, we can substitute in (2-47a) 
and solve the resulting differential equations to obtain the algebraic equations 
for the direction lines. We can obtain equations similar _to (2-47a) for the 
cylindrical and spherical coordinate systems following similar arguments. 
These equations are 

d r r d¢, dz 
E, = E¢, = E, 

d r _ r dO _ r sin e d¢, 
E, - E0 -

E¢, 

cylindrical (2-47b) 

spherical (2-47c) 

We will now illustrate the use of these equations by considering an example. 

EXAMPLE 2-7. In Example 2-3 we obtained the expression for E for an electric 
dipole of moment p oriented along the positive z axis as 

E = -4 
p 

3 
(2 cos O i, + sin O i9)

1t€or 

It is desired to obtain the equation for the direction lines for this field. 
Noting that 

E = 2p cos0
r 4n€or3 E _ psinO

o - 4n€o r3 E¢, = 0 

we have, from (2-47c), 

or 

d r _ r dO _ r sine d¢, 
(2p cos 0)/4n€ 0r3 - (p sin 0)/4n€ 0r3 - 0 
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dr = 2 cot(} dfJ def, = 0 r 
In r = -2 In cosec (} + constant if, = constant 

r cosec2 (} = constant if,= constant (2-49) 

The direction lines are thus intersections of the surfaces r cosec2 (} = constant 
and the planes if, = constant. A few direction lines in constant if, plane are 
sketched in Fig. 2.12. The small arrow at the center indicates the dipole 
moment p with the direction of the arrow as the direction of orientation of 
the dipole. I

Fig. 2.12. Direction lines of E for electric dipole of moment piz. 

2.6 Gauss' Law in Integral Form 

Let us consider the surface of a sphere of radius r and centered at a point 
charge Q at the origin. The electric field intensity due to the point charge is 
directed everywhere radially away from the point charge and hence is normal 
to the surface of the sphere as shown in Fig. 2.13. Its magnitude on the 
surface of the sphere is a constant equal to Q/4nE

0 r2
• If we now consider

an infinitesimal area dS on the surface of the sphere, we have 

E ds Q . dS" Q . dS" QdS • = 4---Z I, • In = -4 2 I, • I, = 4---z 
1t€ or 1t€ or 1t€ or 

The integral of E • dS over the surface S of the sphere is given by 

(2-50) 

(2-51) 

since r is constant on the surface of the sphere. Proceeding further, we have 
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/ 

-----/--
,..... -- / --

/ / '" 
Q" 

r 

Fig. 2.13. For evaluating f E • dS on the surface of 
sphere centered at a point charge Q.

I E • dS = 4 Q 
2 

(surface area of the sphere) 
J s 1t€or 

= � ( 4nr2) = ll_
41t€0 r €0 

Sec. 2.6 

(2-52) 

The physical significance of (2-52) is obvious if we compare the electric field 
lines emanating from the point charge with the flow of a fluid away from 
the location of the point charge. The surface integral of the fluid flow density 
vector is the net amount of fluid flowing out of the surface. Similarly, the 
surface integral of the electric field intensity vector can be interpreted as the 
net flux of electric field emanating from the surface, although the electric 
field is not a fluid in the sense that it does not flow like a fluid. 

Thus Eq. (2-52) states that the net electric field flux emanating from the 
surface of a sphere of radius r centered at a point charge Q is equal to Q/€ 

0
• 

It is independent of the radius r of the spherical surface. Whether r = I 
micron or 1000 km, the electric field flux is the same (provided, of course, 
that there is no other electric field in the medium). This is not surprising if 
we once again compare the flux of the electric field with the flow of the 
fluid. If the fluid is flowing radially away from a point source of the fluid, 
then the amount of fluid crossing a spherical surface of one radius must 
be the same as the amount crossing a spherical surface of another radius 
or, for that matter, any arbitrary closed surface enclosing the point source 
(provided, of course, there is no other source or sink of the fluid). Likewise, 
if we choose an arbitrary surface enclosing the point charge, the net electric 
field flux emanating from this surface must be equal to Q/€0 • To prove this 
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The discussion can be extended to a continuous charge distribution if we 
note that a continuous charge distribution can be represented as a con
tinuous collection of charges occupying infinitesimal volumes, each of which 
can be considered as a point charge. Those charges enclosed by the arbitrary 
surface result in a net electric field flux in accordance with (2-55), whereas 
those which are not enclosed by the surface result in zero flux in accordance 
with (2-56). We can summarize these conclusions in a single statement that 
"the net electric field flux emanating from a closed surface is equal to the 
net charge enclosed by the surface divided by E0 ." This statement is Gauss' 
law-one of the important laws in electromagnetic field theory. In equation 
form, Gauss' law is written as 

,[ E • dS = _!__ ( charge enclosed by the surface S) (2-58) 
J s Ea

EXAMPLE 2-8. An infinitely long line charge of uniform density ho C/m is situated
along the z axis. It is desired to find the electric field flux cutting the portion 
of the plane x = I m lying between the planes z = 0 m and z = 1 m as 
shown in Fig. 2.16. 

First we will solve this problem by actually evaluating f E • dS over the 
given surface. To do this, we note that E due to the line charge is given by 
(P£0/2nE0r)i,, where r is the radial distance from the line charge and i, is the 
unit vector directed radially away from the line charge. Considering an 
infinitesimal area dy dz at the location (1, y, z) on the given plane, the infini-

x 

I 

I 
I 

I 
I 

/ 
I I 

I 

z 

OJ- - - - - - '- ,- - - - - - -1----+- y 
/ '-,�dy dz

I y 1,·'"-

i, 

Fig. 2.16. For evaluation of electric field flux emanating from an 
infinite line charge and cutting a portion of the x = 1 plane. 
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tesimal amount of flux cutting this area is given by 

E ds PLO • d d • PLo dy dz • � = 21l€o,Jf+? I, • y Z 
lx = 21lfo(l + y2)

Sec. 2.6 

(2-59) 

The total flux cutting the portion of the plane x = 1 m lying between the 
planes z = 0 m and z = 1 m is then given by 

E • dS = 
. PLO y z f= 

fl f
= 

fl 
d d 

;>=-= z=O y=-= z=O 21tfo(l + J2) 

= PLo d</> = PLo fn/2 

2nf O ¢= -n/2 2€ 0 

(2-60) 

This result can, however, be obtained without performing the integration 
if we note that the electric field intensity due to the line charge is independent 
of </> and hence the electric field flux from the line charge emanates from it 
uniformly in <f>. Thus half of the electric field flux emanating from that por
tion of the line charge lying between z = 0 m and z = 1 m cuts the given
surface. Since the total flux emanating from this portion of the line charge 
is P£0(1)/f

0 
= PLo/€

0
, according to Gauss' law, the flux cutting the specified 

surface is P£
0
/2f0 , I

Given E and a closed surface S, it is always possible to compute the 
charge enclosed by the surface by evaluating f s E • . -3 analytically or
numerically and then multiplying the result by €0 in accordance with Gauss' 
law as given by (2-58). The inverse problem of finding E for a given ch?rge 
distribution by using (2-58) is possible only for certain simple cases involving 
a high degree of symmetry, since the unknown quantity E appears in the 
integrand. As a first step, the symmetry of the electric field must be deter
mined by making use of the fact that the electric field due to a point charge 
is directed radially away from it. We have illustrated this in Examples 2-4, 
2-5, and 2-6. Next, we should be able to choose a closed surface S such
that f s E • dS can be reduced to an algebraic quantity involving the mag
nitude of E. Such a surface is known as a Gaussian surface. Obviously, the 
Gaussian surface must be such that the magnitude of E is uniform and the 
direction of E is normal to the surface over the whole or part of the surface, 
while the magnitude of E is zero or the direction of E is tangential to the 
surface over the rest of the surface in the latter case. We will illustrate this 
method of obtaining E by reconsidering Examples 2-4, 2-5, and 2-6. 

EXAMPLE 2-9. An infinitely long line charge of uniform density PLo C/m is situated 
along the z axis as shown in Fig 2.17. We wish to obtain the electric field 
intensity due to this line charge using Gauss' law. 

In Example 2-4, we established from purely qualitative arguments that 
E due to the infinite line charge of uniform density is directed radially away 
from the line charge and its magnitude is dependent only on its distance 
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s
,

\-

l 

z 

i, 

S3 

Fig. 2.17. Gaussian surface for computing the electric 

field of an infinitely long line charge of uniform 

density. 

from the line charge. Thus 

E = E,(r)i, 

Chap. 2 

(2-61) 

Choosing the Gaussian surface S as the surface of a cylinder of radius r

with the line charge as its axis and of length /, as shown in Fig. 2.17, we have 

f E • dS = f E • dS + f E • dS

surface of 
cylinder, S 

curved 
surface S1 

plane sur
faces S2,S3 

(2-62) 

The second integral on the right side of (2-62) is zero since E is tangential 
to the surfaces; that is, E • dS is zero throughout the surfaces. Noting that 
E, is constant on the curved surface Si , we find that the first integral can be 
written as 

Thus 

f E • dS = f E, i, • dS
1 

i, = E, f dS1 
S1 S1 

curved 
surface S1 

= E, (surface area of S
1
) = E,(2rcrl) 

f 
8 E • dS = 2rcr!E,

(2-63) 

(2-64) 

I 
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·But, from Gauss' law,
,[ E • dS = charge enclosed by S = PLol
Js � � 

Comparing (2-64) and (2-65), we have 

E = PLo 
' 2n€or 

E = ho 
i2n€or ' 

which agrees with the result obtained in Example 2-4. I 

Sec. 2.6 

(2-65) 

(2-66) 

(2-67) 

EXAMPLE 2-10. A sheet charge of uniform density p,
0 C/m2 extends over the entire 

xy plane as shown in Fig. 2.18. We wish to obtain the electric field intensity 
due to this infinite sheet charge using Gauss' law. 

z 

Fig. 2.18. Gaussian surface for computing the electric field of an. 
infinite sheet charge of uniform density. 

In Example 2-5 we established from purely qualitative arguments that 
E due to the infinite sheet charge of uniform density is directed normally 
away from the sheet charge and that it is uniform in planes parallel to the 
sheet charge. Thus 

(2-68) 
Choosing the Gaussian surface S as the surface of a rectangular pill box 
of sides !, w, and t as shown in Fig. 2.18, such that half of the box is 
above the sheet charge and the other half below it, we have 

t E • dS = J E • dS + J E • dS + J E • dS
top bottom side 

surface Surface surfaces 

(2-69) 

But the last integral on the right side of (2-69) is equal to zero since E is 
parallel to the side surfaces and hence E • dS is zero throughout these sur-
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faces. Because E. is constant on both the top and bottom surfaces and E. is 
the same on both these surfaces, since they are equidistant from the sheet 
charge, Eq. (2-69) then reduces to 

t E • dS = 2 f E • dS = 2 f E. i. · dS i. 
top top 

surface surface 

= 2E. f dS = 2E. (surface area of top surface) 
top 

. surface 

= 2E.[w

But, from Gauss' law, 

J E • dS = charge enclosed by S = p,0 lw

J s Eo Eo 
Comparing (2-70) and (2-71), we have 

E = Pso 
n 2Eo 

E = Pso j 
2Eo n 

which agrees with the result obtained in Example 2-5. I

(2-70) 

(2-71) 

(2-72) 

(2-73) 

EXAMPLE 2-11. A volume charge is distributed throughout a sphere of radius a

with uniform density Po C/m3
• We wish to obtain the electric field intensity 

due to this volume charge using Gauss' law. 
In Example 2-6 we established from purely qualitative arguments that 

E due to the spherical volume charge of uniform density is directed radially 
away from the center of the charge and is a function only of the distance 
from the center of the sphere. Thus 

E = E,(r)i, (2-74) 

Choosing the Gaussian surface S as the surface of a sphere of radius r � a,

concentric with the spherical charge, as shown in Fig. 2.19, we have 

t E • dS = t E, i, • dS i, = E, t dS

= E, (surface area of the sphere of radius r) 
= E,(4nr2) 

But, from Gauss' law, 

,( E • dS = charge enclosed by S

J s Eo 

= charge enclosed by spherical surface of radius r
Eo 

(2-75) 

(2-76) 
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f E • dS (1/€
0

) f p dv

lim t,.S = lim av 
av-o Av av-o Av 

= __!__ lim 
P Av = __!__ p

€0 av-o Av €0 

The left side of (2-81) is the divergence of E so that we have 

V·E=_!_p 
fo 

Chap. 2 

(2-81) 

(2-82) 

Equation (2-82) is Gauss' law in differential form, which states that the 
divergence of the electric field intensity at any point is equal to 1/f 

O 
times 

the volume charge density at that point. This is Maxwell's divergence equation 
for the electric field. 

The right side of (2-82) represents a volume charge density. Suppose 
we are considering problems involving point charges, line charges, and sur
face charges. The question then arises as to how we should represent the right 
side of (2-82) since, for such charges, the volume charge density is infinity. 
We can resolve this problem by resorting to the Dirac delta function or 
the impulse function. We will illustrate this for the case of a surface charge 
in the following example. 

EXAMPLE 2-12. A sheet charge of uniform density Pso 
C/m2 extends over the entire ' 

xy plane. It is desired to write Gauss' law in differential form for this sheet ' 
charge. 

Let us consider a slab of charge lying between the planes z = -a and
z =+a and of uniform density Po 

C/m3 as shown in Fig. 2.20(a). The volume 
charge density as a function of z for such a charge distribution is sketched in 

(a) 

Volume 
Charge 
Density 

-a O a 

(b) 

Area = 2apo 

= PsO 

ro 0(,)

Volume 
Charge 
Density 

Area = Pso 

---�--,...z 

(c) 

Fig. 2.20. For deriving the volume charge density corresponding 
to a surface charge. 





104 The Static Electric Field Chap. 2 

is, from a higher elevation to a lower elevation, the gravitational field does · 
the work. If the movement is opposite to the direction of the gravitational 
field, that is, from a lower elevation to a higher elevation, certain work has . 
to be performed by an external source to overcome the gravitational force. · 
Likewise, since the electric field is a force field in so far as charges are con-1

· 
cerned, there is work associated with the movement of charges in an electric 
field. If a test charge is moved along the direction of the field, work is done I

by the field since the force exerted by the field on the charge is in the direction 
of its movement and hence it accelerates the test charge. If the charge is 
moved against the direction of the field, an external agent has to supply the 
energy to overcome the force exerted on the charge by the field, since this 
force is opposite to the direction of movement of the charge. 

Let us consider the displacement of a test charge q by an infinitesimal 
distance di from A to B at an angle ('J, with the electric field E at the point 
A as shown in Fig. 2.21(a). The force exerted on the test charge by the field 

(a) 
(b) 

Fig. 2.21. Movement of a test charge in an electric field.

has magnitude qE and is directed along E. Its component along the line from 
A to B is qE cos (X. If the charge is moved from A to B, the amount of work 
dW done by the field is the product of the force and the displacement; that 
is, 

dW = qEcos (X di= qE • dl (2-91) 
where di is the vector from A to B. Note that dW is positive if O < ('/., < 90° 

so that work is done by the field; dW is negative if 90° 
< ('J, < 180° so that 

negative work is done by the field, which amounts to stating that work is 
done against the field by an external agent. For (X = 90°, dW is zero, which 
is analogous to the movement of a mass on a frictionless surface at right/ 
angles to the gravitational field. Now let us consider two points A and B: 
which are widely separated as shown in Fig. 2.21(b). The work WAn done 
by the field in moving a test charge q from A to B along a given path can be 
obtained by dividing the path into several segments of infinitesimal length 
di, then applying (2-91) to each segment, and adding up all the contributions .. 

I 
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The result is a line integral expression given by 

WAB = q s: E • di 

Sec. 2.8 

(2-92) 

where the integration is performed along the given path from A to B. The 
evaluation of line integrals was discussed in Section 1.7. 

In the gravitational field, when a mass moves from a higher elevation 
to a lower elevation, it loses some potential energy and vice versa. Likewise, 
in the electric field, we can state that the test charge has certain potential 
energy associated with it by virtue of its location in the electric field. WAB 

as given by (2-92) is then the loss of potential energy associated with the 
movement of the charge from A to B. If we divide WAB by q, we obtain the 
loss of potential energy per unit charge. This quantity denoted by VAB is 
known as the potential difference between the points A and B. Thus 

VAB =WAB =J
B

E·dl q 
A 

(2-93) 

If VAB is positive, there is a loss in potential energy associated with the move
ment of the charge from A to B; that is, the field does the work. If VAB is 
negative, there is a gain in potential energy associated with the movement of 
the charge from A to B; that is, an external agent has to do the work. The 
units of potential difference are newton-meters per coulomb or joules per 
coulomb, commonly known as volts. This gives the units of volts per meter 
to the electric field intensity. 

EXAMPLE 2-13. In cartesian coordinates, the electric field intensity is given by
, ,  

E = yzi
x 
+ zxi

Y 
+ xyi,

Find the potential difference between the points A(0,22.7, 99) and B(l, 1, 1). 
Is it necessary to specify a path for line integration between the two points? 

In cartesian coordinates, di = dxt + dyi
y 
+ dzi, so that 

VAB = f: E • dl = f: (yzt + zxi
Y 
+ xyi,) • (dx i

x 
+ dy i

y 
+ dz i,)

= J: (yzdx + zxdy + xydz) 

= f: d(xyz) = [xyz]! 

Since E • dl is the total derivative of a function of x, y, z, it is not necessary 
to specify a path for the fine integration between the two points. VAB is depend
ent only on the coordinates of the end points A and B. We will find in 
Section 2.11 that this is a general characteristic of the static electric field. 
Here, we have 

VAB = [xyz]! = [xyzn:h'. 1,99 = l, I 
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2.9 The Potential Field of Point Charges 

Chap. 2 

let us now consider two points A and B in the electric field of a point charge 
Q situated at distances rA and rn, respectively, from the point charge as: 
shown in Fig. 2.22. Using (2-93), the potential difference between A and Bl 
can be computed for any specified path from A to B. Noting that E =I
(Q/4nc

0
r2)i, for a point charge and that the differential length vector di is

given in spherical coordinates as 
dl = dr i, + r d(} i8 + r sin (} d<p i

<.6 

Q ---1, 
4'1TcO r2 

(2-94) 

B Fig. 2.22. Computation of the
potential difference between two,
points in the electric field of a'
point charge. 

we have, from (2-93), 

VAn = I
n 

E • dl = I
n 

(4 Q 2 
i,) • (dr i, + r d(} i8 + r sin(} d<p i

<.6
) 

A A 7lfor 

= J
r B 

__Q_ d r = __Q_ - ____Q__ ,-,A 4n€0r2 4n€0rA 4n€0rn 

I 

I 

(2-95) 

Equation (2-95) indicates that, for a given charge Q, the potential difference 
between the two points is dependent only upon their distances from the 
point charge and not on the path from A to B chosen for its evaluation.· 
Furthermore, the potential difference is the difference between two terms, 
one of which is dependent on r A only and the other dependent on rn only. 
We can call these terms the potentials at rA and rn, respectively. If we denote 
these potentials as VA and Vn, respectively, we have, from (2-95), 

VA =_Q_ 4n€0
rA

Vn = _Q_ 4n€0rn 

(2-96) 

(2-97) 

The right sides of Eqs. (2-96) and (2-97) are, however, not unique expres
sions for VA and Vn since, on the right side of (2-95), we can add and subtract 
any arbitrary constant C without altering its value; that is, 
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which then leads to 

VB=-
4 
Q +c1r€orB 

If we let C = Q/4n€ 0r 0, where r O is a constant, we have 

VA=_Q_ _ _Q_ 4n€ 0r A 4n€ 0r O 

Sec. 2.9 

(2-98) 

(2-99) 

(2-100) 

(2-lOla) 

VB= _Q_ - _Q_ (2-lOlb) 
41t€orB 41t€oro 

Comparing (2-lOla) with (2-95), we note that VA is the potential differ
ence b�tween point A and another point situated at a distance r0 from the 
point charge, which we will call the reference point. Similarly, VB is the 
potential difference between the point B and the same reference point.· Thus 
the potential at any point is simply the potential difference between that 
point and an arbitrary reference point. But then, what is the potential at 
the reference point? The answer to this question is obtained by substituting 
rA = r0 

in (2-lOla) or rB = r0 
in (2-lOlb), both of which result in zero. The 

potential at the reference point is therefore zero. To complete the definition, 
we state that the potential at any point is the potential difference between 
that point and an arbitrary reference point at which the potential is zero. 
In the case of a point charge, a convenient reference point is r

0 
= oo. We 

then have 
V(r) = __Q_

4n€0
r (2-102) 

The potential at a distance r from the point charge is thus the work done per 
unit charge by the field in the movement of a test charge from that point to 
infinity or, it is the work done per unit charge by an external agent in bring
ing a test charge from infinity to that point; that is, 

(2-103) 

The right side of (2-102) represents the potential field of a point charge. It 
is also known as the Coulomb potential of a point charge. In contrast to the 
vector nature of the electric field intensity, the potential field is a scalar field. 

Surfaces on which potential is a constant are known as equipotential 
surfaces. If a test charge is moved on such a surface from one point to another, 
no work is involved since the potential difference between any two points is 
zero. For the point charge, the equipotential surfaces are, according to 
(2-102), r = constant, that is, surfaces of spheres centered at the point 
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charge. The equipotential surfaces are thus orthogonal to the direction lines 
of E which are radial, as shown in Fig. 2.23. This result is to be expected not 
only for a point charge but for any charge distribution, since if we move a 
test charge along a path everywhere normal to the direction lines, there is no 
component of force acting on the charge along the direction of the path and 
hence the work involved is zero. 

Fig. 2.23. Cross sections of equi
potential surfaces and direction 
lines of E for a point charge. 

For several point charges located at different points as shown in Fig. 
2.5, the potential at any point Pis the work done per unit charge by an exter- i 

nal agent in bringing a test charge from infinity to that point in the com-· 
bined electric field E of all the charges; that is, 

V(P) = -s: E • di

= -s: (E 1 + E2 + E3 + · · · + En ) • di (2-104) 

= -s: E 1 • di - s: E2 • di - · · · - s: En • di

where E
1

, E
2

, E
3

, • • •  , E. are the electric field intensities due to the individual 
point charges Q i , Q2 , Q3 , • • •  , Q., respectively. But each term on the.right 
side of (2-104) is equal to the potential at the point P due to the corresponding 
charge. Thus 

V(P)=�+�+···+�4nf 0R 1 4nf 0R2 4n€ 0R.

=t� 
i=I 4n€0Ri 

(2-105) 

The potential at P due to the collection of point charges is the sum of the, 
potentials at P due to the individual charges. In the vector notation defined. 
in connection with Eq. (2-20), we write 

(2-106) 
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I 

EXAMPLE 2-14. For the electric dipole arrangement of Fig. 2.7, it is desired to 
find the potential at distances very far from the dipole compared to the spac
ing d.

With reference to the notation of Fig. 2.7, the electric potential at point 
Pis given by 

V(r) = _Q_ - __Q_4n€ 0r + 4n€ 0r _ 
For r � d, (2-107) can be approximated as 

��- Q Q 
- 4n€0[r -(d/2)cos()] 4n€0[r + (d/2)cos0]

Qd cos() ---- Qd cos()
4n€0[r2 

- (d2/4) cos2 ()] - 4n€0r2 

(2-107) 

(2-108) 

Equation (2-108) becomes exact in the limit d--> 0, keeping the dipole mo
ment p = Qd constant. We then have the potential field of dipole moment 
p = pi, given by 

V(r) = p cos() - p • i, - � (2-109) 4n€ 0 
r2 

- 4n€ 0r2 - 4n€ 
0
r3 

The potential field of a dipole drops off inversely as the square of the distance, 
as compared to the inverse distance dependence of the potential field of a 
point charge. Likewise, the potential fiel4 of a quadrupole can be shown 
to vary inversely as r 3

• The potential fields of successive higher-order mul-
tipoles vary inversely as r4, r5 , .. .. From (2-109), we note that the equipo
tential surfaces for the dipole field are ( cos 0)/ r2 = constant, or

r2 sec () = constant (2-110) 
Cross sections of these surfaces are sketched in Fig. 2.24, in which the direc
tion lines of E taken from Fig. 2.12 are also shown. It is left as an exercise 
for the student to show that the equipotential surfaces given by (2-110) and 
the direction lines given by (2-49) are orthogonal. I

. EfAMPLE 2-15. A point charge Q is situated at a vector distance r' from the origin 
of a coordinate system as shown in Fig. 2.25. It is desired to find the potential 
due to this point charge at distances r from the origiri large in magnitude 
compared to r' in the form of a power series in r.

Let P be the point at which the potential is desired. Then, from (2-106), 
the potential at P due to Q is given by 

Vi(r) - Q- 4n€ 
0 I r - r' I 

- Q
- 4n€

0
(r2 + r'2 

- 2rr' cos ix)ll_Z

Q ( ' r'2 2. r' • r)- 1
1
2 

=- 1+----
. 4n€ 0r r2 r2 

(2-111) 
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Fig. 2.24. Cross sections of equipotential surfaces and 

direction lines of E for an electric dipole. 

z 

Fig. 2.25. For the computation of potential due to a point 

charge at distances large compared to its distance from the origin. 

Chap. 2 
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of value :E Q
1
, a dipole moment i: Q

1
r�, and so on, all situated at the 

}=I J=I 

origin. We note that if the sum of the charges is zero, the first significant term 
is that of the dipole moment. Likewise, if the sum of the charges as weU 
as the dipole moment are zero, the first significant term is the quadrupol� 
term, and so on. Usually, two significant terms will suffice. I 

EXAMPLE 2-16. Point charges are located at the corners of a cube of sides 1 mt 
with one corner placed at the origin and three edges coinciding with the 
coordinate axes as shown in Fig. 2.26. Values of the point charges in coulombs 
are indicated at the respective corners. Find the first two significant term:S 
in the potential of this collection of charges at large distances from it. 

x 

z 

-I ___ ,'14

/
/ 

/
/ I

/ / I 
-2f---{-1 I 

I
1 

1---,.-----y / 2 
I I / I I / Cube of

-I ___ -}'1 Edges 1 m
Fig. 2.26. Point charges located at 
the corners of a cube. Values dr 
the poi�t charges indicate� at t

hi1e respective corners are m co -
lombs. 

,\ 

The solution to this problem consists of evaluating � Q and � Qr' fo� 
the collection of point charges and substituting the results in (2-115). Thes

1quantities are evaluated with the aid of Table 2.2. 
The potential for large r correct to the first two significant terms is theil 

given by 

V
- � Q �Qr'• r
- 4n€0

r + 4n€0r
3 

= _3_ + 
(-3t + 6iy) • i, (2-116,)4n€ 0r 4n€ 0r2 

= _3_ 
+ 

-3sin0cos¢ + 6 sin0sin¢
I4n€ 0r 4n€ 0r

2 

If, in Table 2.2, � Q is zero, then we have to evaluate the third term if thle 
result is to be correct to the first two significant terms, and so on. I 
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TABLE 2.2. Computation of I: Q and I: Qr' for the Arrangement of Point 
Charges in Fig. 2.26 

Location 

(x,y, z) Charge, Q r' Qr' 

0,0,0 1 0 0 

1, 0, 0 -1 ix -ix
0, 1,0 2 iy 2iy
0, 0, 1 -1 iz -iz
1, 1, 0 1 ix + iy ix + iy 

0, 1, 1 4 iy + iz 4iy + 4iz 
1, 0, 1 -2 ix+ iz -2ix - 2iz 

1, 1, 1 -1 ix+ iy + iz -ix - iy - iz 

I: Q = 3 I: Qr'= -3ix + 6iy 

2.1 O The Potential Field of Continuous Charge Distributions 

In the previous section we considered the potential field of collections of 
point charges at discrete points. In this section we will extend the discussion 
to continuous charge distributions. As in Section 2.4, we divide the contin
uous charge distribution into several infinitesimal parts, each of which can be 
considered as a point charge, and obtain the potential at any point due to the 
total charge as the superposition of the potentials due to the individual point 
charges. To do this, we again have to evaluate integrals as in Section 2.4. 
However, the integrals involve the scalar quantity potential instead of the 
vector quantity electric field intensity. Hence, for a particular charge dis
tribution, the potential at any point is given by a single integral, whereas for 
the determination of the electric field intensity as in Section 2.4, it is neces
sary to evaluate three integrals for the three components in the general case. 
We will illustrate the determination of the potential for continuo1,1s charge 
distributions through some examples. 

XAMPLE 2-17. An infinitely long line charge of uniform density PLo C/m is situated 
along the z axis. It is desired to obtain the potential field due to this charge. 

First we divide the line into a number of infinitesimal segments each of 
length dz as shown in Fig. 2.27, such that the charge PLo dz in each segment 
can be considered as a point charge. Let us consider a point P at a distance 
r from the z axis, with the projection of P onto the z axis being 0. For the 
sake of generality, we consider the point P

0 
at a distance r

0 
from O along 

OP as the reference point for zero potential and write the potential dV at 
P due to the infinitesimal charge PLo dz at A as 
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and hence the right side of (2-130) is identically zero, thus giving 
VxE=O (2-13b 

Equation (2-131) is Maxwell's curl equation for the static electric field. It states 
that the curl of the static electric field intensity vector is everywhere equal to 
zero. Fields which satisfy the property of zero curl are known as irrotational 
fields; that is, such fields cannot rotate the paddle wheel discussed in Section 
1.9. Together with Maxwell's divergence equation for the electric field given 
by (2-82), (2-131) completely defines the properties of the static electric fiel�. 
Equation (2-131) determines whether or not a given vector field is realizable 
as a static electric field whereas Eq. (2-82) relates the field to the charge 
distribution responsible for producing the field. As an alternative approach 
to that which we followed in this chapter, it is possible to accept these two 
equations as ,a starting point and obtain the electric field intensity of a poiht 
charge and other charge distributions. . 

I 
EXAMPLE 2-19. Determine if the following fields are realizable as static electric fields. 

(a) F. = -yix + xi
y cartesian coordinates 

(b) Fb = (PL/2nf
0
r2)(cos <pi, + sin <p i

91
) cylindrical coordinates 

(c) Fe = sin() i, +cos() i8 spherical coordinates 
(a) jx i

y jz 

V x F. = 
a a a =,t:O 
ax ay az 

-y x 0 
Hence F. cannot be realized as a static electric field. 

(b) 

V x Fb = 

1- i
¢ 

jz 
r r 

a a a 
ar a<1> az 

PL cos </> PL sin </> 0 2n€
0
r2 2nf

0
r 

=0 

Hence Fb is realizable as a static electric field. It is left as an exercise (Proble:m 
2.15) for the student to show that F b is the field of a two-dimensional electriic
dipole of moment p L· 

(c) 

V x Fe
= 

sin () r cos () 0 
Hence Fe can be realized as a static electric field. In fact, if we note thatt 
in cylindrical coordinates, Fe = i,, the irrotational nature of Fe becom�� 
obvious. I 



119 The Relationship Between Electric Field Intensity and Potential 

2.12 The Relationship Between Electric Field Intensity and Potential 

Sec. 2.12 

In Section 1.9, we learned that the curl of any vector which can be expressed 
as the gradient of a scalar is zero. Conversely, if the curl of a vector is equal 

to zero, the vector can be expressed as the gradient of a scalar. From (2-131), 
we can say therefore, that the static electric field vector E can be expressed 

as the gradient of a scalar, say, Cl>. The question that arises now is: What is 
this scalar function Cl>? For a hint, let us compare the direction of the gradient 

of the potential V with the direction of E. The direction of the gradient of 

a scalar function at any point is the normal to the surface passing through 

that point and on which the scalar function has a constant value. Hence the 
direction of VV is normal to the equipotential surfaces. But we found in 
Section 2.9 that E is normal to the equipotential surfaces. Thus the directions 

of VV and E at a point have to be either the same or opposite. 

To determine which of these is correct and to probe the relationship 
between E and V further, let us consider two equipotential surfaces in a 

static electric field as shown in Fig. 2.29. Let the potentials on these surfaces 

Fig. 2.29. For the determination EA 
of the relationship between E 
and V. 

be V and V + fl V, where fl V is infinitesimal. Since fl V is infinitesimal, the 
two surfaces are infinitesimally close so that we can assume that the electric 

field intensity between the two surfaces in the neighborhood of point A is 
uniform and equal to the electric field intensity E

A at point A. We know 

from previous discussion that EA is normal to the equipotential surface V 

at A. To decide whether EA is directed towards the equipotential surface 

V + fl V or away from it, we note that, if a test charge is moved along the 

direction of E, the field does the work; that is, the charge accelerates and 

hence loses potential energy. This is the same as stating that the charge 
moves from a higher potential to a lower potential. Thus E

A is directed 

away from the equipotential surface V + flV as shown in Fig. 2.29. Now, 

the potential difference between point A and another point B on the equi

potential surface V + fl V can be written, using (2-93), as 
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But 
VAB

= V-(V+AV)= -AV 

Chap. 2 

(2-132) 

(2-133) 
i 

Also, if An is the normal vector from the surface V up to the surface V + A v,
1 

we have 
EA • AI= -EA Al cos rx = -EA An (2-134)1 

Substituting (2-133) and (2-134) into (2-132), we obtain i 
(2-135) -AV= -EA An 

or 

(2-136)1 

and 

(2-137)1

where i. is the unit vector along An. If we now let An tend to zero, (AV/ An) iJ 
becomes VV. Dropping the subscript A in (2-137), since the same arguments!
can be applied to any other point in the field, we obtain a relationship between 
the static electric field intensity vector and the potential at a point as 

E= -VV (2-138) 
Equation (2-138) permits us to compute E from a knowledge of V using 
differentiation. · I 

Substituting (2-138) into Maxwell's divergence equation for the electric 
field, V • E = p/€

0
, we have 

V • (-VV) = .f!_ 
fo 

(2-139) 

Recalling that V • V V is the Laplacian of V, denoted as V2 V, we see that · 
Eq. (2-139) becomes 

(2-140) 

This is known as Poisson's equation. It is a differential equation which 
relates the potential at a point to the volume charge density at that point. 
If the volume charge density in a region is zero, then the right side of (2-140) 
is zero for that region so that (2-140) reduces to 

(2-141) 
This is known as Laplace's equation. It states that the Laplacian of the 
electrostatic potential in a region devoid of charge is equal to zero. We will 
discuss the solutions of Poisson's and Laplace's equations in Chapter 6. 





122 The Static Electric Field

y 

Chap. 2 

x 

Fig. 2.31. For Problem 2.4. 

2.5. Three point charges, each of mass m and charge Q, are suspended by strings of 
length L from a common point. It is found that the common point and the points 
occupied by the three charges form the corners of a tetrahedron. Find the rela
tionship between Q, m, L, and the acceleration due to gravity, g.

2.6. Eight point charges, each of value 1 C, are situated at the corners of a cube of 
edges 2 m with one corner placed at the origin and three edges lying along the 
coordinate axes. (a) Find the force experienced by each charge. (b) Find the electric 
field intensity at the point (2, 2, 2). (c) Find the electric field intensity at the point 
(0, 0, 2). 

2.7. Point charges Q, -2Q, and Q are located at (0, 0, d), (0, 0, 0), and (0, 0, -d), 
respectively. Such an arrangement is known as a linear quadrupole. (a) Find the 
electric field intensity at distances large compared to d along the line joining the 
charges. (b) Find the electric field intensity at distances large compared to d 
normal to the line joining the charges. 

2.8. A line charge is situated along the z axis. Consider the charge density PL to be 
arbitrary function of z and show that the components of the electric field intensity 
at any point in the xy plane are given in cylindrical coordinates by 

- r s= PL dz 

E, - 41tfo z=-= (r2 + z2)3/2

E,t, =0 

_ 1 s= pLzdz 

E. - -41tfo z=-= (r2 + z2)3f2

Evaluate the field components for the following charge distributions : 

(a) PL
= PLo

(b) PL = PLO
(c) PL

= \ z \
(d) PL = z 

-oo<z<oo
- zo < z < Zo
-z0 < z <z0 

- zo < Z < Zo

where PLO is a constant. Discuss your results from considerations of symmetry. 
Verify your results by considering limiting cases wherever appropriate. 
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2.11. A surface charge is distributed over a spherical surface of radius a and centered
at the origin. Consider the charge density Ps to be uniform in if> but not necessarily
in (} and show that the electric field intensity at a point (0, 0, z) has only a z-com
ponent given by

E _ .E:._ f" ph - a cos 8) sin(} d8
z - 2f o e=o (a2 + z2 - 2az cos 8)312 

Evaluate E
z both for I z I < a and for I z I > a for the following charge distributions:

(a) Ps = Pso O < (} < n
(b) Ps = Pso cos(} O < (} < n
where Pso is a constant.

2.12. A volume charge is distributed throughout an infinite slab of thickness 2a sym
metrically placed about the xy plane. Consider the charge density p to be uniform
in x and y but not necessarily in z and show that the electric field intensity at any
point (x, y, z) has only a z component given by

1 5· -- pdz 2fo 
Z=-a 

z>a

-a<z<a

z<a 

Evaluate Ez as a function of z for - oo < z < oo for the following charge dis
tributions:
(a) P = Po
(b) p = {Po

-Po
(c) p=lzl
(d) p = z 

-a< z < a

O<z<a
-a< z < 0
-a< z < a 

-a <z < a 

where p0 is a constant. Discuss your results from considerations of symmetry.
2.13. A volume charge is distributed with uniform density p0 Cfm 3 throughout ar

infinitely long cylinder of radius a m. Obtain the electric field intensity at pointi
both inside and outside the cylinder by dividing the cylindrical charge into sev
eral infinitesimal parts each of which can be considered as a point charge.

2.14. A small hole is drilled through the center of the spherical volume charge o.
Example 2-6., as shown in Fig. 2.32. The size of the hole is negligible comparec
to the size of the sphere. A point charge q( < 0) is placed at one end of the hol<
and released from rest at t = 0. Assume that the magnitude of q is very smal
compared to the total charge Q (> O) contained in the sphere. (a) Derive the
equation of motion of the point charge. (b) Solve the equatiop. for the positiot
and velocity of the point charge as functions of time. (c) What is the frequenc:
of oscillation of the point charge?
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Fig. 2.32. For Problem 2.14 . 

-
;:

le 

-
/

a 
- --

I �f q 

. 15. Two infinitely long line charges of uniform but opposite densities PLo and -
pLo

are situated parallel to the z axis and passing through (d/2, 0, O) and '(-d/2, 0, 0), 
respectively. The arrangement is known as a two-dimensional electric dipole, in 
contrast to the three�dimensional electric dipole made up of two equal but opposite 
point charges. (a) Obtain the electric field intensity due to the two-dimensional 
electric dipole in the limit that d -> 0, keeping the dipole moment p LOd constant.
(b) Find and sketch the direction lines .

. 16. Two infinitely long line charges of uniform densities PL I and PL2, respectively, 
are situated paraUel to each other at a distance d apart. Show that the equation 
for the direction lines of E is 

!J.,1PL1 + {J.,zPL2 = constant 
in the plane normal to the line charges, where !J.,1 and !J.,2 are the angles made by 
the lines drawn from any point P to the line charges with. the line joining the 
charges as shown in Fig. 2.33. Obtain and sketch the direction lines for the fol
lowing cases: 
(a) PL1 = PL2 = PLo
(b) PL1 = PLo, PL2 = -PLO

Fig. 2.33. For Problem 2.16 . 

(two-dimensional dipole) 

PLlfF--'-�������•-�

,___j, -d--

p 

. 17. Obtain the electric field intensity of a finitely long line charge of uniform density 
PLo and length 2a at an arbitrary point. Show that the direction lines are hyper
bolas with the ends of the line charge as their focii. 
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2. 5s. In shorthand notation, the three-dimensional Dirac delta function situated at the 
origin is written as O(r), and is defined as 

�( ) = 
1
. o(r - ro) o(O - Oo) o(</) - </)0) 

ur Im 2 , e ro-o r O sin 2 
o

80-+0 

¢0-+0 

if the volume V contains the origin 
if the volume V does not contain the origin 

By performing volume integration of V2 (1/r) = V · V(l/r) throughout a sphere 
of radius a and centered at the origin and then letting a --> 0, show that 

v2 (+) = -4n o(r)

Hence, show that the potential field of a point charge Q located at the origin is 
Q/4n€0r. 



3 

THE STATIC MAGNETIC FIELD 

In Chapter 2 we introduced the electric field as a force field associated wi�h 
a region of space in which charges at rest experience forces. In this chapti:r 
we introduce a second kind of force field, known as the magnetic field and 
associated with a region in which charges in motion experience forces. TheBe 
forces experienced by moving charges are in addition to any electric forc(!S 
experienced by them by virtue of an electric field in the region. Just as we 
were concerned only with the static electric field in free space in Chapter 
2, we are in this chapter concerned only with the static magnetic field in frne 
spac�. We know that the motion of charges constitutes a current. Currents 
are, however, classified into different categories according to 4ow they 
are produced. Currents arising from movement of charges such 'as space 
charges in vacuum tubes and electron beams in cathode-ray tubes are calle:d 
convection currents. Two other types of current known as conduction amd 
polarization currents result from different effects on charges in materi1a.l 
media under the influence of electric fields, as we will learn in Chapter :5. 
Yet another type of current is the magnetization current which results frotn 
magnetic effects in materials, as we will learn also in Chapter 5. For the 
purposes of this chapter, it is not necessary to distinguish between thetn 
because they are all basically equivalent to rate of flow of charges with time 
in free space. Thus the laws which we will learn in this chapter can be applie;d 
equally well to all of these currents .. 

134 
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3.1 The Magnetic Field Concept 

Sec. 3.1 

In Section 2.1 we learned that if, in a region of space, a fixed test charge q 

experiences a force F, then the region is characterized by an electric field of 

intensity E given by 
F 

E=
q 

(2-3) 

Here we introduce the concept of magnetic field by considering a test charge 

moving in a region of space. If the test charge q moving with a velocity v 

experiences a force F, then the region is said to be characterized by a magnetic 
field, which we will represent by the symbol B. This force F is related to 

q, v, and B as given by 

F=qvxB (3-1) 

According to (3-1), the force experienced by the moving charge due to the 

magnetic field is directed normal to both v and B, as shown in Fig. 3.1, in 

Fig. 3.1. Force experienced by a test charge moving 

with a velocity v in a magnetic field B. 

contrast to the same directions of electric force and electric field intensity. 

The magnitude of the force is equal to qvB sin oc, where oc is the angle between 

v and B. Since the force is always normal to v, there is no acceleration along 

the direction of motion. Thus, the magnetic field changes only the direction 

of motion of the charge and does not alter the kinetic energy associated with 

it. 

From Eq. (3-1), we note that if the test charge moves in, or opposite 

to, the direction of B, it does not experience a force. Also, rewriting Eq. (3-1) 

as 

F = qvB i, x i
B 

= qvB sin oc iF (3-2) 

where i., i
B
, and i

F 
are unit vectors along v, B, and F, respectively, we observe 
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that it is only possible to deduce B sin (I. by knowing the force for only one 
direction of motion of the test charge. On the other hand, if we know two 
nonzero forces F1 and F

2 
for two velocities v

1 and v
2 

in different directions, 
then we have 

or 

F1 x F2 = (qv
1 x B) x (qv

2 x B) 
= q2[(v

1 
x B •· B)v2 

- (v1 X B • v
2
)B] 

= -q(F1 • v2)B 

(3-4) 

Alternatively, we note from (3-1) or (3-2) that the force is maximum fo�
v normal to B so that if we find a maximum force Fm by trying several direc-

1 

tions of v, keeping its magnitude constant, then 

B = Fm X jm (3-5) 

where im is the direction of v for which �:e force is Fm . IAs in the case of defining the electric field, we assume that the movemen�
of the test charge does not alter the magnetic field in which it is placed.

I From a practical point of view, the movement of the charge does influence 
the magnetic field irrespective of how small it is and how slowly it is moved.I 
However, theoretically, we can define B as the right side of (3-5) in the limi� 
that qv tends to zero; that is, 

B = lim Fm x im (3-6j 
qv-o qv 

From (3-5), we observe that the units of B are 
newtons per coulomb _ newton-seconds _ newton-meter x seconds

meters per second - coulomb-meter - coulomb (meter)2

Recalling that newton-meter per coulomb is a volt, we can write these unit� 
as volt-seconds per square meter, commonly known as webers per square 
meter, and abbreviated Wb/m2 , giving the character of a flux density for B. 
Accordingly, B is known as the magnetic flux density vector. 

EXAMPLE 3-1. An electron moving with a velocity v 
1 

= ix m/sec at a point in a mag, 
netic field experiences a force F

1 
= e(-iy + i,) N, where e is the charge ol 

the electron. If the electron is moving with a velocity v
2 

= iy m/sec at thJ 
same point, it experiences a force F 

2 
= e(ix - i,) N. Find B at that point! 

Using (3-4), we have 

B = F2 X F1 _ e(t - i,) x e(-iy + i,)

q(F 1 • v2) - e[e(-iy + i,) • iy] 
_ e2(-ix - iy - i,)
-

-e2 
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and 
J = pv 

Chap. 3 

(3-10) 
Now, the force experienced by the charge dQ moving with the velocity 

vis given by 
dF = dQv x B 

= p(dl)(dS)v x B 

= (di • dS)pv x B
= J x Bd(vol) 

(3-11) 

where d(vol) is the differential volume (di • dS). Thus the magnetic force 
experienced by the charges in a differential volume in a region of current is 
given by (3-11). To obtain the total force experienced in a large volume, we 
need to integrate the right side of (3-11) throughout the vblume under con
sideration; that is, 

F = f J x B d(vol) 
vol 

(3-12) 

For a filamentary wire carrying current I, the current density J is 
infinity since dS is zero but the product J • dS is equal to I so that (3-11) 
becomes 

dF = (di) (dS) J x B 

= (J • dS)dl x B
= I di x B

(3-13) 

as illustrated .in Fig. 3.3. The total force experienced by the filamentary 
wire is obtained by integrating the right side of (3-13) along the length of 
the wire. Thus 

F = f . (I di x B) =If . (di x B) 
wire wire 

Fig. 3.3. Illustrating the · force experienced by an 
infinitesimal segment of a filamentary wire carrying current 
I in a magnetic field B. 

(3-14) 
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XAMPLE 3-2. Show that the total magnetic force experienced by a closed loop of
wire carrying a current I in a uniform magnetic field B is equal to zero. 

Applying (3-14) for the contour C of the wire, we have 

F = If c (di x B) = 1(f c di) x B (3-15) 

where, since B is uniform, we have taken it outside the integral on the right 
side of (3-15). Now, 

f c dl = f c (dx ix + dy iy + dz iz)

Hence F = 0. I

= (f c dx) t + (f c dy) iy + (f c dz) iz = 0

3.3 Ampere's Law of Force 

(3-16) 

In Chapter 2 the concept of electric field was introduced in terms of force 
experienced by a small test charge placed in the presence of a larger charge 
in analogy with the gravitational force associated with two masses. We then 
presented an experimental law known as Coulomb's law and obtained from 
it the expression for the electric field intensity of a point charge. Just as 
static charges which are influenced by electric fields are themselves sources 
of electric fields, moving charges or currents which are influenced by mag
netic fields are themselves sources of magnetic fields. To demonstrate this, we 
will in this section present an experimental law known as Ampere's law of 
force, analogous to Coulomb's law, and use it in the next section to obtain 
the expression for the magnetic field due to a current element. 

Ampere's law of force is concerned with the forces experienced by two 
loops of wire carrying currents I 1 and /2, as shown in Fig. 3.4. As a result of 

Fig. 3.4. Two loops of wire carrying currents /1 and /2 • 
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Equations (3-21) and (3-22) yield a general expression for the magnetic 
flux density due to a current element I di at any point located at a vector 
distance R from it as 

dB 
= µ0 I dl X R = µ0 I dl X iR (3-23) 

4,r R3 4n R2 

where iR is the unit vector in the direction of R. Equation (3-23) is kno+n 
as the Biot-Savart law and is analogous to the expression for the electric 
field intensity of a point charge. The Biot-Savart law tells us that the mag-
netic flux density at a point P due to a current element is directed nornial 
to the plane containing the current element and the line joining the cum:

1

1nt 
element to the point, as shown in Fig. 3.6. It is therefore directed circu�ar 

/ 
/ 

7,, 

/-- ....... 

( ' 

\ ', 

/ 
/ 

\ .A \ 

"\/'\ \ 
/ " \ J 

/ ........ / 
dB 

Fig. 3.6. The magnetic field dB dpe 
to a current element I di, at I a 
distance R from the current ele
ment. 

to the straight-line axis along the current element. In particular, the senise 
of the normal is that towards which the fingers are curled when the fila
mentary wire is grabbed with the right hand and with the thumb pointing in 
the direction of the current; it is the same as the sense of turning of a riglit-
hand screw as it advances in the direction of I di. The magnitude of the 
magnetic flux density is proportional to the current I, the element leng\th 
di, and the sine of the angle between the current element and the line frdm

it to the point P, and inversely proportional to the square of the distan�e 
from the current element to the point P. Hence the magnetic field is zero alo11g 
the straight line in the direction of the current element. The magnetic fl x 
density B due to a filamentary wire of any length can now be obtained y 
integrating the right side of (3-23) along the contour C of the wi e. 
Thus 

B = µ0 f I dl X iR 
4,r c R2 

In evaluating the integral in (3-24), we note that iR and R are functions oft e 
location of di. In terms of source point-field point notation, (3-24) is writt n 
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z 

. Sec. 3.4 

r:;, I ie 

x 

I 

I 

I 
I 

I 

I 

I 

����������'���....-- y

Fig. 3.9. For evaluating the magnetic field due to a magnetic
dipole at distances very large from it compared to its radius.

if> = if>' is then given by

{Ia def>' (-sin</>' i
x 
+ cos</>' i

y
) 

}dB = µ0 X [-a cos</>' i
x 
+ (r sin() -a sin ef>')i

y 
+ r cos() i,] 

1 4n (a2 + r2 
- 2ar sin() sin </>')312 

_ µ
0
Ia def>' [r cos() cos </>' i

x 
+ r cos() sin</>' i

y 
+ (a - r sin() ,sin ef>')i,]- 4n(a2 + r2 

- 2ar sin() sin </>')312 

The magnetic field at P due to the symmetrically situated current element

2 at if> = n - if>' is given by 

{Ia def>' (- sin</>' i
x 

- cos</>' i
y
) 

}dB = µo X [a cos</>' i
x 

+ (r sin() - a sin </>')i
y 
+ r cos() i,] 

2 4n (a2 + r2 
- 2ar sin() sin </>')312 

_ µ
0
Ia dif>'[-r cos() cos if>' i,, + r cos() sin if>' i

y 
+ (a - r sin() sin</>') i,]- 4n(a2 + r2 

- 2ar sin() sin </>')312 

The contribution to the magnetic field at P due to the pair of current elements
1 and 2 is then given by

dB= dB
1 
+ dB

2 

µ
0
Ia def,' [r cos() sin</>' i

y 
+ (a -r sin() sin ef>')i,]= 2n(a2 + r2 

- 2ar sin() sin </>')312 
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Denoting dB= dB, i, + dB8 i8, we have

dB, = dB • i, = dB • (sin O iy + cos O iz)
_ µola2 cos e def/ 
- 2n(a2 + r2 

- 2ar sine sin cp')312 

Proceeding further, we obtain 

dB = µ0
Ia2 cos O dcp' 

' 2nr3[(a/r)2 + 1 - 2(a/r) sin O sin cp'pt2 

Chap. !3 

I 

(3-29) 

i (3-30)) µ0Ja2 cos e dcp' for r » a 
I 

� 2nr3 

Integrating the right side of Eq. (3-30) between the limits cp' = -n/2 an,cdcp' = n/2, we obtain the r component of the magnetic flux density due to tlie
entire ring as 

f"12 µ Ja2 cos e dcp' µ lna2 cos e
B - o -�o ��-' - 2nr3 - 2nr3 

q,'=-n/2 

Now, to find the O component of B, we note that 
dB8 = dB • i8 = dB • ( cos O iy - sin O iz)

_ µ0/a dcp' (-a sin O + r sin cp') 
- 2n(a2 + r2 - 2ar sine sin cp')312 

Proceeding further, we obtain 

(3-3 ) 

(3-32) 

dBe = µ0J;,i<p'[ -(�)sin O + sin cp'][1 - 2( �) sin O sin cp' + ( � rT 
12 

= µ0J;ricp'[ -(�)sin O + sin cp'][1 + 3( �) sin O sin cp' + · · ·] ]

= µ0J;,icp'[ -(�)sine+ sin cp' + 3( �)sine sin2 cp'
+ ... terms involving higher powers of ( � ) J

) 

for r » (l
� it�[ -(�)sin O + sin cp' + 3 (�)sine sin2 cp'] dcp' 

(3-j3) 
where we have retained the (air) term since the sin cp' term yields zero wh�n
integrated between cp' = -n/2 and cp' = n/2. Integrating the right side :of
Eq.(3-33) between these limits, we obtain the O component of the magnetic 
flux density due to the entire ring as 

B8 = f"12 µ
2°1�[-(!!_) sin O + sin cp' + 3(!!_) sin O sin2 cp'] dcp' 

q,'=-n/2 nr Y Y 

_ µolna2 sine 
- 4nr3 

(3-34) 
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Thus 

B µolna2
(2 e·. + . ().) = -

4
--

3
- cos 1, sm 18 nr 

Sec. 3.4 

(3-35) 

We can consider Eq. (3-25) as the solution for the magnetic flux density 
at very large distances compared to the radius a or as the solution for the 
magnetic flux density at any point (r, (), ¢) in the limit that a -> 0, keeping
Ina2 constant. It should be noted that to keep Ina2 constant as a-> 0 requires
that I-• oo. The product Ina2 is known as the magnetic dipole moment
m. The magnetic dipole moment has also an orientation associated with it
which is normal to the surface of the loop. In particular, the sense of the
normal is that towards which the fingers pierce through the area of the ring
when the loop is grabbed with the right hand and with the thumb pointing
in the direction of the current. It is the same as the direction of advance of
a right-hand screw as it is turned in the sense of the loop current. Substitut
ing m for Ina2 in (3-35), the magnetic flux density due to a magnetic dipole 
of moment m oriented along the positive z axis is given by 

B = 4
µon: (2 cos () i, + sin () i8) nr (3-36) 

The magnetic field given by (3-36) is analogous to the electric field due to 
an electric dipole of moment p oriented along the z-axis and given by 
(2-28). I 

EXAMPLE 3-5. A solenoid consists of continuously wound, circular current loops. 
Let us consider an infinitely long, uniformly wound solenoid of radius a and 
n turns per unit length, each carrying the same current I and with the z axis 
as its axis. It is desired to find the magnetic flux density due to the infinitely 
long solenoid. 

Since the solenoid is uniformly wound and infinitely long, and since it 
possesses cylindrical symmetry about the z axis, the magnetic flux· density 
must be independent of z and must possess cylindrical symmetry about the 
z axis. Hence it is sufficient if we compute the magnetic flux density at a 
point P on the y axis. To do this, let us consider two sections of the solenoid 
symmetrically placed about the xy plane at distances z' from it and having 
infinitesimal lengths dz' as shown in Fig. 3.10. Since the lengths are infini
tesimal, these sections can be considered as current loops carrying currents 
nl dz'. 

In each of these current loops, let us consider two differential elements 
of lengths a d<p' symmetrically situated about the yz plane, as shown in 
Fig. 3.10. Applying the notation of Fig. 3.10 to (3-29) and (3-32), we obtain 
the magnetic field at P due to the pair of current elements 1 and 2 as 

dB = nl dz' a
2 cos IX d<p' i 1 

+ a d<p' [-a sin IX+ (y/sin IX) sin ¢']i2 
· 1 µ0 2n(a2 + y2 + z'2 - 2ay sin ¢')312 

(3-37) 
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solenoid as 

B 
= f "12 

J
= µ

0nl(a2 
- ay sin</)') d</J' dz' i 

n(a2 + y2 + z'2 
- 2ay sin ,t..')312 z 

¢,'=-n/2 z'=O 'I' 

µ
0

nla 
J
"12 (a - y sin <p')d</J' , 

= -n- ¢,l=-n/2 (a2 + y2 - 2ay sin </J') lz 

= {o for y > a
µ

o
nliz for y < a

Sec. 3.5 

(3-40) 

Thus the magnetic field due to the infinitely long solenoid is zero outsi<;le 
the solenoid and uniform inside the solenoid, having a value µ

0
nl and directed 

along the axis of the solenoid. I 

3.5 The Magnetic Field of Current Distributions 

In the previous section we considered the magnetic field computation for 
filamentary wires carrying current. In this section we will extend the com
putation to current distributions. Current distributions can be of two types: 

(a) Surface current for which current is distributed on a surface (planar
or nonplanar).

(b) Volume current for which current is distributed in a volume.
As in the case of continuous charge distributions, introduced in Section 2.4, 
we have to work with current densities when a current is distributed on a 
surface or in a volume. We have already introduced the current density for 
volume currents in Sections 1.7 and 3.2. The magnitude of the volume cur
rent density J at a point is the current per unit area crossing an infinitesimal 
area at that point with the orientation of the area adjusted so as to maximize 
the current, in the limit that the area tends to zero. The direction of J at 
that point is the direction to which the normal to the area approaches in 
the limit. Similarly, the magnitude of the surface current density at a point 
is the current per unit width crossing an infinitesimal line segment at that 
point with the orientation of the segment adjusted so as to maximize the 
current, in the limit that the width of the line segment tends to zero. The 
direction of the surface current density at that point is the direction to which 
the normal to the line and tangent to the surface approaches in the limit. 
We will use the symbol J, for the surface current density, in contrast to J
for the volume current density. In each case, we represent the total current 
as a continuous collection of appropriate filamentary currents and evaluate 
the magnetic field as the vector superposition of the contributions due to 
the individual filamentary currents. 

E;x:AMPLE 3-6. A sheet of current with the surface current density given by 
J, = l,oi

z 
amp/m 
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where J,
0 

is a constant, occupies the entire xz plane. Find the magnetic flu:x 
density vector due to the portion of the current sheet lying between x -.ri 
and x = +a as shown in Fig. 3.1 l(a) and then extend the result to that o.f 
the infinite sheet. 

x 

/ 
/ 

xk _..--/ I P 
2
-

-
- I/ I i,, 

dx' 
ax / I 

, a 
I I 

"-=Q
----, 

I I 
� x' I I

Ox I 
'J---,--------y -x y 

/ x /
/ �---/

/ �/" I � / "'--. Current into the
// -a�/ Plane of Paper i 

p 

I 

(b) 

Fig. 3.11. For evaluating the magnetic field due to a sheet of
current flowing in the z direction and lying in the xz plane
between x -a and x = +a.

We divide the current sheet into a number of filaments of infinitesimi:tl 
width in the x direction, each of which can be considered as an infiniteJJy 
long wire parallel to the z axis. Let us consider a filament of width dx' locateµ 
at x = x' in the plane of the sheet, as shown in Fig. 3.l l(a). From Exampje 
3-3, we know that the magnetic flux density due to an infinitely long wire is 
dependent only on the distance away from the wire and is oriented circular 
to the wire. Hence the magnetic field due to the current sheet will not �e 
dependent on the z coordinate and also will have only x and y component�, 
so that it is sufficient if we consider the two-dimensional geometry shown i:n 
Fig. 3.1 l(b). Since the current density is l,oiz, the current flowing in the 
filament of width dx' is J,

0 
dx'. Applying (3-28) to the geometry associated 

with this filament, we obtain the magnetic flux density due to it at any poirit 
P(x, y, z) as 

dB = µol,o dx' i
2n,j(x - x')2 + y2 

"' 
(3-40 

where i,. is the unit vector normal to the line drawn from the filament to tbe 
point Pas shown in Fig. 3.l l(b). Expressing dB in terms of its components 
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along the coordinate axes, we have 

dB _ µ0 J,0 dx' ( · , + , ) - 2 f
( ')2 .2 - Slll OI: Ix COS OI: ly 

11:,v x - x + y 

Sec. 3.5 

(3-42) 

The magnetic flux density at P due to the portion of the infinite current sheet
between x = -a and x = +a is then given by 

B =[=-
•
dB

_ J" [ 
µ0 J,0 sin oi: dx' i + µ0 1:,0 cos oi: dx' i J 

-
x

'=-• - 211:,./(x - x')2 + y2 x 211:�(x - x')2 + y2 Y 

= µol,o[coi: - oi: )i + ln(s�n Ol:2) i J211: i z x sm Ol:1 J' 

(3-43) 

where we have used the transformation (x - x') = y cot oi: for evaluating the 
integrals in (3-43), and the angles oi:

1 
and oi:

2 
are as shown in Fig. 3.ll(b). 

Now, for the infinite sheet of current, oi:
1 

= 0 and oi:
2 

= n for y > 0, and 
oi:

1 
= 211: and oi:

2 
= n for y < 0. However, to evaluate In (sin oi:

2
/sin oi:

1
), we 

note that 

and hence 

(3-44) 

Substituting for oi:
1 

and oi:
2 

in (3-43), we then obtain the magnetic flux density
due to the infinite sheet of current as 1-µol,o i 2 x 

B= 

µOJsOj 2 x 

for y > 0 

for y < 0 

= µo J X 1' h . { 
iY for y > 0

2 s n W ere In = -iy for y < 0

(3-45) 

The field given by (3-45) is sketched in Fig. 3.12. If the sheet current occupies 
they= Yo plane, it follows from (3-45) that 

B= 

1-µo[sojx for Y > Yo 

µ0i.'0 ix for Y < Yo I

EXAMPLE 3-7. Current flows in the axial direction iff an infinitely long cylinder of
radius a with uniform density 10 amp/m2• Find the magnetic flux density 
both inside and outside the cylinder. 

Choosing the z axis as the axis of the infinitely long cylinder as shown 
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Fig. 3.12. The direction lines of magnetic field due to an infinite 
sheet of current flowing into the plane of the paper with uniform 
density. 
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Fig. 3.13. For evaluating the magnetic field due to a volume 
current flowing along an infinitely long cylinder of radius a 
with uniform density. 

Chap. 3 

x 



153 The Magnetic Field of Current Distributions 

in Fig. 3.13(a), we have the volume current density as 

J � Joiz 

Sec. 3.5 

The cylindrical current distribution can be thought of as a superpositon 
of filamentary currents parallel to the z axis so that the magnetic field is 
independent of z. Hence it is sufficient if we consider the two-dimensional 
geometry shown in Fig. 3.13(b). Furthermore, for every filamentary current 
and for a given point P, there is another filamentary current so that the 
combined magnetic field due to these two filamentary currents is entirely in 
the </> direction. This is illustrated in Fig. 3. l 3(b) for a point P on the x axis. 
Thus the magnetic field due to the entire current distribution has only a 
</> component and possesses cylindrical symmetry about the z axis. Let 
us therefore consider two filamentary currents corresponding to the infinites
imal areas r dr d</> at (r, </>) and (r, -</>) as shown in Fig. 3.13(b). The mag
netic field at P due to these two filamentary currents is given by 

dB 
_ µ0J0r dr d</> 

2 • - 2 ( 2 + 2 2 ,l,.)1/2 cos ('/., 191 n r x - rx cos .,, 

µ0J0r dr d</>(x - r cos <f,).- I - n(r2 + x2 
- 2rx cos </>) "'

(3-46) 

The magnetic field at P due to the entire current distribution is then given by 

B = S:= o s:=o dB

= µ0J0 fa 

r dr f" (x - r cos</>) d</> 
i n 

r=o ¢,= o (r2 + x2 
- 2rx cos</>) "'

= µ;o fa 

rdr(� 
r = O 

X 

for x < r
) for x > r i"'

for x > a

for x < a 

1
µ0 J0 

na2 i 
nx 2 "' 

- µolo nx2

i nx T "' 

for x > a 

for x < a 

(3-47) 

Recalling that B has cylindrical symmetry about the z axis, we substitute r 
for x in (3-47) and obtain 

for r > a 
(3-48) 

for r < a 
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Noting that nr2/2 is the area of cross section of a wire of radius r, and that 
there is no current for r > a, we can combine the two results on the righ 
side of (3-48) as 

B( ) _ current enclosed by the circular path of radius r. r - µo 2nr 
1.,, (3-49) 

Viewed from any distance r from the axis of the infinitely long cylinder 
carrying current, the current distribution is equivalent to an infinitely Ion 
filamentary current of value equal to the current enclosed by the circular pat 
of radius r. I

3.6 Ampere's Circuital Law in Integral Form 

In Section 2.6 we started with the electric field intensity of a point charg 
and derived Gauss' law, which was later found to be very convenient fo 
computing the electric field due to certain symmetrical charge distributions 
Similarly, in this section we will start with the magnetic flux density due t 
an infinitely long wire carrying current and derive Ampere's circuital law 
We will later find Ampere's circuital law to be very useful compared to th 
Biot-Savart law for computing the magnetic field due to certain symmetrica 
current distributions. 

Let us consider an infinitely long filamentary wire along the z axi 
carrying current f amp. The magnetic flux density due to this wire is directe 
everywhere circular to the wire and its magnitude is dependent only on th 
distance from the wire. Let us consider a circular path C of radius r in th 
plane normal to the wire and centered at the wire .as shown in Fig. 3.14. Fo .. 
an infinitesimal length di = di i

.,, 
on this contour C, we have 

B • di = µof i • di i = µof di (J-50i 
2nr "' "' 2nr -, 

The integral of B • di along the entire path C is then given by 
I 

r� 

I into the Paper 

c 

di 

Fig. 3.14. For evaluating j c B · di,
where C is a circular path of 
radius r in the plane normal to 1 
straight, infinitely long wir6 
carrying current I and centere

r at the wire. 
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,h B • dl = ,h µof di = µof ,h diJc Jc 2nr 2nr Jc 

Sec. 3.6 

(3-51) 

where we have taken µ 0
l/2nr outside the integral since r is constant for the 

contour C. Proceeding further, we have 

i B • dl = µ
2
°
1 (circumference of C)

j c nr 

= µol (2nr) = µ I2nr O 

(3-52) 

Equation (3-52) states that the line integral of B around a circular path in 
the plane normal to an infinitely long wire carrying current I and centered 
at the .wire is equal to µ 0

1. It is independent of the radius r of the circular 
path. Whether r = I micron or 1000 km, the value of the line integral is the 
same (provided, of course, that there is no other magnetic field in the me
dium). It should be noted that the current I in (3-52) is the current which 
flows in the direction of advance of a right-hand screw as it is turned in 
the sense in which the line integral around C is evaluated. 

Before we proceed further, a few words about the line integral of B are 
in order. In Chapter 2 we learned that f: E • di has the meaning of work 
or change in potential energy per unit charge associated with the movement 
of a test charge from point a to point b in the electric field E. This is because 
the force experienced by a charge due to an electric field is in the same direc
tion as the electric field. On the other hand, in a magnetic field B, the force 
experienced by a test charge moving in the direction of di ( or by a current 
element I di) is perpendicular to both B and di. Hence the work associated 
with the movement of the test charge is zero. Thus f B • di does not have 
the meaning of work. Just as f s E • dS provides us information about 

charges enclosed by S, f c B • di tells us about the current enclosed by C.

Therefore, in this respect f c B • di is analogous to f s E • dS. We will simply
call it the circulation of B. 

Let us now consider an arbitrary path C (not necessarily in a plane) 
enclosing the current as shown in Fig. 3.15. For an infinitesimal segment 
di at P along this path, 

B • di = µ 0 ! i</> • di = µ 0
1 di COS OC 

2nR 2n R (3-53) 

where R is the distance of P from the wire, i
"' 

is the unit vector at P directed 
circular to the wire, and oc is the angle between di and i

"'
. The circulation of 

B around the arbitrary path C is 

,[ B . di = ,[ µol di COS 0C = µ 0
1 ,[ di COS OC 

Jc Jc 2nR 2n Jc R (3-54) 
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Fig. 3.15. For evaluating f c B · di, 
where C is an arbitrary closed
path enclosing a straight, infinitely: 
long wire carrying current I. 

In (3-54), di cos rx, is the projection of di onto the circle of radius R centered
at the wire and passing through P. Hence (di cos rx,)/R is the projection of 
di on to the circle of radius unity in the plane normal to the wire and centered 
at the wire, and fc (di cos rx)/R is the sum of the projections of all infinitesimal 
segments comprising the contour C onto the circle of radius unity. Thus it
is equal to the circumference of the circle of unit radius, that is, 2n. Substi
tuting this result in (3-54), we have 

contour 
enclosing I 

· (3-55)

If the arbitrary contour does not enclose the current, then, in evaluating 
f c (di cos rx,)j R, we start at one point on the circle of unit radius, traverse to
another point on it and return to the starting point along the same path in
the opposite direction, obtaining a result of zero in this process. Hence 

f B·dl=O 

contour not 
enclosing I 

(3-56) 

Equations (3-55) and (3-56) may be combined into a single statement which
reads as 

I 

f c B • di= µ
0
(current enclosed by the contour C) (3-57

r
This is Ampere's circuital law. Although we have derived it here for alfl
infinitely long straight wire, it can be proved for a current loop of arbitrary 
shape. Also, if we have a number of current loops or infinitely long wiref 
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carrying currents or continuous current distributions in the form of surface 
or volume current, we can invoke superposition and conclude that Ampere's 
circuital law as given by (3-57) holds for any closed path C provided the 
current enclosed by C is uniquely defined. 

Let us now discuss the uniqueness of a closed path enclosing or not 
enclosing a current. To do this, let us consider the case of a straight fila
mentary wire of finite length in the plane of the paper carrying current I,

as shown in Fig. 3.16. This can be achieved by having a source of point 

a 

�---�-....- ----- ___.,.._ - --, 

b 

Position I 
I 

t 

a' 

Sink of I 
Point Charge 1

1 

___ ...._ __ __J 

Position 2 

b' 

Fig. 3.16. For illustrating that the current enclosed by closed 
path C surrounding a finitely long filamentary wire is not 
uniquely defined. 

charge at one end of the wire and a sink of point charge at the other end. 
Let a closed path C be in the plane normal to the paper, emerging out of 
the paper at a and going into it at b. Let us denote this position of the closed 
path as position 1. Imagining the closed path to be rigid, we can bring it to 
position 2 by sliding it parallel to the wire for some distance, pulling it down, 
and then sliding it back parallel to the wire as shown by the dashed lines. 
We are able to achieve this without cutting through the wire. We then say 
that the current enclosed by the closed path C is not uniquely defined. Alter
natively, we can define the current enclosed by a path as that which pierces 
through (passes from one side to the other side of) a surface whose perimeter 
is the closed path. For the closed path C in Fig. 3.16, let us consider two 
bowl-shaped surfaces S1 and S2 • It can be seen that the wire pierces through
S1 but not through S2 • This suggests t_hat we cannot uniquely define the 
current enclosed by C in Fig. 3.16. It is clear that Ampere's circuital law 
(3-57) cannot be used for the case of Fig. 3.16. In fact, if we evaluate f c B • dl



158 The Static Magnetic Field Chap. 

around the contour C in Fig. 3.16, we will not obtain µal for the answer. 
On the other hand, if the wire is infinitely long, we cannot bring the clos9d 
path from position 1 to position 2 without cutting through the wire and there 
can be no surface whose perimeter is C and through which the wire does n

i

1 t 
pierce. The current enclosed by C is then uniquely defined. Similarly, i r 
surfaces whose perimeter is position 2 of the closed path in Fig. 3.16, the in 
nitely long wire does not pierce at all or it pierces through an even numb r 
of times, entering from one side and emerging out on the same side so thlt 
the net current enclosed by the path is always zero. Thus we can summarife 
the discussion in this paragraph by stating that the current enclosed by 1a 
path is uniquely defined if the net current which passes through each possible 
surface whose perimeter is the closed path is the same. 

I EXAMPLE 3-8. An infiiitely long filamentary wire along the z axis carries curre t
I amp. Find f 

P
B • di along the straight line joining P to Q, where P a d

Q are (1, -1, 0) and (1, 1, 0), respectively, in cartesian coordinates. 

y 

The geometry of the problem in the xy plane is shown in Fig. 3.117. 

Q(l,1,0) 
q, '\ 

\ 

dy i
y 

(l,y,o\ 

\ 

\A 
�.....L..:�����..:--�_.::.=-���x 

l 

I 

I 

I 
I 

I 

P( 1,-1,0) 

I 

Fig. 3.17. For evaluating f; B • Ul
along the straight line from 
P to Q in the field of an infinitely 

I 

long wire carrying current l.

First we will solve this problem by actually evaluating f: B • di along tte
given path. To do this, let us consider an infinitesimal segment di = dy iy 

�t
(1, y, 0). Since Bat this point due to the line current is [µal/(2n,JI+"?)H

¢
, 

we have 

B • di= µal i • dy i 
2n,v'l+y2 ¢ 

y 

= µal dy COS <p = µal cf,y
2n,./I+? 2n(l + y2)
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Thus 

IQ J
' µ f dy 

B • dl =
_ 2n(l + 2)

p y--1 y 

= µof 

J
"/4 dcp = µof 

2n 
¢--n/4 

4 

Sec. 3.6 

(3-58) 

This result can, however, be obtained without performing the integration 
if we note that, according to Ampere's circuital law, 

1 B • dl = 0 
:rPQAP 

(3-59) 

where QAP is part of a circle centered at the line current. Equation (3-59) 
may be written as 

which yields 

f Q B • dl + f B • dl = 0 
P QAP 

f Q B • dl = - f B • dl 
P QAP 

(3-60) 

However, from symmetry considerations, f B • di is equal to -µ
0
f(QAP)

QAP 
divided by the circumference of the circle, or -µ

0
f(n/2)/2n = -µ

0
f/4. From 

(3-60), we then obtain a value µ
0
f/4 for f: B • dl, which agrees with (3-58). I

Given B and a closed path C, it is always possible to compute the 
current enclosed by the path by evaluating pc B • dl analytically or numer
ically and then dividing the result by µ

0 
in accordance with Ampere's circuital 

law given by (3-57). The inverse problem of finding B for a given current 
distribution by using (3-57) is possible only for certain simple cases involving 
a high degree of symmetry, just as in the case of the application of Gauss' 
law for finding E for a given charge distribution. First, the symmetry of the 
magnetic field must be determined from the Biot-Savart law and second, 
we should be able to choose a closed path C such that pc B • di can be reduced
to an algebraic quantity involving the magnitude of B. Obviously, the closed 
path must be chosen such that the magnitude of B is uniform and the 
direction of B is tangential to the path along all or part of the path, while 
the magnitude of B is zero or the direction of B is normal to the path along 
the rest of the path in the latter case. We will illustrate this method of obtain
ing B by reconsidering Examples 3-6 and 3-7. 

EXAMPLE 3-9. A sheet of current with the surface current density given by 

J, = J,oi, 
where J,

0 
is a constant, occupies the entire xz plane as shown in Fig. 3.18. 
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w 

xxxxxxxxxxxxxxxxxxxxxxx 

y 

J_x 
Fig. 3.18. For evaluating the magnetic flux density due to an 

infinite plane sheet of current. 

Chap. 3 

The magnetic field due to such a current sheet was found in Example 3 6 
by using the Biot-Savart law. It is here desired to find the magnetic fl x 
density due to this infinite sheet of current using Ampere's circuital la 

From purely qualitative reasoning based upon the magnetic flux dens'ty 
due to an infinitely long, straight filamentary wire of current, we can co -
elude that the magnetic flux density due to the infinite sheet of current 

I 
f 

uniform density is (a) entirely in the +x direction for y > 0 and in the 1x
direction for y < 0, (b) uniform in planes parallel to the current sheet, and 
(c) symmetrical about y = 0. Thus

B = B,i, (3-61) 
where i, is the unit tangential vector to the current sheet given by 

I 

i
1 

= i
z X in (3-�2) 

in which i. is the unit normal vector to the current sheet. We can therefdre 
choose a rectangular path abcda having length I parallel to the current sheet 
and width w normal to the current sheet and symmetrical about the current 
sheet as shown in Fig. 3.18. Then 

1. B • dl = f b B • dl + f c B • dl + fa 

B • dl + fa 

B • dl
j abcda a b c d 

(3-63) 

But f: B • dl and f: B • dl are equal to zero since B is normal to the paths
be and da. For p�ths ab and cd, B is parallel and directed along these paths. 
Furthermore, the magnitudes of B are the same for these paths since they 
are equidistant from the current sheet. Thus (3-63) reduces to 

1. B • dl = 2 f b B • dl = 2 f b B,i, • di i, 
jabcda a a 

= 2B, f: di = 2B,I

But, from Ampere's circuital law, 

1. B • dl = µ
0 

(current enclosed by abcda) = µ
0
J,of

j abcda 

(3-64) 

(3-65) 
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Comparing (3-64) and (3-65), we have 

B = µoJ,o
I 

2 

B = µoJ,o j • - µo J · 
2 z X In - 2 s X In

which agrees with the result obtained in Example 3-6. I 

Sec. 3.6 

(3-66) 

(3-67) 

EXAMPLE 3-10. Current flows in the axial (z) direction in an infinitely long cylinder 
I of radius a with uniform density J

0 
amp/m2 as shown in Fig. 3.19. The mag-

i netic field due to such a current distribution was found in Example 3-7 by' 
using the Biot-Savart law. It is here desired to find the magnetic flux density 
both inside and outside the cylinder using Ampere's circuital law. 

Fig. 3.19. For evaluating the 

magnetic flux density due to a 

volume current flowing with uni

form density along an infinitely 

long cylinder. 

In Example 3-7 we established from purely qualitative arguments that 
B, due to the given current distribution, has only a </> component and 
possesses cylindrical symmetry so that it is a function only of the distance 
from the axis of the cylinder. Thus 

B = Bq,(r)i"' (3-68) 

Choosing, therefore, a circular path C of radius r � a centered at the axis 
of the cylinder and in the plane normal to the axis, as shown in Fig. 3.19, 
we have 

t B • dl = t B"'i"' • di i"' = B"' t di

= B/circumference of the circle of radius r) 

= Bq,(2nr) 

(3-69) 
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But, from Ampere's circuital law, 

t B • dl = µo(current enclosed by C) 

= µ
o
( current enclosed by circular path of radius r)

Comparing (3-69) and (3-70), we have 

B 
_ current enclosed by circular path of radius r

"' - µ0 
2nr 

B _ current enclosed by circular path of radius r i - µ0 
2nr "' 

which agrees with the result of Example 3-7. I

Chap.13 

I 
(3-70) 

I 

(3-71) 

3.7 Ampere's Circuital Law in Differential Form (Maxwell's Curl 
Equation for the Static Magnetic Field) 

I 

Let us consider a volume current distribution with the current density vect
l

r 
J as a given function of the coordinates. The current enclosed by n 
arbitrary closed path C is given by the surface integral of the current densi y 
over any surface S bounded by the closed path C; that is, f s J • dS. Accor, -
ing to Ampere's circuital law (3-57), we then have 

J 

I. 

f 
c 

B • dl = µ0 
f s J • dS (3-7f) 

where C is traversed in the sense in which a right-hand screw needs to je 
turned if it is to advance to the side of S towards which the current on t'e 
right side of (3-72) is evaluated. If we now shrink the path C to a very 

I 

small size AC so that the surface area bounded by it becomes very small, 
AS, we can write (3-72) as 

,( B • dl = µ0 
f J • dS

Tac as 
(3-7B) 

I 

Since the surface area AS is very small, we can consider the current density 
I 

to be uniform over the surface so that f J • dS = J • i. AS, where i. lis
AS 

the normal vector to AS pointed to the side towards which a right-ha�d 
screw advances as it is turned in the sense of the closed path. This relati1n
becomes exact in the limit AS _, 0. Dividing both sides of (3-73) by ls 
and letting AS ---> 0, we have 

f B • dl µ0 
f J • dS

lim AC = lim __ A_S�--

as-o AS as-o AS 

. J • i AS (3-7 ) 
= µ0 hm Ans 

as-o u 
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Now, the curl of Bis defined as the vector having the magnitude given 
by the maximum value of the quantity on the left side of (3-74) and the direc
tion given by the normal to the AS for which the quantity is maximized. 
Looking at the right side of (3-74), we note that this maximum value occurs 
for an orientation of AS for which the direction of in coincides with the direc
tion of J and it is equal to µ

0 
times the magnitude of J. Thus 

so that 

( f B·dl) IV x BI = maximum value of lim Ac AS = µ0 J JI 
as-.o 

direction of V x B = direction of J 

(3-75a) 

(3-75b) 

(3-76) 
Equation (3-76) is Ampere's circuital law in differential form. It states that 
the curl of the magnetic flux density at any point is equal to µ

0 
times the 

volume current density at that point. This is Maxwell's curl equation for 
the static magnetic field. 

The right side of (3-76) represents a volume current density. For problems 
involving line and surface currents, we make use of Dirac delta functions 
just as in the case of Gauss' law in differential form for point charges, line 
charges, and surface charges. For example, following the method employed 
in Example 2-12, we obtain for a surface current of density J. occupying the 
y = Yo plane, 

(3-77) 

3.8 Magnetic Vector Potential 

Thus far we have discussed the determination of the magnetic field due to 
a current distribution directly from the current distribution using initially 
the Biot-Savart law and then Ampere's circuital law. In Chapter 2, we 
first discussed the determination of the electric field due to a charge distri
bution directly from the charge distribution using initially an integral for
mulation based on the electric field intensity due to a point charge and then 
Gauss' law. Later we introduced the electric potential field from energy con
siderations and discovered the relationship of the electric field intensity to 
the scalar potential through the gradient operation as an alternative approach 
to the determination of the electric field. In this section we introduce a similar 
alternative method for the computation of the magnetic field due to a given 
current distribution. 

To do this, we note from (3-25) that, for a filamentary wire carrying 
current I, the magnetic flux density is given by 

B(r) = µ0 f I dl' x iir, r')
4n c' R2(r, r') (3-78) 
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We note the similarity of the right sides of (3-83a)-(3-83c) with the expres
sions for the electrostatic potential V due to line, surface, and volume charges 
given, respectively, by 

v = _1_ J pL d/'
4nf

0 c' R 

V=-1-f p8 dS'
4nf0 8

, R 

v--1-f p dv' 
-417:fo V'� 

for line charge 

for surface charge 

for volume charge 

In view of this similarity, and since A is a vector in contrast to the scalar 
nature of V, A is called the magnetic vector potential. Unlike V, A does not 
have a physical significance. It serves as a convenient intermediate step for 
the computation of B. This is especially so because of the similarity of the 
expressions for V and the expressions for A. The components of A due to 
a particular current distribution can be written without actually evaluating 
the integrals if the analogous integrals for the electrostatic potential have 
already been evaluated in the corresponding electrostatic problem. 

EXAMPLE 3-11. An infinitely long straight wire carrying current I amp lies along the
z axis. Obtain the magnetic vector potential due to this wire and then find 
the magnetic flux density by performing the curl operation on the vector 
potential. 

Applying (3-83a) to the infinitely long wire, we have the vector potential 
given by 

or 

A= (µ0 s= I dz')i 
4n R z 

z'=-oo 

(3-84) 

where R is the distance of the point P at which A is to be computed from an 
infinitesimal current element I dz' i

z
, as shown in Fig. 3.20. Let us now con

sider the quantity 

(_1 f = PLO dz')4nf0 z'=-= R 

This is the integral for computing the electrostatic potential due to an infi
nitely long line charge of uniform density ho lying along the z axis. This 
expression is analogous to the expression inside the parentheses on the 
right side of (3-84). Thus, finding the vector potential due to the infinitely 
long wire is analogous to determining the electrostatic potential due to the 
infinitely long line charge of uniform density. However, we already know the 
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x 

Fig. 3.20. For evaluating the magnetic vector po
tential due to an infinitely long, straight wire car
rying current I. 

solution for this electrostatic potential from Example 2-17. This is given 

I' 

11 

! 

V 
= -f;;

0 
In ;

0 

(2-ll

t

) 

where r is the distance of the point P, at which V is desired, from the li e 
charge and r

0 
is the distance from the line charge to the point at which t 

.
e 

potential is zero, as explained in Example 2-17. Thus 
_I_ f= PLo dz' = - PLo ln 2'.._ (3-86) 4nfo 

z
'
=

-= R 2n€o ro 
We can immediately write down by analogy that 

I 

(3-8�) 
! 

Substituting this result into (3-84), we obtain the vector potential due to the 
infinitely long wire as I 

A= - µof In 2'....i (3-8�)2n r0 

z 

Using the expression for the curl in cylindrical coordinates, we then have 

B=VXA= a a a 
ar a</) az 
0 0 AZ 

I aAZ . - a AZ , - µof . = 
,aq;•, a,•1> - 2,r/¢

which is the same as the result obtained in Example 3-3. I
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J:�xAMPLE 3-1 2. A loop of wire carrying current I amp occupies an arbitrary contour
C' as shown in Fig. 3.21. Find the vector potential due to this current loop
at distances r from the origin large in magnitude compared to the distances
of the points on the loop from the origin. 

x 

z 

Fig. 3.21. For evaluating the vector potential due to an arbitrary

loop of current I at large distances from the origin compared

to the distances of the points on the loop from the origin. 

Let P be the point at which the vector potential is desired. Then, from
(3-83a), the vector potential at P due to the current loop is given by 

A(r) = µo ,[ I di'
4n J

c' I r - r' I

µ0 / ,[ 
di' 

= 4n J
c
' (r2 + r'2 

- 2rr' cos oc) 112 

=&._ 1 +�-� di' 
If ( 12 2 I )-1/2 

4nr c' ,2 ,2 

Using the binomial expansion employed in Example 2-15, we have 

A= µol 
f {1 + r' • r + _1 [3(r' • r)2 - ,2,'2] 

4nr r2 2r4 

C' 

(3-88) 

+ ... higher-order terms} di' (3-89) 

= µol [I di' + ,[ r' : r di'+ ,[ 3(r' • r)2 ;- ,2r'2 

di'+ ... ] 4nr J
c
' J

c
' r J c' 2r 
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Fig. 3.22. For evaluating t e
dipole moment of a plane loo 
of wire carrying current I. 

Returning to Eq . (3-82) and taking the curl of both sides, we obtain 
V x B = V x V x A= V(V • A) - V2A (3-10 ) 

where we have used the vector identity for V x V x A. But, from Amperets 
circuital law in differential form, we have 

v x B = µOJ 
Thus, from (3-100) and (3-76), we get 

V(V • A) - V2A = µOJ 
However, considering a current loop, we have 

V • A = V • J µof di' 
Jc

' 4nR 

= µof I v. di' 
4n Jc

' R 

(3-76) 

(3-101) 

(3-102) 

where C' is the contour of the current loop and di' is an infinitesimal length
element on C'. Using the vector identity 

V ·VA= A· VV + VV • A

we write (3-102) as 

v. A= µ01 (I di'. v__!_ + I __!_ v. di')
4n J c, R J c,R (3-103) 

On the right side of (3-103), the second integral is zero since V • di' = 10.
Using V(l/R) = -V'(l/R) where the prime denotes differentiation wirh
respect to the primed variables, and then using Stoke's theorem, the first
integral can be written as 

I di' • v _!_ = - I V' _!_ • di' = - f V' x V' __!_ • dS' 
JC' R JC' R S' R 

(3-104) 

where S' is any surface whose perimeter is C'. But the curl of the gradient
of a scalar is identically equal to zero. Hence, the right side of (3-104) is
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zero. Thus, for a current loop, V • A = 0. If we now consider a region of 
volume current in which there is no accumulation of charge, we can represent 
the volume current as a superposition of a number of current loops for each 
of which V • A = 0 so that, for the entire volume current, V • A = 0. Sub
stituting this result in (3-101), we obtain 

In analogy with 
V2A = -µO

J (3-105) 

v2v = -.P.... (2-140) 
€0 

Equation (3-105) is known as the Poisson's equation for the vector poten
tial. It is a differential equation which relates the magnetic vector poten
tial at a point to the volume current density at that point, just as (2-140) 
is a differential equation which relates the electrostatic potential at a point 
to the volume charge density at that point. Equation (3-105) is a vector equa
tion and hence it is equivalent to three scalar equations. For example, in 
rectangular coordinates, 

so that we have 
V2A = (V2A)t + (V2A

y
)i

y 
+ (V2A

z)iz 

v2Ax = -µOJx 

v2A
y 

= -µoJy 

(3-106a) 

(3-106b) 

V2Az = -µOJz 
(3-106c) 

If the volume current density is zero in a region, then the right side of (3-105) 
is zero for that region so that (3-105) reduces to 

V2A = 0 for J = 0 (3-107) 

which is Laplace's equation for the magnetic vector potential, in analogy with 
Laplace's equation for the electrostatic potential given by 

V'2V= 0 for p = 0 (2-141) 

It states that the Laplacian of the magnetic vector potential in a region 
devoid of current is zero, just as (2-141) states that the Laplacian of the elec
trostatic potential in a region devoid of charges is zero. Again, using the 
expansion for V2 A in rectangular coordinates, we obtain the three component 
equations for (3-107) as 

V2A
x 

= 0 

V2A
y 

= 0 

V2Az = 0 

(3-108a) 

(3-108b) 

(3-108c) 

For a given current distribution, the solution to Poisson's equation (3-105) 
is obtained by solving the three component equations (3-106a)-(3-106c). 
Again, we can take advantage of the similarity of (3-106a)-(3-106c) with 
(2-140) and in many cases simply write down the solution from previous 
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knowledge of electrostatics, without the necessity of solving the differenti I 
equations. 

3.9 Maxwell's Divergence Equation for the Magnetic Field 

The divergence of the curl of a vector is identically zero. Since 
B=VxA 

it then follows that 
(3-8 ) 

(3-109) 
Equation (3-109) is Maxwell's divergence equation for the magnetic field. 
Together with Maxwell's curl equation for the static magnetic field given by 
(3-76), (3-109) completely defines the properties of the static magnetic fl.el! . 
Equation (3-109) determines whether or not a given vector field is realizab e 
as a magnetic field, whereas Eq. (3-76) relates the field to the current di -
tribution responsible for producing the field. When compared with Maxwel 's 
divergence equation for the electric field intensity, 

Eq. (3-109) reveals the fact that isolated magnetic charges do not exist. 
Taking the volume integral of both sides of (3-109) in a volume V, vi

�

fe 
have 

L (V • B) dv = 0 (3-11 ) 

But, according to the divergence theorem, 

f 
s 

B • dS = f 
v 

(V • B) dv

where S is the surface bounding the volume V. Since (3-110) is true for any 
volume, we obtain the result that 

f s 
B • dS = 0 (3-111) 

for any closed surface S. Equation (3-111) is the integral form of the dive:r
gence equation (3-109). Since Bis the magnetic flux density, §

8 
B • dS is tlb.e 

total magnetic flux emanating from the surface S. Thus Eq. (3-111) stat
i
es 

that the total magnetic flux emanating from any closed surface is equal to 
zero. Whatever flux goes into the volume bounded by the surface must co e 
out of it. The magnetic field lines form closed paths, unlike electric field Ii es 
which begin from positive charges and terminate on negative charges. Sin e 

f c B • dl = µ
0 
( current enclosed by C)

the closed paths must form around the current producing the magne ic 
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field. Vectors which, in this manner, are characterized by zero net flux over 
all possible closed surfaces are said to be solenoidal. The current density vec
tor J for static fields is another example of a solenoidal vector since, from 

V 0 VxB=O (3-112) 
we have 

or 
(3-113) 

The solenoidal nature of J follows from the fact that, in the absence of accu
mulation of charge at a point with time, current must flow in closed paths. 
Since we are here considering static phenomena, there cannot be any accu
mulation of charge and hence V • J = 0. On the other hand, when we con
sider time-varying or dynamic fields, we can allow for the accumulation of 
charge, in which case we will find that (3-113) does not necessarily hold 
everywhere. 

EXAMPLE 3-14. Determine if the following vector fields are realizable as magnetic 
i fields: 

(a) Fa= (-yix + xi) cartesian coordinates 

(b) Fb = µ
2

°m
; (-sin<{> i, + cos<{> iq1)nr

(c) Fe = (sin fJ i, + cos fJ i8) 

a a (a) V •Fa= a/-y) + a/x) = 0

cylindrical coordinates 

spherical coordinates 

Hence Fa can be realized as a magnetic field. In fact, if we note that, in 
cylindrical coordinates, Fa = riq1, the solenoidal nature of Fa becomes obvious. 

(b) V • F = __!_ i.(- µomL sin <t>) + __!_ i_ (µomL cos<!>) = 0
b r ar 2nr r a<{> 2nr2 

Hence Fb can be realized as a magnetic field. It is left as an exercise (Problem 
3.21) for the student to show that Fb is the magnetic field due to a two
dimensional magnetic dipole of moment mL. 

(c) V ·Fe =--;- a
a (r2 sin fJ) + ----!..-----

0 a
a
fJ

(sin fJ cos fJ) * 0 
r r · rsm 

Hence Fe cannot be realized as a magnetic field. I

ExAMPLE 3-15. In Example 3-5, the magnetic field due to an infinitely long, uniformly 
wound solenold of radius a and n turns per unit length carrying current I
was found by using the Biot-Savart law. It is here desired to find the magnetic 
field due to the solenoid from Ampere's circuital law and the solenoidal 
character of the magnetic field. 
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Employing a cylindrical coordinate system with the z axis as the al(is 
of the solenoid, let us assume that the magnetic field due to the solen1>id
has all three components B,, Bif>, and Bz. Because of the cylindrical symmetry 
and infinite length of the solenoid, all three components must be independ

1

bnt 
of</> and z. Thus B,, B¢>, and B z can be functions of r only. Now, apply ng 
(3-111) to a cylindrical box of radius b, length I and coaxial with the solen id, 
as shown in Fig. 3.23(a), we have 

surf.t of the 

B • dS = O (3-1�4)
cylindrical box I 

(a) 

But 

Rectangular 
Paths 

e e' 

f' 

(b) 

Fig. 3.23. For evaluating the magnetic field due to an infinitely 
long, uniformly wound solenoid using Ampere's circuital law 
and the solenoidal character of the magnetic field. 

1. 

B · dS = J B • dS + J B • dS + J B • dS
surface of the 
cylindrical box 

cylindrical 
surface 

On the cylindrical surface, 

upper plane 
surf ace 

lower plane 
surface 

B . dS = [B,i, + B¢,i¢, + Bzizlr-b • b d</> dz i, = [B,J,-b b d</> dz

J B • dS = s::: s::
0 

[B,],-b b d</> dz = 2nbl[B,J,-b

since [B,],-b is a constant. 

(3-115) 

(3-116) 
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On the upper plane surface, 

B • dS = (B,i, + B¢i¢ + B,iz) • r dr dcp iz = B,(r) r dr dcp 

On the lower plane surface 

B • dS = (B,i, + B¢i¢ + Bziz) • ( -r dr dcp iz) = -B,(r) r dr dcp 

Sec. 3.9 

(3-117a) 

(3-117b) 

We see from (3-117a) and (3-117b) that f B • dS on the upper plane 
surface cancels exactly with f B • dS on the lower plane surface since the 
integrands are equal and opposite and the limits of integration are the same. 
Thus 

surface of the 
cylindrical box 

B • dS = 2nbl[B,J,-b (3-118) 

Comparing (3-118) and (3-114), we obtain the result that [B,J,-b = 0. Since 
the radius b can be chosen to be any value, it follows that 

B, = 0 for all r

Applying Ampere's circuital law to a circular path of radius b, as shown 
in Fig. 3.23(a) in the plane normal to the axis of the solenoid and centered 
at the axis of the solenoid, we have 

f B • dl = 0 
circular 
path 

(3-119) 

since the path does not enclose any current. But, along the circular path, 

B • dl = [B,i, + B¢i¢ + B,izlr-b • b dcp i¢ = [B
¢1,-bb dcp

f B • dl = f ::
0 

[B
¢],-bb dcp = 2nb[B\6],-b 

(3-120) 

since [B
\6
1,-b is a constant. Comparing (3-120) with (3-119), we obtain the 

result that [B
¢
1,-b = 0. Since the radius b can be chosen to be any value, it 

follows that 

B
¢ 

= 0 for all r 

Thus the magnetic field due to the solenoid has only a z component and we 
are now left with the task of finding this component. 

Applying Ampere's circuital law for two rectangular paths cdefc and 
cde'f' c in the plane containing the solenoid axis, as shown in Fig. 3.23(a), . 
we have 

! B • dl = ! B • dl = µ
0
nl(cd ) 

j cdefc j cde'f'c 
(3-121) 

Since the three sides cd, de, and Jc are common to the two rectangular paths, 
(3-121) gives us 

f I 

B • dl = Jr 

B • dl
e e' 

(3-122) 
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Along paths ef and e'f',

B • di= [B
r

i
r 
+ B

"'
i
"' 
+ B,i,] • dz i, = B, dz

and since B, is independent of z, (3-122) yields 
[B,],r(ef) = [B,],,r(e'f')

or 
[B,],1 = [B,],,1,

Cha). 3 

I 

(3-123) 
Thus B, is independent of r (in addition to tfJ and z) outside the solenoid. 
Similarly, by applying Ampere's circuital law to the two rectangular paths 
cdefc and c' d' efc' in the plane containing the solenoid axis, we can show 
that B, is independent of r (in addition to tfJ and z) inside the solenoid. T�us 
the values of B, both inside and outside the solenoid are constants. 1his 
requires that B, outside the solenoid be equal to zero since, if it is nonzJro, 
the amount of magnetic flux outside the solenoid will be infinity and for lhis 

I 

flux to return in the opposite direction inside the solenoid as shown in fig. 
3.23(b), the flux density inside the solenoid must be infinity. But then, ifithe 
flux density inside the solenoid is infinity and that outside the solenoid is 
finite, (3-121 ) cannot be satisfied. On the other hand, for a finite amount 
of flux inside the solenoid in one direction to return in the opposite direction 
outside the solenoid, it requires zero flux density outside the solenoid since 
the area of cross section outside the solenoid is infinity ( oo x O = nonzero). 
Thus we conclude that B, is zero outside the solenoid. It remains to evaluate 
B, inside the solenoid. To do this, we write (3-121 ) as 

s:B •di+ s:B •di+ ( B •di+ s: B • dl = µ
0
n/(cd) (3-124) 

In (3-124), 

s: B • di= [B,]
c
a(cd) 

s: B •di= 0 

( B • dl = 0 

s: B •di= 0 

since B is normal to the path 

since B is zero outside the solenoid 

since B is normal to the path 

Substituting (3-1 25a)-(3-125d) into (3-124), we obtain 
[B,]

0
a(cd) = µ

0nl(cd)

or 
[B,lca = µon! 

The constant value of B, inside the solenoid is equal to µ
0
n/. Thus 

B = {oµ0n/ i, inside the solenoid 
outside the solenoid 

(3-125a) 

(2-125b) 

(3-125c) 

(3-125d) 

(3-126) 
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which agrees with the result obtained in Example 3-5 by using the Biot
Savart law. However, compared with Example 3-5, we have here obtained 
the solution in a conceptual manner, gaining in this process considerable 
insight into the properties of the magnetic field. I 

3:.10 Summary and Further Discussion of Static Electric and 

Magnetic Field Laws and Formulas 

Now that we have gained familiarity with the static magnetic field as well 
as the static electric field, it is worthwhile to list the basic laws governing 
the two fields and important formulas derived from them and make a few 
further comments. Accordingly, these laws and formulas are summarized 
in Table 3.1. Note that we have repeated Maxwell's equations at the end of the 
table. These equations pertain to the divergence and curl of the static electric 
and magnetic fields. We note from these equations that static vector fields, 
that is, vector fields independent of time, may be classified into four groups, 
depending on the values of their divergence and curl in the region of inter
est. These groups are as follows: 

(a) Divergence of the field is not zero but its curl is zero. This represents
a static electric field.

(b) Divergence of the field is zero but its curl is not zero. This repr�sents
a static magnetic field.

(c) Both divergence and curl of the field are zero. This represents either
a static electric field in a charge-free region or a static magnetic
field in a current-free region.

(d) Both divergence and curl of the field are not zero. Obviously, this
represents a combination of the fields belonging to groups (a) and
(b) and hence cannot be realized solely as a static electric field or
solely as a static magnetic field.

In Table 3.2 we list the expressions for the electric and magnetic fields 
for two simple analogous pairs of source distributions: infinitely long line 
charge of uniform density versus infinitely long filamentary wire of current 
along the z axis, and infinite sheet charge of uniform density versus infinite 
sheet current of uniform density. For each pair, the analogy between the two 
fields is obvious from the expressions: The magnitudes of the fields are 
proportional to each other whereas their directions are orthogonal. This 
analogy is actually more general than is indicated by these two cases. To 
illustrate this, let us consider a charge distribution of density p(x, y) and a 
current distribution of density J = J

z
(x, y)i

z 
such that 

fz(x, y) = kp(x, y) (3-127) 

where k is a proportionality constant. The electrostatic potential V(x, y) 
corresponding to p(x, y) and the magnetic vector potential A= A

z
(x, y)i

z 



TABLE 3.1. Summary of Basic Laws and Important Formulas Associated w th 

the Static Electric and Magnetic Fields 

Definition 
Experimental 
laws 

Fields due to 
point sources 

Static Electric Field 
F=qE 
Coulomb's law: 
F21 = Q1Q2 R214nt:oR1 1 

E=-Q-R4nt:0R3 
Fields due to continuous source distributions: 

Line 

Surface 

Volume 
Integral laws 

E = f 
[PL(r')](r -r') di'

c' 4irt:ol r -r' 13 
E = f 

[p,{r')]{r -r') dS'
s• 4nt:o Ir - r' 13 ·

E = f 
[p(r')J(r -r') dv'_

v' 4nt:o Ir -r'l3 
Gauss' law: 

Static Magnetic Field 
F=qvXB=JdlXB 
Ampere's law of force: 
F _ µo ff 12 dl2 X (/1 dl1 X21 - 4,r ' RL 

C1C2 

B=µ JdlXRo 4,rR3 

B = f 
µol di' X (r -r')

c' 4ir Ir -r' 13 
B = f 

µ0J,(r') X (r -r') dS'
s' 4irlr-r'l3 

B = f 
µoJ(r') X (r -r') dv'

v' 4ir lr-r' l3 
Ampere's circuital law: 

involving 
sources 

f E • dS = _l (charge ) f B • di = (urrent enclosed)s t:o enclosed by S c µo by C 
Differential V·E=.£.. laws involving fo 
sources 
Integral laws Conservative property: 
independent of tE·dl=Osources 
Differential VXE=O 
laws independent 
of sources 
Potentials Scalar potential: 

E= -VV 
Potentials 

V=_Q_due to 4nt:oR 
point sources 
Potentials due to continuous source distributions: 

V X B == µoJ 

Solenoidal property: 
f 

SB· dS = 0
V ·B=O 

Vector potential: 
B=VXA 
A= µoldl

4nR 

Line V = f 
pL(r') di' A= f 

µol di'
c' 4nt:o Ir -r' I c' 4ir Ir - r' I 

Surface 
V 

= f 
p,(r') dS' A= f 

µoJ,(r') dS'
s' 4nt: o I r -r' I s' 4ir Ir -r' I 

Volume 
Differential 
equations for 
potentials 

V = f 
p(r') dv' ,

v,4nt:o Ir -r' I 
V2V= _J!..fo

Maxwell's equations: 
Divergence V • E = .!!.. equation fo 
Curl equation V X E = 0 
178 

A _ f 
µoJ(r') dv'- v' 4ir I r - r' I

V2A = -µoJ 

V ·B =0 

V X B = µoJ 

1)
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TABLE 3.2. Electric and Magnetic Fields for Two Pairs of 
Analogous Source Distributions 

Electric Field 

Infinitely long, straight line 

charge of uniform density PLO: 

E = PLO j 

21tf or r 
Infinite sheet charge of 

uniform density p,o: 

E = Psoin21:0 

Magnetic Field 

Infinitely long, straight 

wire of current J: 

B = µoliif>2nr 
Infinite sheet current of 

uniform density J,o: 

B µOJ = Z sO X ln 

corresponding to Jz(x, y)iz satisfy the equations 

v2v = _J!....€0 
and 

(V2Az)iz = -µoJ)z = -µokPiz 

respectively. Comparing (3-128) and (3-129), we have 
Az = kµoEoV 

We then obtain 

and 

E _ I vv I _ [(av ;ax)2 + cav;ay)2]112 

B - IV X A)z I - [(aAz/ax)2 + (aAz/ay)2]112

1 [(av;ax)2 + cav;ay)2]112 1 = kµo€o [(av;ax)2 + cav;ay)2]112 
= kµo€o 

E • B = -VV • (V X A,iz) 
= -VV • (V X kµ0€oViz) 
= -kµ0€0 VV • (V X Vi.) 
= -kµ

0
€

0 
VV • (VV X iz + V V  X iz) 

= -kµ
0
€0[VV • VV X iz] = 0 

Sec. 3.10 

(3-128) 

(3-129) 

(3-130) 

(3-131) 

(3-132) 

Thus, for analogous charge and current distributions which vary only in 
two dimensions x and y (or rand <p in cylindrical coordinates) and with the 
current flow along the z direction, the electric and magnetic fields are pro
portional in magnitude and orthogonal in direction. We will use this impor
tant result in chapter 6. 
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PROBLEMS 

3.1. An electron moving with a velocity v1 = ix m/sec at a point in a magnetic fi d 
experiences a force F1 = -ei.v N, where e is the charge of the electron. If t e
electron is moving with a velocity v2 = (i.v + iz) m/sec at the same point, it expe i
ences a force F 2 = eix N. Find the force the electron would experience if it w e 
moving with a velocity v3 = v1 x v2 at the same point. 1.

3.2. A mass spectrograph is a device for separating charged particles having different 
masses. Consider two particles of the same charge q but different masses m1 aJld 
m2 injected into the region of a uniform magnetic field B with a known velocity v 
normal to the magnetic field as shown in Fig. 3.24. Show that the particles are 
separated by a distance d = l2(m2 - m1)vl/lqBJ in the plane normal to the 
incident velocity. 

3.3. A magnetic field given by 

B = Boiz 

Fig. 3.24. For Problem 3.2. 

where BO is a constant exists in the space between two parallel metallic plates· of 
length L as shown in Fig. 3.25. A small test charge q having a mass m enters t:he

Fig. 3.25. For Problem 3.3 
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region between the plates at t = 0 with a velocity v = v0 iy as shown in the figure. 
(a) Show that the path of the test charge between the plates is circular.
(b) Find the position xL along the x direction and the velocity vL of the test charge

just after it emerges from the field region.
(c) Find the deflection xa undergone by the test charge along the x direction at

a distance d from the plates in the y direction.

3.4. In a region of magnetic field B = Bo iz, where B0 is a constant, an electron starts 
out at the origin with an initial velocity v0 = Vxo ix + Vyoi

y 
+ Vzo iz, Obtain the 

equations of motion of the electron and show that the path of the electron is 
a helix of radius m.,,/v�o + v�o /leBo l and pitch 2nmlvzo l/leB0 1, where e and m 
are the charge and mass of the electron. 

3.5. Find the current required to counteract the earth's gravitational force on a hori
zontal filamentary wire of length I and mass m and oriented in the east-west 
direction in a uniform magnetic field B0 directed northward. Compute the value 
of this current for a wire of length 1 meter and mass 30 grams situated in the 
earth's magnetic field at the magnetic equator assuming a value of 0.3 x 10-4 
Wb/m2 for B0 • 

3.6. A rigid loop of wire in the form of a square of sides a m is hung by pivoting one 
side along the x axis as shown in Fig. 3.26. The loop is free to swing about the 
pivoted side without friction. The mass of the wire is m kg/m. If the wire is situated 
in a uniform magnetic field B = Bo iz and carries a current I amp, find the angle 
by which the loop swings from the vertical. 

z 

1_y 
I 

Fig. 3.26. For Example 3.6 

3.7. A rigid rectangular loop of wire carrying current I amp and symmetrically situated 
about the z axis is in the yz plane as shown in Fig. 3.27. If the loop is situated 
in a uniform magnetic field B and is free to swing about the z axis, show that the 
torque acting on the loop is /A(i

y 
• B)i� where A is the area of the loop.
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z 

1 

I 1 

.. 1 __ ,,..o __ .. --------.�y 
x 

Chap.3 

Fig. 3.27. For Problem 3.7. 

3.8. Show that the total force experienced by a current loop C1 carrying current I, 
due to another current loop C2 carrying current 12 is equal and opposite to t e 
total force experienced by the current loop C2 due to the current loop C1 ; that s, 
show that Newton's third law holds for current loops. 

3.9. Two circular loops of radii 1 m carrying currents 11 and 12 amp are situated in 
the z = 0 m and z = 1 m planes, respectively, and with their centers on the z ax ·s, 
as shown in Fig. 3.28. Find the forces experienced by the current elements 11 d 1, 

12 dl2 and 12 dl3 due to each other. 

z 

x 

Fig. 3.28. For Problem 3.9. 

3.10. Two square loops of sides a m are placed parallel to each other and separated Y 
a distance d m as shown in Fig. 3.29. If the currents carried by the loops are 1,

and 12 amp, respectively, as shown in Fig. 3.29, find the force acting on one lo P 
due to the second loop. 
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Fig. 3.29. For Problem 3.10. 

3.11. An infinitely long straight wire carrying current 11 amp is situated in the plane 
of and parallel to one side of a rectangular loop of wire carrying current /2 amp 
as shown in Fig. 3.30. Evaluate independently the force experienced by the infinitely 
long wire due to the magnetic field of the rectangular loop of wire and the force 

experienced by the rectangular loop of wire due to the magnetic field of the 
infinitely long wire. 

Ii 

l 
I, a 

J 
d .I. b_J 

Fig. 3.30. For Problem 3.11. 

3.12. Four infinitely long, straight filamentary wires occupy the lines x = 0, y = O; 
x = 1, y = O; x = 1, y = 1 and x = 0, y = 1. Each wire carries a current of 

value 1 amp in the z direction. 
(a) Find the force experienced per unit length of each wire.
(b) Find the magnetic flux density at the point (2, 2, 0).

(c) Find the magnetic flux density at the point (0, 2, 0).

3.13. Two identical rigid filamentary wires, each of length l and weight W, are sus

pended horizontally from the ceiling by long weightless threads, each of length L.

The wires are arranged to be parallel and separated by a distance d, where d is
very small compared to l and L. A current I amp is passed through both wires

through flexible connections so as to cause the wires to be attracted towards each 

other. If the current is gradually increased from zero, the wires will gradually 

approach each other. A condition may be reached at which any further increase 

of current will cause the wires to swing and touch each other. Determine the 
critical current at which this would happen. 
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3.19. A filamentary wire closely wound in the form of a spiral in the xy plane, starting 
at the origin and. ending at radius a, carries a current I in the <f> direction. Consider 
the turn density n to be an arbitrary function of r and show that the magnetic flux 
density at a point (0, 0, z) is given by 

320. 

3 21. 

3.!23. 
! 

µof 

I

a nr 2 dr • 

B = 2 r=O (r 2 + z2)3/2
lz 

Evaluate B for the following turn density distributions: 
(a) n = n0 

(b) n = 
no
r 

(c) n = 
no
y2 

where n0 is a constant. 
A filamentary wire carrying a current I is closely wound on the surface of a sphere 
of radius a and centered at the origin. The winding starts at (0, 0, a) and ends at 
(0, 0, -a) with the turns in the planes normal to the z axis and carrying current 
in the </> direction. Consider the turn density to be an arbitrary function of O and 
show that the magnetic flux density at a point (0, 0, z) is given by 

B 
_ µ0Ia3 f" n sin 2 0 dO

i 
- -2- B=o [a2 + z2 - 2azcos ep12 z 

Evaluate B both for \ z \ < a and for \ z \ > a for the following turn density distri
butions: 
(a) n = no sine
(b) n =no/sine
where n0 is a constant. 
Two infinitely long, straight filamentary wires situated parallel to the z axis and 
passing through (d/2, 0, 0) and (-d/2, 0, 0), respectively, carry currents I in the 
+ z and -z directions, respectively. The arrangement is known as a two-dimensional 
magnetic dipole in contrast to the three-dimensional magnetic dipole consisting 
of a circular loop of current. (a) Obtain the magnetic flux density due to the two
dimensional magnetic dipole in the limit that d--> 0, keeping the dipole moment 
Id constant. (b) Find and sketch the direction lines of the magnetic flux density. 
Two infinitely long, straight filamentary wires situated parallel to the z axis and 
passing through (d/2, 0, 0) and ( -d/2, 0, 0) carry currents 11 and /2, respectively, 
in the z direction. Show that the equation for the direction lines of the magnetic 
flux density is 

/1 ln[(x + tr+ y2J + /2 ln[(x - tr+ y2J = constant 

Obtain and sketch the direction lines for the following cases: 
(a) /1 = 12 = 

Io 
(b) I, = lo, l2 = -Io

Two circular loops of filamentary wire, each of radius a and with their centers 
on the z axis, are situated parallel to and symmetrically about the xy plane with 
the separation equal to 2d. The loops carry. currents of I amp each in opposite 

3 .22. 
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directions. Such an arrangement is known as the magnetic quadrupole. Obtain tle magnetic flux density due to the magnetic quadrupole at distances from the orig n large compared to a and d, at points along (a) the z-axis and (b) in the xy plam. 
3.24. A sheet of surface current flowing in the z direction occupies the portion of t�,e 

y = 0 plane lying between x = -a and x = +a. Consider the z-directed surfaie current density J, to be an arbitrary function of x and show that the compone1}�sof the magnetic flux density at a point (0, O,y) are given in cartesian coordinates ,w
B µo yfa J,dx x = - 21l x=-a (x2 + y2)
B _ _ µo fa J,xdx

y - 21l x=-a (x2 + y2)
Bz = 0

Evaluate the field components for the following surface current density distributions: (a) J, = J,oiz 

(b) J, =J,o (l - l�l)jz 

(c) J, = J,o�iz 
awhere J,0 is a constant.

3.25. Current flows on the xy plane radially away from the origin with density given y 
J, = -

2

1 i, amps/m 
nr 

Show that the magnetic flux density at any point above the xy plane is the sa�ne as that which would be produced by a filamentary wire along the negative z ai"is carrying current I from the origin to z = -oo. Show also that the magnetic fl'.ux density at any point below the xy plane is the same as that which would be piroduced by a filamentary wire along the positive z axis carrying current I from �he origin to z = oo. 
3.26. Current flows in the z direction in an infinite slab of thickness 2a symmetricaUy placed about the xz plane. Consider the z-directed current density J to be unifoi.rm in x but not necessarily in y and show that the magnetic flux density at any poj'int 

(x, y, z) has only an x component given by 
�io J:=_/dy y>a

Bx = io (J:=/dy - J:=_/dy) -a<y < a

io I:=-a Jdy Y< -a 
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Evaluate Bx as a function of y for -oo < y < oo for the following current dis
tributions: 
(a) J = J0iz 

-a < y < a 

(b) J = {Joiz .
-a < y < 0 

-Jo•z O < y < a 
(c) J=lyliz -a<y<a

(d) J = yi
z -a < y < a 

where 10 is a constant. Discuss your results from considerations of symmetry. 

'3.27. Current flows in the axial direction in an infinitely long cylinder of radius a having
the z axis as its axis. Consider the z-directed current density J to be uniform in tp
but an arbitrary function of r and show that the magnetic flux density is given by

I 
3.28. 
I 

3.29. 

I 

3.30. 

B = �o f-o 
Jr dr i�

Evaluate B for the following current density distributions: 
(a) J = J0iz, 0 < r < a 

lo 
O < r < a

(b) J = J,
o
oiz a < r < b 

b<r<oo 
( r )"· 

(c) J = lo a lz, n :2:: 1 O<r<a

where J0 is a constant. 
An infinitely long straight filamentary wire occupying the z axis carries current I
amp in the z direction. Evaluate S B · di for the following paths: 
(a) From (1, 0, 0) to (0, :h 0) along the path x + 2y = 1, z = 0. 
(b) From (2, 0, 0) to (1, 1, 1) along a straight line path. 
Check your answers from considerations of symmetry and Ampere's circuital law
in integral form. 
Using Ampere's circuital law in integral form, obtain the magnetic flux densities
due to the following volume current distributions in cartesian coordinates: 

(a) J = {Joiz IYI < a
O IYI > a

(b) J = {Joiz . -a < Y < 0 
-lo•z O < y < a 

(c) J = {lyl iz IYI < a 
O IYI > a

(d)J={Yiz IYl<a 
O IYI > a

(e) J = {(a - lyl)iz IYI < a
O IYI > a

where 10 is a constant. 
Using Ampere's circuital law in integral form, obtain the magnetic flux densities 
due to the following volume current distributions in cylindrical coordinates: 

lo 
O < r < a

(a) J =
o
loiz a < r < b 

b<r<oo 
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I 

I 
naz •z
0(c) J = I . 
----�· 

O 

n(cz - bZ) •
where 10 and I are constants.

O<r<a 

a<r<oo 

O<r<a 

a<r<b 

b<r<c 

c<r<oo 

Chap. 3 

3.31. Using Ampere's circuital law in integral form, obtain the magnetic flux densities 1 due to the following surface current distributions: 11 

(a) J, = {1•01
i, . Y = a } cartesian coordinates- ,o•z y = -a 

(b) J, = J,0 i, r = a cylindrical coordinatesIJ,0i, r = a I (c) J, = -J .!!... • r = b cylindrical coordinates
so b •• 

where J,0 is a constant.
3.32. A toroid with a circular cross section is formed by rotating about the z axis the

circle of radius a ( < b) in the xz plane and centered at (b, 0, O) as shown in Fig.
3.33. A filamentary wire carrying current I is closely wound around the toroid
uniformly with n turns per unit length along the mean circumference. Using Am
pere's circuital law in integral form, find the magnetic field both inside and out
side the toroid.

z 

Fig. 3.33. For Problem 3.32.
3.33. Current I amp flows in a filamentary wire along the z axis from z = oo to z =

and then to the point z = -a via a spherical surface of radius a centered at th
origin, continuing on to z = -oo along a filamentary wire from z = -at

z = -oo. The surface current density on the spherical surface is given by
J I . 

I 
s 

= 2na sin () le amp m
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Using Ampere's circuital law in integral form, find B both inside and outside the sphere of radius a.

3.34. Current flows axially with uniform density J0 amp/m2 in the region between two infinitely long, parallel cylindrical surfaces of radii a and b ( < a) and with their axes separated by a distance c (<a - b) as shown in Fig. 3.34. Find the magnetic flux density in the current-free region inside the cylindrical surface of radius b.

3.35. 

3.

j6

. 

3.37. 

3.38. 

x x x x x 

x x x x x 

x x x x· x 

Fig. 3.34. For Problem 3.34. 
Verify your answers to Problem 3.29 by using Ampere's circuital law in differential form. Verify your answers to Problem 3.30 by using Ampere's circuital law in differential form. For each of the following magnetic fields, find the current distribution produces the field, using Ampere's circuital law in differential form: jµoJ,oix -co < y < 0) ( ) B _ µoJ,o. 0 cartesian a - -3- 1x < Y < a coordinates-��� a<y<oo jµoJor2i¢, a3. 
(b) B = �oJo,1¢,

!µ0J,0(cos (} i, - sin(} i9) (c) B = µ0['0 ( � r (2 cos(} i, + sin(} i9)where J,0 and J0 are constants. 

O<r<a a<r<b b<r<oo O<r<a a<r<oo 
) cylindricalcoordinates 
l spherical coordinates 

which 

A surface current of density J, amp/m occupies the plane surface y = y 0• Show that V X B = µoJ, O(y - Yo) 
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A surface current of density J, amp/m occupies the cylindrical 
Show that 

V X B = µ0J,o(r - r0) 

Ch
l

3 

surface r ro , 

3.40. An infinitely long filamentary wire carrying current I amp in the z directio is 
situated parallel to the z axis and passes through the point (r0 , <p0) in the z O 
plane. Show that 

3.41. 

3.42. 

3.43. 

3.44. 

3.45. 

3.46. 

3.47. 

3.48. 

3.49. 

Obtain the magnetic vector potential at an arbitrary point due to a finitely 1 ng, 
straight filamentary wire lying along the z axis between z = -a and z = +a nd 
carrying a current I amp in the +z direction. Then evaluate B by performing the 
curl operation on the magnetic vector potential and compare the result with (3-�7). 
Two infinitely long, straight filamentary wires situated paraliel to the z axis and 
passing through (d/2, 0, 0) and ( -d/2, 0, 0), respectively, carry currents I in the
+z and -z directions, respectively. (a) Obtain the magnetic vector potential A.

(b) Find A in the limit that d------> 0, keeping Id constant. (c) Evaluate the curl of
A found in part (b) and compare with the result of Problem 3.21.
For the magnetic dipole of Fig. 3-9, obtain the vector potential at distances very 
large from the dipole compared to the radius a. Find the magnetic flux density 
by performing the curl operation on the vector potential. 
For the magnetic quadrupole arrangement of Problem 3.23, obtain the magnetic 
vector potential at distances from it large compared to the dimensions of the 
quadrupole. Then find B by evaluating the curl of the magnetic vector potential
and verify the results for the special cases of Problem 3.23. 
For the volume current distributions specified in Problem 3.29, obtain the magnetic 

. 1 
I vector potentia s. 
) For the volume current distributions specified in Problem 3.30, obtain the mag�etic

vector potentials. 
For the foliowing surface current distributions, obtain the magnetic vector p ten
tials: 

(a) J, = {�o
J
i,. Y ::: � }cartesian coordinates 
,01, y - a 

I
J,0i, r = al 

(b) J, = -J,o 
� i

, r = b cylindrical coordinates

l 
where J,0 is a constant. 
For each of the arrangements of current loops shown in Fig. 3.35, find the mag

] 
etic 

vector potential at distances very far from the loop. 
For the spiraliy wound filamentary wire of Problem 3.19, show that the mag etic 
dipole moment m is given by

m = n1(J:=o nr 2 dr )i, 
Evaluate m and hence A at large distances from the spiral for each of the t ree 
cases specified in Problem 3.19. 
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z z 

I 

I / I 

x 
(b) 

x 
(a) 

Fig. 3.35. For Problem 3.48. 
3.50. For the filamentary wire wound on the surface of a sphere as specified in Problem 

3.20, show that the magnetic dipole moment m is given by 

3.51. 

3.52. 

ID= na3I(f:=O n sin2 e dO)i, 
Evaluate m and hence A at large distances from the sphere for each of the two 
cases listed in Problem 3.20. 
A spherical volume charge of radius a m and having uniform density p0 C/m3 

and centered at the origin spins about the z axis with constant angular velocity 
co0 in the <p direction. Obtain the magnetic vector potential due to the spinning 
sphere of charge at distances from the origin large compared to a.

Show that the magnetic flux enclosed by a closed path C in a magnetic field B is 
equal to f c A · di, where A is the magnetic vector potential corresponding to B.

Use this result to find the magnetic flux enclosed by the rectangular loop of Fig. 
3.30 due to the current flowing in the infinitely long wire. Check your answer by 
evaluating f s B · dS, where S is the surface bounded by the rectangular loop.
Show that, if A = A,i,, where A, is independent of z, the direction lines of 
B = V X A are the cross sections of the constant I A I surfaces in the z = constant 
plane. Use this result to find and sketch the direction lines of the magnetic flux den
sity due to the infinitely long, filamentary wire-pair arrangement of Problem 3.42. 
Determine if the following fields are realizable as magnetic fields: 
(a) A = ;

2 
(yix - xiy) cartesian coordinates 

(b) B = _!_L cylindrical coordinates 
yn � 

(c) C = (1 + ,\)cos</Ji, -(1 - ,\)sin</Ji�
(d) D = ( 1 + ,

2
3
) cos O i, - ( 1 - ,\) sin O i8 

cylindrical coordinates 
spherical coordinates 
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3.55. For the· following current distributions, start with the assumption that all thr;e 
components of B exist and use Ampere's circuital law and the solenoidal natu·e 
of the magnetic field to eliminate some components and evaluate the remainiI,g 
components: 
(a) Infinite sheet of current with uniform density.
(b) Surface current flowing axially with uniform density along an infinitely lo g

cylinder.
3.56. Make use of the solenoidal character of the magnetic field to find the radial deri -

tive of the magnetic flux density due to a circular loop of current I at a po· t 
on its axis. 

3.57. In Sec. 3-10, we classified static vector fields into four groups. Determine to whi h 
of the four groups does each of the following fields belong: 
(a) A = xix + yiy 
(b) B = xyix + yziy + zxiz 
(c) C = (x2 - y2)ix - 2xyiy + 4iz
(d) D = e-\,, cylindrical coordinates

r 

( ) E cos</>. + sin <f>. 1. d . 1 d. e = ,:y-1, -,:y-1�, cy m nca coor mates 

3.58. From the examples and problems of Chapters 2 and 3, identify and prepare a table 
of analogous pairs of charge and current distributions which vary only in two 
dimensions x and y (or rand</>) and with the current flow in the z direction. List 
the expressions for the corresponding electric and magnetic fields and demonstrate 
that the fields are proportional in magnitude and orthogonal in direction. 
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.THE ELECTROMAGNETIC FIELD 

In Chapter 2 we studied the static or time-independent electric field in free 

space. We introduced Maxwell's equations for the static electric field grad

ually from the experimental law of Coulomb concerning the force between 

two charges. In Chapter 3 we studied the static or time-independent magnetic 

field in free space. We introduced Maxwell's equations for the static magnetic 

field gradually from the experimental law of Ampere concerning the force 

between two current loops. In this chapter we will study time-varying electric 

and magnetic fields. We will learn that Maxwell's curl equations for the static 

electric and magnetic fields have to be modified for time-varying fields in 

accordance with an experimental law of Faraday and a purely mathematical 

contribution of Maxwell. When these modifications are made, we will find 

that the time-varying electric and magnetic fields are coupled; that is, they 

are interdependent and hence the name "electromagnetic field." As in the 

case of Chapters 2 and 3, we will in this chapter be concerned with the elec

tromagnetic field in free space only. 

4.1 The Lorentz Force Equation 

In Section 2.1 we introduced .the electric field concept in terms of a force 

field acting upon charges, whereas in Section 3.1 we introduced the 

magnetic field concept, also in terms of a force field acting upon charges 

but only when they are in motion. If an electric field E as well as a magnetic 

field B exist in a region, then the force F experienced by a test charge q moving 

193 
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with velocity v is simply the sum of the electric and magnetic forces given ly
(2-2) and (3-1), respectively. Thus 

F = qE + qv x B = q(E + v x B) (4- ) 
Equation (4-1) is known as the Lorentz force equation, and the force giv(n 
by it is known as the Lorentz force. For a continuous charge distribution 1•f 
density p moving with a velocity v, we can define a force per unit volum!, 
f. Considering an infinitesimal volume dv, we then have

f dv = p dv (E + v x B) = (pE + J x B) dv

or 
f= pE + J x B 

where J = pv is the volume current density. 
(4-) 

EXAMPLE 4-1. A test charge q C, moving with a velocity v = (t + i
y
) m/s c, 

experiences no force in a region of electric and magnetic fields. If the magne :ic 
flux density B = (i

x 
- 2i,) Wb/m2, find E. 

From (4-1), the electric field intensity E must be equal to -v x B �r 
the charge to experience no force. Thus I 

E = -(t + i) x (ix - 2i.)
= (2i

x - 2i
y 
+ i,) volts/m I

EXAMPLE 4-2. A region is characterized by crossed electric and magnetic fielcis, 
E = E0i

y 
and B = B

0
i, as shown in Fig. 4.1, where E0 and B0 are constan!ts. 

A small test charge q having a mass m starts from rest at the origin at t = 0. 
We wish to obtain the parametric equations of motion of the test chart�e. 

The force exerted by the crossed electric and magnetic fields on the tt!St 
charge is 

F = q(E + v x B) = q[E0
i
y 
+ (v)x 

+ v)Y 
+ v,i,) X (B0

i,)] (4 .. 3) 
The equations of motion of the test charge can therefore be written as 

• 

• 

• • • 

B 
• • • 

E 

• 

• 

• 

• Fig. 4.1.· A region of crosned 
electric and magnetic fields. 
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dvx qB
0 

df
=

m
V
Y 

dvy = _ qB
0 v + !LEdt m 

x 
m

O 

dvz 
= 0 dt 

Eliminating vy from (4-4a) and (4-4b), we have 
d;

t
�x + (q!o)\x = (!)

2

B0E0

The solution for (4-5) is 

vx = !0 + C1 
cos OJi + C2 sin OJi 

0 

Sec. 4.1 

(4-4a) 

(4-4b) 

(4-4c) 

(4-5) 

(4-6) 

where C
1 

and C
2 

are arbitrary constants and OJc = qB
0/m. Substituting 

(4-6) into (4-4a), we obtain 
vy = -C

1 
sin OJJ + C2 cos OJJ 

Using initial conditions given by 
at t = 0 

to evaluate C
1 

and C2 in (4-6) and (4-7), we obtain 

V = Eo - Eo 
COS OJ t x Bo Bo 

c 

Integrating (4-8) and (4-9) with respect to t, we have 

- Eot Eo . t + C x - -
B 

- -
B 

sm OJc 3 

O 
OJc O 

y = - �COSOJi + C4 OJcBo 

Using initial conditions given by 
x=y = O at t = 0 

to evaluate C
3 

and C
4 

in (4-10) and (4-11), we obtain 

x = E0 t - _!;____ sin OJ t = ....E.L(OJ t - sin OJ t) 
Bo OJcBo 

c OJcBo 
c c 

Eo t + Eo Eo (1 - )Y = --- COS OJc -- = -- - COS OJJ OJcBo OJcBo OJcBo 

(4-7) 

(4-8) 

(4-9) 

(4-10) 

(4-11) 

(4-12) 

( 4-13) 

Equation (4-4c), together with the initial conditions v, = 0 and z = 0 at 
t = 0, yields a solution 

z=O (4-14) 
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z 

x 

Fig. 4.2. Path of a test charge q in crossed electric and 
magnetic fields E = E0iy 

and B = B0i,.

Chap. it 

ii 

The equations of motion of the test charge in the crossed electric and magneUc 
field region are thus given by (4-12), (4-13), and (4-14). These equatiojt1s 
represent a cycloid in the z = 0 plane, as shown in Fig. 4.2. I 

4.2 Faraday's Law in Integral Form 

We learned in Section 2.2 that Coulomb's experiments demonstrated that 
charges at rest experience forces as given by Coulomb's law, leading to tJ)le 
interpretation of an electric field set up by charges at rest. Similarly, we 
learned in Section 3.3 that Ampere's experiments showed that current loops 
experience forces as given by Ampere's law, leading to the interpretation of 
a magnetic field being set up by currents, that is, charges in motion. In this 
section we present the results of experiments by yet another scientist, Michael 
Faraday. Faraday demonstrated that a magnetic field changing with time 
results in a flow of current in a loop of wire placed in the magnetic fidd 
region. When the magnetic field does not change with time, there is no curre:nt 

II 

flow in the wire. This implies that a time-varying magnetic field exefrts 
electric-type forces on charges. Thus Faraday's experiments demonstrate 
that a time-varying magnetic field produces an electric field. 

The electric field produced by the time-varying magnetic field is such 
that the work done by it around a closed path C per unit charge in the linnit 
that the charge tends to zero, that is, its circulation around the closed palth 
C, is equal to the negative of the time rate of change of the magnetic flux IJI

enclosed by the path C. In equation form we have 
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circulation of E around C = -1; 

Sec. 4.2 

(4-15) 

The circulation of E around a closed path C is f c E • di. The magnetic flux 
enclosed by C is given by the surface integral of the magnetic flux density 
evaluated over a surface S bounded by the contour C, that is, J s B • dS. In 
evaluating J s B • dS, we choose the normals to the infinitesimal surfaces 
comprising S to be pointing towards the side of advance of a right-hand 
screw as it is turned in the sense of C. Equation ( 4-15) is thus written as 

,[ E • dl = - _!!_ J B • dS
Jc dt s 

(4-16) 

The statement represented by (4-15) or (4-16) is known as Faraday's law. 
Note that the time derivative on the right side of (4-16) operates on the entire 
integral so that the circulation of E can be due to a change in B or a change 
in the surface S or both. Classically, the quantity f E • dl on the left side 
of ( 4-16) is known under different names, for example, induced electromotive 
force, induced electromotance, induced voltage. Certainly the word force 
is not appropriate, since E is force per unit charge and J E • dl is work per 
unit charge. We shall simply refer to E as the induced electric field and to 
f E • dl as the circulation of E. 

The minus sign on the right side of ( 4-16) needs an explanation. We 
know that the normal to a surface at a point on the surface can be directed 
towards either side of the surface. In formulating (4-16), we always direct 
the normal towards the side of advance of a right-hand screw as it is turned 
around C in the sense in which C is defined. For simplicity, let us consider 
the plane surface S bounded by a closed path C and let the magnetic flux 
density be uniform and directed normal to the surface, as shown in 
Fig. 4.3. If the flux density is increasing with time, df/1/dt is positive and 
-df/1/dt is negative so that f

c 
E • dl is negative. Hence the electric field 

produced by the increasing magnetic flux acts opposite to the sense of the 
contour C. If we place a test charge at a point on C, it will move opposite 
to C; if C is occupied by a wire, a current will flow in the sense opposite to 

Fig. 4.3. Uniform magnetic field 

B directed normal to a plane 

surface S.

s 

c 

--,,\---..B

----�Normal 
I 

/ 
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I 

I 

that of C. Such a current will produce a magnetic field directed to the si i 

opposite to that of the normal since, if the wire is grabbed with the rigl 
hand and with the thumb pointing in the direction of the current, the finge 
will be curled opposite to the normal as they penetrate the surface S. Th 
the current will produce magnetic flux which opposes the increase in t 
original flux. Likewise, if the flux density is decreasing with time, dl/f/dt 
negative and -dl/f/dt is positive so that Tc E • di is positive. The electric fie 
produced by the decreasing magnetic flux acts in the sense of the conto 
C so that, if C is occupied by a wire, a current will flow in the same sense s 
that of C. Such a current will produce a magnetic field directed to the side f 
the normal, thereby opposing the decrease in the flux. Thus the minus si 
on the right side of ( 4-16) signifies that the induced electric field is such th t 
it opposes the change in the magnetic flux producing it. This fact is know1n 
as Lenz' law. If the induced electric field is such that it aids the change in tne 
magnetic flux instead of opposing it, any small change in the magnetic flf 
will set up a chain reaction by inducing an electric field, which will aid t�e 
change in the magnetic flux, which will increase the electric field, and so oµ, 
thereby violating the conservation of energy. Hence Lenz' law must be obeyed 
and the minus sign on the right side of (4-16) is very important. 

EXAMPLE 4-3. The magnetic flux density is given by
B = B0 COS W1 t ix 

where B
0 

and ro 1 are constants. A rectangular loop of wire of area A is 
placed symmetrically with respect to the z axis and rotated about the z axis 
at a constant angular velocity ro

2 
as shown in Fig. 4.4, such that the angle </> 

which the normal to the plane of the loop makes with the x axis is given y 

<p = 'Po + W2t 

It is desired to find the circulation of the induced electric field around t�e 
contour C of the loop. I 

The unit vector normal to the plane of the loop is 
in = cos (<f,0 + wit) ix + sin (<f,

0 
+ w

2t) i
y 

(4-1'7) 
The magnetic flux enclosed by the loop is 

1/f = f B • dS 
plane surface 

S bounded 
by c 

= f
8 

(B
0 

cos W
1 
t iJ • [cos (q,

0 
+ w

2
t) ix + sin (<f,

0 
+ W2t) iy] dS 

= 5 B
0 

cos W1 
t cos (q,0 + W2t) dS = B0A cos W1 

t cos (q,0 + W2t) (4-li8)
s 

I This is simply the flux enclosed at any time t by the projection of the loc>P 
at that time on to the yz plane, which is normal to the flux density. Fror 
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z 

h 

e y/ 
y//y/ y y/ c B=Bocoswtixy /y /
t�t�g 
Y-:--/-'-::r 

x7\-Norm-al -Y Fig. 4.4. A rectangular loop of wire rotating about the z axiswith a constant angular velocity and situated in a time-varying magnetic field. 
Faraday's law, we now have 

f cE' 
•di= -t = -1 [B0

A cos w
1 t cos (<p

0 
+ wzt)] 

= B0
A[w 1 

sin w,t cos (<p
0 
+ w

2
t) 

+ W2 
cos W 1 

t sin (<p
0 
+ W2t)] 

Sec. 4.2 

(4-19) 

where the prime in E' denotes that the electric field is associated with the
contour of the moving loop. Note that the right side of (4-19) reduces to
B

0
Aw

1 
cos <p

0 
sin w,t for ro

2 
= 0, that is, for a stationary loop in a time

varying magnetic field and to B0
Aw2 

sin (<p
0 
+ w

2
t) for ro

1 = 0, that is, for a 
moving loop in a static magnetic field. I 

E:XAMPLE 4-4. The magnetic flux density is given in cylindrical coordinates by

i 

I 

{Bo sin wt i
z B= 

for r < a

for r > a 

where B
0 

and w are constants. It is desired to find the induced electric field
everywhere. 

We note that the time-varying magnetic field has circular symmetry 
about the z axis and is independent of z. Hence the induced electric field must 
also possess circular symmetry about the z axis and must be independent 
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of z; that is, E can be a function of r only. Choosing a circular contour t 
of radius r and centered at the origin, as shown in Fig. 4.5, we note that th 
magnetic flux enclosed by the contour C is 

If/= f 
s 

B • dS ( 4-2() 

where S is the plane surface bounded by the contour C. Substituting for l
and dS in ( 4-20), we get, for r < a,

For r > a,

1/1 = LB . dS = L Bo sin cot jz • dS jz 

= B
0 

sin cot f 
s 

dS = nr 2B
0 sin cot

If/ = f B • dS = f B • dS + f B • dS
s � � 

(4-21) 

where S
1 

is the plane surface enclosed by the circular contour of radius 'a 

and S 
2 

is the remainder of the surface S. The magnetic field is zero, howeveL 
on the surface S

2 
and hence the second integral on the right side of (4-2:) 

is zero. Hence, for r > a,

If/ = f B • dS = na
2B

0 
sin cot 

S1 

z 

B 

y 

x 

Fig. 4.5. For evaluating the induced electric field due a

time-varying magnetic field possessing cylindrical 

symmetry. 
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Thus 

Now, 

{
nr2B

0 
sin wt

If/= na2 B0 
sin wt

for r < a

for r > a

,C, E • dl = f
2

" E"'r d<p = 211:rE"' Jc ¢-o 

From Faraday's law, we then have 

or 

for r < a
for r > a

Sec. 4.2 

(4-22) 

(4-23) 

1-B�OJ cos wt for r < a

E"' = (4-24) 
- Boa

20J cos wt for r > a 2r 
Any r component of E independent of <p and z will have nonzero curl and 
hence can be attributed to sources appropriate for a static electric field, that 
is, an electric field originating from charges at rest. Any z component will have 
to be independent of r since the magnetic field has no <p component. This is 
because if we consider a rectangular contour bcdeb in a plane containing the z
axis as shown in Fig. 4.5, the magnetic flux enclosed by this contour is zero. 
Hence ,C, E • dl is zero or f O 

E, dz + f • E, dz is equal to zero, leading to 
j bcdeb b d 

the conclusion that E, along be is the same as E, along ed. Since the curl of 
a field which has a z component independent of r and <p is zero, it can also be 
attributed to sources appropriate for a static field. Thus the induced electric 
field due to the time-varying magnetic field has a <p component only, thereby 
surrounding the magnetic field, and it is given by 

E= 1 B0rw - -2- cos wt 1
"' 

Boa
20J • -

�cos wt 1"'

for r < a

(4-25) 
for r > a

The fact that the induced electric field surrounds the time-varying magnetic 
field can also be seen if we recognize that Faraday's law is similar in form 
to Ampere's circuital law 

f; B • dl = µo(current I enclosed by C) 

The magnetic field due to the current I surrounds the current. Likewise, the 
electric field due to the changing magnetic flux should surround the flux. 
The induced electric field is thus solenoidal in character, as compared to the 
irrotational nature of the electric field due to charges at rest. I
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One of the consequences of Faraday's law is that f E • dl evaluatf. 
between two points a and b is, in general, dependent on the path followei 
from a to b to evaluate the integral, unlike in the case of the static electr;c
field. To illustrate this, let us consider a region of uniform but time-varyi 'g 
magnetic field. Applying Faraday's law to two different closed paths acb a

and adbea as shown in Fig. 4.6, we obtain two different results for f E • I 

d 

e 
c 

Fig. 4.6. Two different clos d 
paths acbea and adbea. 

since the paths enclose different areas. However, path bea is common to bo
1
th 

the closed paths, and the contributions from the path bea to 1 E • dl ahd 
j acbea 

to 1 E • dl are the same. It then follows that f E • dl is not equal to 
jadbea acb 

f E • di. Thus the work done per unit charge in carrying a test charge from
adb 

a to b in an electromagnetic field, that is, f: E • dl in an electromagne
l
ic

field, is not uniquely defined. It depends upon the path followed from a to
b in evaluating J: E • di. The quantity f: E • dl is known as the voltajge
between the points a and b in the case of time-varying fields. The wo:rd
"voltage" is interchangeable with "potential difference" for the case of static 
electric field only. For time-varying fields, the electric field cannot be express

[
ed

exclusively in terms of a time-varying electric scalar potential as we will learn 
in the following section. Hence, the two words are not interchangeable j in 
the time-varying case. 

Now, let us consider two different surfaces S
1 

and S
2 

bounded b� a
contour C with the normals defining the surfaces directed out of the volur

j

,ne 
bounded by S

1 
+ S

2 
as shown in Fig. 4.7. Then, applying Faraday's law ,to 

C, we have [ 
,[ E • di = - .!!._ J B • dS � .!!._ J B • dS ( 4-J!6) 
Jc dt s, dt s,

It follows from (4-26) that 

ft (J s, 
B • dS + J s, 

B • dS) = 0
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or 

Fig. 4.7. Two surfaces S1 and S2 bounded by a 
contour C.

Sec. 4.3 

i B • dS = constant with time ( 4-27) 
Ts1+S2 

The constant on the right side of (4-27) must, however, be equal to zero 
since a nonzero value for any surface requires the existence forever of isolated 
magnetic charge within the volume bounded by that surface. There is no 
experimental evidence of the existence of such magnetic charge. Thus, it 
follows from Faraday's law in integral form that 

p 
S

B· dS = 0

where S is any closed surface. 

4.3 Faraday's Law in Differential Form (Maxwell's First Curl 
Equation for the Electromagnetic Field) 

(3-111) 

In the previous section we introduced Faraday's law in integral form, given 
by 

,[ E • di = - .!!:._ J B • dS

Jc dt s (4-16) 

where S is any surface bounded by the contour C. According to Stokes' 
theorem, we have 

pc E • di = f s (V x E) • dS

where S is any surface bounded by the contour C. In particular, choosing 
the same surface as for the integral on the right side of (4-16), we obtain 

J (V x E) • dS = - .!!:._ J B • dS ( 4-28) 
s & s 

If the surface S is stationary, that is, independent of time, then 

.!!:... J B • dS = J an . dS dt s s ai 
(4-29) 
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and 

J (V x E) • dS = J -aB • dS
s s 

at (4-30 

Comparing the integrands on the two sides of (4-30), we have 

V x E = _ aB (4-3j 
at � 

This is the differential form of Faraday's law and Maxwell's first curl equi 
tion for the electromagnetic field. 

If, in addition to the variation of the magnetic field with time, th: 
surface S is also changing with time due to a displacement of the cor 
tour as shown in Fig. 4.8, then we evaluate ft f B • dS by considering tw> 

times t
1 

and t
2

, where t
2 = t 1 

+ ll.t. If S
1 

and S
2 

are the surfaces boundel 

'
'\ 

\ 

\ 

I 
I 

I 

I 

I 
;c1 

Fig. 4.8. Displacement of contoir 
C1 with time and the associatfl 
surfaces. 

by C
1 

and C
2 

at t 1 and t 
2

, respectively, we have, from the definition of diffe· 
entiation, 

[!!_J B. ds] = Lim�{[J B. ds] -[J B. ds]} dt S t, 1,-11 t 2 f I S 12 S 11 

=Lim; (J B2 • dS2 - J B
1 • dS1 ) (4-3)

.i.,-o at s, s, 

where B
2 

and B
1 

are B(t2) and B(t 
1
), respectively. Applying the divergen� 

theorem at time t 2 
to the volume V bounded by the two surfaces S 1 and ;2 

and the surface S
3 

formed by the movement of the contour C, we hae 

f V • B
2 

dv = ! B
2 

• dS 
v r�+�+� . 

= -f B2 ° dS1 + I B2 ° dS2 + I B2 • dS3 
� � � 

(4-3) 
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where the minus sign associated with the first of the three integrals on the 
right side of (4-33) is due to the direction of dS1 

pointing into the volume V.

Also, in the third integral, we choose the direction of dS3 as pointing out of 
the volume V.

Since V • B = 0, we have, from (4-33), 

f B2 • dS2 - f B2 • dSI = - f B2 • dS3 (4-34) 
� � � 

If the velocity with which an element dl1 in the contour C
1 

is displaced is 
v 1 , the infinitesimal area dS3 swept by the element in the time At is dl1 x v 1 At 
as shown in Fig. 4.8. Hence 

f B2 
• dS3 

= ! B2 
• dl1 x v 1 At 

S3 jC1 

Substituting (4-35) into (4-34), we have 

f B2 • dS2 - f B2 • dSI = - ,h B2 • dll X VI At 
� � r� 

Now, expanding B(t) in a Taylor's series at time t 1, we have 

[
aB

J 
1 

[
a 2BJ 2 B2 = B l + a t ti 

At + T a t2 ,, (At) + ' ' '

and 

,( B2 • dll X V1 At= At ,( B l • dl1 X V1 
J C1 J C1 

+ (At)2 

f c,[?il • dl1 X V1 
+ · · ·

Substituting (4-38) and (4-39) into (4-36) and rearranging, we get 

(4-35) 

(4-36) 

( 4-37) 

(4-38) 

(4-39) 

I B2 • dS2 - I B l • dS1 = At I [�BJ • dS1 - At ,( B l • dl1 X V 1 
s, s, s, t ,, Jc, 

+ higher-order terms in At ( 4-40) 
Substituting (4-40) into (4-32), we obtain 

[
d
d
t 
J B • ds] = lim } {At J [

a
a
B

J • dS1 - At ,( B l • dll X V1 
8 

,, A,-out 81 t ,. Jc, 
+ higher-order terms in At}

= I [��] • dS1 - ! B l • dl1 X V1 
81 ti J C1 

= J [��] • dS1 
- ,( [v x B],1 • dl1 

S1 ti J C1 

(4-41) 



206 The Electromagnetic Field Chil. 4 

Since Eq. (4-41) must be true for any time t
i
, we have, in general, 

.!!_ f B • ds = f aB • ds - i v x B • di c 442) 
dt s sat Jc 

where C is the contour and S is the surface bounded by C at any arbitary 
time t. 

To an observer moving with a point on the contour, the contour appars 
to be stationary and the observer will attribute the force experienced ly a 
test charge at that point as due to an electric field alone. Denotingthis 
electric field as E' and applying Faraday's law for the contour C and uing 
( 4-42), we have 

,[ E' • di = - .!!_ I B • dS 
Jc dt s 

= -f aB. ds + i v x B • di sat Jc 

(L-43)

But, according to Stokes' theorem, we have 

and 
f c E' • di = f 

s 
V x E' • dS (4-Ma) 

fc v x B • di = ( V x (v x B) • dS (4-Mb) 

Substituting (4-44a) and (4-44b) into (4-43), we get 

or 

f s V x E' • dS = - f s �� • dS + f s V x (v x B). dS (�-45)

V x E' = -�� + V x (v x B) (4-46) 

Equation (4-46) is Faraday's law in differential form, where E' is the electric 
field as measured by an observer moving with a velocity v, relative tc the 
magnetic field B. 

On the other hand, a stationary observer views the force experieJ1ced 
by the test charge moving with the point on the contour as being composed 
of two parts, electric-type and magnetic-type, that is, one due to an electric 
field acting on the charge and the other due to a magnetic field acting on 
the charge. Since the magnetic force acting on the test charge is qv x B, the 
observer will attribute a force of F - qv x B only to t.he electric field where 
F is the total force acting on the charge. The total force acting on the charge 
must of course be the same whether viewed by an observer moving witl::l the 
contour or by a stationary observer. Hence it is equal to qE'. Thus the force 
attributed to the electric field by the stationary observer is qE' - qv x 

1

B = 
q(E' - v x B) or the electric field as viewed by the stationary observ:er is 
given by i 
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E = E' -v x B
Rearranging (4-46), we have 

V x (E' - v x B) = - �� 

which, with the aid of (4-47), becomes 

V x E = _aB
at 

Sec. 4.3 

(4-47) 

(4-48) 

(4-31) 

which is the same as the result obtained in the case of the stationary contour. 
Thus Eq. (4-31) holds, in general, where E is the induced electric field 
as viewed by an observer stationary relative to the time-varying magnetic 
field B. 

E:AMPLE 4-5. For the test charge of Example 4-2, find the electric field as viewed 
by an observer moving with the test charge. 

From Example 4-2, the electric and magnetic fields as viewed by a sta
tionary observer are 

E = E0
i
y 

and B = B0
iz 

The velocity of motion of the test charge is given by 
v = v)

x + v)
y 

_ (Bo E0 )· + (Eo · )· 
- Bo - Bo 

cos Wi Ix 
Bo 

sm ro/ ly (4-49) 

where we have substituted for v
x 

and V
y 

from (4-8) and (4-9), respectively. 
Rearranging (4-47), we note that the electric field E' as viewed by an 

observer moving with a velocity v relative to the magnetic field is given by 
E' = E + v x B (4-50) 

We can also obtain this result directly by noting that, for an observer moving 
with the test charge, the test charge appears to be stationary and hence the 
observer will attribute the force experienced by it to an electric field alone. 
Since the force experienced by the test charge is F = q(E + v x B), the 
observer views an electric field of F/q = E + v x B. Substituting for E, v, 
and B in (4-50), we obtain 

E, _ E • + [(Eo Eo )· + (Bo · )· J B · - oly Bo - Bo 
cos Wi Ix 

Bo 
sm ro/ ly x olz 

(4-51)
= E0 sin ro/ t + E0 cos ro/ iY 

Thus the electric field as viewed by an observer moving with the test charge 

I is (E0 
sin ro/ ix + E0 

cos Wi iy). I 

EX�MPLE 4-6. In Example 4-3, we obtained the circulation of the induced electric 

I 

field around a rectangular loop moving in a time varying magnetic field by 
the direct application of Faraday's law in integral form given by (4-16). 
It is here desired to verify the result of Example 4-3 by using (4-43). 
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With reference to the notation of Fig. 4.4, the first integral on the rifht 
side of ( 4-43) is given by 

-J �� • dS = J s B0ro 1 
sin OJ1f ix • ( cos¢ ix+ sin¢ iy) dS

plane surface S ( 4-::2) 
bounded by C 

= B
0
Aro

1 
cos (¢

0 + OJ
2t) sin ro1t 

I To evaluate the second integral on the right side of (4-43), we note tlrat, 
along side ef, !I

(Jg) . . 

IIV X B = --y-ro2[14>]., X Bo cos OJ1t Ix 

so that 

(Jg) B . ,I... = -2ro
2 0 cos OJ

1
t sm .,, 1, 

fr v x B. di - (ef)(fg) ro B cos ro t sin ,1.. - 2 2 0 I 'I' 
e 

= Bo10J2 cos ro
1 t sin¢ 

Along side Jg, v x B • di = 0 so that 

J:vxB 0 dl=O 

Along side gh,

so that 

J: v x B •di= (gh)Jfg)ro2
B

0 
cos OJ1 t sin¢ 

= B01ro2 cos ro
1
t sin¢ 

Along side he, v x B • di = 0 so that 

s: v x B ·di= 0 

From (4-53a)-(4-53d), we have 

,i: v x B • di = ,i: v x B • di
j C jefghe 

= B
0
Aro2 cos ro 1 t sin¢ 

= B
0
Aro2 cos ro1 t sin (¢0 + rozt) 

(4-53b) 
I 

(4-53c) 

(4-53d) 

(4-54) 
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Thus, from (4-52) and (4-54), we obtain 

f c E' • di = B
0
Aw

1 
cos (<p

0 
+ w

2
t) sin w 1 

t 

+ B
0
Aw

2 
cos w

1
t sin(<f,0 

+ w2t)

which agrees with (4-19). I

Sec. 4.3 

EJI 
1
\MPLE 4-7. In Example 4-4 we obtained the expression for the induced electric 

field due to a time-varying magnetic field possessing cylindrical symmetry 
about the z axis, by using Faraday's law in integral form. It is desired to verify 
the result by using Faraday's law in differential form given by (4-31). 

From Example 4-4, we have the induced electric field given by 

Hence 

for r < a

for r > a

� icp 

i, 
r r 

VxE= a a a = i; [%/rE
cp
)] 

ar a¢ az 

0 rE
cp 

0 
= {-B0w cos wt i, for r < a

O for r > a
From Faraday's law in differential form, we then have 

aB = _ V x E = {B0w cos wt i, for r < a
at O for r > a

Equation (4-56) is consistent with 

B = {Bo sin wt i, for r < a
O for r > a

which is the magnetic field specified in Example 4-4. I

(4-25) 

(4-55) 

(4-56) 

Returning to Eq. (4-31) and taking the divergence of both sides, we have 

v . v x E = -v . �� = - Z/v . B) c 4-57) 

But, since V • V x E = 0, it follows from (4-57) that 
a 

at
(V • B) = 0 (4-58) 

or 
V • B = constant with time (4-59) 
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The constant on the right side of (4-59) must, however, be equal to zero si.ce 
a nonzero value at any point in space requires the existence forever of isolaed 
magnetic charge at that point. There is no experimental evidence of he 
existence of such magnetic charge. Thus, we note that Maxwell's equa�'on 
for the divergence of the time-varying magnetic field given by 

Ill_ V • B = 0 (4-,�0) 
follows from the Maxwell's equation for the curl of E given by (4-31). ilAs
a consequence of (4-60), we have · 1 

B = V x A (4- 51) 
where A is a time-varying vector potential. Substituting (4-61) into (4-J 11), 
we get I I 

a aA V x E = - a/V x A) = - V x at

or 

(4· 62) 

Thus (E + aA/at) can be expressed as the gradient of a time-varying sci ilar 
potential. In particular, we can write 

E+��= - VV (4
·1 ·
63)

!. 
where V is the time-varying scalar potential so that Eq. (4-63) reduce:; to 
E = -V V for the static case. Rearranging ( 4-63), we obtain 

aA E=-VV-at (4-64) 

We will have an opportunity to study the time-varying scalar and vec�tor 
potentials in Section 6.16. 

4.4 The Dilemma of Ampere's Circuital Law and the Displacement 

Current Concept; Modified Ampere's Circuital Law 

in Integral Form 

In Section 3.6 we introduced Ampere's circuital law in integral form, give11 by 

fc B • dl = µo( current enclosed by C) (3-57) 

In that connection we discussed the uniqueness of a closed path enclosing 
a current by considering the case of a straight filamentary wire of finite 
length along which charge flows from one end to the other end (Fig. 3,.16) 
and the case of an infinitely long filamentary wire. We found that the current 
enclosed by a closed path C is not uniquely defined in the case of the finiitely 
long wire, whereas it is uniquely defined for the case of the infinitely llong 
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wire. On the other hand, the magnetic field due to a current-carrying wire 
is uniquely given at every point through the Biot-Savart law and hence 
f c B • di for a given closed path C has a unique value. Thus it seems to 
be meaningless to apply Ampere's circuital law as given by (3-57) for the 
case of the finitely long wire. What then is the fallacy of the situation? Is 
there any modification required for (3-57) so that the dilemma is resolved? 

To answer these questions, let us consider a semiinfinitely long, straight 
filamentary wire occupying the upper half of the z axis. Let there be a point 
source of charge Q C at the origin and let the current flowing along the 
wire to infinity be I amp as shown in Fig. 4.9 so that the charge Q is decreas-

z 

I to Infinity 
dS1 c /S1t-- --:t"� (r,,P,z ) 

,r 

I 

I 

I 
I 

Fig. 4.9. For introducing the displacement cur
rent concept and deriving the modification to 
Ampere's circuital law. 

ing at the rate of I Cf sec. Let us consider a circular contour C of radius r

in the plane normal to the wire and centered at a point on the wire a distance 
z from the origin, as shown in Fig. 4. 9. The. current enclosed by C is not 
uniquely defined since the current penetrating the plane surface S

1 
bounded 

by the contour is I, whereas the current penetrating a bowl-shaped surface 
S2 as shown in Fig. 4.9 is zero. On the other hand, f c B • di is unique since 
B along C is given by the application of the Biot-Savart law to the semi
infinitely long wire. According to the Biot-Savart law, the magnetic flux 
density at a point (r, </>, z) on the contour C due to an infinitesimal segment 
dz' of the wire at distance z' from the origin is given by 
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dB _ µ0/r dz' . 
- 4n[(z 

-
z')2 + ,2p12Iif>

Chap4 

I 

( 4-<5) 

The magnetic flux density at (r, <p, z) due to the entire semiinfinitely lc1g
wire is given by 

B - Joo dB - µolr Joo dz' . 
- z'=O - 4,r z'=O [(z - z')2 + r2]3/219'>

=��;(I+ ,.Jz2
z 

+ ,2)i\1'> 

From (4-66), we have 

,[ B •di= J 
2
" µ

4
°1(1 +

,.j 2

z 
2) ii"> • r d<p ii"> 

Jc if>=O nr z + r 

_ µ0/(l + z )- 2 ,.Jz2 + r2 

(4-
1;
6)

,I 
I '  

11  

( 4- ,i7) 

Ifwe apply Ampere's circuital law (3-57) to the contour C in conjuncton
with the surface S1 without regard to the uniqueness of the current enclo��d,
we obtain 

(4-68) 

Comparing (4-67) and (4-68), we note that the discrepancy between the right
sides is by the amount 

µ0/(l+ Z ) 
1

_µ0
1

( 
z 1) 

2 ,.j z2 + r2 - µo - 2 ,.j z2 + r2 -

We have to resolve this discrepancy by some means. The only recourse seems 
to be the point charge at the origin whose value is decreasing at the rate of
IC/sec. We have not as yet considered the electric field due to the point 
charge Q. As Q varies with time, the electric field flux due to it also varies
with time. Let us consider the electric field flux through the surface S

1
• Since

the electric field intensity due to a point charge is spherically symmetric about
the point charge, the electric field flux through any surface is equal to the
solid angle subtended at the point charge by that surface times the point
charge value divided by 4n€ 

0
• 

To find the solid angle subtended by S
1 

at Q, let us consider an infini
tesimal area dSr = r1 dr 1 d<p 1 at the point (ri , <p 1 , z) on S

1
• The projection 

of this area onto the plane normal to the line drawn from the origin to 
(ri , <pi , z) is (r 1z/,.j,t + z2) dr 1 d<p1 . The projection of dS1 onto the surface of
a sphere of radius unity and centered at the origin or the infinitesimal solid 
angle subtended at the origin by dS

1 
is given by 

d0. 1 = (d �1;2)3/2 dr1 d</J 1 
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The solid angle subtended at the origin by the entire area S
1 

is then given 
by 

n, = f dQ, = f' f
2

" (r2 �1�2)312 dr, d</>, = 2n( 1 - ,.jz2 
z

+ r2)
S1 r,=O ¢1=0 1 

(4-70) 
Since the normal to the surface S

1 
drawn towards the direction of

advance of a right-hand screw as it is turned in the sense of C is directed
away from the point charge, the electric field flux passing through the surface
S

1 
towards the side of that normal is given by 

f s, E • dS1 = 4�€o Qt = 2�o ( 1 - ,.jz2 
z

+ r2) (4-71)

This electric field flux is changing with time. The rate at which it is changing
with time is given by 

3-f E·dS =3-[JL(1- z )]dt s, 1 dt 2€
0 

,.jz2 + r2 

__ 1 
(1 _ z 

)dQ
- 2€

0 
,.jz2 + r2 dt 

But, since the charge Q is decreasing at the rate of IC/sec, we have 
dQ = -Idt 

Substituting (4-73) into (4-72), we obtain 

(4-72) 

(4-73) 

3-f E • dS = ..!_( z - 1) (4-74) dt s, 1 2€
0 

,.jz2 + r2 

The right side of (4-74) is exactly the same as the right side of (4-69) divided
by µ

0
€

0
• Suppose we now modify (3-57) to read 

f c B 
• di = µ0

( current due to charges flowing through a 

surface S bounded by C + fr f 
s € 0E • dS)

and apply it to the surface Sp we obtain 

(4-75) 

f c 
B • dl = µo[I + � (

,.;z2
z

+ r2 
- 1 )] = µl(1 + ,./z2

z

+ r2)

which agrees with (4-67), deduced by using the Biot-Savart law. Thus our
dilemma seems to be resolved! 

Before we discuss the meaning of fr L €0E • dS, let us apply (4-75) 

to the bowl-shaped surface S
2 

bounded by C to see if it gives the correct 
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name "displacement current." Physically, the displacement current is not 
a current in the sense that there is no flow of a physical quantity, like charge, 
across the surface. Although the term "time rate of change of the flux of 
€ 

0
E" is more apt, we shall follow Maxwell's terminology and use the term 

"displacement current." The reason behind this terminology will become 
evident in Chapter 5. 

To summarize the discussion thus far in this section, we have found that 
the dilemma of Ampere's circuital law given by (3-57) is resolved by modifying 
it to read 

(4-80) 

where [!els is the current due to the actual flow of charges across the surface 
S bounded by C in the direction of advance of a right-hand screw as it is 
turned in the sense of C, and [Ials = ! f s 

€ 
0
E • dS is the displacement

current penetrating the surface S in the same direction. We shall refer to 
Eq. (4-80) as the modified Ampere's circuital law in integral form. While 
Faraday's law was a consequence of experimental observations by Faraday, 
the modified Ampere's circuital law was a result of theoretical investigations 
by Maxwell. 

Although we have here derived the modified Ampere's circuital law by 
considering a particular case, Maxwell provided a general proof based on 
Gauss' law and the law of conservation of charge. Since charge is conserved, 
the current due to flow of charge out of a closed surface S bounding a volume
V must be equal to the time rate of decrease of the charge enclosed by the 
surface. This is the law of conservation of charge. If the current flowing out 
of the surface is [[els and the charge enclosed by S is Q, we then have

dQ [!els = - dt (4-81) 
But, from Gauss' law, we have 

or 

! E. dS = SL
JS 

€0 

Q = t €0
E • dS

Substituting (4-82) into (4-81) and rearranging, we obtain 

or 
[Icls + ;1 f s 

€ 
0

E • dS = 0 

[!els + [Ials = 0 

(4-82) 

(4-83) 

(4-84) 
Thus the law of conservation of charge states that the sum of the current 
due to the flow of charges and the displacement current across any closed 
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surface must be equal to zero. We will now show that (4-80) is consistent bit 
(3-57) is not consistent with ( 4-84). To do this, let us consider a closed pafa. 
C in an electromagnetic field. Let S 

1 
and S 

2 
be two different surfaces boundd 

by C with their normals defined as shown in Fig. 4.7. The normal to S
1 

s 
directed towards the side of advance of a right-hand screw as it is turned 

11
n 

the sense of C. Hence, from (4-80), we have 1 1 

f c B • dl = µ0{[lJs, + [la]sJ (4-8!;) 
! 

The normal to S
2 

is directed opposite to the side of advance of a rigll 
hand screw as it is turned in the sense of C. Hence, from (4-80), we have 

t B • dl = -µ0{[lc]s, + [la]s,} (4-8
r
) 

�o�, since f c B • dl is unique, the right sides of (4-85) and (4-86) are equ
]
JJ,

g1vmg us I 

[lc]s,+s, + [la]s,+s, = 0 (4-8f) 
I 

which is consistent with (4-84), since (S
1 + Si

) is a closed surface. On t1;1e
other hand, if we use (3-57) we obtain, for the surface Si , 

and for the surface S
2

, 

f c B • dl = -µ0[/Js,

From (4-88) and (4-89), we have 

(4-89) 

[lc]s,+s, = 0 (4-90) 
which is inconsistent with (4-84) unless [la]s,+s, is equal to zero, which is 
true only in the static case. It is this inconsistency that prompted Max"jell 
to modify Ampere's circuital law by adding the displacement current term. 
A consequence of the displacement current term in the modified Amperle's 
circuital law is that the current enclosed by a closed path C in an electro-

magnetic field is generally not equal to (I/ µ
0

) f c B • dl, unlike in the static
magnetic field case. 

EXAMPLE 4-8. The arrangement shown in Fig. 4.10 is that of a V-shaped filamentary 
wire situated in the yz plane symmetrically about the z axis and with its ver1tex 
at the origin. Current flows along one leg from infinity to the origin at �lhe 
rate of 11 C/sec and leaves along another leg from the origin to infinity at 
the rate of 12 C/sec. It is desired to find the values of f B • dl around t·wo

circular contours C 1 and C
2 

of radii I m and centered at the origin, wh,,ere 
(a) C

1 
is in the xy plane and (b) C

2 
is in the xz plane. 
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Fig. 4.10. For evaluating f B,dJ,

around paths C1 and C2, due to a 
V-shaped filamentary wire with
unequal currents in the two legs. x 

z 

Sec. 4.4 

Since the current entering the origin is /
1 

C/sec whereas the current 
leaving the origin is /

2 
C/sec, there is a charge accumulation at the origin 

at the rate of (/
1 - /

2) C/sec. 
(a) To evaluate J B • di, let us choose the bowl-shaped surface S

1 Ye1 
bounded by C1

• [I
c
ls1 

is equal to zero since neither leg of the wire penetrates 
the surface. On the other hand, since half of the electric field flux emanating 
from. the point charge penetrates the surfaces S, towards the side of advance 
of a right-hand screw as it is turned in the sense of C

1 , [Ia]s1 
is equal to 

! (/
1 - 12) C/sec. Thus, according to (4-80),

[ B • di = io (I 1 - I 2) 
j e1 

(b) To evaluate J B • di, let us choose the bowl-shaped surface S
2 Ye, 

bounded by C2
• [!els, is equal to 1

1 
since that leg of the wire penetrates the 

surface with the current flowing towards the side of advance of a right-hand 
screw as it is turned in the sense of C

2
• On the other hand, the electric field 

flux of the point charge penetrates S
2 

in the opposite sense, and since half 
of the flux emanating from the point charge penetrates S

2 , [Ials, is equal to 
-!(!, - 12

) C/sec. Thus, according to (4-80), 

[ B • di = µ
0
[11 - � (I, - /

2)] = i0 (I, + 12) 
j e, 

Note that if 1
1 

= 12 = I, J B • di = 0 and J B • di = µ0!. I
jC1 jC2 
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4.5 Modified Ampere's Circuital Law in Differential Form 
(Maxwell's Second Curl Equation for the -Electromagnetic Field) 
and the Continuity Equation 

Chap. 

In the previous section we introduced the modified Ampere's circuital la·v 
in integral form, given by 

(4-8<) 

where S is any surface bounded by C, [!els is the current due to charg,s 
flowing across S, and [Ials is the displacement current through S. For a 
volume current of density J, we have 

[!els = L J • dS

Substituting for [!els and [Ials in (4-80), we get 

f c B 
• dl = µ0(I

s 

J • dS + f
t 
I/0

E • ds)
According to Stokes' theorem, we have 

f c B • di = f s (V x B) • dS

(4-9) 

'I)(4-9j. 
I 

I 

I 
where S is any surface bounded by the contour C. In particular, choosir1g 
the same surface as for the integrals on the right side of (4-92), we obtain 

J 
s 

(V x B) • dS = µ0 (J 
s 

J • dS + f
t I

s

€ 0E • dS) 

If the surface S is stationary, that is, independent of time, 

f
t Is 

€0
E • dS = I

s 
Z/€0

E) • dS

and. ( 4-93) becomes 

Is 

(V X B) • dS = I
s

µ0 [J + t/€0E)] • dS

Comparing the integrands on both sides of (4-95), we have 

V X B = µ0 [J + !/€
0

E)]

(4-93) 

I 

(4-9]4) 

(4-9'5) 

(4-91 6) 

Equation (4-96) is the differential form of the modified Ampere's circui1lal 
law and it is Maxwell's second curl equation for the electromagnetic fielld. 
While we have here derived (4-96) for a stationary S, it can be shown that' it 
holds also for a time-varying surface S due to a moving C, where E, B, andl J
are the fields and the current density as viewed by a stationary observi�r. 
Following the terminology "displacement current" for the time rate of chan .ge 
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of the flux of €
0
E, the time rate of change of €

0
E, that is %i (€

0
E) is known

as the "displacement current density." 

lt:xAMPLE 4-9. In the previous section we deduced the magnetic field [Eq. (4-66)) 
. I, due to a semiinfinitely long filamentary wire along which current flows to 

infinity from a source of point charge at the origin (Fig. 4.7). It is here desired
to verify the result by using ( 4-96). 

From the previous section, the magnetic field due to the wire is given
at a point (r, <f,, z) by 

Hence 

B - µol
(1 + 

z 
) . - 4nr ,./ zz + ,2 I\6 

V x B = � [ - %/rB16)] + i; [%/rB16)]

= �;�[ -i, :z ( 1 + ,./ z2 
z 
+ r2) + jz %,( 1 + ,./ z2 

z 
+ y2) J

µof ( • • )
4,r(z2 + r2)3/2 rt, + Zlz 

Substituting I= -dQ/dt in (4-97), we note that 

V X B = µofo ;i[ 4nfo(z2� r2)3;2(ri, + ziz)]

aE= µofo 
at

thereby satisfying (4-96) since J is zero at (r, <f,, z). I 

(4-97) 

(4-98) 

Returning to Eq. (4-96) and taking the divergence of both sides, we have 

V • V X B = V • µ0
[J + %/€

0
E)] 

= µo[ V • J + %/€0
V • E)] 

Since V • V x B = 0, (4-99) gives us 
a V • J + at 

( € 
0 V • E) = 0 

But, according to the law of conservation of charge,

(4-99)

(4-100) 

(4-81) 

where [Icls is the current due to the flow of charges out of a closed surface
S and Q is the charge enclosed by S. In terms of current density J and
charge density p, [!els and Q are given by 
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[Ic]s = t J • dS (4-101"1 

and 

(4-102,1 

where Vis the volume bounded by S. Substituting (4-101) and (4-102) inti., 
(4-81), we obtain 

,[ J • dS = - � f p dv
j s dt v 

i (4-103)

Applying the divergence theorem to the left side of ( 4-103) and interchangin � 
the differentiation and integration operations on the right side, we get 

or 

f )v. J + �) dv = o 

Since (4-105) must be valid for any volume, it follows that 

v. J + ap = o
at

(4-10�) 

(4-10'.) 

(4-106) 
I 

Equation ( 4-106) is the law of conservation of charge in differential form. 
It is also known as the continuity equation. For static fields, ap/at = 0 and 
( 4-106) reduces to V • J = 0, which agrees with (3-113). Comparing ( 4-100) 
with (4-106), we have 

or 

or 

a apa/EoV • E) = 
at

( f 
O 
i • E - p) = constant with time 

'1 

(4-lOf) 

'1 

(4-ltj8) 
I 

The constant on the right side of (4-108) must, however, be equal to zei-o 
since a nonzero value at any point in space requires the existence forever /or 
a source of nonsolenoidal electric field flux other than electric charge at that 
point. Thus we note that Maxwell's equation for the divergence of the tim,le
varying electric field given by 

(4-10i9) 

follows from the Maxwell's equation for the curl of B given by ( 4-96) with the 
aid of the continuity equation (4-106). 
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4.6 Energy Storage in an Electric Field 

Sec. 4.6 

In Section 2.8 we introduced the concept of potential difference between two 
points in an electric field as equal to the work done per unit charge in moving 
a test charge from one point to the other. In Section 2.9 we extended this 
to the concept of potential, which is simply the potential difference between 
two points, one of which is a reference point having zero potential. If we 
transfer a test charge from a point of higher potential to a point of lower 
potential, the field does the work and hence there is loss in potential energy 
of the system, which is supplied to the test charge. Where in the system does 
this energy come from? Alternatively, if we transfer the test charge from a 
point of lower potential to a point of higher potential, an external agent 
moving the charge has to do work, thus increasing the potential energy of 
the system. Where in the systei;n does this energy expended by the external 
agent reside? Wherever in the system the energy may reside, a convenient 
way is to think of the energy as being stored in the electric field. In the first 
case, part of the stored energy in the field is expended in moving the test 
charge, whereas in the second case the energy expended by the external agent 
increases the stored energy. 

Let us then consider a system of two point charges Q, and Q
2 

situated 
an infinite distance apart so that no forces are exerted on either charge and 
hence the charges are in equilibrium. According to the definition of potential 
difference, an amount of work equal to Q

2 
times the potential of Q, at Q

2 

must be expended by an external agent to bring Q
2 

close to Q
1 

as shown in 
Fig. 4.l l(a). Thus the potential energy of the system is increased by the 
amount 

(4-110) 
where V1 is the potential of Q 1 at the location of Q2 • Ifwe start with a system 
of three charges Q

i
, Q

2
, Q

3 
situated an infinite distance apart from each 

other, then the amount of work required to bring Q
2 and Q

3 
close to Q,

can be determined in two steps. First we bring Q
2 

close to Q" for which the 
work required is given by (4-110). Then we bring Q

3 
close to Q

1 
as shown 

in Fig. 4.11 (b ). But, this time, we have to overcome not only the force exerted 
on Q

3 
by Q

1 
but also the for�e exerted by. Q

2 • Hence the required work is 
given by 

W3 = Q
3
q + Q

3
V� 

Thus the total work required to bring Q2 and Q3 
close to Q, is 

w. = W2 + W3 = Q
2 Vl + (Q

3 V� + Q3 VD

(4-111) 

(4-112) 
The potential energy of the system is increased by the amount given by 
(4-112). 

We can proceed in this manner and consider a system of n point charges 
Q

1 , 
Q2, 

Q3 , • • •  , Q
n 

initially located infinitely far apart from each other. 
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from oo from 0< 

--- [i 
(a) (b) Q3 from o,. 

Fig. 4.11. Bringing point charges closer from infinity. I: 

The total work required in bringing the charges close to each other is give�/ by 
W, = W 2 

+ W 3 + • • • + W n 1

1 

= Q2Vf + (Q3n + Q3VD + (Q4Vl + Q4V! + Q4Vi) + · · · 1

1 

(4-j'.13) 

where V{ is the potential of Qi 
at the location of Q;, However, we note that 

Q V1 - Q Q1 - Q Q, - Q V1 (4 i 14) 1 ,-
14n€R - i4n€R - 1 1 -t 

O jl O IJ 

Hence (4-113) may be written as 
W, = Q1Vf + (Q1n + QzVD + (Q1Vf + Qzn + Q3VD + · · ·

n i- 1 

= I; I; Q1V� 
i=2 j=I 

(4-115) 

Adding (4-113) and (4-115), we have 
2W, = Q1(Vf +Vt+ Vf + .. ·) 

+ QiCVl + n + v� + ... )

+ Q/V� + v� + v; + .. ·)

+ ... 

= Q1
(potential at Q

1 
due to all other charges) 

+ Q2(potential at Q
2 

due to all other charges) 
+ Qipotential at Q

3 
due to all other charges) 

+ ... 

= QIVI + Q2V2 + Q3V3 + '''
I 

= :t QiV, (4-
1
116)

where V, is the p�;:ntial at Q, due to all other charges. Dividing both Jides
of (4-116) by 2, we have 

(4-117) 
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Thus the potential energy stored in the system of n point charges is given by 
(4-1 17). 

E MPLE 4-10. Three point charges of values l, 2, and 3 Care situated at the corners
of an equilateral triangle of sides I m. It is desired to find the work required
to move these charges to the corners of an equilateral triangle of shorter
sides! m as shown in Fig. 4.12.

Fig. 4.12. Bringing three point 
charges from the corners of a 
larger equilateral triangle to the 
corners of a smaller equilateral 
triangle. 2 C 3C 

The potential energy stored in the system of three charges at the corners 
of the larger equilateral triangle is given by 

J_ :E Q;V
i 
= _l[1(-2 

+ _3 ) + 2(-1 
+ _3 ) + 3(-1 

+ _2
)] 2 i=l 2 4nE0 4nE0 4nE0 4nE0 

4nE0 4nE0 

= J_[5 + 8 + 9] = _!_!__ N-m2 4nE0 4nE0 

The potential energy stored in the system of three charges at the corners of 
the smaller equilateral triangle is equal to twice the above value since all 
distances are halved. The increase in potential energy of the system in going 
from the larger to the smaller equilateral triangle is equal to 11/4n1:

0 
N-m. 

Obviously, this increase in energy must be supplied by an external agent and 
hence the work required to move the charges to the corners of the equilateral 
triangle of sides ! m from the coiners of the equilateral triangle of sides 1 m 
is equal to 11/4n1:

0 
N-m. I

If we have a continuous distribution of charge with density p(r, e, <p)
instead of an assembly of discrete charges, we can treat it as a continuous 
collection of infinitesimal charges of value p(r, 8, <p) Liv, each of which can
be considered as a point charge, and obtain the potential energy of the 
system as 

w. = 2
1 lim � [p(r, 8, <p) Liv] V(r, 8, <p)

av-o 

1 f 
pV dv

volume 
containing p 

(4-118a) 
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Similarly, for a surface charge distribution of density p, on a surface S, e 
have 

We 
= 1 f 

S
P s V dS

Thus far, we have found the potential energy of the charge distribu on 
by considering the work done in assembling the system. We stated at he 
beginning of this section that the potential energy can be thought o as 
being stored in the electric field set up by the system of charges. If so, we 
should be able to express the energy in terms of the electric field. To do t is, 
we substitute for p in (4-118a) from (2-82) and obtain 

W, = � f (€
0 

V • E)V dv (4- 19) 
volume 

containing p 

Since V • E = 0 in the region not containing p, the value of the integra on 
the right side of (4-119) is not altered if we change the volume of integra ion 
from the volume containing p to the entire space. Thus 

We 
= � f ( € 0 V • E) V dv (4-]20) 

I 

all space 

We now use the vector identity 
V •VE= VV • E + E • VV 

to replace VV • E on the right side of (4-120) by V • VE - E • VV and 
obtain 

We 
= � € 0 f (V • VE - E • V V) dv 

all space 

= 1 € o f V • VE dv- + � € 
0 

f E • E dv 
all space all space 

(4-t21) 

where we have replaced VV by -E in accordance with (2-138). Using, the 
divergence theorem, we equate the first integral on the right side of (4-121) 
to a surface integral thus: I 

f V • VE dv = f VE • in dS ( 4-122) 
all space i,5�;��1:g 

l 

all space 

However, as viewed from a surface bounding all space, a charge distribu ion 
of finite volume appears as a point charge, say Q. Hence, as r---> oo, we 1

can 
write 

E----+_Q_ i4n€
o
r2 

r 

V----+_Q__ 
4n€

0
r
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f VE • i. dS = lim f 
n 

f 2
n 

-4 Q 4 Q 
2 
i, • r2 sin 8 d8 d<p i, r-oo 9=0 ¢,=O 'ltfor 'ltfor 

surface 
bounding 
all space 

= f 
n f 2

n 
lim ( 4 Q

2 

)2 sin e d8 d<p = 0
9=0 ¢,=O r-oo 'ltfo Y (4-123) 

Equation (4-123) holds also for a charge distribution of infinite extent, 
provided the electric field due to the charge distribution falls off at least 
as (l /r2 )i, and hence the potential falls off at least as 1/r. Thus (4-121) 
reduces to 

W, = 1 €0 f E • E dv = f ( 1 f0
E

2) dv 

all space all space 

( 4-124) 

Equation (4-124) indicates clearly that the idea of energy residing in the 
electric field is a valid one provided we integrate -!e 0£2 throughout the entire 
space. The quantity f€0E2 is evidently the energy density in the electric 
field. 

EXAMPLE 4-11. A volume charge is distributed throughout a sphere of radius a
I meters, and centered at the origin, with uniform density p0 

C/m3
• We wish 

to find the energy stored in the electric field of this charge distribution. 
From Example 2-6, the electric field of the uniformly distributed 

spherical charge, having its center at the origin, is given by 

1

p

0
a3 

3€ y2 I, 

E= o 
Po' 1• -3 r fo 

for r > a

for r < a

Hence the energy density in the electric field is given by 

l p
5a6 

1 18€0r4 

-
€0E2 = 2 p5r2 

18€0 

The energy stored in the electric field is 

for r > a 

for r < a

fa In f 2n 2 2 

w. = f( r2sin e dr d8 d<p
r=O 9=0 ¢,=O f O 
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4.7 Energy Storage in a Magnetic Field 

ChaJ. 4 

In the previous section we derived an expression for the energy density in 
an electric field by first finding the work required to be done by an exter. ial 
agent in assembling a system of point charges and then extending the rd,ult 
to a continuous distribution of charge. Just as work is required for gatheri/ng 
point charges from infinity, it requires work to gather a set of current lo1)ps 
from infinity. Just as we can interpret the energy expended by an exter

1

1�al
agent in assembli�g the charges as being stored in the electric field of 1:he 
charges, we can thmk of the energy expended by an external agent in ass

l
,m

bling the current loops as being stored in the magnetic field of the cur :�nt 
loops. It is possible to derive an expression for the energy density in a magn )tic 
field by starting with a set of current loops at infinity and proceeding L:1 a 
similar manner as in the previous section. To simplify the derivation, jwe 
will, however, consider directly the building up of a solenoidal volume cur�:::nt 
distribution. 

Let us then consider a solenoidal volume current distribution of dennity 
J in a volume V where J increases linearly with time from zero to a value 
J

0 in a time t
0

, that is, J = J
0
t/t

0
• The magnetic field B associated with:the 

current distribution also increases linearly with time, that is, B = B
0�/t 0 • 

The time varying magnetic field induces an electric field in accordance with 
Faraday's law. The induced electric field exerts forces on charges constitut
ing the current flow. The work done by these forces must be balanced by an 
external agent to maintain the current density at J

0
t/t

0 
and hence is stored 

in the magnetic field as the potential energy associated with the current dis
tribution. 

To find this energy, let us divide the cross-sectional area S of the current 
distribution into a number of infinitesimal areas !J.Si. Through each infini'tes
imal area, a current loop Ci can be defined by the direction line of the current 
density vector Ji= Ji0 t/t

0 
corresponding to that area as shown in Fig. 4•13. 

The current Ii flowing around the loop C1 is equal to J1 • !J.Si. The amqunt 
of charge dQi crossing !J.Si in time dt is equal to Ii dt. Denoting the indticed 
electric field at the point occupied by !J.Si to be Ei, we obtain the force exetted 
by this field on the charge dQi to be dQi Ei = 11 dt Ei. The work done/ by 
this force as the charge dQi is displaced by the infinitesimal distance dl1 al�ng 
J

1 
is /1 dt Ei • dli. Hence, the work required to be done against the induced 

electric field around the loop Ci in time dt is 
I 

dWm = - 1 Ii dtE,·dli = -lidt 1 Ei·dli (4-�25) 
1ct Ye, 

Using Faraday's law and substituting B = V x A and then using 
theorem, we have 

I 

Stoke's 
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Fig. 4.13. Division of a solenoidal 

continuous distribution of current 

into a number of solenoidal 

current tubes having infinitesimal 

cross-sectional areas. 

Sec. 4.7 

f E
1 

• di; = _ .!!:._ f B • dS
JC, dt s, 

(4-126) 
= - .!!:._ f (V x A) • dS = - .!!:._ f A

1 
• di, dt s, dt Jc, 

where A is the magnetic vector potential associated with B and S1 is any 
surface bounded by C1• In view of the linear increase of B with time, 
A also increases linearly with time. Thus, denoting A1 

= Arnt/t 0, we have 

f E
1 •di,=_.!!:._,[ Arn_!_• dl1 = - ,[ Arn. dl1 Jc, dt Jc, t O Jc, to 

Substituting (4-127) into (4-125), we obtain 

dW = /. dt f Arn • di.
m I J Ct to I

(4-127) 

(4-128) 

The total work required to 'be done by an external agent from t = 0 to 
t and for the entire current distribution is then given by 

= � _.!_ i (JIOt • L\S
1)(AIOt • dl

1)• 2 Jc, to to 
(4-129) 

= � ; ! (JI • L\SJ(A1 • dl
i) 

I J Ct 
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However, as viewed from a surface bounding all space, a solenoidal current 
distribution of finite volume appears as a dipole moment, say m. Hence, 
as r------> oo, we can write 

B - µ
4 

°� (2 cos O i, + sin O i8)nr 

A µom . e. 

-------!>-
4nr2 sm I,;1 

where the z axis is chosen to be along the direction of m. Thus 
1 

[AxBl"'
,s 

whereas 
dS "' r 2 

so that the integral on the right side of ( 4-134) is zero. This is true also for 
a current distribution of infinite extent, provided the magnetic flux density 
due to the current distribution falls off at least as 1/r 2 and hence the magnetic 
vector potential falls off at least as 1/r. Equation (4-133) then reduces to 

W =-1- J B 0 Bdv = 

m 2µ0 J -- dv ( 1 B2) 

2 µo 
( 4-135) 

all space all space 

Equation (4-135) indicates clearly that the idea of energy residing in the 
magnetic field is a valid one provided we integrate 1,B2/ µ

0 
throughout the 

entire space. The quantity 1,B2/ µ0 
is evidently the energy density in the mag

netic field. 

E
t

AMPLE 4-12. Current I flows in the +z direction with uniform density on the 
cylindrical surfacer= a and returns in the -z direction with uniform density 

[ on a second cylindrical surface r = b so that the surface current distribution 
is given by 

l I . 

2na 1
' 

J =s 
I . 

-2nb I, 

r=a 

r=b 

We wish to find the energy stored in the magnetic field per unit length of the 
current distribution. 

From application of Ampere's circuital law in integral form, we obtain 
the magnetic flux density due to the given current distribution as 

B = 1:ol i 2nr ¢ 

0 

r<a 

a<r<b (4-136) 

r>b
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If we have a volume charge distribution of density p instead of a point 
charge Q, we can divide the volume into a number of infinitesimal volumes 
dv and consider the charge p dv in each infinitesimal volume as a point 
charge. Substituting Q = p dv in (4-139), we then have the power supplied 
by the field for the motion of the charge p dv as 

dW
dt = pdvE • v (4-140) 

The power supplied by the field to the entire volume charge distribution is 
given by the integral of (4-140) over the volume of the charge distribution. 
Thus, if a volume charge of density p(r, (), <p) is moving with a velocity 
v(r, (), <p) in the region V of an electromagnetic field characterized by electric 
and magnetic fields E(r, (), <p) and B(r, (), <p), respectively, thereby constituting 
a current of density J(r, (), <p), the power expended by the electromagnetic 
field is given by 

Pd = fv p dv E • v = fv E • J dv

where we have substituted J for pv in accordance with (3-10). 
We now make use of the vector identity 

V • (E x B) = B • V x E - E • V x B
and Maxwell's curl equations 

to obtain 

Noting that 

and 

(4-142) can be written as 

VxE=-?i 

V x B = µo( J + €0 ��) 

an a(1 )B • 
at 

=
at -y

B • B 

(4-141) 

(4-142) 

E • J + g
t 
(2t

0 

B • B) + g
t 
( 1 € 0E • E) = - V • ( E x :0) ( 4-143)

Defining a vector P given by 
B P = E x - (4-144) 
µo 

and taking the volume integral on both sides of (4-143) over the volume V,
we obtain 
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J E·Jdv+ J gi(�B·B)dv+ J g1 (�1:0
E 0 E)dv

v v µo v (4-145) 
=-fv

V·Pdv

Interchanging the differentiation operation with time and integrati�n ovj:r 
volume in the second and third terms on the left side of (4-145) and replacing 
the volume integral on the right side of (4-145) by a closed surface integr1

r

l 
in accordance with the divergence theorem, we get 

J E • J dv + :t J (f-B • B) dv + :t J ( � E 0E • E) dv v v µo v (4-146) 
= -f s 

p • dS

where S is the surface bounding the volume V.

On the left side of (4-146), the second and third terms represent the time 
rate of increase of energy stored in the magnetic and electric fields, resp�c
tively, in the volume V. Thus the left side is the sum of the power expendfd 
by the fields due to the motion of the charge and the time rate of increase 
of stored energy in the fields. Obviously then, the right side of (4-146) must 
represent the power flow into the volume V across the surface S, or 

the power flow out of volume V across the surface S = f 
s 

P • dS
(4-147) 

It then follows that the vector P has the meaning of power density 
associated with the electromagnetic field at a point. The statement represented 
by (4-146) is known as Poynting's theorem after J. H. Poynting, who deriv�d 
it in 1884, and the vector Pis known as the Poynting vector. We note that t�e 
units of P =Ex B/µ

0 
are 

newtons x newton-seconds --=- newtons 
coulomb coulomb-meter · (ampere)2 

newton-amperes newtons = coulomb-meter = second-meter 
_ newton-meters x 1 _ watts 
- second (meter)2 - (meter)2 

and do indeed represent units of power density. 
Caution must be exercised in the interpretation of the Poynting vector

P as representing the power density at a point, since we can add to P 'On 
the right side of (4-146) any vector for which the surface integral over S

van1shes, without affecting the equation. On the other hand, the interpretati1on 
of L (V • P) dv = fs P • dS as the power flow out of the volume V boundled
by S should always give the correct answer. For example, let us conside1r a 
region free of charges and currents in which static electric and magne:tic 
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fields E and B exist. For such a situation, although E x B can be nonzero, 
V • (E x B) = B • (V x E )  - E • (V x B) = 0 since V x E = 0 for a
static electric field and V x B = 0 for a static magnetic field in a current
free region. The fact that V • (E x B) = 0 is consistent with the physical 
situation, since there is no change with time in the energy stored in the 
static electric and magnetic fields and hence there is no power flow associated 
with the fields. Thus the interpretation of the Poynting vector as the power 
density vector at a point in an electromagnetic field is strictly valid only in 
the sense that f 

8 

P • dS gives the correct result for the power flow across 
the closed surface S. 

EXAMPLE 4-13. The electric field intensity E in the radiation field of an antenna
located at the origin of a spherical coordinate system is given by 

E sin() p 
. 

E = a 

r cos (rot - r) 18 

where E
a
, w ,  and P( =ro�) are constants. It is desired to find the magnetic 

field B associated with this electric field and then find the power radiated 
by the antenna by integrating the Poynting vector over a spherical surface 
of radius r centered at the antenna. 

From Maxwell's equation for the curl of E, we have 

-��= VxE

i, 
r2 sine 

a. 

ar 

ie 
rsin () 

a 

ae 

0 E
a 

sin(Jcos(rot - Pr) 

and 

= }J_E
a 

sin() sin (wt - Pr) i
16 r 

B = PEa sin() cos (wt - Pr) i
16 wr 

The Poynting vector is then given by 
BP= Ex-
µa 

i, iu 

0 E
a 

sin() cos (rot - Pr)r 
µa 

i\6 

0 

a 
a¢, 

0 

0 0 PE
a sin()cos(wt - Pr)wr 

= pE5 sin2 () cos2 (wt - Pr) i
µo

ror2 r 
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The power radiated by the antenna 

f P • dS
spherical surface 

of radius r 

= 0 sm
2 

cos2 (wt - Pr) i, • r2 sin() d() def, i,I
n fZn pEz • z () 
8= o ,t,= o µowr 

= 2nPB5 cos2 (wt - Pr) f" sin3 () d()
µow 8=0 

_ 8nPB5 cos2 (wt - Pr) I -
3µaW 

4.9 The Phasor Concept and the Phasor Representation of 
Sinusoidally Time-Varying Fields and Maxwell's Equations 

Chap.4 

for Sinusoidally Time-Varying Fields 
I In developing the electromagnetic field equations, we have thus far conside

i

r·d 
the time variation of the fields and the associated source quantities to e 
completely arbitrary. A very important special case of variation with ti e 
of the field and source quantities is the sinusoidal steady-state variatio . 
Among the reasons for this importance are that, in practice, we do encount

1
er 

such fields and that any function whose time variation is arbitrary can lbe 
expressed, in general, as an infinite sum of sinusoidal functions having] a 
discrete or continuous spectrum of frequencies, depending upon whether 
the function is periodic or not. We therefore devote special attention :tosinusoidally time-varying fields. In dealing with sinusoidally time-varyilrig 
quantities, the phasor approach is convenient, as the student may have alreaiiy 
learned in circuit analysis. However, we will here review the phasor conce'pt 
and illustrate why it is convenient before applying it to electromagneftic 
fields. 

A phasor is nothing but a complex number. It is represented graphicalUy 
by the line drawn from the origin to the point, in the complex plane, coffe
sponding to the complex number as shown in Fig. 4.14. The length of the 
line is equal to the magnitude of the complex number and the angle tbtat 
the line makes with the positive real axis is the angle of the complex numbter. 
Sinusoidal functions of time are represented by phasors. In particular, when 
the sinusoidal function is expressed in cosinusoidal form, that is, in the form 
A cos (wt+ if,), the magnitude of the phasor is equal to the magnitude A
of the cosinusoidal function and the angle of the phasor is equal to the 
phase angle if, of the cosinusoidal function for t = 0. The real part of the 
phasor is equal to A cos if,, which is the value of the function at t = 0. If 
we now imagine the phasor to be rotating about the origin in the countier
clockwise direction at the rate of w rad/sec as shown in Fig. 4.14, we can 
see that the instantaneous angle of the phasor is (wt+ if,) and hence the
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Imaginary 
�ad/sec

Imaginary Part 

0 Real Part_J 
Real 

Fig. 4.14. Graphical representation of a phasor. 

Sec. 4.9 

time variation of its projection on the real axis describes the time variation 
of the cosinusoidal function. 

To illustrate why the phasor approach is convenient for solving sinu
soidal steady-state problems, we consider the simple circuit shown in Fig. 

4.15 in which a source of voltage V(t) = .v
m 

cos (mt+¢>) drives a series
combination of inductance L and resistance R. We will first find the solu
tion for the current I(t) in the steady state without using the phasor approach.
Using Kirchhoff's voltage law, we have 

L d��
) 
+ RI(t) = V

m 
cos (mt + tp) ( 4-148) 

We know that the solution for the current in the steady state must also be 
a cosine function having the same frequency as that of the source voltage 

L 

V(t) Vm COS (wt + 8) 

+ /(t)

R 

Fig. 4.15. A series RL circuit driven by a sinusoidally timevarying voltage source. 
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but having different magnitude and different phase angle in general. Thus let 
us assume the solution to be I(t) = I

m 
cos (wt+()). Substituting this solution 

in the differential equation, we have 

or 

L :i [I
m 

cos (rot+ ())] + Ri
m 

cos (rot + ()) = V
m 

cos (rot + if,) 

(-wLi
m 

sin wt cos() - wLi
m 

cos wt sin() 
+ Ri

m 
cos wt cos() - Ri

m 
sin wt sin())

= v
m 

cos wt cos if> - v
m 

sin wt sin if> 
(4-14P) 

I 

Since (4-149) must be true for all values of time, the coefficients of sin ©t

on either side of it must be equal and, similarly, the coefficients of cos d}t 
on either side of it must also be equal. Thus we have [ 

-wL/
m 

cos() - Ri
m 

sin()= -V
m 

sin if> (4-150r) 
-:-WLl

m 
sin() + Ri

m 
cos() = V

m 
cos q> (4-1501)Squaring (4-150a) and (4-150b) and adding, we obtain 

or 
I
m

= ,jR2 :m

w
2

L
i 

(4-151) 

Multiplying (4-150a) by cos() and (4-150b) by sin() and adding, we get 
wLi

m 
= V

m 
sin(ef, -()) (4-152a) 

Similarly, multiplying (4-150a) by -sin() and (4-150b) by cos() and addi�g, 
we get 

Ri
m

= V
m 

cos (if, -()) (4-15ib) 
From (4-152a) and (4-152b), we have 

or 

tan (if, -()) = wL 

R 

() = if> - tan- 1o;f (4-1 3) 

Hence the solution for I(t) in the steady state is given by 

1I(t) = ,jR2 :m 

w
2

L
2 

cos(rot + if> - tan- 1 ro;) (4-l

r

) 

Let us now use the phasor concept to solve the same simple problem. 
Noting that 

and 
(4-155b) 
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where CR£ stands for "the real part of," we have from (4-148), 

L ;t{CR£[/
m

ej(cot+O)]} + R{CR£[/
mej(cot+O)]} = CR£[V

m
ej(cot+if>)] (4-156)

However, since L and R are constants and also since d/dt and CR£ can be 
interchanged, we can simplify ( 4-156) in accordance with the following steps: 

CR£{ ;t [LI mej(cot+O)]} + CR£[RI meJ(cot+O)] = CR£[V mej(cot+if>)]

CR£[jcoL/mej<wi+o>] + CR£[Rl 
m

ej<wr+o>] = CR£[V 
m

ej<wt+if>>] ( 4-157) 
CR£[(R + jcoL)/mei(cot+O)] = CR£[V

mei(cot+if>)] 
Equation (4-157) states that the real parts of two complex numbers are 
equal. Does this mean that the two complex numbers are equal? No, not 
in general! For example, consider 4 + j 2  and 4 + j5. Their real parts are 
equal but the numbers themselves are not equal. However, (4-157) must hold 
for all values of time. Let us consider two times t 1 and t 2 corresponding to 
(cot + ()) equal to zero and (cot + ()) equal to n/2, respectively. Then, for 
time t

i
, we have 

(4-158) 
For time t 2, we have 

CR£{[R + jcoL]Im
ej<n12>} = CR£{Vmejl(nl2>-9+if>l} 

or 

or 
(4-159) 

where flm stands for "the imaginary part of." Equations (4-158) and (4-159) 
state that the real parts as well as the imaginary parts of two complex numbers 
are equal. Hence the two complex numbers must be equal. Thus we obtain 

(R + jcoL)/m = Vmej<if>-9> 
or 

(R + jcoL)Im
ejO = VmeN 

Multiplying both sides of (4-160) by ej"'', we note that the two 
numbers in (4-157) are equal. Now, defining phasors i and Vas 

f = Im
ej8 so that I(t) = CR£(iej"'') 

V = V meN so that V(t) = CR£( V ej"'') 
Eq. (4-160) can be written as 

(R + j coL)i = V 

(4-160) 
complex 

(4-16l a) 
(4-16l b) 

(4-162) 
Note that an overscore associated with a symbol represents the phasor (or 
complex) character of the quantity represented by the symbol. We can easily 
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show that (4-162) leads to the same result as (4-154), since 

and 

Jefo=f= V
m R + jroL

I(t) = Im cos (rot + 0) = <R-e(Imei9ei"'') 

= <fl£[ vm ef(if,-tan-1 ruL/R)efrut] 
,./R 2 + ro2L2 

Ch'{). 4 

= ,./
Vm cos (rot + <p - tan - i 

ro
R
L

) R 2 + ro2L2 

which is the same as (4-154). [ 
In the foregoing illustration of the phasor technique, we have incl�ded 

several steps merely to understand the basis behind the phasor techni,que. 
It is clear that, hereafter, we can omit all steps up to (4-162) and writ� the 
phasor equation (4-162) directly from the differential equation (4-148D by 
simply replacing I(t) and V(t) by their phasors i and V, respectively, anµ by
replacing d/dt by jro. The phasor equation is then solved for the phaior i
from which the time function I(t) is obtained. Comparing with the trigonoinet
ric manipulations involved in the steps from (4-149) to (4-153) which have 
to be carried out for each different problem, we can now appreciatl the 
simplicity of the phasor technique. As a numerical example, let us conJider 
V(t) = 10 cos lOOOt, L = 10- 3 henry, and R = 1 ohm for the networ� of
Fig. 4.15; The differential equation for I(t) is given by

I 10- 3 �� + I= 10 cos IOOOt 
I 

Replacing the current and voltage by their phasors and d/dt by jro, we have
(jro 10- 3 + 1 )f = 10ef0 

or, since ro = 1000 rad/sec, 

(jl + l )i = 10eJ0 

The phasor i is then given by 

Finally, 

- 10e10 10e10 10 . I= 1 + jl = v2 e1"14 = 
0

e-1"14 

/(t) = <fl£[/ef(IOOOt)] 

= <fl£[�e-Jn/4eJ(IOOOt)J 

= 7.07 cos (lOOO t - 45° ) 
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The voltage and current phasors and the corresponding time functions are 
shown in Figs. 4.16(a) and 4.16(b), respectively.· Note that in Fig. 4.16(a) 
we have turned the complex plane around by 90° in the counterclockwise 

direction to illustrate that the time variations of the projections ofthe phasors 
as they rotate in the counterclockwise direction describe the curves shown 
in Fig. 4. l 6(b ). 

(R,e 

v 

t 10 ----------
Voltage 

/ 
I 

Curr,nt 

2'1T 

(a) (b) 

Fig. 4.16. (a) Voltage and current phasors for numerical values 
V = 10 volts, w = 1000 rad/sec, L = 10- 3 henry, and R = 1 
ohm for the series RL circuit of Fig. 4.15. (b) Time functions 
corresponding to the voltage and current phasors of (a). 

t, msec 

Extension of the phasor technique to vector quantities whose magnitudes 
vary sinusoidally with time follows from its application to the individual 

components of the vector along the coordinate axes. However, some con

fusion is bound to arise since both vectors and phasors are represented graph

ically in the same manner except that the vector has an arrowhead associated 
with it. A vector represents the magnitude and space direction of a quantity 

whereas a phasor represents the magnitude and phase angle of a sinusoidally 

varying function of time. Thus the angle which a phasor makes with the real 
axis of the complex plane has nothing to do with direction in space, and the 

angle which a vector makes with a reference axis in a spatial coordinate system 

has nothing to do with the phase angle which is associated with the time varia
tion of the quantity. Nevertheless, there are certain similarities between vectors 

and phasors. These are pertinent to manipulations involving addition, sub

traction, and multiplication by a constant. They both use the same graphical 

rules for carrying out these manipulations. Hence we must be careful, in 

performing these manipulations, not to get confused between the space angles 
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associated with the vectors and the phase angles associated with the phasors. 
We will now consider an example to illustrate these differences and similarities 
between vectors and phasors. 

EXAMPLE 4-14. In the arrangement shown in Fig. 4. l 7(a), three line charges, infinitely
long in the direction normal to the plane of the paper and having uniform
densities varying sinusoidally with time, are situated at the corners of an
equilateral triangle. The amplitudes of the sinusoidally time-varying charge

(a) 

• 

PL2 

PLI 
PL2 

• 

y 

Lx 
(b) 

• 

PLJ 

PLJ 

Fig. 4.17. (a) Geometrical arrangement of infinitely long uniform 
and sinusoidally time-varying line charges. (b) Phasor diagram 
of the sinusoidally time-varying line charge densities. 

PL! 

densities are such that, considered alone, each line charge produces unit 
peak electric field intensity at the geometric center of the triangle. The phasor 
diagram of the charge densities is shown in Fig. _4.17(b). 

(a) Find the phasors representing the x and y components of the electric
field intensity vector at the geometric center of the triangle.

(b) Determine how the magnitude and direction of the electric field
intensity vector at the geometric center of the triangle vary with time.

The phasor diagram indicates that the line charge densities are given by 
PLI = PLm COS Wt 
PL2 = PLm cos (wt + 120°) 
PL3 = PLm cos (wt + 240°) 

where PLm is the peak value of the charge densities. 
(a) The electric field intensity vector due to an infinitely long line ch'arge

of uniform density is directed radially away from the line charge. Hencb the 
field intensities due to the different line charges are directed as sho�n in 
Fig. 4. 18(a), with the complex numbers beside the vectors representing fheir 
phasors. For example, the phasor 1� associated with the field intep-sity 
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1/240° 

• 

PL2 

• PL I 

y ILJlQ.° 

• 

PL3 
I� 

(a) 

dm, 

I \ 
I \ 

1.5 > 
I 

dm, 

120° 

����......-...,......�<Re�-
-
�

l
�-+---i.......,.._.._ffi:e

0.866 

(b) (c) 

Fig. 4.18. For evaluating the phasers representing the x and y 

components of the electric field intensity vector at the geometric 
center of the line charge arrangement of Fig. 4.17. 

vector due to the line charge of density h i indicates that the time variation 
of the magnitude of the vector is given by 1 cos wt. Thus, timewise, the 
vector oscillates back and forth along the y axis starting with a magnitude 
of 1 in the negative y direction, shrinking gradually to zero in a sinusoidal 
manner, then reversing its direction and growing in magnitude in the positive 
y direction until it reaches a maximum of unity, then shrinking back to 
zero, and so on. 

Now, the x component of the phasor electric field intensity vector at the 
geometric center of the triangle is given by 

i
x 

= (1 cos 30°)/120° - (1 cos 30°)/240° 

= 0.866/120° - 0.866/240° = 1.5/90° 

where we have used the construction shown in Fig. 4.18(b). We note that, in 
the above steps, certain manipulations are vector manipulations whereas 
certain other manipulations have to do with phasors. For example, in finding 
the x component of the phasor vector 1/120° pointing away from the line 
charge of density PL2, the phase angle 120° is preserved and the magnitude 
1 is multiplied by the cosine of the angle which the vector makes with the 
x axis, giving us (1 cos 30°)/120° or 0.866/120°. Similarly, they component 
of the phaser electric field intensity vector at the geometric center of the 
triangle is given by 

iy = -1/!r__ + (1 cos 60°)/120° 
+ (1 cos 60°)/240° 

= -1/!r__ + 0.5/120° 
+ 0.5/240° 

= 1/180° 
+ 0.5/180° = 1.5/180° 

where we have used the construction shown in Fig. 4.18(c). The phasor dia
gram of the x and y components of the electric field intensity vector at the 



242 The Electromagnetic Field Chdjp.4 

geometric center of the triangle relative to the phasor diagram of the line 
charge densities is shown in Fig. 4.19(a). 

(b) From the results of part (a), we have

ExCt) = <Re(Ex
e1"") = 1.5 cos (wt+ 90°) = -1.5 sin wt 

Ey(t) = ffi...e(E
y
ei"'') = 1.5 cos (wt + 180°) = -1.5 cos wt 

Now, since E(t) = ExCt)t + Ey(t)i
y
, the magnitude of E(t) is given by

I E(t) I = ,J E�(t) + E;(t) 
= ,J (-1.5 sin wt)2 + ( -1.5 cos wt)2 = 1.5

The angle which the vector E(t) makes with the x axis is given by

tan-i Ey{t) = tan_ 1 -1.5 cos wt = tan- 1 
-1.5 sin (wt + j��) 

ExCt) -1.5 sin wt l.5 cos (wt+ n 

PL2 

= tan- 1 [-tan (wt + n/2)] = -(wt + n/2) 

w rad/sec ,,.- - - - ....._
,,, ' 

/ " 
I y \ 

I \ 
I } 
I x ,I 

\ v 

(b) 

\ E I 
\ I 
' / 

....... / 
.......... __ _,.,,. 

Fig. 4.19. (a) Phasor diagram of the x and y components of the 
electric field intensity vector at the geometric center of the line 
charge arrangement of Fig. 4.17, relative to the phasor diagram 
of the line charge densities. (b) For describing the time variation 
of the electric field intensity vector corresponding to the phasor 
diagram of (a). 

Thus the magnitude of the electric field intensity vector at the geometric 
center of the triangle remains constant at 1.5 units and the angle which the 
vector makes with the x axis varies as -(wt+ n/2) with time; that is, the
vector rotates with a constant magnitude and at a rate of co rad/sec, with 
the direction at t = 0 along the negative y axis and in the sense shown in 
Fig. 4.19(b). The field is then said to be circularly polarized. I 

We will now discuss briefly polarization of vector fields. Polarization is 
the characteristic by means of which we describe how the magnitude and the 
direction of the field vary with time. For an arbitrarily time-varying field 
characterized by random time-variations of its components along the co-
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ordinate axes at a point in space, the magnitude and direction of the field vary 
randomly with time. The field is then said to be unpolarized or randomly 
polarized. For a sinusoidally time-varying field at a particular frequency w, 
the field vector is characterized by a well-defined polarization. In the most 
general case, the magnitude and direction of such a field vector at a point 
change with time in such a manner that the tip of the vector drawn at that 
point describes an ellipse as time progresses, as shown in Fig. 4.20(a). The 
field is then said to be elliptically polarized. There are two special cases of 
elliptical polarization. These are linear polarization and circular polariza
tion. 

�1--.." 
/ \ 

I E \ 

I I 

I 
I 

I 
I 

\ I
I 

\ / 
' 

/ 

___ .,,., 

(a) 

I 

I 
I 

tt' I 

(b) 

-

(c) 

Fig. 4.20. For illustrating (a) elliptical polarization, (b) linear 
polarization, and (c) circular polarization of a field vector. 

If the field vector at a point in space lies along the same straight line 
through that point as time progresses, as shown in Fig. 4.20(b), the field is 
said to be linearly polarized. Obviously, the components of a field vector 
along the coordinate axes are linearly polarized. If all the components of the 
field vector along the coordinate axes have the same phase, although pos
sessing different magnitudes, then the field vector itself is linearly polarized. 
If the tip of a field vector drawn at a point in space describes a circle as time 
progresses, as shown in Fig. 4.20(c) the field is said to be circularly polarized. 
Circular polarization is realized by the superposition of two field compo
nents oriented perpendicular to each other and having the same magnitude 
but differing in phase by n/2 or 90° as in the case of the two components in 
Example 4-14. Elliptical polarization is realized by the superpositibn of two 
field components having in general different magnitudes as well as different 
phase angles. Since a circle and ellipse can be traversed in one of two senses, 
we have to distinguish between the opposite senses of rotation in the cases 
of circular and elliptical polarizations. The distinction is made as follows. 
Considering the vector to be the electric field intensity vector E, the field is 
said to be clockwise or right circularly ( or elliptically) polarized if the vector 
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rotates in the clockwise sense as seen looking along the direction of .the 
Poynting vector P = E x B/ µ

0 
where B is the magnetic field associated v;vith 

E. The field is said to be counterclockwise or left circularly (or elliptic�[lly) 
polarized if the vector rotates in the counterclockwise sense as seen loo�fing
along the direction of the Poynting vector.

Having illustrated the application of the phasor technique in deailing 
with sinusoidally time-varying vector fields, we now turn to the ph 'tsor 
representation of Maxwell's equations for sinusoidally time-varying fi Ids. 
Maxwell's equations for time-varying fields are given by 

(4- 63) 

(4-1
1
64) 

aBV x E = - at
(4-Jl65) 

V X B = µ0[J + !/€0
E)] (4-][66) 

whereas the continuity equation is given by 

v. J + ap = o (4-�67) 
at

I 

In (4-163)-(4-167), the quantities E, B, p, and J are also functions of all 
three space coordinates in general. Thus we have 

E = E(x, y, z, t) = E)x, y, z, t)t + E/x, y, z, t)iy + Ez(x, y, z, t)iz1 

B = B(x, y, z, t) = Bx(x, y, z, t)t + B/x, y, z, t)iy + Bz(x, Y, z, t)i1
p = p(x, y, z, t) 
J = J(x, y, z, t) = J)x, y, z, t)t + J/x, y, z, t)iy + J.(x, Y, z, t)iz ' 

For the particular case of sinusoidal variation with time, we have 

E = E(x,y, z, t) 
= Exo(x, y, z) cos [mt + 'Px(x, y, z)] t 

+ Ey0(x, y, z) cos [mt + ¢/x, y, z)] iY 

+ Ez0(x, Y, z) COS [mt + ¢.(x, y, z)] iz 

= ffi£[Exo(x, y, z)ei¢h, Y, z>ei"''t 
+ Eyo(X, y, z)eN,(x, Y, z>ei"''iy 
+ Ezo(X, Y, z)ei¢,(x, y, z>ei"''iz]

= ffi£{[Ex(x, y, z)ix + E /x, y, z)iy + E .(x, y, z)iz]ei"''} 
= ffi£[E(x, y, z)ei"''] 

Similarly, we have 
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B = B(x, y, z, t) = (R£[B(x, y, z)e
i"''] 

p = p(x, Y, z, t) = (R£[p(x, y, z)ei"''] 
J = J(x, y, z, t) = (R£[j(x,y, z)ei"''] 

(4-169) 
(4-170) 
(4-171) 

In (4-168)-(4-171), the complex quantities E(x, y, z), B(x, y, z), ji(x, y, z), 
and j(x, y, z) are the phasor representations for the sinusoidally time-vary
ing quantities E(x, y, z, t), B(x, j); z, t), p(x, y, z, t), and J(x, y, z, t), re
spectively. 

Substituting the respective phasors for the quantities E, B, p, and J 
and replacing a;at by jro in (4-163)-(4-167), we obtain the phasor represen
tations of Maxwell's equations as 

V·E= ii 
Eo 

v. ii= o

v x E = -jroB 
V X B = µo(j + jOJ€

0
E) 

whereas the corresponding continuity equation is given by 
V • j + jroj5 = 0 

(4-172) 

(4-173) 
(4-174) 
( 4-175) 

(4-176) 
In (4-172)-(4-176), we understand that E, B, j5, and j are functions of 
x, y, z (but not t). Note that (4-173) follows from (4-174) whereas (4-172) 
follows from (4-175) with the aid of (4-176). 

ExAMPLE 4-15. A sinusoidally time-varying electric field intensity vector is character
ized by its phasor E, given by 

E = (3e
in/2jx + Si.,. - 4e

in/2i,) e
-j0.02n(4x+3z) (4-177) 

(a) Show that the surfaces of constant phase of E are planes. Find the
equation of the planes.

(b) Show that the electric field is circularly polarized in the planes of
constant phase.

(c) Obtain the magnetic flux density phasor B associated with the given
E and determine if the field is right circularly polarized or left
circularly polarized.

(a) The phase angle associated with E is equal to -0.02n(4x + 3z).
Hence the surfaces of constant phase of E are given by 

-0.02n(4x + 3z) = constant

or 
(4x + 3z) = constant (4-178) 
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Equation (4-178) represents planes and hence the surfaces of constant ph�se 
are planes. 

I (b) Combining th:-x and z components of E, we obtain
E = (5iy + 5ix,eM2)e-jO.Ol1t(4x+3z> (4-1179) 

where i,,, = (3ix - 4i,)/5 is the unit vector in the xz plane and making I an 
angle of -tan- 1 4 or -53.1° with the positive x axis. Thus the electric �eld 
is made up of two components perpendicular to each other and having eqjllal 
magnitudes but differing in phase by n/2. Hence the field is circularly po\ar
ized. From (4-179), we observe that the field vector lies in planes defined! b

y
i
y 

and i,,,. The equation of these planes is given by 
i
Y 

• i,,, X (r - r
0

) = 0 (4-i':80) 
where r is the position vector of an arbitrary point (x, y, z) and r

0 
is :the 

position vector of a reference point (x0 , Yo, z
0

), both points lying in a particular 
plane. Simplifying (4-180), we obtain 

4x + 3z = 4x
0 
+ 3z

0 
= constant 

which is the same as Eq. (4-178). Thus the field is circularly polarized in the 
planes of constant phase. 

(c) The magnetic flux density phasor B associated with the given E can be
obtained by using 

v x E = -jcoB (4-1'74) 
Substituting for E in (4-174) from (4-177) and simplifying, we obtain 

B = O.ln (-3i + 5ej1t/2 j + 4i )e-j0.021t(4x+3z)
co x y z 

Let us now consider, for simplicity, the field vectors in the plane 4x + 3z = 0. 
The phasor vectors E

0 
and B

0 
in this plane are given by 

E = 3e
l"l2 i + 5i - 4e

M2 i
O x y z 

B
0 

= O.ln(-3ix + 5ej"12i
y 
+ 4i,)co 

The corresponding real field vectors are given by 
E0 = Cfl£(E0ej"'') 

= -3 sin cot i,, + 5 cos cot i:
,, 
+ 4 sin cot i,

B0 = Cfl£(B0e1"'') 

= O.ln(-3 cos cot ix - 5 sin cot i
y 
+ 4 cos cot i,)co 

Substituting (4-184) and (4-185) into 

p = Eo X Bo
µo 

and simplifying, we obtain the Poynting vector P as 

( 4-182) 

(4-183) 

(4-184) 

(4-185) 
I 
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P = O.ln(20i + 15i)roµo x z 

Sec. 4.10 

(4-1 86) 

Now, we note from (4-184) that the direction of E
0 

is along 5i
y 

for rot= 0 
and along (-3ix + 4iz) for rot= n/2. These two directions and the direction 
of the Poynting vector are shown in Fig. 4.21. It can be seen that the electric 
field vector rotates in the clockwise sense as seen looking along the direction 
of the Poynting vector. Hence the field is right circularly polarized. I 

z 

/3 

x 

E for wt = 'Tr/2

14 
I 

/ I/ 
;, \Sense ofRotation 

E for wt = 0

Fig. 4.21. For the determination of the sense ofrotation of the circularly polarized vector ofExample 4-15. 

Power and Energy Considerations for Sinusoidally Time-Varying 

Electromagnetic Fields 

In Section 4.8 we introduced the Poynting vector P given by 
B P =Ex� (4-144) 
µo 

as the power density associated with the electromagnetic field at a point. 
The surface integral of the Poynting vector evaluated over a closed surface 
S always gives the correct result for the power flow across the surface out of 
the volume bounded by it. For a sinusoidally time-varying electromagnetic 
field characterized by complex field vectors, 

E = E
0
eN 

B = B
0
ej8 

the instantaneous Poynting vector P is given by 
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B P=EX
µo 

= (<R,e Eej"'') X (;
0 

(R,e Bej"'')

= E0 
cos (rot + </>) x Bo cos (rot + 0) 

µo 

= E
0 

x B0 [cos(rot + </>) cos(rot + 0)] 
µo 

= E
0 

x !:[1 cos(2ro't + </> + 0) + 1 cos(</> - 0)] 

1 B 1 B 
= 2E

0 
X 

µ: cos(</> - 0) + 2E
0 

X µ: cos (2rot + </> - 0) 

Chap. 4 

(4-187) 

The first term on the right side of ( 4-187) is independent of time whereas the 
second term varies sinusoidally with time. The time-average value of tbe 
second term obtained by integrating it through one period T and dividibg 
by the period is equal to zero since the integral of a cosine or sine functidm 

I 

over one period is equal to zero. Thus the time-average value of tlhe 
Poynting vector P, denoted as <P> is given by 

I 

<P> - t s: pd, I 
= ( 1 E0 X !: cos(</> - 0)) + ( 1 E

0 
X !: cos (2rot + </> - 0)) 

= 2
1 E

0 X Bo cos(</> - 0) 
µo 

= (R,e[ 1 E0 x !:eM-9>]

= (R,e (_!_ Eoej91 X 
Boe-J9)2 µo 

= <Rse(l.E x 8*)2 µo 

where B* denotes the complex conjugate of B. 
We now define the complex Poynting vector Pas 

- 1 - B*P=-EX-2 µo 

so that the time-average Poynting vector <P> can be written as 
<P> = <Rse(P)

(4-189) 

(4-190) 
We note that Eq. (4-189) is analogous to the expression for the complex povver 
in sinusoidal steady-state circuit theory given by 

P =_!_Vi* (4-191) 2 
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where V and i are the complex voltage and complex current, respectively. 
By integrating the complex Poynting vector over a closed surface S, we 
obtain the complex power flowing across S out Qf the volume V bounded 
by it. Thus 

P · dS = -E x - • dSf - f 1 - B* 
s s 2 µo 

= f-f v . (E x B*) dvµo v 

(4-192) 

where we have used the divergence theorem to replace the surface integral 
by a volume integral. Now, using the vector identity 

v. (Ex B*) = B* • v x E - E. v x B* (4-193) 
and Maxwell's curl equations for complex fields given by 

v x E = -jruB (4-174) 
(4-175) V X B = µo(j + jru€0E) 

we have 
V • (E X B*) = B* • (-jruB) - E • µo(j + jru€0

E)* 
= -jruB* • B - µo(E • j* - jru€0E • E*) 

(4-194)

However, the time-average stored energy density in the electric field is given by 

(w.) = ( � foE2) 

= (�fol E0 1
2 cos2 (rut+ </J)) 

= (! EolEo l2 + ! E0 JE0 J2 cos 2(rut + </J))
1 IE 12 I E j,/, E -j,/, = 4€0 o = 4Eo oe • oe 

I - -= 4EoE • E*

( 4-195) 

Similarly, the time-average stored energy density in the magnetic field is 
given by 

(4-196) 

The time-average power density expended by the field due to the current 
flow is given by 

( 1 - - ) (Pa)= (E • J) = <R£ 2E • J* (4-197) 

so that the complex power density associated with the current flow is given by 
- 1 - -*

Pa-= 2E • J (4-198) 
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Substituting (4-195), (4-196), and (4-198) into (4-194), we get 
V •(EX B*) = -2µ0pd -j4wµo((wm) - (w.)) 

Finally, substituting (4-199) into (4-192), we obtain 

fs P • dS = -Lpd 
dv - j2w L ((wm) - (w.)) dv

Chap. 4 

(4-199) 

(4-200) 

Equation (4-200) is known as the complex Poynting's theorem. Equating 
the real and imaginary parts on both sides of (4-200), we have 

(4-201) 

or 
L ffi-e(pd) dv = -fs [ffi-e(P)] • dS 

or 

L (pd)dv = -fs (P) • dS (4-202) 

and 

or 

2w L ((wm) - (w.)) dv = -am(fs P • dS) - am(fvPd dv) (4-203)

Equation (4-202) states that the time-average power expended by the field due 
to the current flow i.n the volume V is equal to the time-average power 
flowing into the volume Vas given by the surface integral of the time-average 
Poynting vector over the surface S bounding V. If f s (P) • dS is zero, it
means that there is no time-average power expended by the field in the volume 
V; whatever time-average power enters the volume V through part of the 
surface S leaves through the rest of that surface. Equation (4-203) prov.ties 
a physical interpretation for the imaginary part of the complex Poyruri1ng 
vector. It relates the difference between the time-average magnetic and electlric 
stored energies in the volume V to the reactive power flowing into the volmf e 
V as given by the imaginary part of the surface integral of the compl!ex 
Poynting vector over the surface S and to the reactive power associated wlith 
the current flow in the volume V. We note that the complex Poynting theorJ!m 
is analogous to a similar relationship in sinusoidal steady-state circuit the�>ry 

• I 

given by 
1 --

2 VI* = (Pd) + j2w( (Wm) - (W .) ) 

where (Pd) is the average power dissipated in the resistors, and (Wm) �nd 
(W .) are the time-average stored energies in the inductors and capacitq,rs, 
respectively. 



'""'
 

T
AB

L
E

 4
.1

. 
S

u
m

m
a
ry

 o
f 

E
le

ct
ro

m
a
g
n

et
ic

 F
ie

ld
 L

a
w

s 
a
n

d
 F

o
rm

u
la

s 

D
es

cr
ip

tio
n 

D
efi

ni
tio

n 
M

ax
w

el
l's

 e
qu

at
io

ns
 a

nd
 

th
e 

co
nt

in
ui

ty
 eq

ua
tio

n 
in

 
di

ffe
re

nt
ia

l fo
rm

 

M
ax

w
el

l's
 e

qu
at

io
ns

 a
nd

 
th

e 
co

nt
in

ui
ty

 e
qu

at
io

n 
in

 
in

te
gr

al
 fo

rm
 

A
rb

itr
ar

ily
 T

im
e-

Va
ry

ing
 F

ie
ld

s 

V
·

E
=

..f!._
 

E
o
 

V
 ·

B
=

O 
a
B

 
V

 X
E

=
 -

a
t

V
 X

 B
 =

 µ
o[

J 
+

 !
(1:

oE
)]

 
a p

 
v

.
J 

+
 a

r =
 o

J
 

E
 • 

dS
 =

 _!_
 f
 p

 d
v

Y
s 

E
a
 

v 

f 8
 B

 ·
 dS

 =
 0

t
 E 

• d
i =

 -
fr
 L

B 
. d

S

Si
nu

so
id

al
ly

 T
im

e-
Va

ry
ing

 F
ie

ld
s 

F
 =

q(E
 +

 v
 X

 B
) 

V
·

E
=

P E
o
 

V
·

B
=

O 
v 

x
 E

=
 -

jOJ
B

 

V
 X

 B
 =

 µ
o(

J 
+

 j
OJE

oE
) 

V
 • 

j 
+

 j
OJj5

 =
 0 

J
 

E
 . 

dS
 =

 _!_
 f 

ii 
dv

Y
s 

f o
 

f S
B

·
 dS

 =
 0

t
 E.

 d
i=

 -
jOJ

 L
B 
. d

S

t
 B ·

d
i=

 µ
o(

f s
 J

 ·
 dS

 +
 fr

 L
 EoE

 • 
dS

)
fc

 B
 ·

d
i=

 µ
o(

fs
 j

 ·
 dS

 +
 j

OJ 
L
 EoE

 • 
dS

)

ts
 j ·

 dS
+

jOJ
 fv

p
dv

 =
 0

E
ne

rg
y 

de
ns

ity
 in

 th
e 

el
ec

tr
ic

 fi
el

d 
E

ne
rg

y 
de

ns
ity

 in
 th

e 
m

ag
ne

tic
 fi

el
d 

Po
w

er
 d

en
sit

y 
ex

pe
nd

ed
 b

y 
th

e 
fie

ld
 d

ue
 to

 c
ur

re
nt

 fl
ow

 

Po
yn

tin
g 

ve
ct

or
 

J
 

J ·
 dS

 +
 �

 f 
p 

dv
 =

 0
Y

s 
dt

 
v 

1 
W e

=
 

2
1:o

E
 • 

E

1 B
 • 

..!!_
 

W
m =

2
 

µ
o 

P
a

=
 E

. 
J 

P
=

E
x

..!!.
 

µ
o 

1 
-

-
(w

e
) =

 4
1:
oE

 •
 E

*

1 
-

B
*

(W
m)

 =
-

4B
 ·

 µ
o 

1 
-

-
(P

a)
 =

2
E

 • 
J*

-
1 

-
B

*
P

=
-

E
X

-
2 

µ
o 



252 The Electromagnetic Field

4.11 Summary of Electromagnetic Field Laws and Formulas 

I 

Chap. 4 

We now summarize in Table 4.1 the basic laws governing the electromagnetic 
field and the power and energy relations for the electromagnetic field. We 
recall that all four Maxwell's equations for time-varying fields are not inde
pendent. The divergence equation for the magnetic field follows from the 
curl equation for the electric field as shown in Section 4.3, whereas the diver
gence equation for the electric field follows from the curl equation for the 
magnetic field and the continuity equation as shown in Section 4.5. 

Comparing Maxwell's equations for time-varying fields with those for 
the static fields discussed in Chapters 2 and 3, we observe a coupling between 
the time-varying electric field and the time-varying magnetic field. This is 
because the curl of the electric field is dependent on the time derivative of 
the magnetic field and the curl of the magnetic field is dependent on the time 
derivative of the electric field. Thus the solution for the electric field requires 
a knowledge of the magnetic field whereas the solution for the magnetic 
field requires a knowledge of the electric field. The two curl equations must 
therefore be solved simultaneously to obtain the solution for the electro
magnetic field. It is precisely this two-way coupling between the time-varying 
electric and magnetic fields that gives rise to the phenomenon of electromag
netic wave propagation, as we will learn in Chapter 6. 

PROBLEMS 

4.1. The forces experienced by a test charge q C at a point in a region of electric and 
magnetic fields E and B, respectively, are given as follows for three different vel6ci
ties: 

Velocity, m/sec 

Find E and B at that point. 

Force, N 

qix 

q(2ix + iy) 
q(ix + iy) 

4.2. The forces experienced by a test charge q C at a point in a region of electric and 
magnetic fields E and B, respectively, are given as follows for three different 
velocities : 

Velocity, m/sec 

ix - iy 

ix - iy + iz 
iz 

Find E and B at that point. 

Force, N 
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4.5. 

4.f.
I 

I 
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A region is characterized by crossed electric and magnetic fields -E = E0i
y 

and 
B = Boi

z, where E0 and B0 are constants. A test charge q having a mass m starts 
from the origin at t = 0 with an initial velocity v0 in the y direction. Obtain the 
parametric equations of motion of the test charge. Sketch the path of the test charge. 

A region is characterized by crossed electric and magnetic fields E = E0i
y 

and 
B = B0i,, where E0 and B0 are constants. A test charge q having a mass m starts 
from the origin at t = 0 with an initial velocity v0 in the x direction. Obtain the 
parametric equations of motion of the test charge. Sketch the paths of the test 
charge for the following cases: (a) v0 = 0, (b) v0 = E0/2B0, (c) v0 = E0/B0, 

(d) v0 = 2E0/B0, and (e) Vo = 3E0/B0• 

A region is characterized by crossed electric and magnetic fields E = E0 cos OJt i
y 

and B = Boi
z
, where E0 and B0 are constants. A test charge q having a mass m

starts from the origin at t = 0 with zero initial velocity. Obtain the parametric 
equations of motion of the test charge. Check your result with that of Example 4-2 
by letting OJ ---> 0. Investigate the limiting case of OJ ---> OJc, where OJc is equal to 
qBo/m. 

A region is characterized by crossed electric and magnetic fields given by 

E = E0( -sin OJt ix + cos OJt i
y
) 

where E0 and B0 are constants. A test charge q having a mass m starts from the 
origin at t = 0 with zero initial velocity. Obtain the parametric equations of 
motion of the test charge. Check your result with that of Example 4-2 by letting 
OJ ---> 0. Investigate the limiting case of OJ ---> OJc, where OJc is equal to qB0/m.

A magnetic field is given, in cylindrical coordinates, by 

B Bo· =71<1>

where B0 is a constant. A rectangular loop is situated in the yz plane and parallel 
to the z axis as shown in Fig. 4.22. If the loop is moving in that plane with a 
velocity v = v0i

y
, where v0 is a constant, find the circulation of the induced electric 

field around the loop. 

Fig. 4.22. For Problem 4.7. x

z 

�--------- y 
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4.8. For the rectangular loop arrangement of Fig. 4.22, find the circulation of he . induced electric field around the loop if the· loop is stationary but the magn tic field is varying with time in the manner [ 

where B0 is a constant . 
B Bo • [ = r cos Wt 1

¢, 

. . 4.9. For the rectangular loop arrangement of Fig. 4.22, find the circulation of 'the induced electric field around the loop if the loop is moving with a velocity v = v0i
y and if the magnetic field is varying with time in the manner 

4.10. 

B Bo= r COS Wt 1
¢, 

where v0 and B0 are constants. 
For each of the following magnetic fields, find the induced electric field every-where, by using Faraday's law in integral form: I 

{Bo sin rot i,
(a) B= · 

0 

(b) B � {!• sin cl>I i,

I
B0(1 - r:) sin rot i,

(c) B
= 

a 

0 

where B0 is a constant. 

Jxl <a 

Jxl> a 

r<a 

a<r<b 

r> b

r<a 

r > a 

4.11. In a region characterized by a magnetic field B = B0i,, where B0 is a const11nt, a test charge q having a mass m is moving along a circular path of radius a and in the xy plane. Find the electric field as viewed by an observer moving with the test charge. 
4.12. A region is characterized by crossed electric and magnetic fields E = E0iy and 

B = B0i,, where E0 and B0 are constants. A test charge q having a mass m st�rts from the origin at t = 0 with an initial velocity v = (E0/B0)ix. Find the elec;tric field as viewed by an observer moving with the test charge. 
4.13. Verify your answer to Problem 4.9 by using (4-43). I 

4.14. Verify your answers to Problem 4.10 by using Faraday's law in differential form. 
4.15. A current IC/sec flows from a point charge Q 1 C situated at (0, 0, -d) to a point charge Q2 C situated at (0, 0, d) along a straight filarrientary wire as shown in 

Fig. 4.23. Find 1 B • di, where C is a circular path centered at (0, 0, z) and lying 
Ye in the plane normal to the z axis, in two ways: (a) by applying the Biot-Sa\.'art law to find the magnetic field due to the current-carrying wire and (b) by applying the modified Ampere's circuital law in integral form to the path C.
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Fig. 4.23. For Problem 4.15. x 

Chap. 4 

z 

I 
Qz (0,0,d) 

I 

Qi (0,0,-d) 

4.1 . Current flows away from a point charge Q C at the origin radially on the xy plane
with density given by 

J. = -

2
1 

i, amps/m 
rcr 

Find f c 
B · dl where C is a circular path centered at (0, 0, z) and lying in the 

plane normal to the z axis in two ways: (a) by applying the Biot-Savart law to find
the magnetic field due to the surface current and (b) by applying the modified 
Ampere's circuital law in integral form to the path C. 

4.1' . Current flows from a point charge Q 1 C at (0, 0, a) to a point charge Q2 coulombs 
at (0, 0, -a) along a spherical surface of radius a and centered at the origin with 
density given by 

4.1 . 

I 
4.19. 

4.20. 

J. =
2 

1
. oio amp/m

rca sm 

Find f c B · di, where C is a circular path centered at (0, 0, z) and lying in the

plane normal to the z axis. Consider both cases: path C outside the sphere and
path C inside the sphere.

A point charge Q C moves along the z axis with a constant velocity v0 m/sec. 
Assuming that the point charge crosses the origin at t = 0, find and sketch the 

variation with time of f 
c 

B · dl where C is a circular path of radius a in the xy

plane having its center at the origin, and traversed in the cp direction. From sym
metry considerations, find B at points on C. 

A point charge Q 1 C is situated at the origin. Current flows away from the point 
charge at the rate of I Cf sec along a straight wire from the origin to infinity and 

passing through the point (1, 1, 1). Find f B · di around the closed path formed 

by the triangle having the vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). Assume that 
the closed path is traversed in the clockwise direction as seen from the origin. 

Repeat Prob. 4-19 if the straight wire, instead of extending to infinity, terminates 



256 The Electromagnetic Field Chap. 4 

on another point charge Q2 C situated on the plane surface bounded by the 
triangular path and inside the closed path. 

4.21. In the arrangement shown in Fig. 4.24, three point charges Q1 , Q2, and Q3 are 
situated along a straight line. A current of 2 amp flows from Q1 to Q2 wh�reas 

4.22. 

4.23. 

4.24. 

4.25. 

4.26. 

a current of 1 amp flows from Q2 t� Q3• Find f c B • di, where C is a circular �Jath 
centered at Q2 and in the plane normal to the line joining Q1 to Q3 • 

c 

2 Amps I Amp 
Q1---- ., • Q3

LI m- ----++-�/ I m_j 

Fig. 4.24. For Problem 4.21.

Verify your result for the magnetic field due to the current-carrying wire of tob
lem 4.15, by using (4-96).

Verify your result for the magnetic field due to the moving charge of Pro
i

lem 
4.18, by using (4-96).

In a region containing no charges and currents, the magnetic field is given by' 
B = B0 sin Pz sin Wt ix 

where B0 , P, and ro are constants. Using one of Maxwell's curl equations at a tlime, 
find two expressions for the associated electric field E and then find the rela,ion-
ship between p, w, µo, and €0, 

. I Four point charges having values 1, -2, 3, and 4 C are situated at the corners of
a square of sides 1 m as shown in Fig. 4.25. Find the work required to movJ the 
point charges to the corners of a smaller square of sides 1/,v2 m. 

/ 
IC -2 C

I . 

L 4C __ ... -•JC Fig. 4.25. For Problem 4.25.1 
Find the potential energy associated with the following volume charge distributions 
of density p in spherical coordinates using w. = t f p V dv:

vol 
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4.28· 

4.29r 

I 

4.30( 

i' 

4.31,· 

257 Problems 

(a) p = l�o

(b) p = l�o:

O<r<a 

a<r<b 

b<r<oo 

O<r<a 

a<r<oo 

where Po is a constant. 

Chap. 4 

Verify your results for Problem 4.26 by performing volume integration of the 
electric energy densities associated with the charge distributions. 
Two spherical charges, each of the same radius a m and the same uniform density 
Po C/m3 are situated infinitely apart. 
(a) The two spherical charges are now brought together and made into a single

spherical charge having the same uniform density p0 C/m3 as those of the
original charges. Find the work required.

(b) Instead of as in part (a), the two spherical charges are brought together and
made into a single spherical charge of uniform density and of the same radius
a as those of the original charges. Find the work required.

Show that the total energy stored in an electric field made up of two fields E1 and 
E2 is equal to the sum of the energies stored in the individual fields plus a cou·pling 
term, E O f (E1 • E2) dv, that is, 

vol 

W, = J (1 EoEr + 1 EoEf + EoE1 • E2) dv
vol 

Find the energy stored in the electric field set up by charges Q and - Q uniformly 
distributed on concentric spherical surfaces of radii a and b, respectively, in three 
ways: 
(a) By using W, =ff pV dv.

vol (b) By performing volume integration of the energy density in the electric field
set up by the charge distribution.

(c) By considering the electric field as the superposition of the fields set up inde
pendently by the two spherical surface charges and using the result of Problem
4.29.

Find the energy associated with the following current distributions, in cylindrical 
coordinates, per unit length along the z axis, by using Wm 

= f f J • A dv.
vol 

Io • o 
na2

lz < r < a 

a<r<b 
(a) J = 0 

_ Io i 
n(c2 - b2) z b<r<c 

0 c<r<oo 

(b) J = !Jo

J

: i:

- 3� c5(r - b) iz 

O<r<a 

a<r<oo 

where I0 and J0 are constants.
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Electric and magnetic fields are given in cylindrical coordinates by 

! 
Vo 

p 
-1 bf cos z cos OJI 1, 

E = r n a 

0 

!

µ
2°

10 sin ftz sin rot i�
B = nr 

0 

a<r<b 

otherwise 

a<r<b 

otherwise 

Chap. 4 

where Vo, /0 , OJ, and P ( = OJ�) are constants. Find the expression for the 
power leaving the volume bounded by two constant z planes, one of which is the 
z = 0 plane. Draw a graph of the power versus z for rot = n/4.

4.38. In the region r < a in cylindrical coordinates, charges are in motion under the 
combined influence of an electric field E = E0i, and a frictional mechanism, 
thereby constituting a current of density J == J0i., 'where E0 and J0 are constants. 
Obtain the magnetic field due to the current and show that E x B points everywhere 
towards the z axis, that is, in the -i, direction. Show that 

f s (E x B/ µ0) • dS, 
where S is the surface of a cylindrical volume of any radius r and length l, and 
with the z axis as its axis, gives the correct result for the power expended by the 
electric field in that volume. 

4.39. The electric field intensity in the radiation field of an antenna located at the origin 
of a spherical coordinate system is given by 

E = Eo 

sin() cos() cos (rot - fir) io
r 

where E0 , co, and 
p 

(= OJ�) are constants. Find the magnetic field associated 
with this electric field and then find the power radiated by the antenna by inte
grating the Poynting vector over a spherical surface of radius r centered at the 
origin. 

Obtain the steady-state solution for the following differential equation in two ways: 
(a) without using the phasor technique, and (b) by using the phasor technique:

2 x 10-3 dV + v = 10 sin (soot+!!:)dt 6 

Repeat Problem 4.40 for the following integrodifferential equation: 

!; + U + J I dt = 10 cos ( 2t - ; )

4.4 . Two infinitely long, straight parallel wires carry currents /1, = /0 cos rot and /2 =
/0 cos (rot+ 90°) amp, respectively, as shown in Fig. 4.26. Determine the x and y 
components of the magnetic flux density vector at each of the three points A, B, 
and C. Describe how the magnitude and direction of the magnetic flux density 
vector varies with time at each of the three points A, B, and C. 
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Phasor Diagramof 11 and 12 

Fig. 4.26. For Problem 4.42. 

Chap 4 

4.43. In the. arrangement shown in Fig. 4.27(a), four line charges, infinitely long in 1he 
direction normal to the plane of the paper and having uniform charge densities 
varying sinusoidally with time are situated at the corners of a square. The ampli
tudes of the sinusoidally time-varying charge densities are such that, considered 
alone, each line charge produces unit peak electric field intensity at the center of 
the square. The phasor diagram of the charge densities is shown in Fig. 4.27(b). 

PL2 • • 
PLI 

PL3 • • PL4 

(a) 

Fig. 4.27. For Problem 4.43. 

PL2 

900 

900 

PL4 

(b) 

I (a) Find and sketch the phasor representing the x and y components of the elecf ricfield intensity vector at the center of the square. 
(b) Determine how the magnitude and direction of the electric field intensity vecltor

at the center of the square vary with time. 
4.44. R�peat Problem 4.43 for the rectangular arrangement of line charges shown/ in 

Fig. 4.28. 
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r•Pn y 
• PL I 

Lx a 

L .. ,, • PL4 

Fig. 4.28. For Problem 4.44. \13a .I 
4.45. A sinusoidally time-varying electric field intensity vector is characterized by its 

phasor E, given by 
E = (-ix � 2,v'3iy + ftiz)e-j0.04n(v'3x-2y-3z)

(a) Show that the surfaces of constant phase of E are planes. Find the equation
of the planes.

(b) Show that the electric field is linearly polarized in the planes of constant phase.
(c) Find the direction of polarization.

4.46. A sinusoidally time-varying electric field intensity vector is characterized by its 
phasor E, given by 

4.47. 

4.49, 

4.50. 

E = (-jlix - 2iy + jftiz)e-jO.OSn(v'Jx+z)
(a) Show that the surfaces of constant phase of E are planes. Find the equation

of the planes.
(b) Show that the electric field is circularly polarized in the planes of constant phase.
�c) Obtain the magnetic flux density phasor B associated with the given E and 

determine if the field is right circularly polarized or left circularly polarized. 
Repeat Problem 4.46 for the following phasor electric field intensity vector: 

E = [(-ft - j � )ix + ( 1 -rv;}
y 

+ jftiz]e-10.02 .. c"3x+3y+2z> 

Show that a linearly polarized field vector can be expressed as the sum of left 
and right circularly polarized field vectors having equal magnitudes, and that 
an elliptically polarized field vector can be expressed as the sum of left and right 
circularly polarized field vectors having unequal magnitudes. 
Find the time-average stored energy density in the electric field characterized by 
the phasor specified in Problem 4.47. 
The electric field associated with a sinusoidally time-varying electromagnetic field 
is given by 

E(x, y, z, t) = 10 sin nx sin (6n x 108! - ftnz) i
y volts/m 

Find (a) the time-average stored energy density in the electric field, (b) the time
average stored energy density in the magnetic field, (c) the time-average Poynting 
vector associated with the electromagnetic field, and (d) the imaginary part of 
the complex Poynting vector. 



5 

MATERIALS AND FIELDS 

In this chapter we extend our study of fields in free space of the preceding 
three chapters to fields in the presence of materials. Materials contain charged 
particles which act as sources of electromagnetic fields. Under the applica
tion of external fields, these charged particles respond, giving rise to seco:nd
ary fields comparable to the applied fields. While the properties of mateJ

i

· als 
that produce these effects are determined on the atomic or "microsco ic"
scale, it is possible to develop a consistent theory based on "macrosco . ic" 
scale observations, that is, observations averaged over volumes large c. m
pared with atomic dimensions. We will learn that these macroscopic scale 
phenomena are equivalent to charge and current distributions acting as 
though they were situated in free space, so that the secondary fields cart be 
found by using the knowledge gained in the preceding chapters. In fact, we 
have an interesting situation in which the equivalent charge and current 
distributions are related to the total fields in the material comprising the 
applied and the secondary fields, whereas the secondary fields are related 
to the equivalent charge and current distributions. We are thus faced with the 
simultaneous solution of two sets of equations governing these two relation
ships. Following this logic, we will introduce new vector fields and develop a 
new set of Maxwell's equations with associated constitutive relations which 
eliminate the necessity for the simultaneous solution by taking into account 
implicitly the equivalent charge and current distributions. 
262 
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5.1 Conduction and Nonmagnetic Materials 

Sec. 5.1 

Depending upon their response to an applied electric field, materials may 
be classified as conductors, semiconductors, or dielectrics. According to the 
classical model, an atom consists of a tightly bound, positively charged 
nucleus surrounded by a diffuse electron cloud having an equal and opposite 
charge to the nucleus, as shown in Fig. 5.1. While the electrons for the most 

Fig. 5.1. Classical model of an 
atom. 

part are less tightly bound, the majority of them are associated with the 
nucleus and are known as "bound" electrons. These bound electrons can 
be displaced but not removed from the influence of the nucleus upon appli
cation of an electric field. Not taking part in this bonding mechanism are 
the "free" or "conduction" electrons. These electrons are constantly under 
thermal agitation, being released from the parent atom at one point and 
recaptured at another point. In the absence of an applied electric field, their 
motion is completely random; that is, the average thermal velocity on a macro
scopic scale is zero so that there is no net current and the electron cloud 
maintains a fixed position. When an electric field is applied, an additional 
velocity due to the Coulomb force is superimposed on the random velocities, 
thereby causing a "drift" of the average position of the electrons along the 
direction opposite to that of the electric field. This process is known as 
"conduction." In certain materials, a large number of electrons may take 
part in this process. These materials are known as "conductors." In certain 
other materials, only very few or a negligible number of electrons may par
ticipate in conduction. These materials are known as "dielectrics" or insu
lators. We will later learn that a characteristic called polarization is more 
important than conduction in dielectrics. A class of materials for which con
duction occurs not only by electrons but also by another type of carriers 
known as "holes"-vacancies created by detachment of electrons due to 
breaking of covalent bonds with other atoms-is intermediate to that of 
conductors and dielectrics. These materials are called "semiconductors." 

The quantum theory describes the motion of the current carriers in terms 
of energy levels. According to this theory, the electrons in an atom can have 
associated with them only certain discrete values of energy. When a large 
number of atoms are packed together, as in a crystalline solid, each 
energy level in the individual atom splits into a number of levels with slightly 
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different energies, with the degree of splitting governed by the interatonic 
spacing, thereby giving rise to alternate allowed and forbidden bands of eneey 
levels as shown in Fig. 5.2. Each allowed band can be thought of as m 

Unoccupied 

Unoccupied Levels 
Fermi Level- - - - - - - - - - -

= = Occupied Levels = =

Allowed 
Band 

Forbidden 
Band 

Allowed 
Band 

Fig. 5.2. Energy band structure for a crystalline solid. 

almost continuous region of allowed energy levels. For example, for a 
typical solid having an atomic density of 1029 per m3 , there will be almc)st 
1029 levels in each band. A forbidden band consists of energy levels 
which no electron in any atom of the solid can occupy. According to 
Pauli's exclusion principle, each allowed energy level may not be occupied by 
more than one electron. Electrons naturally tend to occupy the lowest ene�·gy 
levels; at a temperature of absolute zero, all the levels below a certain Je,�el 
known as the Fermi level are occupied and all the levels above the Fe

1
� 

level are unoccupied. Hence, depending upon the location of the Fe m1 
level, we can have different cases as shown in Fig. 5.3. 

Fermi 
Level

-........ 

Forbidden 

Allowed 

(a) 

Fermi Level 

Forbidden 

(b) 

'1 

I Allowed I 
LJ Fermi

/Levell 
------ i Forbidden 

[ 

(c) 

Fig. 5.3. Energy band diagrams for different cases: (a) Con
ductor. (b) Dielectric. (c) Semiconductor. 
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For case (a), the Fermi level lies within an allowed band. The band is 
therefore only partially filled at the temperature of absolute zero. At higher 
temperatures, the electron population in the band spreads out somewhat but 
only very few electrons reach above the Fermi level. Thus, since there are 
many unfilled levels in the same band, it is possible to increase the energy 
of the system by moving the electrons to these unoccupied levels very easily 
by the application of an electric field, thereby resulting in a drift velocity of 
the electrons in the direction opposite to that of the electric field. The mate
rial is then classified as a conductor. If the Fermi level is between two allowed 
bands as in (b) and (c) of Fig. 5.3, the lower band is completely filled whereas 
the next higher band is completely empty at the temperature of absolute zero. 
If the width of the forbidden band is very large as in (b), the situation at 
normal temperatures is essentially the same as at absolute zero and hence 
there are no neighboring empty energy levels for the electrons to move. 
The only way for conduction to take place is for the electrons in the filled 
band to get excited and move to the next higher band. But this is very diffi
cult to achieve with reasonable electric fields and the material is then classi
fied as a dielectric. Only by supplying a very large amount of energy can an 
electron be excited to move from the lower band to the higher band where 
it has available neighboring empty levels for causing conduction. The dielec
tric is said to break down under such conditions. If, on the other hand, the 
width of the forbidden band in which the Fermi level lies is not too large, 
as in (c), some of the electrons in the lower band move into the upper band 
at normal temperatures so that conduction can take place under the influence 
of an electric field, not only in the upper band but also in the lower band 
because of the vacancies (holes) left by the electrons which moved into the 
upper band. The material is then classified as a semiconductor. A semicon
ductor crystal in pure form is known as an intrinsic semiconductor. It is 
possible to alter the properties of an intrinsic crystal by introducing impurities 
into it. The crystal is then said to be an extrinsic semiconductor. 

Conduction Current Density, Conductivity, and Ohm's Law 

In Section 5.1 we classified materials on the basis of their ability to permit 
conduction of electrons under the application of an external electric field. 
For conductors, we are interested in knowing about the relationship between 
the "drift velocity" of the electrons and the applied electric field, since the 
predominant process is conduction. But for collisions with the atomic lattice, 
the electric field continuously accelerates the electrons in the direction oppo
site to it as they move about at random. Collisions with the atomic lattice, 
however, provide the frictional mechanism by means of which the electrons 
lose some of the momentum gained between collisions. The net effect is as 
though the electrons drift with an average drift velocity va, under the influence 
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we obtain the simple and important relationship between Jc and E 

Jc
= aE 

Chp.5 

(�13) 

The quantity a is known as the electrical conductivity of the materiahnd 
Eq. (5-13) is known as Ohm's law valid at a point. Equation (5-13) indiC:l.tes 
that Jc is proportional to E. Materials for which this relationship hdds, 
that is, a is independent of the magnitude as well as the direction of E are 
known as linear isotropic conductors. For certain conductors, each om
ponent of Jc can be dependent on all components of E. In such cases, f

c 
is 

not parallel to E and the conductors are not isotropic. Such conductors are 
known as anisotropic conductors. 

In a semiconductor we have two types of current carriers: electrons and 
holes. Accordingly, the current density in a semiconductor is the sum o1 the 
contributions due to the drifts of electrons and holes. If the densities of mies 
and electrons are Nh and N., respectively, the conduction current densi;y is 
given by 

Jc = (µhNh l e I + µ.N.J e l)E (5-14) 

Thus the conductivity of a semiconducting material is given by 

a= µhNh jeJ + µ.N.Jej (5-l5a) 

For an intrinsic semiconductor, Nh = N. so that (5-15a) reduces to 

a = (µh + µ.)N.J ej (5-15b) 

The units of conductivity are (meter2/volt-second)(coulomb/meter3) or 
ampere/volt-meter, also commonly known as mhos per meter, where a 
mho ("ohm" spelled in reverse and having the symbol 0) is an ampere per 
volt. The ranges of conductivities for conductors, semiconductors, and 
dielectrics are shown in Fig. 5.4. Values of conductivities for a few materials 
are listed in Table 5.1. The constant values of conductivities do not imply 
that the conduction current density is proportional to the applied electric 

Metallic Conductors 

-
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-20 -15 -10 -5 0 5 

log 10 a, mhos/m 

Fig. 5.4. Ranges of conductivities for conductors, semicon
ductors, and dielectrics. 
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TABLE 5.1. Conductivities of Some Materials 

Conductivity, 
Material mhos/m Material 

Silver 6.1 x 107 Sea water 

Copper 5.8 x 107 Intrinsic germanium 
Gold 4.1 x 107 Intrinsic silicon 
Aluminum 3.5 x 107 Fresh water 
Tungsten 1.8 x 107 Distilled water 

Brass 1.5 x 107 Dry earth 
Nickel 1.3 x 107 Wood 
Solder 7.0 x 106 Bakelite 
Lead 4.8 x 106 Glass 
Constantin 2.0 x 106 Porcelain 
Mercury 1.0 x 106 Mica 
Nichrome 8.9 x 105 Fused quartz 

Sec. 5.3 

Conductivity, 
mhos/m 

4 
2.2 
1.6 x 10-3

10-3

2 x 10-4

10-s

10-s_10-11

10-9
10-1o_10-14

2 x 10-13

10-11-10-is

0.4 x 10- 1 1

field intensity for all values of current density and field intensity. However, 
the range of current densities for which the material is linear, that is, for 

which the conductivity is a constant, is very large for conductors. 

6.3 Conductors in Electric Fields 

In Sections 5.1 and 5.2 we learned that the free electrons in a conductor 

drift under the influence of an electric field. Let us now consider an arbitrary

shaped conductor of uniform conductivity a placed in a static electric field 
as shown in Fig. 5.5(a). The free electrons in the conductor move opposite 
to the direction lines of the electric field. If there is a way by means of which 

the flow of electrons can be continued to form a closed circuit, then a con

tinuous flow of current takes place. In this section we will consider the 
conductor to be bounded by free space, in which case the electrons are held 

(a) (b) 

Fig. 5.5. For illustrating the surface charge formation at the 

boundary of a conductor placed in an electric field. 
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at the boundary from moving further by the atomic forces within the con
ductor and by the insulating property of free space. Thus a negative surface 
charge forms on that part of the boundary through which the electric field 
lines enter the conductor originally, as shown in Fig. 5.5(b). Now, since the 
conductor as a whole is neutral, an amount of positive charge equal in mag
nitude to the negative surface charge must exist somewhere in the conductor. 
Where in the conductor may this charge or, for that matter, any charge 
placed inside the conductor reside? We will answer this question in the 
following example. 

EXAMPLE 5-1. Assume that, at t = 0, a charge distribution of density p0 is created 
in a portion of a conductor of uniform conductivity a. In the remaining 
portion of the conductor, the charge density is zero. It is desired to show 
that the charge density in the conductor decays exponentially to zero and 
appears as a surface charge at the boundary of the conductor. 

Denoting the charge density and the electric field intensity at any time 
t in the interior of the conductor to be p and E, respectively, we have, from 
Maxwell's divergence equation for the electric field, 

(2-82) 

The time variation of charge density is governed by the continuity equation 

(5-16) 

where Jc is the conduction current density due to the flow of charges i�t the 
conductor under the influence of E. Equation (5-16) stated in integral }orm 
tells us that the total current leaving a volume of the conducting material 
is equal to the time rate of decrease of charge inside that volume. Substituting 
Jc = aE in (5-16), we have 

V • aE + ap = 0 
at 

(5-17) 

Since O' is uniform, we can take it outside the divergence operation in C:,-17) 
to obtain 

O'V • E + ap = 0 . at 
(5-18) 

Now, combining (5-18) and (2-82), we obtain a differential equation for pas 
given by 

ap a
-+-p=O 
at €0 

(.5-19) 
I 
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The solution to (5-19) is obtained by rearranging it and integrating as follows: 

f dp = -f .!!__ dt
p €0 

lnp = -!!....t + In A
€0 

(5-20) 

where In A is the arbitrary constant of integration. Substituting the initial 
condition p = Po at t = 0 in (5-20) and rearranging, we obtain finally 

where we define 
p = Po e-('7/Eo)t = Po e-t/T 

T=�a 

(5-21) 

(5-22) 

Thus the charge density inside the conductor decays exponentially with a 
time constant equal to €0

/a. In particular, if the charge density at any point 
is initially zero, it remains at zero. Hence no portion of the charge which 
decays in one region within the conductor can reappear in any other region 
within the conductor. On the other hand, the charge must be conserved. 
Thus the decaying charge can appear only as a surface charge at the boundary 
of the conductor. To see how fast the charge density at an interior point 
decays and appears simultaneously as a surface charge, let us consider the 
example of copper. For copper, a = 5.80 x 107 mhos/m so that 

T=€o_ 10-9
10

1=1.5xlo-19sec
a - 36n x 5.80 x 

Thus, in a time equal to 1.5 x 10-19 sec, the charge density decays to e-1 

times or about 37 % of its initial value. We note that this time constant is 
extremely short so that we can assume that any charge density in the interior 
of a conductor disappears to the surface almost instantaneously. (Further
more, we can assume that the surface charge formation follows any time 
variation in the electric field causing it so long as this time variation is slow 
compared to the time constant.) On the other hand, the time constant can 
be up to several days for dielectric materials. I 

Returning now to the case of Fig. 5.5, we conclude that the positive 
charge equal in magnitude to the negative surface charge appears as a surface 
charge on that part of the boundary through which the electric field lines 
leave the conductor originally, as shown in Fig. 5.5(b). The surface charge 
distribution formed in this manner produces a secondary electric field which 
opposes the applied field inside the conductor. The secondary field should, 
in fact, cancel the applied field inside the conductor completely. If it does 
not, there will be further movement of charges to the surface until a distri
bution is achieved which produces a secondary field inside the conductor 
that cancels the applied field completely. All this adjustment should be 
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governed by the time constant so that we can assume that a surface charge 
distribution which reduces the field inside the conductor to zero is formed 
almost instantaneously. The surface charge distribution will, in general, 
produce a secondary field outside the conductor which modifies the applied 
field. 

Let us now investigate the properties of the electric field at the surface 
of a conductor. To do this, let us assume that the electric field intensity 
E on the free-space side of the boundary has a component E, tangential to 
the boundary and a component E

n 
normal to the boundary. The electric 

field intensity inside the conductor is, of course, equal to zero. We now 
consider a rectangular path abcda of infinitesimal area in the plane normal 
to the boundary and with its sides be and ad parallel to E, and on either 
side of the boundary as shown in Fig. 5.6(a). Since the sides of the rectangle 

+ 
I 

E 
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I 
I 
I E 

. Boundary 

� .I
c .JIY .· 

I / 
/ d 

Conductor 

(a) (b) 

Fig. 5.6. For investigating the properties of the electric field 
intensity vector at the surface of a conductor. 

are infinitesimally small, we can assume that E, and E
n 

are constants along 
them. Applying f E • di = 0 to the path abcda, we have 

s: E • di + s: E • di + s: E • di + s: E • di = 0 (5-23) 

The second integral in (5-23) is equal to E,(bc) and the fourth integral is 
zero. Now, if we let ab and cd tend to zero, shrinking the rectangle to the 
surface but still enclosing it, the first and third integrals in (5-23) go to zero, 
giving us 

E,(bc) = 0 

or 
E, = 0 (5-24) 
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Thus the tangential component of the electric field intensity at the boundary 
of a conductor placed in an electric field is zero. The electric field at the 
boundary is entirely normal to the surface. Note that we have not considered 
any time-varying magnetic flux enclosed by the rectangular path abeda since 
we are using static field laws. However, even if we do consider the time
varying magnetic flux, it will go to zero as abeda is shrunk to the surface, 
yielding the same result as (5-24). 

We now suspect that the normal electric field at the boundary is related 
to the surface charge density. To investigate this, let us consider a rectangular 
box abedefgh of infinitesimal volume enclosing an infinitesimal area of the 
boundary and parallel to it as shown in Fig. 5.6(b). Applying Gauss' law in 
integral form given by 

1 E • dS = _I ( charge enclosed by S) 
J s fo 

to the surface area of the box, we have 

J E • dS + J E • dS + J E • dS = _1 (charge enclosed in the)f O 
volume of the box 

top 
surface 

abed 

bottom side s�}r:,:e surfaces ( 5-25) 
The second integral in (5-25) is zero since E is zero inside the conductor. 
Since the area abed is infinitesimal, we assume E to be constant on it so that 
the first integral is equal to E/abed). Now, if we let the side surfaces tend 
to zero, shrinking the box to the surface but still enclosing it, the third 
integral goes to zero and the charge enclosed by the box tends to the surface 
charge density p, times the area abed, giving us 

E
n
(abed) = -1 

p,(abed)
fo 

or 

(5-26) 

Thus the electric field intensity at a point on the surface of a conductor 
placed in an electric field is entirely normal to the surface and equal to 1/fo 
times the surface charge density at that point. 

Finally, since the electric field on the conductor.surface is entirely normal 
to it, we note that no work is required to move an imaginary test charge on 
the conductor surface or, for that matter, inside the conductor (since E = 0). 
Thus the conductor surface as well as the interior of the conductor are equi
potentials. We now summarize the properties associated with conductors in 
electric fields as follows: 

(a) The charge density at any point in the interior of a conductor is
zero. Any charge must reside on the surface only with an appropriate 
density to produce a secondary electric field inside the conductor 
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of equal and opposite uniform density forms on the surface z = d due to 
a deficiency of electrons at that surface. Let these surface charge densities 
be -Pso 

and Pso • respectively. To satisfy the property that the field in the 
interior of the conductor is zero, the secondary field produced by the surface 
charges must be equal and opposite to the applied field; that is, it must be 
equal to -E0 i,. Now, each sheet of uniform charge density produces a field
intensity directed normally away from it and having a magnitude 1/2E

0 
times 

the charge density so that the field due to the two surface charges together 
is equal to -(Pso

fE
0
)i, inside the conductor and zero outside the conductor

as shown in Fig. 5.7(b). Thus, for zero field inside the conductor, 

or 

Pso 1• - -E 1• -
� 

z - 0 z 

(5-27) 

The field outside the conductor remains the same as the applied field 
since the secondary field in that region due to the surface charges is zero. 
The induced surface charge distribution and the fields inside and outside the 
conductor are shown in Fig. 5.7(c). Note that the property that the field 

intensity at a point on the surface of the conductor is normal to it and equal 
to 1/Eo times the surface charge density at that point is satisfied on both 
surfaces z = 0 and z = d. I 

r4 Polarization in Dielectric Materials

We stated at the beginning of Section 5.1 that the bound electrons in an 
atom can be displaced but not removed from the influence of the parent 
nucleus upon application of an external electric field. When the centroids of 
the electron clouds surro.unding the nucleii are displaced from the centroids 
of the nucleii, as shown in Fig. 5.8(a), to create a charge separation and 
hence form microscopic electric dipoles, the atoms are said to be "polarized." 
The schematic representation of an electric dipole formed in this manner is 
shown in Fig. 5.8(b). Such "polarization" may exist in the molecular structure 
of certain dielectric materials even under the application of no external electric 
field. The molecules are then said to be polar molecules. However, the polar
ization of individual atoms and molecules is randomly oriented and hence 
the material is not polarized on a macroscopic scale. In certain other dielectric 
materials, no polarization exists initially in the molecular structure. The 
molecules are then said to be nonpolar molecules. 

Upon the application of an external electric field, the centroids of the 
electron clouds in the nonpolar molecules may become displaced from the 
centroids of the nucleii due to the Coulomb forces acting on the charges. 
This kind of polarization is known as electronic polarization. In the case of 
polar molecules, the electric field has the influence of exerting torques on 
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(a) (b) 

Fig. 5.8. (a) Polarization of bound charge in an atom under the 
influence of an electric field. (b) Schematic representation of 
electric dipole created due to polarization. (c) Torque acting on 
an electric dipole under the influence of an electric field. 

(c) 

I 
the microscopic dipoles as shown in Fig. 5.8(c), to convert the initially rand:)m 
polarization into a partially coherent one along the field, on a macrosccpic 
scale. This kind of polarization is known as orientational polarizati:m. 
Certain materials, called "electrets," when allowed to solidify in the appied 
electric field, become permanently polarized in the direction of the field, 1ihat
is, retain the polarization even after removal of the field. Certain otp-er 
materials, known as "ferroelectric" materials, exhibit spontaneous, perma�[nt
polarization. A third kind of polarization, known as ionic polariza,'1on, 
results from the separation of positive and negative ions in molecules · reld 
together by ionic bonds formed by the transfer of electrons from one alom 
to another in the molecule. All three polarizations may occur simultaneously 
in a material. 

The net dipole moment created due to polarization in a dielectric 
material will produce a field which opposes the applied electric field and 
changes its distribution both inside and outside the dielectric material, in 
general, from the one that existed in the absence of the material. This will 
be the topic of discussion in Section 5.5. In the remainder of this section, we 
will first derive the relationship between the dipole moments of the individual 
microscopic dipoles and the electric field responsible for the polarization by 
considering electronic polarization by means of an example. We will then 
define a new vector P which represents polarization on a macroscopic scale 
and relate it to the average macroscopic electric field. 

EXAMPLE 5-3. Assume that the nucleus of an atom is a point charge and that the 
electron cloud has originally a spherically symmetric, radially uniform charge 
distribution which is retained as it is displaced relative to the nucleus under 
the influence of a polarizing electric field. (This assumption is justified if 
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the displacement between the centroids of the electron cloud and the nucleus 
is negligible compared to the radius of the electron cloud.) It is desired to 
find the dipole moment resulting from the polarizing field. 

Let the electric field causing the displacement between the two centroids 
be EP = E0i,, so that the displacement is along the z axis as shown in Fig. 
5.9. Let this displacement be equal to d. The two forces which are acting on 
the nucleus are (a) the Coulomb force F 1 due to the electric field EP and 
(b) the restoring force F

2 
due to the electric field produced at the nucleus by

the electron cloud.
z 

! e, - Eoi,

y 

""-.. X Centroid �f
� Electron 

Cloud 

Fig. 5.9 For obtaining the dipole moment due to electronic 
polarization of an atom. 

The force F 1 is given by 

(5-28) 

where Q is the charge of the nucleus. To find the restoring force F 2, we take 
advantage of the spherical symmetry of the charge distribution in the electron 
cloud about its center and apply Gauss' law to a sphere of radius d centered 
at the origin to obtain the electric field E

2 
at the nucleus due to the electron 

cloud as 

E = _1_ charge enclosed by spherical surface of radius d
i (5_29)2 € 0 

area of the spherical surface z 

Now, since the total charge in the electron cloud is -Q and since the charge 
density is uniform, the charge enclosed by the spherical surface of radius 
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dis - Qd3 Ja
3, where a is the radius of the electron cloud. Thus we obtaim 

_ -Qd3/a
3 • _ Qd . E2 - 4n€od2 Iz -- 4n€oa3 iz 

(5-30) 

Hence the restoring force on the nucleus is given by 

- - Q
2d • F2 -QE2 - ---1 4n€oa3 z 

(5-3 l) 

For equilibrium displacement d of the nucleus relative to the center oft e 
electron cloud, the two forces F 

1 
and F 

2 
must add to zero, giving us 

d = 4n€oa
3 

Eo Q 
Thus the equilibrium displacement d is proportional to the electric fie1ld
intensity E

0
• The dipole moment Pe formed by the charge separation is 

then given by 

- Qd. - Q 
411:€ oa3 

E · - 4 JE (5-ii3) P.- iz- -
Q
- olz- 1t€oa p -

Equation (5-33) indicates that the dipole moment Pe is proportional to 
the field EP causing it. Defining a proportionality constant IX. as 

(5-' 4) 
we have 

P e = IX.E
P 

(5-
1
35) 

The proportionality constant IX. is known as the "electronic polarizability' of 
the atom. I

I 
It is found that the dipole moments due to orientational and ionic 

polarizations are also proportional to the polarizing field Ep. The avetiage 
dipole moment p per molecule is then given by 

p = 1XEp (5�36) 
where IX is known as the molecular polarizability. Let us now considbr a 
small volume fl.v of the dielectric material. If N denotes the numbe!r of 
molecules per unit volume of the material, then there are N fl.v mole9ules 
in the volume fl.v. We define a vector P, called the "polarization vector,

/'
" as 

} N ll.v 
P = - � pj = Np (�-37)

fl.V J = I 
i 

which has the meaning of "dipole moment per unit volume" or the "digole 
moment density" in the material. Substituting (5-36) into (5-37), we hav

1
e

P = NIXEP (�-38)
The units of P are coulombs per square meter. 

The field E
P 

in (5-36) and hence in (5-38) is the average electric field abting 
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to polarize the individual molecule and is generally called the polarizing 
field or the local field. It is the average field that would exist in an imaginary 
cavity created by removing the molecule in question, keeping all the other 
molecules polarized in their locations. It is not the same as the average macro
scopic field E at the molecule with all the molecules including the one in 
question remaining polarized in their locations. It is equal to the field E 
minus the average field produced by the dipole in the imaginary cavity. We 
have to find this average field to express E

P 
in terms of E so that P can be 

related to E. To determine this field rigorously, we need detailed information 
about the shape and charge distribution of the molecule. However, we will 
consider a simple special case of a spherical cavity and obtain the required 
field in the following example. 

EXAMPLE 5-4. Two equal and opposite point charges Q and -Q are situated at 
(0, 0, d/2) and (0, 0 - d/2), respectively, in cartesian coordinates as shown
in Fig. 5.10, forming a dipole of moment p = Qdiz. Obtain the average 
electric field intensity due to the dipole in a spherical volume of radius 
a > d/2 and centered at the origin.

Fig. 5.10. For obtaining the aver
age electric field intensity due to 
an electric dipole in a spherical 
volume. 

z 

Let us consider the fields due to the positive and negative point charges 
independently. Considering first the positive charge Q located at (0, 0, d/2), 
we note that its electric field at an arbitrary point P(r, (), <p) is given by 

E - Q 1 . 

+ - 4n€0 
(r2 + d 2/4 - rd cos()) 

1
QP (5-39) 

where i
aP is the unit vector along the line from the point charge Q to the point 

P. The volume integral of this field evaluated in the spherical volume V of
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radius a is given by 

I E dv = -Q [f 1 i dv] v + v4n€0(r2 + d2/4- rdcosO) PQ (5-40) 

where iPQ = -iQP· The quantity inside the brackets on the right side of 
(5-40) can be recognized as the electric field intensity produced at the locati n 
of the point charge by a volume charge distribution of uniform dens· ty 
1 C/m3 in the spherical volume V. From Gauss' law, this electric field intens· ty
is equal to 

_1_ (charge enclosed within the sphere of radius d/2) i € 0 
surface area of the sphere of radius d/2 ' 

or (d/6€
0
)i,. 

Thus we obtain 

(5-4 a) 

Similarly, the volume integral of the electric field due to the negative cha ge 
- Q located at (0, 0, -d/2) evaluated in the spherical volume V of radi

1
s a

can be obtained as 

I E_ dv = _ Qd i, (5-
i
·lb)

v 6€0 
The volume integral of the electric field due to the dipole is then given by 

I I (E+ + E_) dv = -�d 
i, (5�42) 

v Eo I 
Finally, the average field due to the dipole in the spherical volume is give1i by 

j 

1 I E
0

• = 17 (E+ + E_)dv

. v (5-43) 
_ 1 ( Qd. )- p 

J 

-%na3 
-3€

0 

1
' - - 4n€

0a3 

It is left as an exercise (Problem 5.16 ) for the student to show that ( -43) 
is true for any arbitrary charge distribution of dipole moment p sittiated 
in the spherical volume of radius a. I

I 
I 
I 

From the result (5-43) of Example 5-4, we now relate the pola�izing 
field EP with the average macroscopic field E as 

I 
Ep = E - Eav = E - (4 

-p 3) = E + 3(4 �)N rj5-44) 
n'€oa "'Jna fo 

/ where we have substituted p = P/N from (5-37). Now, if we assume that 
the molecular volume is equal to the volume of the spherical cavity,/ then 
(fna3)N is equal to 1 since N is the number of molecules per unit volume. 

I 
I 
I 

I 
I 
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Equation (5-44) then reduces to 
p 

E =E+-p 3€o

Sec. 5.5 

(5-45) 

Although we have obtained (5-45) by making certain simplifying assump
tions, it is found that the experimentally observed behavior of many dielectric 
materials agrees remarkably well with that following from (5-45). Substituting 
(5-45) into (5-38), we obtain 

P = Nrt(E + _R_) (5-46) 
3€o 

Rearranging (5-46), we obtain the relationship between P and E as 
3rtN

p = 3 N €0
E (5-47) 

€0 - (/., 

Defining a dimensionless parameter X
e
, known as the "electric suscepti

bility," as 

(5-48) 

Eq. (5-47) can be written as 
(5-49) 

This simple relationship between the polarization vector P and the average 
macroscopic electric field E in the dielectric indicates that P is proportional 
to E. Materials for which this relationship holds, that is, X

e 
is independent 

of the magnitude as well as the direction of E are known as linear isotropic 
dielectric materials. For certain dielectric materials, each component of P 
can be dependent on all components of E. In such cases, P is not parallel 
to E and the materials are not isotropic. Such materials are known as ani
sotropic dielectric materials. 

Dielectrics in Electric Fields; Polarization Charge and Current 

In Section 5.4 we learned that polarization occurs in dielectric materials 
under the influence of an applied electric field. We defined polarization by 
means of a polarization vector P, which is the electric dipole moment per 
unit volume. The polarization vector is related to the electric field responsible 
for producing it, through Eq. (5-49). When a dielectric material is placed in 
an electric field, the induced polarization produces a secondary electric field, 
which reduces the applied field, which in turn causes a change in the polar
ization vector, and so on. When this adjustment process is complete, that is, 
when a steady state is reached, the sum of the originally applied field and 
the secondary field must be such that it produces a polarization which results 
in the secondary field. The situation is like a feedback loop as shown in 
Fig. 5.11. We will assume that the adjustment takes place instantaneously 
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Applied Field, Ea + 

+ 

Field in the 
Dielectric, Ea + Es 

Secondary 
Field, Es 

Dielectric 

Polarization 

Fig. 5.11. Feedback loop illustrating the adjustment of polariza
tion in a dielectric material to correspond to the sum of the 
applied field and the secondary field due to the polarization. 

Chap. 5 

with the application of the field and investigate the different effects arisi g 
from the polarization. We do this by first considering some specific exampl s. 

EXAMPLE 5-5. An infinite plane dielectric slab of uniform electric susceptibility eo

and of thickness d occupies the region O < z < d as shown in Fig. 5.12qa). 
A uniform electric field E

0 
= E

0
i
z 

is applied. It is desired to investigate the 
effect of polarization induced in the dielectric. / The applied electric field induces dipole moments in the dielectric "J'ith 
the negative charges separated from the positive charges and pulled afay 

! 

z = d 

z = 0

(a) 

(c) 

' � � 

Xe = Xeo 

/Pps = PpsO 

+ --- + + 

- """ 
-

\p - -p ps - psO 

I � � 
i : 
i : 

Eo = Eo iz 

Fig. 5.12. For investigating the effects of polarization induced in 
a dielectric material of uniform susceptibility for a uniform 
applied electric field. 

: 
i :r 
� 

! (b)

(e) 

. I 
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from the direction of the field. Since the electric field and the electric sus
ceptibility are uniform, the density of the induced dipole moments, that is, 
the polarization vector P, is uniform as shown in Fig. 5.12(b). Such a dis
tribution results in exact neutralization of all the charges except at the 
boundaries of the dielectric since, for each positive (or negative) charge not 
on the surface, there is the same amount of negative (or positive) charge 
associated with the dipole adjacent to it, thereby cancelling its effect. On the 
other hand, since the medium changes abruptly from dielectric to free space 
at the boundaries, no such neutralization of charges at the boundaries takes 
place. Thus the net result is the formation of a positive surface charge at 
the boundary z = d and a negative surface charge at the boundary z = 0 
as shown in Fig. 5.12(c). These surface charges are known as polarization 
surface charges since they are due to the polarization in the dielectric. In 
view of the uniform density of the dipole moments, the surface charge densities 
are uniform. Also, in the absence of a net charge in the interior of the di
electric, the surface charge densities must be equal in magnitude to preserve 
the charge neutrality of the dielectric. 

Let us therefore denote the surface charge densities as 

_ { 
PpsO 

Pps -
-ppsO 

z=d 

Z=O 
(5-50) 

where the subscript p in addition to the other subscripts stands for polar
ization. If we now consider a vertical column of infinitesimal rectangular 
cross-sectional area ll.S cut out from the dielectric as shown in Fig. 5.12(d), 
the equal and opposite surface charges make the column appear as a dipole 
of moment (p

p
,o ll.S) di,. On the other hand, writing 

(5-51) 

where P
0 

is a constant in view of the uniformity of the induced polarization, 
the dipole moment of the column is equal to P times the volume of the 
column, or Po(d ll.S) i,. Equating the dipole moments computed in the two 
different ways, we have 

(5-52) 

Thus we have related the surface charge density to the magnitude of the 
polarization vector. Now, the surface charge distribution produces a secon
dary field E, given by 

forO < z < d 
(5-53) 

otherwise 

When the secondary field E, is superimposed on the applied field the net 
result is a reduction of the field inside the dielectric. Denoting the total field 
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inside the dielectric as E;, we have 

E - E + E - E • Po • -(E Po)· 
;- a ,- ol,--1,- o-- I, 

€0 €0 

But, from (5-49), 
P = €oX,oE; 

Substituting (5-51) and (5-54) into (5-55), we have 

or 

Po = €oX,o (Eo - :: ) 

p _ €oX,oEo 
0 - 1 + Xeo 

Thus the polarization surface charge densities are given by 

l 
€oX,oEo

p = 1 + Xeo
ps 

€oX,oEo 

1 + Xeo 

z=d 

z=O 

and the electric field intensity inside the dielectric is 

Chap. 5· 

(5-54) 

(5-55/) 
I 

I, 

(5J 

(5-5 ) 

. E; = 1 +
Eo i, (5-18) 

Xeo 
Since the secondary field produced outside the dielectric by the surf: ce 

charge distribution is zero, the total field E
0 

outside the dielectric remains he
same as the applied field. The field distribution both inside and outs de 
the dielectric is shown in Fig. 5.12(e). Although we have demonstrated OJ

1
hly 

the formation of a polarization surface charge in this example, it is easy/ to 
visualize that a nonuniform applied electric field or a nonuniform electric 
susceptibility of the material will result in the formation of a polariza

f

on 
volume charge in the dielectric due to imperfect cancellation of the cha ges 
associated with the dipoles. I 

! 
EXAMPLE 5-6. An infinite plane dielectric slab of uniform electric susceptibility :x,o 

and of thickness d occupies the region O < z < d. A spatially uniform but 
time-varying electric field E = E0 

cos wt i, is applied. It is desired to inves
tigate the effect of polarization induced in the dielectric. Assume that the 
induced polarization follows exactly the time variations of the applied field. 

Since the applied field and the electric susceptibility of the dielectric are 
spatially uniform, the induced polarization is such that only surface charges 
of equal and opposite density are formed at the boundaries of the dielectric, 
and no volume charge is formed inside the dielectric. At any particular time, 
the surface charge densities are given by (5-57), with the value of the applied 
field at that time substituted for E0

• Thus the time-varying surface charge 
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densities are { foXeoEo COS OJt
Pps(t) = 1 + �o 

_foXeo Ocoswt1 + Xeo 

z=d 

z=O 

Sec. 5.5 

(5-59) 

But if the charge in a volume is varying with time, there must be a current 
flow out of or into that volume in accordance with the continuity equation, 
given in integral form by 

(4-103) 

where Sis the surface bounding the volume V. Obviously, in the present case 
the current flow must be inside the dielectric from one boundary to the other. 
This current is known as the polarization current since it is due to the polar
ization in the dielectric. For this example, the polarization current density 
must be entirely z-directed because of the uniformity of the polarization 
surface charge distributions and it must be uniform since the polarization 
volume charge density inside the dielectric is zero. 

Let us therefore denote the polarization current density as 

JP= JpOjz O < Z < d (5-60) 

where the subscript p stands for polarization. To find Jpo we apply (4-103) 
to a rectangular box enclosing an infinitesimal area /l.S of the surface z = 0 
and parallel to it as shown in Fig. 5.13. Noting that the current outside the 
dielectric slab and the volume charge inside the slab are zero, we obtain 

dJpO JiS + dt {[pps]z=oA.S} = 0 

Fig. 5.13. For the determination of the polarization current 

density resulting from the time variation of the polarization 

charges induced in a dielectric material. 
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Thus 

JpO = -fr [pp,]z=O = -fr ( € oX ,oEo cos rot) = - € oX ,oEoOJ sin OJt1 + Xeo 1 + Xeo 

and 

J = - €oX,oEoOJ sin rot i O < z < d (5-61)) 
P 1 + Xeo 

z 

1
1 

I 
It is left as an exercise for the student to verify that the same result is obtained It

I' 

for J
P 

by applying ( 4-103) to a rectangular box enclosing an infinitesimal 1 
area A.S of the surface z = d and parallel to it. Note that the polarizati011 
current density is out of phase by 90° with the applied electric field. I

We now derive general expressions for polarization surface and volume 
charge densities and polarization current density in terms of the polarizatio n 
vector. To do this, let us consider a dielectric material of volume V' in whic' h 
the polarization vector P is an arbitrary function of position as shown i ,n 
Fig. 5.14. We divide the volume V' into a number of infinitesimal volumes dv;,

x 

Fig. 5.14. For evaluating the electric potential due to induced 
polarization in a dielectric material. 

i = 1, 2, 3, ... , n defined by position vectors r;, i = 1, 2, 3, ... , n, resplec
tively. In each infinitesimal volume, we can consider P to be a constan so 
that the dipole moment in the ith volume is P

i 
dv;. From (2-109), the sc lar 

potential dV
i at a point Q(r) due to the dipole moment in the ith vol me 

is given by 

dV. = _l_Pi dv; • (r - r;)
' 4n€ 0 J r - r; j 3 
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The total potential at Q(r) due to the dipole moments in all the n infinitesimal 
volumes is then given by 

V = :f; dV. = _1_ :f; P; dv; • (r - r;) (5_62) 
i=l 

' 4n€0 i=l Ir - r; 13 

Equation (5-62) is good only for Ir I» Ir; I, where i = 1, 2, 3, ... , n since
each dv; has a finite although infinitesimal volume. However, in the limit 
that n-> oo, all the infinitesimal volumes tend to zero; the right side of
(5-62) becomes an integral and the expression is valid for any r. Thus

V(r) = _4
1 J 
1t€o 

volume V' 

P dv' • (r - r')
Ir - r'l3 

= -4 
J p • V' I 

1 
'I dv'

1t€o r-r 
volume V' 

Substituting the vector identity 

V' • Ir � r' I = P • V' I r � r' I + Ir � r' I V' • P
in (5-63), we obtain 

V(r) = -1- f V' • P dv' - _l_ J 
I 

1 , 
I 

V' • P dv'4n€0 
Ir - r' I 4n€0 

r - r 

(5-63) 

volume V' volume V' (5-64) 

Applying the divergence theorem to the first integral on the right side of 
(5-64), we get 

V(r) = -4 
1 J p . i� dS' + _1_ J -

I 

V' • ,P dv'
n€ 0 

I r - r' I 4n€ 0 
r - r I 

surface S' volume V' 

(5-65) 

where S' is the surface bounding the volume V' and i� is the unit normal 
vector to dS'. 

The first integral on the right side of (5-65) represents the potential 
at Q(r) due to a surface charge of density P • i� on the surface S' and the 
second integral is the potential at Q(r) due to a volume charge of density 
( -V' • P) in the volume V'. Thus the potential at Q(r) due to the polarization
in the dielectric is the same as the sum of the potentials at Q(r) due to a
polarization surface charge of density 

pp,(r') = P(r') • i� on S' (5-66a) 
-

and due to a polarization volume charge of density 
p p(r') = -V' • P(r')

We note that the total charge in V' is 
in V'

,( pp,dS'+J pp dv'=,C. (P·i�)dS'-J (V'•P)dv'=O 
:r S' V' :r S' V' 

(5-66b) 
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according to the divergence theorem, so that the charge neutrality of the di-
1 

electric is satisfied. Thus the total polarization volume charge in V' is equal', 
to the negative of the total polarization surface charge on S'. Omitting the I 

primes in (5-66a) and (5-66b), we have 

Pps = p • jn 
pp= -V • p

(5-67); 
(5-68) 

Now, the polarization current density J
P 

in the dielectric due to the time 
variation of the polarization charge density should satisfy the continuity· 
equation 

v. J + app = o
p at (5-69)( 

I 

Substituting for p
P 

in (5-69) from (5-68), we have 
a V • J 

p 
- at (V • P) = 0

or 

or 

V • (J - aP) = 0
p at 

J
P 

- ��=constant with time (5
-
7
CI

) 

The constant must, however, be zero since we know that J p is zero whe/n 
aP/at is zero. Thus

I 
J

P
= �� (5-7/b 

Summarizing what we have learned in this section, the induced dip

1

le 
moments due to polarization in a dielectric material placed in an electric fie d 
have the effect of creating in general the following: 

(a) polarization surface charges, having densities given by (5-67), at t,he
boundaries of the dielectric,

(b) polarization volume charge of density given by (5-68) in the dielect1�ic
and such that the total volume charge is exactly the negative / of
the total surface charge so as to preserve the charge neutrality of 

1

1he 
material, and 

( c) polarization current of density given by ( 5-71) resulting from the tire
variation of the polarization charges. 

We have also shown that the polarization charges and currents alter �he 
applied electric field in the material. Such a modification of the applied 
field occurs outside the material as well in the general case. The magnetic 
field associated with the applied electric field is also altered by the addition 
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of the secondary magnetic field due to the polarization current and the time
variation of the secondary electric field. 

5.6 Displacement Flux Density and Relative Permittivity 

In Section 5.5 we learned that the electric field in a dielectric material is the 
superposition of an applied field Ea and a secondary field E, which results 
from the polarization P, which in turn is induced by the total field (Ea + E,), 
as shown in Fig. 5.11. Thus, from Fig. 5.11 and Eq. (5-49), we have 

P = E
0
X.(Ea + E,) (5-72) 

E, = f(P) (5-73) 
where /(P) denotes a function of P. Determination of the secondary field 
E, and hence the total field (Ea + E,) for a given applied field Ea requires 
a simultaneous solution of (5-72) and (5-73) which, in general, is very incon
venient. To circumvent this problem, we make use pf the results of Section 
5.5, in which we found that the induced polarization is equivalent to a polar
ization surface charge of density p 

P
" a polarization volume charge of density 

p P' and a polarization current of density JP' as given by ( 5-67), ( 5-68), and 
(5-71), respectively. The secondary electric and magnetic fields are the fields 
produced by these charges and current as if they were situated in free space, 
in the same way as the charges and currents responsible for the applied 
electric field and its associated magnetic field. 

Thus the secondary electromagnetic field satisfies Maxwell's equations 

V •BS= 0 

v x E = _aBS 
, 

at 

(5-74a) 

(5-74b) 

(5-74c) 

(5-74d) 

where Bs is the secondary magnetic field. On the other hand, if the "true" 
charge and current densities responsible for the applied field Ea with its 
associated magnetic field Ba are p and J, respectively, we have 

V •Ba= 0 

V x E = _aBa 
a 

at 

V X Ba= µ
0 
[J + :t (EoEJJ 

(5-75a) 

(5..:75b) 

(5-75c) 

(5-75d) 
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Now, adding (5-74a)-(5-74d) to (5-75a)-(5-75d), respectively, we obtain 

Substituting 

V • (E
a + E,) = P �O

PP (5-76a) 

V. (B. + B,) � 0 (5-76b)I 

V x (Ea + E,) = -t (B
a + B,) (5-76c) 1 

E =E
a

+ E, 

B =B
a

+ B, 

pp
= -V • p

J =aP
p at 

(5-76d)

(5-77a) 
(5-77b 

(5-68 

(5-71 

in (5-76a)-(5-76d), andrearranging, we obtain 
V • ( f 

0
E + P) = p

V • B = 0 

Vx E= _aB
at 

V x B = µ0 [J + t (€
0
E + P)]

where E and B are the total fields. 

(5-78c) 

(5-78d) 

We now define a vector D, known as the displacement flux density 
vector, and given by 

(5-79) 
Note that the units ofD are the same as those of €

0
E and ·P, that is, coulombs 

per square meter, and hence it is a flux density vector. Substituting (5-79) 
into (5-78a)-(5-78d), we obtain 

V ·D= p
V • B = 0 

V x E = _aB
at 

V x B = µ0 ( J + Ti) 

(5-80) 
(5-81) 

(5-?2) 

(5-83) 

Thus the new field D results in a set of equations which does not explicitly 
contain the polarization charge and current densities, unlike the equatipns 
(5-76a)-(5-76d). 
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Substituting for Pin (5-79) from (5-49), we have 

D = €0E + €0X.E = £0(1 + Xe)E = €0€,E = €E 
where we define 

€, = 1 + Xe 

and 

Sec. 5.6 

(5-84) 

(5-85) 

(5-86) 
The quantity f, is known as the relative permittivity or dielectric constant 
of the dielectric and f is the permittivity of the dielectric. Note that f, is 
dimensionless and that (5-84) is true only for linear dielectrics if f is to be 
treated as a constant for a particular dielectric, whereas (5-79) holds in 
general. Substituting (5-84) into (5-80)-(5-83), we obtain 

V • B = 0 

V x E = _aB
at 

V x B = µ
0 
[J + Ji (fE)]

(5-87a) 

(5-87b) 

(5-87c) 

(5-87d) 

Equations (5-87a)-(5-87d) are the same as Maxwell's equations for free space 
except that €0 

is replaced by f. Thus the electric and magnetic fields in the 
presence of a dielectric can be computed in exactly the same manner as for 
free space except that we have to use f instead of €0 

for permittivity. In fact, 
if Xe = 0, f, = 1 and f = €

0 
so that free space can be considered as a 

dielectric with f = €
0

, and hence, Eqs. (5-87a)-(5-87d) can be used for free 
space as well. The permittivity f takes into account the effects of polarization 
and there is no need to consider them when we use f for f 0, thereby eliminating 
the necessity for the simultaneous solution of (5-72) and (5-73). In the case 
of a boundary between two different dielectrics, the appropriate boundary 
conditions for D take into account implicitly the polarization surface charge. 
We will consider these boundary conditions in Section 5.12. The relative per
mittivity is an experimentally measurable parameter and its values for several 

I 
dielectric materials are listed in Table 5.2. 

EJ,MPLE 5-7. For the dielectric slab of Example 5-5, find and sketch the direction 
lines of the displacement flux density and the electric field intensity vectors 
both inside and outside the dielectric. 

From Example 5-5, the electric field intensity inside the dielectric is 
given by 

(5-58) 
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end only on the charges other than the polarization charges whereas the 
direction lines of E begin and end on both kinds of charges. I

EXAMPLE 5-8. A point charge Q is situated at the center of a spherical dielectric
shell of uniform permittivity E and having inner and outer radii a and b,

respectively, as shown in Fig. 5.16. The entire arrangement is enclosed by 
a grounded conducting shell of inner radius c and concentric with the di
electric shell. Find and sketch the D and E fields in three different regions: 
0 < r < a, a < r < b, and b < r < c. Also find and sketch the P field and 
the polarization charges in the dielectric and the charge induced on the 
conductor surface. 

---... n

___ .,.E 
-·-·-P

Fig. 5.16. Displacement flux density, electric field intensity, and 
polarization vectors for the arrangement of a point charge at 
the center of a spherical dielectric shell enclosed by a grounded
spherical conductor concentric with the dielectric shell. 

We make use of the spherical symmetry associated with the problem 
and apply the integral form of (5-87a) given by 

,[ E • dS = _!_ f p dv = _!_ (true charge enclosed by S) 
J s € v € 

(5-88) 

to three different spherical surfaces centered at the point charge and lying 
in the three different regions. Thus we obtain 

E= 

Q --1 
4nE

0
r2 

' 

Q .
--1 

4nEt2 r 

Q . 
--1 

4nE0
r2 

' 

O<r<a 

a<r<b (5-89) 

b<r<c 
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so that the total charge induced on the conductor surface is -Q. These 
charges are shown in Fig. 5.16. We can obtain this result alternatively by 
recalling that E inside the conductor is zero. Then f s E • dS for any surface 
S entirely within the conductor must be zero. For this to be true, an amount 
of charge equal and opposite to the sum of all kinds of charges (polarization 
or otherwise) enclosed by the conductor must be induced on the conductor 
surface. Since the sum of all kinds of charges enclosed by the conductor is 

Q + [pp,],=a4na2 + [pp,],=Anb2 = Q
the induced charge on the conductor surface must be -Q. Alternatively 
and more elegantly, we note that D = E 

0
E is zero inside the conductor. 

Hence f s D • dS for any surface S entirely within the conductor must be 
zero. For this to be true, an amount of charge equal and opposite to all 
charges other than polarization charges, enclosed by the conductor must 
be induced on the conductor surface. Since the charge, other than polari
zation charge, enclosed by the conductor is the point charge Q, the induced 
charge on the conductor surface must be -Q. This induced charge required 
to make the field inside the conductor equal to zero is acquired from the 
ground. 

From Fig. 5.16, we once again note that the direction lines of E begin 
and end on all kinds of charges (polarization or otherwise) whereas the direc
tion lines ofD begin and end only on charges other than polarization charges. 
The gaps in the direction lines of E resulting from the polarization charges 
are filled by the direction lines of P. The flux ofE through a spherical surface 
centered at the point charge varies from medium to medium, depending upon 
the permittivity of the medium in which the surface lies. On the other hand, 
the flux of D through that surface is always equal to only the true charges, 
that is, charges other than the polarization charges, enclosed by the surface, 
irrespective of the permittivities of the media bounded by the surface. Thus 
there is a displacement flux from the true charges which is independent of the 
medium as originally discovered by Faraday when he found experimentally 
that the induced charge on the conductor surface was independent of the 
medium. However, the vector D was introduced later by Maxwell, who 
called it the "displacement." This explains the name "displacement flux 
density" for D. In Section 4.4 we introduced the concept of displacement 
current as the time derivative of the flux of E

0
E. We now recognize that E

0
E 

is simply the displacement flux density in free space and hence the name 
displacement current, again attributed to Maxwell, for the tiine derivative 
of the flux of E

0
E. It follows that the generalization of the displacement 

current density of Section 4.5 to dielectric media is aaD = a
a 

(E
0
E + P), which

t . t 
reduces to %t (EE) for linear dielectrics. I
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Magnetization and Magnetic Materials 
I 

I 

Thus far in this chapter, we have been concerned with the response of
materials to electric fields. We now turn our attention to materials know I 

as magnetic materials which, as the name implies, are classified accordin 
to their magnetic behavior. According to a simplified atomic model, th 
electrons associated with a particular nucleus orbit around the nucleus i 
circular paths while spinning about themselves. In addition, the nucleu 
itself has a spin motion associated with it. Since the movement of charg 
constitutes a current, these orbital and spin motions are equivalent to curre t 
loops of atomic dimensions. We learned in Chapter 3 that a circular curre t 
loop is the magnetic analog of the electric dipole. Thus each atom can e 
characterized by a superposition of magnetic dipole moments correspondi

l

g 
to the electron orbital motions, electron spin motions, and the nuclear spi . 
However, owing to the heavy mass of the nucleus, the angular velocity f 
the nuclear spin is much smaller than that of an electron spin and hence t e 
equivalent current associated with the nuclear spin is much smaller than t e 
equivalent current associated with an electron spin. The dipole moment d"\1-le 
to the nuclear spin can therefore be neglected in comparison with the othfr 
two effects. The schematic representations of a magnetic dipole as se¢n 
from along its axis and from a point in its plane are shown in Figs. 5. l 7

l
'a) 

and 5.17(b), respectively. 
In many materials, the net magnetic moment of each atom is zero in 

the absence of an applied magnetic field. An applied magnetic field has �he 
effect of inducing a net dipole moment or "magnetizing" the material iby 
changing the angular velocities of the electron orbits. This induced "m�g
netization" is in opposition to the applied field so that there is a net reduct,on 
in the magnetic flux density in the material from the applied value. Such 
materials are said to be "diamagnetic." In fact, "diamagnetism," whic�l is 
analogous to electronic polarization, is prevalent in all materials. We will 
illustrate the diamagnetic effect by means of the following example. 

I 

(a) (b) 

Fig. 5.17. Schematic representation of a magnetic dipole: 
(a) as seen from along its axis, and (b) as seen from a point
in its plane.
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EXAMPLE 5-9. Assume that the nucleus of an atom is a point charge equal to I e I,' 
where e is the charge of an electron. Consider an electron of mass m. in a 
circular orbit of radius a around the nucleus with an angular velocity 
co

0 
rad/sec. It is desired to find the change in the dipole moment of the orbiting 

electron due to the application of a uniform external magnetic field per
pendicular to the orbital plane of the electron, assuming that the radius of 
the orbit remains equal to a.

Let the nucleus be at the origin and the electronic orbit be in the xy

plane as shown in Fig. 5.18, so that the angular velocity in the absence of 
the external field is ±co

0
iz. Let the applied magnetic field be Bm 

= B
0
iz and 

the resulting angular velocity be ±coiz. Under equilibrium conditions, the 
centripetal force -m.co2ai, acting on the electron is equal to the sum of two 
forces: (a) the Coulomb force F 

1 
due to the attraction of the electron by the 

nucleus and (b) the magnetic force F 
2 

due to the applied field acting on the 
orbiting electron. These forces are given by 

e2 •F =---I 
I 41t€oll2 r

Fig. 5.18. For obtaining the 

change in the dipole moment of 

an electronic orbit around the 

nucleus due to an applied mag

netic field. 

and 

Thus 

z 

2 • - e2 • . -m.co a1, - -4-----z 1
, 

=FI e jcoaB
0
1,

1t€oa 

or 

co2 = e2 
± lelcoB0 

4nm.€0
a 3 m. 

In the absence of the external field, B0 
is zero, co = co

0 
and we have 

(5-95) 

(5-96) 
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Substituting (5-96) into (5-95), we obtain 

OJ2 _ OJ� = (OJ + OJo)(OJ _ OJo
) = ± I e IOJB0 

m. 
(5-97) 

The perturbation in OJ0 by the external field is, however, so small that OJ + OJ
0 

can be approximated by 20J. Equation (5-97) then reduces to 

OJ_ OJ = ± lelBo (5-98) 
0 2m. 

Now, the equivalent current due to an orbiting electron is equal to the 
amount of charge passing through any point on the orbit in lsec, ore times 
the number of times that the electron passes through the point in 1 sec. For 
an angular velocity of OJi,, the number of times is OJ/2n so that the equivalen.t 
current is I e IOJ/2n. This current circulates in the sense opposite to that of the 
electron orbit since the electronic charge is negative. Thus the magnetic 
dipole moment due to the orbiting electron is given by I 

I 

_ :.- I e IOJ 2· _ :::r:: I e IOJa2 • (5 9�)m - , � na 1, - , 2 1, 
- T 

The dipole moment in the absence of the external field is 

m - :::r:: I e IOJoa2 .o - T 2 I, 

The change in the dipole moment due to application of Bm is 

Am= m - mo = =f I eia
2 

(OJ - OJo)i, 

Substituting (5-98) into (5-101), we obtain 

Am= =f lela2 (± lelBo)i = _e2 a2 B 
2 2m. ' 4m. m 

' 
I 

I 
(5-lOb) 

I 

(5-101) 

(5-102) 

Thus ihe change in the dipole moment and hence the magnetic field resulting 
from the change is in opposition to the applied magnetic field and indepen
dent of the sense of the electron orbit. This is consistent with Lenz' l�w, 
discussed in Section 4.2, which states that the change in magnetic :t).ux 
enclosed by a loop induces a current in the loop which opposes the chap.ge 
in the flux. In the present case, the application of the external magnetic field 
causes the change in flux enclosed by the electron orbit and the indJced 
current is the current corresponding to the change in the angular velobity 
of the electron. I

The result of Example 5-9 illustrates the principle behind the diamagtjetic 
property of materials without going into great detail. The change inl the 
magnetic moment of each electronic orbit brought about by the applied 
magnetic field results in a net magnetization of the material which other/wise 
has a zero net moment. 
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In certain materials, diamagnetism is dominated by other effects known 
as paramaknetism, ferromagnetism, antiferromagnetism, and ferrimagnetism. 
Paramagnetism is similar to orientational polarization in dielectric materials. 
In "paramagnetic" materials, the individual atoms possess net nonzero 
magnetic moments even in the absence of an applied magnetic field. How
ever, these "permanent" magnetic moments of the individual atoms are 
randomly oriented so that the net magnetization on a macroscopic scale is 
zero. An applied magnetic field has the influence of exerting torques on the 
permanent atomic magnetic dipoles as shown in Figure 5.19, to convert 
the initially random alignment into a partially coherent one along the field 
thereby inducing a net magnetization which results in an enhancement of 
the applied field. 

B 

Fig. 5.19. Torque acting on a magnetic dipole 
under the influence of a magnetic field. 

Ferromagnetism is the property by means of which a material can 
exhibit spontaneous magnetization, that is, magnetization even in the absence 
of an applied field, below a certain critical temperature known as the Curie 
temperature. Above the Curie temperature, the spontaneous magnetization 
vanishes and the ordinary paramagnetic behavior results. Ferromagnetic 
materials possess strong dipole moments owing to the predominance of the 
electron spin moments over the electron orbital moments. The theory of 
ferromagnetism is based on the concept of magnetic "domains," as formulated 
by Weiss in 1907. A magnetic domain is a small region in the material in 
which the atomic dipole moments are all aligned in one direction, due to 
strong interaction fields arising from the neighboring dipoles. In the absence 
of an external magnetic field, although each domain is magnetized to satura
tion, the magnetizations in various domains are randomly oriented as shown 
in Fig. 5.20(a) for a single crystal specimen. The random orientation results 
from minimization of the associated energy. The net magnetization is there
fore zero on a macroscopic scale. 

With the application of a weak external magnetic field, the volumes 
of the domains in which the original magnetizations are favorably oriented 
relative to the applied field grow at the expense of the volumes of the other 
domains, as shown in Fig. 5.20(b). This feature is known as domain wall 
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(a) (b) (c) 

Fig. 5.21. Spin moments associated with interlocking sets of 
atoms for (a) ferromagnetic, (b) antiferromagnetic, and (c) ferri
magnetic materials. 

Sec. 5.7 

materials while possessing comparable magnetization properties as ferromag
netic materials. 

The net magnetic dipole moment created due to the magnetization of 
a material by an applied magnetic field produces a field which adds to the 
applied field (except in the case of materials for which the diamagnetic effect 
is the only one present) and changes its distribution both inside and outside 
the material in general from the one that exists in the absence of the material. 
This will be the topic of discussion in Section 5.8. In the remainder of this 
section, we will define a new vector M, which represents the magnetization 
on a macroscopic scale, and relate it to the magnetic flux density. To do this 
let us consider a small volume !iv of a magnetic material. If N denotes the 
number of molecules per unit volume of the material, then there are N !iv

molecules in the volume !iv. We define a vector M, called the "magnetization 
vector" as 

} Nl>v 
M = - I; m

1 
= Nm (5-103) 

flV i= I 

where m is the average magnetic dipole moment per molecule. The mag
netization vector M has the meaning of magnetic "dipole moment per unit 
volume" analogous to P in the case of dielectric materials. The units of M 
are ampere-meter2/meter3 or amperes per meter. We may relate the average 
dipole moment m to the magnetizing field B

m 
as given by 

(5-104) 

where (t,m, which may be called the magnetic polarizability, is a constant for 
linear magnetic materials but may be a function of B

m 
for nonlinear magnetic 

materials. Substituting (5-104) into (5-103), we have 

M = N(t,mBm (5-105) 

The field B
m 

is the average magnetic field acting to magnetize the indi
vidual molecule and is generally called the local field, analogous to E

P 
in the 

case of dielectric polarization. It is the average field that would exist in an 
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imaginary cavity created by removing the molecule under question while
keeping all the other molecules magnetized in their locations. Thus it is
not the same as the average macroscopic field B at the molecule with all the
molecules including the one in question remaining magnetized in their loca
tions. It is equal to the field B minus the average field produced by the dipolej
moment in the imaginary cavity. We have to find this average field to express/,
Bm in terms of B so that M can be related to B. To do this, we once again//
consider a simple special case of a spherical cavity and obtain the required, 
field in the following example. /

EXAMPLE 5-10. A circular loop of radius a and centered at the origin lies in th{
xy plane, as shown in Fig. 5.22. It carries a current I amp in the cf> direction;,
thus forming a dipole of moment m = bra2i,. Obtain the average magneti�,;
flux density due to the dipole in a spherical volume of radius b > a and
centered at the origin.

z 

Fig. 5.22. For obtaining the average mag

netic flux density due to a magnetic dipole in 

a spherical volume. 

Let us consider an infinitesimal current element la def>' i
if>
' at the poiint

Q(a, n/2, cf>') on the current loop. The magnetic flux density dB at a point
P(r, (), cf>) due to this current element is given by

dB= 
µ

0 
Iadcp'iif>' x (r - r') 

4n Ir - r' J
3 

(5-106)

where r and r' are position vectors corresponding to P and Q, respectively.
The integral of dB evaluated in the sphericai volume V of radius b can be
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written as 

I (dB) dv = _ µo
la d</>' i<I>' x (-J r - r; 

3 
dv) 

v 4n v \r - r \

Sec. 5.7 

(5-107) 

since the integration is with respect to the coordinates of the field point P.

Now, the integral on the right side of (5-107) can be recognized as the electric 
field intensity at (a, n/2, </>') due to a volume charge distribution of uniform 
density 4nc

0 
C/m3 in the spherical volume V. From Gauss' law, this electric 

field intensity is ( 4na/3)(r' /\ r' \). Substituting this result in (5-107), we have 

I (dB) dv = _ µ0/a d</>' i,v x 4na £
v 4n 3 \ r' \ 

= µ0Ja2 
drf.' i3 .,, z 

(5-108) 

The volume integral of B in the volume V due to the entire current loop is 
then given by 

I B dv = f 
2" J ( dB) dv 

V </>'=O V 

= µ0Ia2 f 2" ,,,1., • = 2µ0lna2 
• 

3 u� � 3 � 
</>'=O 

(5-109) 

Finally, the average field due to the dipole in the spherical volume is given by 

(5-110) 
= _I_ (2µ0

lna 2 .) = µ0m 
jnb3 3 

1
' 2nb3

It is left as an exercise (Problem 5.28) for the student to show that (5-110) 
is true for any arbitrary current distribution of dipole moment m situated 
in the spherical volume of radius b. I

From the result (5-110) of Example 5-10, we now relate the magnetizing 
field B

m 
with the average macroscopic field B as 

(5-111) 

where we have substituted m = M/N from (5-103). Now, if we assume that 
the molecular volume is equal to the volume of the spherical cavity, then 
({nb3)N is equal to 1 so that (5-11) reduces to 

B
m = B - iµoM (5-112) 

Although we have obtained (5-112) by considering a spherical volume for 
the molecule, it is found that the general expression for B

m 
is of the form 

(5-113) 
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z = d

z = 0

(a) 

(c) 

x x x x Ba = Boix 

x x x x 1 0 0 0 1 
Xm = Xmo 1 0 0 0 I 

i<. x x x 
iiy 

l 0 0 0 J 
" 

x x x x 
I' I (b) 
I i1 

x x x x d t, 1 

I).._ Bo = Boix 
l.: (d) 

Jms = -Jmsoiy x x x x x 

x x x x x

B; = (1 + Xmo)Boix x x x x x

Jms = JmsOiy x x x x x 

x x x 

Fig. 5.24. For investigating the effects of magnetization induced 
in a magnetic material of uniform susceptibility for a uniform 

x x 

x x 

x x 

x x 

applied magnetic field. 

and carrying the same amount of current in the opposite direction, there�y
cancelling its effect. On the other hand, since the medium changes abrupt1y
from magnetic material to free space at the boundaries, no such cancellatidn
of currents at the boundaries takes place. Thus the net result is the formatitjn
of a negative y-directed surface current at the boundary z = d and a positive
y-directed surface current at the boundary z = 0 as shown in Fig. 5.24@.
These surface currents are known as magnetization surface currents sin�e
they are due to the magnetization in the material. In view of the unifotm
density of the dipole moments, the surface current densities are uniform. Also,
in the absence of a net current in the interior of the magnetic material, the
surface current densities must be equal in magnitude so that whatever current
flows on one surface returns via the other surface.

Let us therefore denote the surface current densities as 
z=O 

z=d 
(5-118) 

where the subscript m in addition to the other subscripts stands for magne
tization. If we now consider a vertical column of infinitesimal rectangular 
cross-sectional area ilS = (ilx)(ily) cut out from the magnetic material as 
shown in Fig. 5-24(d), the rectangular current loop of width Jlx makes lthe 
column appear as a dipole of moment (J

m
,o flx)(d ily)t. On the other hJnd, 

writing / 
M = M

0
i
x 

(5-p9) 

I 



307 Magnetic Materials in Magnetic Fields; Magnetization Current Sec. 5.8 

where M
0 

is a constant in view of the uniformity of the magnetization, the 
dipole moment of the column is equal to M times the volume of the column, 
or M

0
(d Ax Ay)ix . Equating the dipole moments computed in the two different 

ways, we have 
(5-120) 

Thus we have related the surface current density to the magnitude of 
the magnetization vector. Now, the surface current distribution produces 
a secondary field B, given by 

B __ {µolm,ot = µoMot for O < z < d

' O otherwise 
(5-121) 

When the secondary field B, is superimposed on the applied field, the net 
result is an increase in the field inside the material. Denoting the total field 
inside the material by B,, we have 

B1 
= B0 + B, = B0 t + µ0M0 ix = (B0 + µ0

M0
) ix (5-122) 

But, from (5-117), 
M = Xmo B,

1 + Xmo µo 

Substituting (5-119) and (5-122) into (5-123), we have 

or 

M _ Xmo Bo + µoMo
0 - 1 + Xmo µo 

Mo= XmoBo
µo 

Thus the magnetization surface current densities are given by 

l
XmoBo i

Z = 0 
J = µo Y 

ms 
_XmoBo j Z = d 

µo Y 

and the magnetic flux density inside the material is 

B, = (1 + Xmo)Bo ix 

(5-123) 

(5-124) 

(5-125) 

(5-126) 
Since the secondary field produced outside the material by the surface current 
distribution is zero, the total field B

0 
outside the material remains the same 

as the applied field. The field distribution both inside and outside the magnetic 
material is shown in Fig. 5-24(e). Although we have demonstrated only the 
formation of a magnetization surface current in this example, it is easy to 
visualize that a nonuniform applied magnetic field or a nonuniform magnetic 
susceptibility of the material will result in the formation of a magnetization 
volume current in the magnetic material due to imperfect cancellation of the 
currents associated with the dipoles. I 
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We now derive general expressions for magnetization surface and volume:
current densities in terms of the magnetization vector. To do this, let us
consider a magnetic material of volume V' in which the magnetization vecto1r
Mis an arbitrary function of position, as shown in Fig. 5.25. We divide thJ!

x 

z 

Fig. 5.25. For evaluating the magnetic vector potential due to
induced magnetization in a magnetic material. 

volume V' into a number of infinitesimal volumes dv;, i = 1, 2, 3, ... , n 
defined by position vectors r;, i = 1, 2, 3, ... , n, respectively. In etch 
infinitesimal volume, we can consider M to be a constant so that the dipple 
momentin the ith volume is Mi dv;. From (3-96), the magnetic vector poten1tial 
dA

1 
at a point Q(r) due to the dipole moment in the ith volume is given/ by 

dA. = µ0 
M

i dv; x (r - r;) 
' 4,r I r - r; I 3 

The total vector potential at Q(r) due to the dipole moments in all ttje n
infinitesimal volumes is then given by 

/ 
A, = :t dA

i 
= µo :t M, dv; X (� ;-- r;) (5-127) 

1=, 4,r 1=, Ir -r1 I 
Equation (5-127) is good only for I r J �Jr; I, where i = 1, 2, 3, ... , n since
each dv; has a finite although infinitesimal volume. However, in the limit
that n-> oo, all the infinitesimal volumes tend to zero; the right side of
(5-127) becomes an integral and the expression is valid for any r. Thus 

A(r) = µ0 f Mdv' x (r -r')
4,r v' Jr -r'J3 

= µ0 f M X V' 1 , dv'
4,r v' Jr-r I 

(5-128) 
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Substituting the vector identity 

V' x I M 'I = V' I 1 . 
I I x M + r-r r-r 

in (5-128), we obtain 

I 1 'IV' 
x M r-r 

A(r) = µ0 f V' x � dv' - µ0 f V' x M , dv'4n v' Ir -r I 4,r v' I r -r I 

Sec. 5.8 

(5-129) 

Taking the dot product of the second integral on the right side of ( 5-129) 
with the unit vector ix and using the divergence theorem, we have 

ix • f V' x I M 'I dv' = f t . V' x I M 
I I dv' 

V' 
r-r v' r-r 

= -f 
V'V' • (ix X Ir �r'l)dv' (5-130)

f ' M ''dS' = - lx X I - ' I • ln 
8

, r r 
where S' is the surface bounding the volume V' and i: is the unit normal 
vector to dS'. Proceeding further, we obtain 

. f V' M d I f 
. 

M ., dS'lx • X I - ' I V = - lx X I - ' I • ln v' rr 
8

, r r 
= - ,( i • M x i: dS'J s' x Ir -r' I 
= -i • ,( M x i: dS'

x J s' Ir -r' I 
Similarly, we can show that 

and 

. f V' M d I 
• f M x i: dS'l

y 
• x I - I I v = -l

y 
• I - I I 

v' 
r r 

8
, r r 

. f V' M d I • f M x i: dS'I, • x I - 'I v = -I, . I - 'I v' r r 
8

, r r 
It then follows from (5-131a)-(5-131c) that 

f V' x M , dv' = - ,[ M x i: dS'
v' lr-rl Js,lr-rl 

Substituting (5-132) into (5-129), we get 

A(r) = µo f 
V' X � dv' + µo ,[ M Xi: dS'4,r v' Ir -r I 4,r J 8, 

Ir -r I 

(5-131a) 

(5-131 b) 

(5-13lc) 

(5-132) 

(5-133) 

The first integral on the right side of (5-133) represents the vector potential 
at Q(r) due to a volume current of density V' x M in the volume V' and the 
second integral is the vector potential at Q(r) due to a surface current of 
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density M x i: on the surface S'. Thus the vector potential at Q(r) due t<) 
the magnetization in the magnetic material is the same as the sum of the vecto r 
potentials at Q(r) due to a magnetization volume current of density 

J
m
(r') = V' X M(r') in V' (5-134,) 

and due to a magnetization surface current of density 
J

m
,(r') = M(r') Xi: on S' (5-13�i) 

We note that the total volume current through any cross-sectional are a 
S

c
' (of the volume V') bounded by the contour C' as shown in Fig. 5.25 iiS 

given by 

f J
m

. dSc
' = f (V' x M). dS

c
' = ,i: M. di' 

� � � (5-13/p) 
= _,J: (M Xi:)• (i: X d)') = _,J: J

ms 
• (i: X di') :; � � 

I where we have used Stokes' theorem to transform the surface integrati ,pn 
to line integration. The right side of (5-136) is exactly the surface current 
crossing the contour C' in the opposite direction to the volume curre 1t.

Omitting the primes in (5-134) and (5-136), we have 
J

m 
= V x M (5-1 '7) 

J
ms 

= M X jn 
(5-1 ',8) 

Summarizing what we have learned in this section, the magnetic dip le 
moments due to magnetization in a magnetic material placed in a magn tic 
field have the effect of creating in general the following: 

(a) Magnetization surface currents, having densities given by (5-138),
/ 
at

the boundaries of the magnetic material. 
(b) Magnetization volume current of density given by (5-137) in rhe

magnetic material and such that the total volume current flow,ing 
through any cross-sectional area of the material is exactly opposite
to the total surface current crossing the contour bounding the area. 

We have also shown that the magnetization currents alter the applied mag
netic field in the material. Such a modification of the applied field occurs 
outside the material as well in the general case. In the time-varying case, the 
electric field associated with the applied magnetic field is also altered by 
the addition of the secondary electric field due to the time variation of the 
secondary magnetic field. 

5.9 Magnetic Field Intensity, Relative Permeability, and Hysteresis 

In Section 5.8 we learned that the magnetic field in a magnetic material is 
the superposition of an applied field B

a 
and a secondary field B, which results 

from the magnetization M, which in turn is produced by the total :ield 
(B

a
+ B,), as shown in Fig. 5-23. Thus, from Fig. 5-23 and Eq; (5-117), we 
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have 

M = Xm B
a + B,

1 + Xm µo 
B, =f(M) 

(5-139) 

(5-140) 
where f (M) denotes a function of M. Determination of the secondary field 
B, and hence the total field B

a 
+ B, for a given applied field B

a 
requires 

a simultaneous solution of (5-139) and (5-140) which, in general, is very 
inconvenient. To circumvent this problem, we make use of the results of 
Section 5.8, in which we found that the magnetization is equivalent to a 
magnetization surface current of density J

m
, and a magnetization volume 

current of density J
m 

as given by (5-138) and (5-137), respectively. The secon
dary magnetic and electric fields are the fields produced by these currents as 
if they were situated in free space, in the same way as the currents respon
sible for the applied magnetic field and its associated electric field. 

Thus the secondary electromagnetic field satisfies Maxwell's equations 
V • D, = 0 
V • B, = 0 

V x E = _aB,, at 

V x B, = µ0 
( J

m 
+ a�,)

(5-141a) 
(5-141 b) 

(5-14lc) 

(5-14ld) 

where E, is the secondary electric field intensity and D, is its associated dis
placement flux density . On the other hand, if the "true" current and charge 
densities responsible for the applied field B

a 
with its associated electric field 

intensity E
a 

and displacement flux density D
a 

are J and p, respectively, we 
have 

V • D
a 

= p 
V •B

a
= 0 

V x E = _aB
a 

a at 

V x B
a

= µ
0 
( J + 

a�a) 

(5-142a) 
(5-142b) 

(4-142c) 

(5-142d) 

Now, adding (5-14la)-(5-14ld) to (5-142a)-(5-142d), respectively, we obtain 
V • (D

a 
+ D,) = p + 0 = p (5-143a) 

V • (B
a

+ B,) = 0 (5-143b) 
a V x (E

a + E,) = -at (B
a 
+ B,) (5-143c) 

V X (B
a + B,) = µ0 [J + Jm 

+ tr (D
a 
+ D,)] (5-143d) 
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Substituting 
B =Ba+ B,

E =Ea+ E,

D = Da + D,

Jm = V x M 

(5-144a) 
(5-144b) 
(5-14 

1
") 

(5-13 ) 
in (5-143a)-(5-143d) and rearranging, we have 

V ·D= p
V • B = 0 

(5-146 ) 
(5-146 ) 

V x E = _aB
at 

v x (..! -M) = J + 
ao

µo at 

(5-146c) 

(5-146 ) 

where E, B, and D are the total fields. 
We now define a vector H, known as the magnetic field intensity vect r 

and given by 
B 

� 
H = -- M (5-1 7) 

µo 
Note that the units of H are the same as those of B/ µ0 and M, that is, ampe es 
per meter. Comparing with the units of volts per meter for the electric fi Id 
intensity, we see the reason for referring to H as the magnetic field intens ty. 
Substituting (5-147) into (5-146a)-(5-146d), we obtain 

V • D =p

V • B = 0 

V x E = _aB
at 

VxH=J+
aD 

at 

(5-1
1
48) 

(5-1:49) 
I 

(5-i5o) 
I 

I 

(5-pl)  

Thus the new field H results in  a set of  equations which do not explic!:itly 
contain the magnetization current density, unlike Eqs. (5-143a)-(5-14:3d).
Substituting for Min (5-147) from (5-117), we have 

H = _! _ Xm !_ = B 
- __!__ - _! (5-152) 

µo 1 + XmµO µo(l + Xm)-µoµ, - µ
where we define 

and 
µ, = 1 + Xm 

µ = µoµ, (5�154) 
The quantityµ, is known as the relative permeability of the magnetic material 
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andµ is the permeability of the magnetic material. Note thatµ, is dimension
less and that (5-152) is true only for linear magnetic materials ifµ is to be 
treated as a constant for a particular magnetic material, whereas (5-147) 
holds in general. Substituting (5-152) into (5-148)-(5-151), we obtain 

V • D = p (5-155a) 
V • B = 0 (5-155b) 

aB 
V x E = - at 
v x B = µ ( J + 

a
a�)

(5-155c) 

(5-155d) 

Equations (5-155a)-(5-155d) are the same as Maxwell's equations for non
magnetic materials as given by (5-80)-(5-83) except that µ

0 
is replaced by 

µ. Thus the electric and magnetic fields in the presence of a magnetic material 
can be computed in exactly the same manner as for nonmagnetic materials 
except that we have to useµ instead of µ

0 
for permeability. In fact, if Xm = 0, 

µ, = 1 and µ = µ
0 

so that a nonmagnetic material can be considered as 
a magnetic material with µ = µ

0 
and hence Eqs. (5-155a)-(5-155d) can be 

used for nonmagnetic materials as well. The permeability µ takes into 
account the effects of magnetization and there is no need to consider them 
when we useµ for µ

0
, thereby eliminating the necessity for the simultaneous 

solution of (5-139) and (5-140). In the case of a boundary between two 
different magnetic materials, the appropriate boundary conditions for H take 
into account implicitly the magnetization surface current. We will consider 
these boundary conditions in Section 5.12. Substituting for B in (5-117) in 
terms of H by using (5-152), we obtain 

M = �..! = Xm µo
(l + Xm)H = X H (5-156) 1 + Xm µo 

1 + Xm µ
o 

m 

Equation (5-156) represents the traditional definition for Xm
, because of 

which we defined Xm in Section 5.7 in a manner which is not analogous to 
the definition of x. in Section 5.4. 

Ex4MPLE 5-12. For the slab of magnetic material in Example 5-11, find and sketch 

I 
the magnetic field intensity and the magnetic flux density vectors both inside 
and outside the material. 

I 
From Example 5-11, the magnetic flux density inside the magnetic 

1
1 

material is given by 
I 
I 
I 
I 
I 

I 

(5-126) 
The relative permeability of the material is 1 + Xmo · Thus the magnetic 
field intensity inside the material is 

H. = Bi = (1 + Xmo
)Bo i = Bo i ' µ

o(l + Xmo
) µo(l + Xmo ) x µ

o x
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I 

I 

Outside the magnetic material, the magnetic flux density is the same as the 
applied value so that the magnetic field intensity is 

I 

ff =Ba= BOj 
o µo µo x 

Thus, for this example, the magnetic field intensity vectors inside an 
outside the magnetic material are the same and equal to the magnetic fiel 
intensity associated with the applied magnetic flux density. Both H and 
fields inside and outside the material are shown in Fig. 5.26(a). Now, conside -
ing a rectangle abcda in the xz plane and with the sides ab and cd parallel t 
the boundary z = 0 as shown in Fig. 5.26(b), we note that H is unifor 
along the contour abcda since it has the same value both inside and outsi1e 
the material. Thus 

. f H • di = H • f di = 0 ( 5-1 sh 
abcda abcda 

I On the other hand, noting that B is parallel to ab and cd but having uneq�al 

Ho = Bo ix� ,--Bo= Boix 
1· /J,o x+ x+ x+ x+ 

.,,,,.--
Magnetization

z 

l 
y--xx 

(a) 

z 

x-x
y

{b) 

x x x x
+ + 

x x x x 
x x x x
+ + 

x x x x 

,II' 

x x
+ 

x x 
x x
+ 

x x 

/ Current 
Bo.....--H; = -•x X ,,,.-- /J,O 

+ . x .,,,,.--B; = µ,,Bo•x 

x/ M . . 
+ � agnettzatton

x/ Current 
..., __________ _

x+ x+ x+ x+ 

__________ .., 

Magnetization 
.-------------�/ Current 

o' 0 0 0 0 0 0 
--�» 

---------.-

---a 

---a---b- --.-

@ @ @ @ @ @ ®- - Magnetization 
d c Current 

Fig. 5.26. Magnetic field intensity and magnetic flux density 
vectors for the magnetic material slab of Example 5-11. 
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magnitudes along them and perpendicular to be and da, we obtain 

f B • dl = s: B; • dl + s: B0 • dl
abcda 

= S: (1 + Xmo)B0 ix • dxix +J:B0ix • (-dxix) 

= (1 + Xmo)Bo(ab) - Bo(cd) 

= XmBo(ab) = µ0 (X
;:0 iy) • [(ab)iy] 

(5-158) 

= µ0 (magnetization surface current enclosed by ab cda) 
Comparing (5-157) and (5-158), we observe that the circulation of H is 
independent of magnetization currents whereas the circulation of B is not. 
The circulation of H depends only on those currents other than the magne
tization currents, whereas the circulation of B depends on all kinds of cur
rents. I

Returning now to Eq. (5-153), we note, from the values of Xm 
for dia

magnetic and paramagnetic materials listed in Table 5.3, that the relative 
permeabilities for these materials differ very little from unity. On the other 
hand, for ferromagnetic materials, the relative permeability can assume 
values of the order of several thousand. In fact, for these materials the 
relationship between B and H is nonlinear and is characterized by hysteresis 
so that there is no unique value ofµ, for a particular ferromagnetic material. 
The relationship between B and H is therefore presented in graphical form, 
as shown by a typical curve in Fig. 5.27. This curve is known as the hysteresis 

B 

Fig. 5.27. Hysteresis curve for a ferromagnetic 
material. 
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curve or the B-H curve. To trace the development of the hysteresis effect,. 
we start with an unmagnetized sample of ferromagnetic material in whicht 
both B and H are initially zero, corresponding to point a on the curve

>
. 

As His increased, the magnetization builds up, thereby increasing B gradually 
along the curve ab and finally to saturation at b, according to the followin � 
sequence of events as discussed in Section 5. 7: (a) reversible motion of domai 
walls, (b) irreversible motion of domain walls, and (c) domain rotation. The 
regions corresponding to these events along the curve ab as well as oth r 
portions of the hysteresis curve are shown marked 1, 2, and 3, respective! , 
in Fig. 5-27. If the value of H is now decreased to zero, the value of B do s 
not retrace the curve ab backwards but instead follows the curve be, whi h 
indicates that a certain amount of magnetization remains in the materi 1 
even after the magnetizing field is completly removed. In fact, it requir s 
a magnetic field intensity in the opposite direction to bring B back to ze o 
as shown by the portion cd of the curve. The value of B at the point c is 
known as the "remanence" or "retentivity," whereas the value of H at d

is known as the "coercivity" of the material. Further increase in H in t is 
direction results in the saturation of B in the direction opposite to t at 
corresponding to b as shown by the portion de of the curve. If H is n w 
decreased to zero, reversed in direction, and increased, the resulting variati n 
of B occurs in accordance with the curve efgb, thereby completing the hys
teresis loop. The characteristics of hysteresis curves for a few ferromagnetic 
materials are listed in Table 5.4. In view of the hysteresis effect, the incre-

TABLE 5.4. Characteristics of Hysteresis Curves for Some Ferromagnetic 
Materials 

Saturation 
Remanence, Coercivity, Magnetization, Maximum 

Material Wb/m2 amp/m Wb/m2 
µ, 

Cast iron 0.53 366 600 

Permendur 1.4 160 2.4 5,000 

Permalloy 24 1.6 25,000 

Hypernik 0.73 3.2 1.65 70,000 

Mumetal 4 0.65 100,000 

Supermalloy 0.32 0.8 1,050,000 

mental relative permeability defined by the slope of the hysteresis curve as 
given by 

(5-159) 

is a useful parameter in addition to the relative permeability given by 
1 B

µ, = µo H
(5-160) 

for ferromagnetic materials. 
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5.10 Summary of Maxwell's Equations and Constitutive Relations 

Sec. 5.10 

In the previous sections we introduced successively conductors, dielectrics, 
and magnetic materials. We discussed the various phenomena occurring in 
these materials in the presence of electric and magnetic fields. We learned 
several new concepts in this process. Important among these are the introduc
tion of two new field vectors D and H. With the aid of these two new vectors, 
we developed a set of Maxwell's equations which permit us to solve field 
problems involving material media without explicitly taking into account 
the various phenomena occurring in them. These Maxwell's equations are 
given by 

V · D = p (5-161) 
V • B = 0 (5-162) 

aB (5-163) VxE= --
at 

VxH=J+
aD 

at 
(5-164) 

where p and J are the volume densities of the true charges and currents 
responsible for the fields characterized by the field intensity vectors E and 
H and the corresponding flux density vectors D and B. Equations (5-161)
(5-164) can as well be used for free space since they reduce to those of free 
space when the pertinent quantities are allowed to approach their free-space 
values. 

The true charges are those which are free to move and not bound to 
their respective nucleii, as polarization charges are. Conduction charges in 
materials and space charges in vacuum tubes are examples of true charges. 
The true currents are those constituted by the movement of the free charges, 
as compared to polarization and magnetization currents which are due to the 
movement of charges bound to their respective nucleii. Conduction currents 
in materials and convection currents due to movement of space charge in 
vacuum tubes are examples of true currents. Thus Jin (5-164) can represent 
conduction currents as well as convection currents. The charge and current 
densities are related via the continuity equation given by 

v • J + a P = o (5-165) 
at 

The four Maxwell's equations given by (5-161)-(5-164) are not all indepen
dent; Eq. (5-162) follows from Eq. (5-163) whereas Eq. (5-161) follows from 
Eq. (5-164) with the aid of the continuity equation. 

The vectors E and B are the fundamental field vectors which define the 
force F acting on a charge q moving with a velocity v in an electromagnetic 
field in accordance with the Lorentz force equation given by 

F = q(E + v x B) (5-166) 
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given by (5-161)-(5-164), we obtain Maxwell's equations for sinusoidally 
time-varying fields by substituting the complex vectors E, B, D, and ii for 
the real vectors E, B, D, and Hand by replacing a;at by jOJ. Thus we have 

v. D=p

v. B = o

v x E = -jOJB

v x ii = j + jOJD

Writing (5-180) for a material medium as 

V x ii = a E + jOJf E 

(5-177) 

(5-178) 

(5-179) 

(5-180) 

(5-181) 

we observe that for a» OJf, the magnitude of the conduction current density 
term is greater than the magnitude of the displacement current density term 
so that V x ii� aE. The material is then classified as a good conductor. 
On the other hand, for a« OJf, the magnitude of the displacement current 
density term is greater than the magnitude of the conduction current density 
term so that V x ii� jOJ€E. The material is then classified as a good di
electric. The critical frequency for which the two terms are equal is given by 
a = OJf or OJ = a/f. Thus, depending upon whether OJ« a/f or OJ» a/f, 
the material can be regarded as a good conductor or a good dielectric. The 
situation, however, is not so simple because both a and f are in general 
functions of frequency. 

With the understanding that a and f are frequency dependent, we now 
classify nonmagnetic materials as follows for the purpose of writing simplified 
sets of Maxwell's equations: 

(a) Perfect dielectrics: These are idealizations of good dielectrics. These
contain no true charges and currents. The corresponding Maxwell's
equations are obtained by setting p = 0 and J = 0.

(b) Good conductors: The magnitude of the conduction current density
a E is much greater than the magnitude of the displacement current
density an;at. To obtain the special set of Maxwell's equations,
we set an/at= 0. We also set p = 0 since, in accordance with the
finding in Section 5.3, any charge density inside the conductor
decays exponentially with a time constant equal to €/a, where we
have replaced fo in Section 5.3 by f. For good conductors, a/f »OJ
so that any initial charge density decays to a negligible fraction of
its value in a fraction of a period.

(c) Perfect conductors: These are idealizations of good conductors ob
tained by letting a ------> oo. The electric field inside a perfect conductor
must be zero since otherwise, J

c

= aE becomes infinite. Furthermore,
for the time-varying case, the zero electric field results in aB/at

equal to zero or B equal to a constant with time. Thus a time-
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varying magnetic field cannot exist inside a perfect conductor. Hence 
we conclude that all fields inside a perfect conductor are zero for 
the time-varying case and the electric field is zero also for the static 
case. There remains only the possibility of a static magnetic field 
inside a perfect conductor. 

We now list, in Table 5.5, Maxwell's equations and the continuity equa
tion for the general case and for the special cases discussed above for both 
time-varying and static fields. Also listed are the corresponding integral 
forms of the equations. We note that, in certain cases, although certain 
terms on the right sides of the differential equations are set equal to zero, 
the corresponding terms on the right sides of the corresponding integral 
equations are not set equal to zero. This is because a differential equation 
is applicable at a point whereas the corresponding integral equation is appli-

TABLE 5.5. Summary of Maxwell's Equations and the Continuity Equation 

for Various Cases 

Description Differential Form 

Time-varying fields; V· D =p 
general case 

V ·B=O 
VxE=_ aB

at 

VXH=J+ aD 

at 

V·J+ ap=O 
at 

Static fields; V ·D=p general case 

V,B=O 
VXE=O 
VXH=J 
V ,J = 0 

Time-varying fields; V· D =0 
perfect dielectrics 

p = 0, J = 0 V ·B=O 
aBV XE= -at 

V XH= aD
at 

Integral Form 

f s D , dS = f v p dv

f SB· dS = 0
t E . di = - �LB . dS 

fc H . di = L J . dS + fr L D . dS

ts J • dS + fr L p dv = 0

fso. dS = Lpdv

f SB· dS = 0
tE · di= 0
fcH· di= LJ. dS 

f SJ· dS = 0

f s D · dS = f v p dv

tB · dS= 0
fc E . di = -fr LB . dS

t H . di = L J . dS + fr L D . dE 
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TABLE 5.5 (Cont'd.) 

Description 

Static fields; 
perfect dielectrics 
p = O,J = 0 

Time-varying fields; 
good conductors 
JaEJ»l��I
uniform a

Static fields; 
conductors, 
uniform a

Perfect conductors 

Differential Form Integral Form 

V • D = 0 p 8 D • dS = f v p dv
\: • B = 0 p 8 B · dS = 0

V X E = 0 pc E • dl = 0

V X H = O pc H • dl = f 8 J · dS
V • D = 0 t D • dS = f v p dv
V • B = 0 Ts B • dS= 0
v x E = -a;: Tc E • dl = - d� LB . dS
V X H = Jc = aE Tc H • dl = f 8 J • dS + ft f 8 D • dS
V • Jc = 0 Ts Jc • dS + fr L p dv =0

V • D = 0 f 8 D • dS = f v p dv
V • B = 0 p 8 B • dS = 0

V x E = 0 pc E · dl = 0 

V X H =Jc= aE Tc H • dl = L J • dS
V • Jc = 0 f S Jc • dS = 0

All fields are zero for the time-varying case; electric field is 
zero for the static case 

cable over a region. For example, although there is no true charge density 
associated with any point in a perfect dielectric medium, it is possible that a 
closed surface situated entirely within such a medium of finite extent can 
enclose a charge contained in that part of the volume bounded by the surface 
but lying outside the. medium. Hence, although V • D = 0 in the medium, 
we have to write the corresponding integral form as Ts D • dS = f v p dv.

E .. 11 Power and Energy Considerations for Material Media

In Section 5.2 we learned that conductors are characterized by conduction 
current due to the movement of free charges under the influence of an applied 
electric field. In Section 4.8 we showed that the power expended by an electric 
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field due to charges moving under its influence in a volume V is given by 

Pa= LE• J dv (5-182) 

where J is the current density resulting from the movement of the charges. 
If the motion of the charges is in free space, they are accelerated by the 
electric field and hence the power expended by the electric field is converted 
into kinetic energy. On the other hand, the free charges in a conductor drift 
with an average drift velocity because of· the frictional mechanism provided 
by their collisions with the atomic lattice. Hence the power expended by the 
electric field is dissipated in the conductor in the form of heat. Replacing 
J in (5-182) by uE, we obtain the expression for the power dissipated in a 
volume V of a conductor as 

Pa = LE• uEdv

It follows that the power dissipation density in a conductor is 

Pa
= E • uE = uE2 

(5-183 

(5-184 

For sinusoidally time-varying fields, the time-average power dissipatio 
density is 

(5-185!) 

In Section 5.5 we learned that dielectrics in electric fields are character
ized by induced polarization charges. From Section 4.6, the stored energy 
density associated with an electric field E in free space is given by 

(5-186) 

This result was obtained by finding the work required to be done by an 
external agent to bring together a set of point charges from infinity and then 
extending the result to a volume charge distribution. We can do the same for 
a dielectric medium provided we take into account the polarization charges 
in finding the work required for assembling the charge distribution. Tlte 
effect of the polarization charges is to neutralize partially the true charges. 
Hence, as we bring together charges from infinity, they are neutralized 

. partially by the polarization charges. Thus, for the same electric field intensity 
in the dielectric as in free space, we have to actually assemble a true-char�e 
distribution of greater density than in the free-space case. This requires 
more work to be done in the dielectric case so that more energy is stored in tile 
dielectric case than in the free-space case for the same electric field intensi:y. 
From 

V • D = V • €E = p (5-U7) 

the true-charge density which gives the same E in a dielectric medium of 
permittivity€ as in free space is €/€0 times the charge density in the free-spice 
case. From (4-118a), the work required to assemble a charge distributior is 
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proportional to the charge density for a constant potential V and hence for 
a constant electric field intensity E. The energy density associated with the 
electric field in the dielectric is therefore given by 

w, = :) � €0£2) = � €E2 = � €E • E = � D • E (5-188) 

For sinusoidally time-varying fields, the time-average energy density is 
<w.> = !€E • E* = !f> . E* (5-189) 

Substituting D = €0E + Pin (5-188), we have 

However, 
w, = f (€0E + P) • E . f€0

E • E + f P • E 

J

P, E 

J

P, E 

! P • E = !
0 

d (P • E) = !
0 

(P • dE + E • dP)
= S:E·dP 

(5-190) 

(5-191) 

where we have used the substitution P • dE = E • dP in view of the linear 
relationship between P and E. Substituting (5-191) into (5-190), we get 

w, = f€
0
E • E + s: E • dP (5-192) 

We note that the first term on the right side of (5-192) is the energy density 
in the electric field if the medium is free space. · The second term on the 
right side of (5-192) is the work done per unit volume by the E field in the 
dielectric as the polarization is built up gradually from zero to the final 
value P. This is known as the polarization energy density. 

In Section 5.8 we learned that magnetic materials in magnetic fields 
are characterized by magnetization currents. From Section 4.7, the stored 
energy density associated with a magnetic field B in free space is given by 

wm = _!_ B
2 

= _!_ !_ • B = _!_ µ0H2 = _!_ µ0H • H (5-193) 2 µ0 2 µ0 2 2 
This result was obtained by finding the work required to be done for building 
up a volume current distribution. We can do the same for a magnetic material 
medium, provided we take into account the magnetization currents in finding 
the work required for building up the current distribution. The effect of the 
magnetization currents is to aid the true currents (for µ > µ0). Hence, as 
the current is built up, it is aided by the magnetization current. Thus, for the 
same magnetic flux density in the magnetic material as in free space, it is 
sufficient if we actually build up a true current distribution of lesser density 
than in the free-space case. This requires less work to be done in the 
magnetic material case so that less energy is stored in the magnetic material 
case than in the free-space case for the same magnetic flux density. From 

B . V x H = V x - = J (5-194) 
µ 
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the true current density which gives the same B in a magnetic material 
medium of permeability µ as in free space is µ

0
/ µ times the current density 

in the free-space case. From (4-130a), the work required to build up a current 
distribution is proportional to the current density for a constant vector · 
potential A and hence for a constant magnetic flux density B. The energy 
density associated with the magnetic field in the magnetic material is ! 

therefore given by 
!; 

(5-195) 

For sinusoidally time-varying fields, the time-average energy density is 

1 ii - 1 - -
<wm> = Tµ · B* = 

4
H • B* (5-196)

Substituting B = µ
0H + µ0

M in (5-195), we have 

Wm = ! H • (µ0H + µ0
M) = "! µ0

H • H + tµ
0
H • M (5-197 

However, 

(5-198) 

where we have used the substitution H • dM = M • dH in view of the linear 
relationship between M and H. Substituting (5-198) into (5-197), we get 

(5-199) 

We note that the first term on the right side of (5-199) is the energy densi1y
in the H field if the medium is free space. The second term on the right side 
of (5-199) is the work done by the H field in the magnetic material as the mag
netization is built up from zero to the final value M. This is known as the 
magnetization energy density. Note that for the same magnetic field intensi:y 
in the magnetic material as in free space, we have to actually build up a trte 
current distribution of greater density than in the free-space case. 

For nonlinear magnetic materials, we cannot use the result iH .B 
given by (5-195) for finding the magnetic energy stored in the material sin::e 
µ is not constant for a particular material but is dependent on H. To obtan 
the correct expression, we write (5-199) as 

Wm = S: d(tµoH • H) + s: µ
0
H • dM

fµoH 
fµ0

M 
= 

0 

H • d(µ
0
H) +

0 

H • d(µ
0
M) 

fµ,H+µ,M 

S
B 

= 

0 

H • d(µ
0
H + µ

0
M) 

=

0 

H • dB

(5-210) 



325 Power and Energy Considerations for Material Media Sec. 5.11 

It follows from (5-200) that the increase in stored energy density correspond
ing to an infinitesimal increment dB is H • dB, where H is the magnetic field 
intensity at which dB is achieved. 

Let us now consider the vector identity given by 
V • (E x H) = H • (V x E) - E • (V x H) (5-201) 

Substituting for V x E and V x H on the right side of (5-201) from Max
well's equations (5-163) and (5-164) respectively, we obtain 

or 

V • (E x H) = H • ( -��) - E • ( J + Tr) 
ao aB = -E • aE - E • - - H • -
at at 

= -aE • E - ]___ (_!._ D • E) - ]___ (_!._ H · B)
at 2 at 2 

(5-202) 

(5-203) 

where P
a
, w., and w

m 
are, respectively, the power dissipation density due to 

the conductivity of the medium, the electric stored energy density, and the 
magnetic stored energy density. Integrating both sides of (5-203) in a volume 
V of the material and applying the divergence theorem to the left-side integral, 
we get 

(5-204) 

where S is the surface bounding the volume V and dS is directed out of the 
volume V. The right side of (5-204) represents the time rate of increase 
of energy stored in the electric and magnetic fields in the volume V plus the 
time rate of energy dissipated in V due to conduction current flow. Thus 
f s (E x H) • dS represents the power flow across S out of the volume V. It
follows that the density of power flow or the Poynting vector associated 
with the electromagnetic field in a material medium is given by 

P=ExH (5-205) 
For sinusoidally time-varying fields, the .complex Poynting's theorem is 

(5-206) 

where P is the complex Poynting vector given by 
f> = fE xii* (5-207) 

and (P
a
>, (w

m
>, and (w.> are given by (5-185), (5-196), and (5-189), respec

tively. 
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I as shown in Fig. 5.29 and let all normal components of fields at the bound
ary in both media denoted by an additional subscript n be directed along in. 
Let the surface charge density and the surface current density on z = 0 be 
p, and J,, respectively. Note that the fields at the boundary in both media 
and the surface charge and current densities are, in general, functions of x, y,

and t whereas the fields away from the boundary are, in general, functions 
of x, y, z, and t.

First we consider a rectangular box abedefgh of infinitesimal volume 
enclosing an infinitesimal area of the boundary and parallel to it as shown 
in Fig. 5-29. Applying (5-208) to this box in the limit that the side surfaces 
(abbreviated ss) tend to zero, thereby shrinking the box to the surface, we 
have 

lim ,i: D • dS = lim f p dv
ss-o j as ss-o t;.v 

(5-213) 

where AS and Av are the surface area and the volume, respectively, of the 
box. In the limit that the box shrinks to the surface, the contribution from 
the side surfaces to the integral on the left side of (5-213) approaches zero. 
The sum of the contributions from the top and bottom surfaces becomes 
[Dn 1(abed) - Dnz(efgh)] since abed and efgh are infinitesimal areas. The 
quantity on the right side of (5-213) would be zero but for the surface charge 
on the boundary, since shrinking the box to the surface reduces only the 
volume charge enclosed by it to zero, keeping the surface charge still enclosed 
by it. This surface charge is equal to p,(abed). Thus Eq. (5-213) gives 

Dn1(abed) - Dnz(efgh) = p,(abed) 
or 

(5-214) 

since the two areas abed and efgh are equal. In vector notation, (5-214) is 
written as 

(5-215) 

In words, Eqs. (5-214) and (5-215) state that, at any point on the boundary, 
the components of D

1 
and 0

2 
normal to the boundary are discontinuous by 

the amount of the surface charge density at that point. 
Similarly, applying (5-209) to the box abedefgh in the limit that the box 

shrinks to the surface, we obtain 

lim ,i: B • dS = 0 
ss-o j A.S 

(5-216) 

Using the same argument as for the left side of (5-213), the quantity on the 
left side of (5-216) is equal to [Bn 1

(abed) - Bn
z(efgh)]. Thus Eq. (5-216) gives 

Bn 1 
(abed) - Bnz(efgh) = 0 
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TABLE 5.6. Summary of Boundary Conditions for Various Cases (in is the unit 
vector normal to the boundary and drawn towards medium 1) 

Description 

Time-varying fields 
Medium 1: arbitrary, u1 =I= oo 
Medium 2: arbitrary, u2 =I= oo 

Boundary Conditions 

in • (D1 - D2) = Ps 

in • (BI - B2) = 0 
in X (E1 - E2) = 0 
in X (HI - H2) = J s 
in • (J1 - J2) = - v, • J, - ap,

at 

Static fields 
Medium 1: arbitrary, u1 =I= oo 
Medium 2: arbitrary, u2 =I= oo 

Time-varying fields 
Medium 1 : perfect dielectric, a 1 = 0 
Medium 2: perfect dielectric, 0'2 = 0 

Static fields 
Medium 1 : perfect dielectric, a 1 = 0 
Medium 2: perfect dielectric, u2 = 0 

Time-varying fields 
Medium 1 : perfect dielectric, a 1 = 0 
Medium 2: perfect conductor, u2 = oo 

Static electric field 
Medium 1 : perfect dielectric, a 1 = 0 
Medium 2: perfect conductor, u2 = oo 

in • (D1 - D2) = Ps 

in • (B1 - B2) = 0 
in X (E1 - E2) = 0 
in X (HI - H2) = J s 
in · (J1 - J2) = -V, · J, 

in • (D1 - D2) = 0 
in • (BI - B2) = 0 
in X (E1 - E2) = 0 
in X (H1 - H2) = 0 

in • (D1 - D2) = 0 
In • (B1 - B2) = 0 
in X (E1 - E2) = 0 
in X (H1 - H2) = 0 

in • Di = Ps 
in· B1 = 0 
in X E1 = 0 
in X H1 = J, 

in • D1 = Ps 
in X E1 = 0 

Substituting (5-223) and (5-228) into (5-232), we get 

in • (Pl - Pz) = (in X E2) X [(in X H2) + J,] • in 

- (in X E2) X (in X H2) • in 

= [(in X E2) X J,] • in 

= [(in X El ) X J,] • jn 

= [(in • J,)E1 - (J, • E1
)i.] • i.

= -J, • E 1 

(5-233) 

since (i. • J,) is equal to zero. Thus, at any point on the boundary, the com
ponents of the Poynting vector normal to the boundary are discontinuous 
by the amount equal to the power density associated with the surface current 
density at that point. In the absence of a surface current, the normal compo
nents of the Poynting vector are continuous. · 

E:»..MPLE 5�14. In Fig. 5.30, medium 1 comprises the region z > 0 and medium 2 
comprises the region z < 0. All fields are spatially uniform in both media 
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5.49. The region z < 0 is free space and the region z > 0 is a perfect dielectric of pei·
mittivity € = 4€0 • The electric field intensities E 1 and E2 in the two media are 
given by

E 1 = [E1 cos w(t - � z) + E, cos W(t + � z)]i
x for z < 0 

E2 = E, cos w(t - 2� z) ix 

where E1, E,, and E, are constants. 

(a) Find H1 and H2 associated with E 1 and E2, respectively.

for z > 0 

(b) Find the relationships between E, and E1 and between E, and E1• 

5.50. Show that, for time-varying fields, the boundary condition for the normal co -
ponent of B follows from the boundary condition for the tangential compone 
of E, whereas the boundary condition for the normal component of D folio s 
from the boundary conditions for the tangential component of H and the nor al 
component of J.



6 

APPLIED ELECTROMAGNETICS 
l 

In Chapter 2 we set our goal to learn how to interpret Maxwell's equations 
and the associated constitutive relations and to use them to discuss various 
applications. In the preceding chapters we achieved the first task, namely 
that of introducing and understanding Maxwell's equations, 

V • D = p

V • B = 0 

VxE= -�� 

VxH=J+ aD 

at 

and the various related concepts. We now have the basic electromagnetic 
theory necessary to venture into the realm of applied electromagnetic theory 
to which this chapter serves as an introduction. The topics of applied elec
tromagnetic theory are varied, but perhaps the most important among 
them are concerned with the field basis of circuit theory and with electro
magnetic waves. This is reflected in the topics covered in this chapter. 

347 



PART I. 

6.1 Poisson's Equation 

Statics, Quasistatics, and 

Distributed Circuits 

Maxwell's equations for the static electric field are given by 
V • D p 

VxE O 

(6-1) 
(6-2) 

In view of (6-2), E can be expressed as the gradient of a scalar potential v
as we learned in Section 2.12. Thus we have 

and 
E=-VV 

D =€E -€VV 
Substituting (6-4) into (6-1), we obtain 

V • €VV -p 
or 

(6-3) 

(6-4) 

(6-:5) 
where V2 Vis the Laplacian of V. Equation (6-5) is the differential equati(m 
for the electrostatic potential Vin a region of volume charge density p. If 
we assume that 1: is a constant in the region, Vt: is equal to zero so that (6-..5) 
reduces to 

v2v

Equation (6-6) is known as Poisson's equation. If the medium is charge free, 
then p O and (6-6) reduces to 

v2 v o (6-7) 

which is known as Laplace's equation. In this section we discuss the appli-
cations of Poisson's equation by considering two examples. 

EXAMPLE 6-1. Charge is distributed with uniform density p
0 

C/m3 throughmh a

sphere of radius a centered at the origin. It is desired to find the electros�atic 
potential and hence the electric field intensity both inside and outside: the 
sphere by using Poisson's equation for r < a and Laplace's equation 1 for 
r> a. I 

From Poisson's and Laplace's equations, we have

{ 
Po for r < a v2 v= € 
0 \ for r > a

Because of the spherical symmetry of the charge distribution, the pot�ntial 
is a function of r only. Thus all derivatives of V with respect to 8 and f are
348 
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initial velocity and (b) the number of electrons emitted from the cathode 
is limited not by the cathode temperature but by the space charge between 
the cathode and the anode. For steady current flow under these conditions, 
the electric field at the cathode is zero. If it were some nonzero value and 
directed towards the cathode, the electrons would be emitted from the cathode 
with some acceleration and the current would then be temperature limited 
but not space-charge limited. (In the actual case, the field intensity is slightly 
nonzero and directed towards the cathode, since no electrons would leave 
the cathode otherwise.) If the field intensity were some nonzero value and 
directed towards the anode, there would be no space charge, since the elec
trons could not leave the cathode. It is desired to find the potential distribu
tion and hence the space charge distribution between the cathode and the 
anode. 

Let V be the potential at a distance x from the cathode, which is con
sidered to be at zero potential. Then the work done by the electric field in 
moving an electron through a distance x from the cathode is equal to I e I V,
where e is the charge of the electron. This work must be equal to the kinetic 
energy acquired by the electron. Thus, denoting v = v(x)t as the velocity 
of the electron, we have 

JeJ V= !mv2 (6-15) 
where m is the electronic mass. From (6-15), we get v = ,.j2 J e I V/m so that 

v = �21el vi (6-16) 
m x 

If p(x) is the density of the space charge constituted by the electrons, the 
current density J is given by 

J = pv = pJ'!I!?- v1/2jx (6-17) 

For steady current flow, 
(6-18) 

where J
0 

is a constant. Comparing the right sides of (6-17) and (6-18) we 
obtain 

p=J fm
v-112

o,y 2fel 
From Poisson's equation, we now have 

d2V = _ _p__ = -[Jo fmJ v-112 = kv- 112 (6-19) dx2 

€0 €0'V2fel 
where k = -(J

0
/€

0
) ,.jm/J 2e I is a constant. Equation (6-19) is the differential 

equation for V in the region between the cathode and the anode. To solve 
for V, we multiply the left and right sides of (6-19) by 2(dV/dx) dx and 2 dV,
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I 
I 

respectively, to obtain 

2 dV a(dV) = 2k v-112 dVdx dx (6-20) 

Integrating both sides of (6-20), we get 

(�:r = 4kv 112 + A
where A is the constant of integration to be evaluated from the boundary
condition for dV/dx at the cathode. But dV/dx is the negative of the electric
field intensity. Since the electric field intensity as well as the potential are 
zero at the cathode, A is equal to zero. Thus

or 

dV = 2J7Zv1;4 dx 
I 

v- 114 dV = 2,,/k dx I 

(6-21) 
I 

I 

Integrating both sides of (6-21), we obtain 
I 
I jV314 = 2,,/kx + B
I 

where B is the constant of integration. To evaluate B, we note that .V = ti 
for x = 0. Hence B = 0, giving us 

I v = Gfl x)4/3 
Finally, from the condition that V = V0 

for x = d, we have 
Vo = Gfl d)4/3

so that 

I 

( X )4/3V= V0 d (6-2;2) 

Equation (6-22) is the required solution for the potential between the two 
plates. The electric field intensity is given by 

! 

E = -VV = _ av i = _ _±_ Vo (�)ll3i
ax x 3 d d x 

The space charge density is given by 
aE 4 f V ( x )

-213 

p = fo V • E = fo axx = -9 dz 

o 
d 

The current density is given by 

J = p /2Tef v112i = _ _±_
€ 

/2Tef v�12 i
-v � x 9 o,y � az x 

I 
This equation is known as the Child-Langmuir law. The negative sign /for 
J arises from the fact that the current flow is opposite to the directioq of 
motion of the electrons. 

I 
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6.2 Laplace's Equation 

A very important class of problems encountered in practice are those for 
which the charges are confined to the surfaces of conductors. For such 
problems, either the charge distribution on the surfaces of the conductors, 
or the potentials of the conductors, or a combination of the two are specified 
and the problem consists of finding the potential and hence the electric field 
in the charge-free region bounded by the conductors. Obviously, the potential 
in the charge-free region satisfies Laplace's equation 

v2v= o (6-7) 

assuming € to be constant. Hence the solution consists of finding a potential 
that satisfies Laplace's equation and the specified boundary conditions. Since 
the right side of Laplace's equation is zero irrespective of the boundary con
ditions, we can obtain a general solution for the potential that satisfies a 
particular simplified form of Laplace's equation once and for all. The general 
solution consists of arbitrary constants of integration, which are evaluated 
by using the boundary conditions for the specific problem. 

Let us consider the cartesian coordinate system. In the general case for 
which the potential is a function of all three coordinates x, y, and 'z, Laplace's 
equation is given by 

(6-23) 

However, if the potential is a function of only one of the coordinates, say 
x, and independent of the other two, we obtain a simplified version of 
Laplace's equation as 

a2v d2 v 

ax2 
= dx2 

= 

0 

Integrating (6-24) with respect to x twice, we obtain 

V= Ax+ B 

(6-24) 

(6-25) 

where A and B are the arbitrary constants of integration. Equation (6-25) is 
the general solution for the electrostatic potential in a charge-free region for 
the case in which the potential is a function of x only. In other words, all 
problems for which the potential varies with x only but having different 
boundary conditions must have solutions of the form given by (6-25). Only the 
values of the arbitrary constants A and B differ from one problem to the other. 
Thus, having found the general solution once and for all, it is a matter of 
fitting the given boundary conditions to evaluate the arbitrary constants for 
obtaining the particular solution to the problem. Let us consider a simple 
example. 

Ex MPLE 6-3. Two parallel conducting plates occupying the planes x = 0 and 
x = d are kept at potentials V = 0 and V = V0 , respectively, as shown in 



354 Applied Electromagnetics Chap. 6 

Fig. 6.2. We wish to find the solution for the potential and hence for the · 
electric field intensity between the plates and evaluate the charge densities 
on the plates. 

x = d, V = Vo

+ + + + + + + 

! ! ' ! !E-
x = 0, V = 0 

Vo. 
-dlx 

Fig. 6.2. Two parallel perfectly 
conducting plates separated by a 
dielectric of permittivity € and 
kept at potentials V = 0 and 
V= Vo. 

The general solution for the potential between the two plates is give 
by (6-25). The boundary conditions are 

V= 0 for x = 0 
for x = d

Substituting these boundary conditions in (6-25), we have 
0 = A(O) + B or B = 0 

V
0 
= A(d) + B = A(d) + 0 

Thus the required solution for the potential is 
or 

V= �0x O < x < d 

A - Vo - d 

The electric field intensity is given by 

E=-VV=_avi =_voi 
ax 

x 
d 

x O<x<d 

The field is shown sketched in Fig. 6.2. The surface charge densities on Hie 
two plates are given by 

[ ] [DJ · €Vo· · €Vo 
Ps x=O = x=O O 1x = -dlx O Ix = -d 

[p.J.-, �[DJ.-,. H.) � (-·�···) . (-i,) � ·�· I 
I
I 
I 

EXAMPLE 6-4. Let the region between the two plates in Example 6-3 consist of io 
dielectric media having permittivities €1 for O < x < t and €2 fort< x � d
as shown in Fig. 6.3. It is desired to find the solutions for the potentials in 
the two regions O < x < t and t < x < d. / Since the permittivities of the two regions are different, the soluti ns
for the potentials in the two regions must be different although having he 
same general form as given by (6-25). We therefore choose different arbitr ry 
constants for the two different regions. Thus the general solutions for the 
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x = d, V = Vo 

----------- x = t 

x = 0, V = 0 

Fig. 6.3. Two parallel perfectly conducting plates sep
arated by two dielectric media of permittivities € 1 and 
€2 and kept at potentials V = 0 and V = V0 • 

potentials in the two regions are 

v1 
= A 1x + B1 

V2 = A 2x + B2 

O<x<t 

t<x<d 

The boundary conditions specified in the problem are 

V
1 

= o for x = o

for x = d

Sec. 6.2 

(6-26a) 

(6-26b) 

(6-27a) 

(6-27b) 

However, we have four arbitrary constants Ai , Bi , A2
, and B

2 
to be deter

mined. Hence we need two more boundary conditions. Obviously, we turn our 
attention to the boundary x = t between the two dielectrics for these two 
conditions, which are 

V1 = V2 for x = t (6-27c) 
and 

Dx1 = Dx, 
or 

€ a v1 _ € a vz
l ax - 2 ax 

for x = t (6-27d) 

Substituting the four boundary conditions (6-27a)-(6-27d) into (6-26a) and 
(6-26b), we obtain 

0 = A
1
(0) + B 1 

V0 
= Az(d) + B2 

Ai(t) + B1 
= Az(t) + B2 

€1A1 = €2A2
Solving these four equations for the four arbitrary constants and substituting 
the resulting values in (6-26a) and (6-26b), we find the required solutions for 
V1 and V2 

as 

V = €zX 
V I €zf + €1(d -f) 0 

v =€2t+€,(x -t)
v 2 €zl + €1(d -t) o 

O<x<t 

t<x<d 
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The potential at the interface x = t is 

I 
I 

Thus far we have considered the one-dimensional case for which thd 
potential is a function of x only. The one-dimensional problems for which'. 
the potentials are a function of y only and z only are not any different froni 
the case considered, since the differential equations for V are the same a� 
(6-24) except that xis replaced by y or z. Thus there is only one one-dimen� 
sional problem in the cartesian coordinate system although there are thre¢ 
coordinates. Considering the three commonly used coordinate systems, th?-/t 
is, cartesian, cylindrical, and spherical coordinate systems and arguing iP, 
this manner, we note that there are only five different one-dimension'! 
problems in all although there are nine coordinates. There is not much tp
be gained by considering in detail the remaining four one-dimension'!
problems. Hence we simply list in Table 6.1 the general solutions for ea9� 
case, a particular set of boundary conditions and the 'Corresponding partji
cular solution. It is left as an exercise (Problem 6.3) for the student to 
verify these. 

TABLE 6.1. General Solutions for One-Dimensional Laplace's Equations amd 
Particular Solutions for Particular Sets of Boundary Conditions 

Coordinate 
with Which 

V Varies 

x 

r (cylindrical)

r (spherical)

(} 

General 
Solution 

Ax+B 

Alnr+B 

A</>+ B 

A +Br 

A In (tan f) + B

Boundary 
Conditions 

V= 0, x = 0
V= Vo, x = d
V= 0, r = a 
V= Vo, r = b
V= 0, </> = 0
V = Vo,</>= oc
V= 0, r = a
V= Vo, r = b 
V= 0, (} = oc
V= Vo,(}= p 

Voxd 

Particular 
Solution 

---1:'.L In .!..ln b/a a 
Vo'P
(): 

I 

I 
i Vo (1 1\ 

(1/b) - (1/a) r - a1
I 

' 

V ln [(tan 0/2)/(tan oc/�)]
O ln [(tan P/2)/(tan oc/12)]

Before we take up the discussion of Laplace's equation in two dinien
sions, we consider briefly the use of analogy in solving magnetic field pJob
lems involving permanent magnetization. From Maxwell's curl equation 
for the static magnetic field, we have, for a region free of true currents, that 
is, for J = 0, 

VxH=O 

We can then express H as the gradient of a scalar magnetic potentiaf Vm,
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that is, 
(6-28) 

Substituting B = µ
o(H + M) in Maxwell's divergence equation for B, we 

have 
V • B = V • µo

(H + M) = 0
or 

V • H = -V • M

Substituting (6-28) into (6-29), we obtain 
V2Vm = V • M, 

(6-29) 

(6-30) 
Comparing (6-28) and (6-30) with (6-3) and (6-6), respectively, we observe 
the following analogy: 

H +---->- E 
Vm -<�V 

V • M -<� _.!!_€

(6-31a) 
(6-3lb) 
(6-31c) 

If M is discontinuous at a boundary, then V • M results in an impulse func
tion. To find the appropriate analogy, we consider a rectangular box of 
infinitesimal volume !iv and enclosing a portion of the boundary at which 
M is discontinuous as shown in Fig. 6.4. Then we have 

f V·Mdv--f .f!_dv 
Av Av

€ 

Fig. 6.4. For showing that a 
discontinuity in M at a boundary 
is analogous to a surface charge 
density. 

From the divergence theorem, f V • M dv is equal to ,( M • i. dS, where 
Av Ys 

S is the surface area of the box. Now, if we let the box shrink to the bound-
ary, this integral bec�mes (M2 

- M
1) • i. l!:..S whereas f (p/€) dv becomes

Av 

(p,/€) l!:..S, where l!:..S is the surface area on the boundary to which the box
shrinks and p, is the surface charge density. Thus we have 

(M2 - M
1
) • i. l!:..S- - �, l!:..S
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The surface charge distribution and the electric field lines are shown in
Fig. 6.5(b). Now, from (6-31a), the required magnetic field intensity is
given by 

O<x<d 

otherwise
The corresponding magnetic flux density is

B = (H + M) = {µo(-Mot + Mot)
µ0 

µo(O + 0) 
=0 

These are shown in Fig. 6.5(a). I

O<x<d 

otherwise
everywhere

We now consider the solution of Laplace's equation in two dimensions. 
If the potential is a function of the two coordinates x and y and independent
of z, then it satisfies the equation 

a2v a2v o (6-32)ax2 + ay2 =

Equation (6-32) is a partial differential equation in two dimensions x and y. 

The technique by means of which it is solved is known as the "separation
of variables" technique. It consists of assuming that the solution for the
potential is the product of two functions, one of which is a function of x
only and the second, a function of y only. Denoting these functions to be
X and Y, respectively, we have 

V(x, y) = X(x) Y(y) (6-33)
Substituting this assumed solution into the differential equation, we obtain

d2X d2 Y 
y dx2 + X dy2 = 0

Dividing both sides of (6-34) by XY and rearranging, we get
1 d2X 1 d2Y
X dx2 = --y dy2 

(6-34)

(6-35)

The left side of (6-35) involves x only whereas the right side involves y only.
Thus Eq. (6-35) states that a function of x only is equal to a function of y
only. A function of x only other than a constant cannot be equal to a function
of y only other than the same constant for all values of x and y. For example,
2x is equal to 4y for only those pairs of values of x and y for which x = 2y.
But we are seeking a solution which is good for all pairs of x and y. Thus the
only solution which satisfies (6-35) is that each side of (6-35) must be equal
to a constant. Denoting this constant as OG2, we have 

!:f = OG2 X (6-36a)







I 
I 

I 
I 
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I 

I 

I 

where A' = 2AD. Next, applying boundary condition (6-39b) to (6-40)\
��� 

O = A' sinh oi:x sin oi:b for O < x < a
ITo satisfy this equation without obtaining a trivial solution of zero for th
r potential, we set 

sin oi:b = 0
or 

oi:b = nn n=l,2,3, ...

n=l,2,3, ... 
(6-4 ) 

Since several values of oi: given by (6-41) satisfy the boundary conditio , 
several solutions are possible for the potential. To take this fact into accou t, 
we write the solution as the superposition of all these solutions multipli d 
by different arbitrary constants. In this manner we obtain 

� 
V(x' Y) = " A' s· h nnx . nny

n=l,T,'J, ... n Ill b Sill b for O <y < b

Finally, applying the boundary condition (6-39d) to (6-42), we get 

V . ny " A' . h nna . nny "" 0 b (6 43)O Slll b = n�t,T,'J,... 
n Sill b Sill b 10r < y < 

- 1 
On the right side of (6-43), we have an infinite series of sine terms in y wherfas
on its left side, we have only one sine term in y. Equating the coefficients of 
the sine terms having the same arguments, we obtain 

Sill-= A, . h nna {
Vo for n = 1

" b O for n -=;t:. I
or 

I 

A'= � 
1 sinh (na/b)

I A:= 0 for n -=;t:. I
Substituting this result in (6-42), we obtain the required solution for Va� 

V(x y) = V s!nh (nx/b) sin ny (J-44) 
' 0 smh (na/b) b 

l Having found the solution, it is always worthwhile to check if it safsfies 
Laplace's equation and the given boundary conditions to make sure thjt no
error was made in obtaining the solution. The above solution does s tisfy 
these two criteria. I

If the solution, irrespective of how it is obtained, satisfies Lap ace's 
equation and the specified boundary conditions, it is the solution acco ding
to the uniqueness theorem. To prove this theorem, let us assume t the 
contrary that two solutions V1 and V2 are possible for the same pro lem. 
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Then each of these must satisfy Laplace's equation so that 

v2v
1 = o (6-45a) 

(6-45b) v2 v2 
= o

The difference Va = V1 
- V

2 
must also satisfy Laplace's equation. Thus 

v2va = V2CV1 - V2) = v2v1 - v.
2v2 = o (6-46) 

Also, both V
1 

and V2 
must satisfy the same boundary conditions, so that 

Wals = W1 - V2]s = W1Js - W2Js = 0 (6-47) 

where S represents the boundary surface. Now, using the vector identity 

V •(VA)= VV •A+ VV • A

we have 

(6-48) 

Integrating both sides of (6-48) throughout the volume enclosed by 
the boundary S, we have 

5 (V • Va VVa) dv = f Wa V
2Va) dv + f IVVal2 dv (6-49) 

vol vol vol 

However, from the divergence theorem and from (6-47), 

5 (V • Va VVa) dv = ! Wa VVa) • dS = 0 
vol j S 

Also, noting that V2Va = 0 in accordance with (6-46), Eq. (6-49) reduces to 

5 I VVa 1
2 dv = 0 (6-50) 

vol 

Since I VVa 1
2 is positive everywhere, the only way that (6-50) can be satisfied 

is if I VVa 1
2 is equal to zero throughout the volume of interest. Thus 

VVa
= 0 

or 

Va = V1 - V2 = constant (6-51) 

However, Va is equal to zero on the boundaries and hence the constant on 
the right side of (6-51) must be zero, giving us V

1 
= V

2 
throughout the volume 

of interest and thereby proving the uniqueness theorem. 

ExAMPLE 6-7. The rectangular slot of Fig. 6.6 is covered at the mouth x = a by 
a conducting plate which is kept at a potential V = V

0
, a constant, making 

sure that the edges touching the corners of the slot are insulated as shown 
by the cross-sectional view in Fig. 6.7(a). We wish to find the potential in 
the slot for this new boundary condition. 

Since the boundary conditions (6-39a)-(6-39c) remain the same, all 
we have to do to find the required solution for the potential is to substitute 
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changed, giving us 

fb 

=

fb 
V0 

sin mny dy = _ � A� sinh nna sin mny sin nny dy
y=O b n-1,2,3,... b y=O b b 

or 

or 

Vab (I - cos mn) = (A' sinh mna)!!_
mn m 

b 2 

{
4V

0 
1 

A�= ;
n sinh (mna/b) form odd 

form even 
(6-54) 

Substituting this result in (6-42), we obtain the required solution for the 
potential inside the slot as 

V = � 4_V_
0 

sinh (nnx/b\in
-nn_y

n=l,3,s, ..• nn sinh (nna/b) b (6-55) 

The above procedure for evaluating the constants A� can also be appreciated 
by recognizing that the right side of (6-52) is the Fourier series for an odd 
periodic function in y having the period 2b. We must then have an odd 
periodic function -0f period 2b on the left side of (6-52). To achieve this, we 
note that, since the solution is for inside the slot only, it is sufficient if we 
satisfy the boundary condition for [Vlx=a for the range O < y < b. We are 
therefore at liberty to choose [Vlx=a for the remainder of y so that an odd 
periodic function of period 2b is obtained. Obviously, the choice must be 
as shown in Fig. 6.7(b). The evaluation of A� then consists of finding the 
coefficients of the Fourier series for this function and comparing these with 
the coefficients of the series on the right side of (6-52). The steps leading 
from (6-53) to (6-54) are essentially equivalent to this procedure. 

Another class of problems for which Laplace's equation is applicable 
is those involving the determination of steady current in a conducting slab 
under the application of potential difference between different surfaces of 
the slab. For the steady-current condition we have 

V •Jc= 0 
where Jc is the current density. Replacing Jc by aE, where a is the conduc
tivity of the slab, we have 

V • aE = 0 
Substituting for E in terms of V, we get 

-V•aVV=O
If a is constant, Eq. (6-56) reduces to 

V2V=0 

(6-56) 
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Thus the potential associated with the steady current flow satisfies Laplace's 
equation. Hence the solution for this potential can be obtained in exactly 
the same manner as for the charged conductor problems. In fact, the solution 
for the potential for a particular steady-current problem can be written down 
by inspection if the solution for the potential for an analogous charged con
ductor problem is already known and vice versa. Having found the solutio 
for the potential, the current density can be found by using 

Jc
= aE = -a VV (6-57) 

EXAMPLE 6-8. A thin rectangular slab of uniform conductivity a 
O 

mhos/m has it 
edges coated with. perfectly conducting material. One of the edges is kept at 
a potential V0 

relative to the other three by appropriate placement of insu -
lators as shown in Fig. 6.8(a). It is desired to find the steady-current distri
bution in the conductor. 

Insulator 
Insulator 

I 

Conductor 
a = ao 

Vo 

x = 0, V = 0 

0 

II 

� 

\ 
y = b

V= Vo \ 

\ 
V=O \ \ 

V=O Current Equipotential 
Flow Line 

(a) (b) 

Fig. 6.8. (a) A rectangular slab of conductivity a O with one of its
edges kept at a potential V0 relative to the other three. (b) 
Equipotentials and direction lines of current density for the 
conducting slab for the case bf a = 1.

� 
::,. 

The problem is exactly analogous to the rectangular slot problem of 
Example 6-7. Hence, from the solution for the potential found in that prob em 
and given by (6-55), we obtain the required current density as 

J = -ao v( f 4V0 sinh (nnx/b) sin nny)c 
n= ,. 3, s. .. . nn sinh (nna/ b) b 

= -4VoO'o f . 1 (cosh nnx sin nny ixb n=l,J,s, ... smh (nna/b) b b 

+ sinh nnx cos nny i )
b b y 
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Let us postulate an infinitely long image line charge of uniform density 
p�0 at a distance b from the axis of the conducting cylinder and in the plane 
containing the axis of the cylinder and the real line charge, as shown in Fig. 
6.12. Choosing the line through pointP

1 
and parallel to the axis of the cylinder 

Equipotentials 

Fig. 6.12. For finding the image charge required for computing 
thyeld due to a line charge of uniform density parallel to an 
infinitely long grounded conducting cylinder. 

as the reference for zero potential, the potential at any arbitrary point P/ on 
the conductor surface can be written as 

��������I 

V = _ PLD In ,jd2 + a2 + 2adcos cf,_ p�0 In ,jb2 + a2 + 2ab cos ct,I
2n€0 (d...,... a) 2n€0 (a - b) 

1 

(6�66) 
But this quantity must be equal to zero since the conductor is an equipote*tial 
and the potential at P 

1 
is zero. This requires that 

and 

or 

P�o = -PLo 

In[,jd2 + a2 + 2adcoscf, (a - b) ]- 0 
(d- a) ,jb2 + a2 + 2abcoscf, -

,jd2 + a2 + 2adcoscf, (a - b) _ 1 
(d- a) ,jb2 + a2 + 2abcoscf,-

I 

(6-67) 
I 

(6-68) 
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To find the solution for (6-68), let us consider <p = 0. We then have 

(d + a)(a - b) = 1d-a a+b 
or 

a2 = bd (6-69) 

which satisfies (6-68) for all <p. Thus, an image line charge of uniform density 

-p Lo and located at a distance b = a2 / d from the axis of the cylinder satisfies
the equipotential requirement for the grounded conducting cylinder. The
field outside the cylinder is therefore exactly the same as the field set up by
the actual line charge of density h

o 
at distance d from the axis and the

image line charge of density -p Lo at distance a2 / d from the axis. The direction
lines of the electric field intensity and the associated equipotential surfaces
can be obtained by the methods learned in Chapter 2. These are shown
sketched in Fig. 6.12. It is left as an exercise (Problem 6.15) for the student
to show that the total induced surface charge per unit length of the cylinder
is equal to the image charge density -PLo

. The field inside the cylinder is, 
of course, equal to zero since the image charge is only a virtual charge. I 

Proceeding in the same manner as in the preceding example, we can 
obtain the image charge for a point charge near a grounded spherical con
ductor. If the point charge Q is situated at a distance d from the center of the 
spherical conductor of radius a, the image charge is a point charge of value 

- Qa/ d. It lies at a distance a2 / d from the center of the sphere, along the
line joining the center to the charge Q and on the side of Q. We leave the
derivation as an exercise (Problem 6.16) for the student. The method of
images can also be applied for finding fields due to charges in the pres
ence of dielectrics. We will, however, not pursue that topic here.

6.4 Conductance, Capacitance, and Inductance · 

In Chapter 5 we introduced conductors, dielectrics, and magnetic materials. 
Let us now consider three different arrangements, each consisting of two 
parallel perfectly conducting plates as shown in Figs. 6.13(a), (b), and (c). 
For the structure of Fig. 6.13(a), the medium between the parallel plates is 
filled with a conducting material of uniform conductivity a. For the structure 
of Fig. 6.13(b), the medium between the parallel plates is filled with a perfect 
dielectric of uniform permittivity E. For the structure of Fig. 6.13( c ), the two 
parallel plates are joined at one end of the structure by a perfectly conducting 
plate and the medium between the plates is filled with a magnetic material 
of uniform permeability µ. Note that free space may be considered as a 
perfect dielectric of permittivity €

0 
and a magnetic material of permeability 

µ
0 • We apply a potential difference of V

0 
volts between the parallel plates 
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e µ 

(a) f, (b) f, (c) 

V = Vo V = Vo 

[HilJ illIDJ 
x
8

x x/0x x

x x x x x 

x x/ 0x x x

V=O V=O 

Fig. 6.13. Three different structures each consisting of two 

parallel perfectly conducting plates. The medium between the 

plates is a conductor for structure (a), a dielectric for structure 

(b), and a magnetic material for structure (c). The two plates 
are joined at one end by another perfectly conducting plate for 

structure (c). 

i 

of structures (a) and (b) by connecting appropriate constant voltage sohrces 
which are not shown in the figure. We pass a z-directed surface cumint /

0 

uniformly distributed in the y direction along the upper plate of str�cture 
(c) and return it in the opposite direction along the lower plate by coriinect
ing an appropriate constant current source which is not shown in the fitgure.

The medium between the plates of structure (a) is then characteri
1
kd by 

an electric field from the upper to the lower plate and hence by a cond111ction 
current in the same direction. The medium between the plates of stnJicture 
(b) is characterized by an electric field only from the upper to the 1Iower
plate and no current. The medium between the plates of structure i (c) is
characterized by a magnetic field parallel to the plates and towar�s the
direction of advance of a right-hand screw as it is turned in the sense /of the
current flow. Since the conduction current cannot leave the conductor� it has
to be tangential to the conductor surface. This forces the electric fidld for
structure (a) to be in the x direction. On the other hand, the electric :$eld at
the surface of a dielectric need not be tangential to it. This results in ftringing
of the electric field in the case of structure (b). However, by assumi1g that 
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d is very small compared to w and /, or by assuming that the structure is 
actually part of a much larger structure, we can neglect fringing and consider 
the electric field to be entirely in the x direction. For the same assumption 
in the case of structure ( c ), the magnetic field can be considered to be entirely 
in the y direction. 

From the result of Example 6-3, the electric field in the case of structures 
(a) and (b) is then given by

The current density J
c 

for structure (a) is given by 

J = aE = a V
oj 

c d x 

(6-70) 

(6-71) 

The total current J
c 

flowing from the upper plate to the lower plate is given 
by the surface integral of the current density over the cross section of the 
conductor. However, since the current density is uniform and directed 
normal to the plates, we can obtain this current by simply multiplying the 
magnitude of the current density by the area of the plates. Thus 

IC
= Jc

(wl) = a:0 wl (6-72) 

We now define a quantity known as the "conductance" ( o-------'WI,--- ), de
noted by the symbol G, as the ratio of the current flowing from one plate 
to the other to the potential difference between the plates. From (6-72), the 
the conductance of the conducting slab arrangement of Fig. 6.13(a) is given 
by 

G = b._ = awl (6-73) V0 d 
We note from (6-73) that the conductance is a function purely of the dimen
sions of the conductor and its conductivity. The units of conductance are 
(mhos/meter)(meter2/meter) or mhos. The reciprocal of the "conductance" 
is the "resistance" ( - ), which is denoted by the symbol R and 
has the units of ohms. Thus 

or 
V

o
= l

cR 
which is the familiar form of Ohm's law applicable to a finite region of con
ducting material. The resistance of the slab conductor is given by 

d d 
R =

awl
= 

aA 
where A is the area of the plates. 
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The phenomenon associated with conduction current is power dissipa
tion. From Chapter 5, the power dissipation density is given by 

Pa
= Jc • E = aE • E = aE2 (6-74) 

Performing volume integration of the power dissipation density over th� 
I 

volume of the conductor of Fig. 6.13(a), we obtain the total power dissipateq 
in the conductor as 

Pa
= f Pa dv = f aE2 dv 

vol vol 

= J andv
vol 

d2 

aV2 

= d2 
° (volume of the conductor) 

I 
I 

I 

! 
I 
I 
I 

(6-7�) 
I 
I 
I 
I 

2 
I 

_ 

aV0 (d I)_ awlv2 _ GV2 

J 

-7 w -7 o- 0 

Equation (6-75) gives the physical interpretation that conductance is t, e 
parameter associated with power dissipation in a conductor. 

Turning our attention to the structure of Fig. 6.13(b ), the displacemeht 
flux density is given by 

D = €E = f�ot (6-116) 

The surface charge density on the upper plate is given by 

[P,lx=o = [DJx=o • (iJ = f�o

The surface charge density on the lower plate is given by 

[p,]x=a = [DJx-a • (-iJ = -f�o

I 
I 

(6-77a) 
I 
i 

i 

I 
(6-77b) 

I 
I 

The total charge on either plate is given by the surface integral of the chai"ge 
density on that plate over the area of the plate. However, since the chalrge 
densities here are uniform, we can obtain the total charge simply by multi
plying the charge density by the area of the plate. Thus the magnitude Q of 
the charge on either plate is given by 

Q = p,(wl ) = €�0 wl (6-78) 

We now define a quantity known as the "capacitance" ( o----j 1---- ), 
denoted by the symbol C, as the ratio of the magnitude of the charge on 
either plate to the potential difference between the plates. From (6-78), the 
capacitance of the dielectric slab arrangement of Fig. 6.13(b) is given by 

C_ Q_ _fwl
-vo - d (6-79) 

We note from (6-79) that the capacitance is a function purely of the dimen-
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sions of the dielectric slab and its permittivity. The units of capacitance are 
(farads/meter)(meter2/meter) or farads. 

The phenomenon associated with the electric field in a dielectric medium 
is energy storage. From Chapter 5, the electric stored energy density is given 
by 

(6-80) 

Performing volume integration of the electric stored energy density over the 
volume of the dielectric of Fig. 6.13(b), we obtain the total electric stored 
energy in the dielectric as 

W = f w dv = J _!__ €E 2 dv 
e vol e vol 

2 

= f _!__ EV5dv 
vol 

2. d 2 

= � €�� (volume of the dielectric) 

- _!__ EV5(d t) = _!__ Ewl v2 = _!__cv2 
- 2 d2 w 2 d 

O 2 °. 

(6-81) 

Equation (6-81) gives the physical interpretation that capacitance is the 
parameter associated with storage of electric energy in a dielectric. 

Turning our attention to the structure of Fig. 6.13(c) and neglecting 
fringing, the magnetic field intensity between the plates is the same as that 
due to infinite plane current sheets of densities given by 

J= 
llo.
-I 

w z 

lo. --1 

w z 

for x = 0 

for x = d 

Hence the magnetic field intensity is uniform between the plates and zero 
outside the plates, that is, 

O<x<d 

otherwise 
From the boundary condition for the tangential magnetic field intensity, 
the value of H

0 
is equal to the surface current density I

0
/w since the field is 

zero outside the plates. Thus 

and 

H- Io·
--1 

w y 

for O < x < d 

for O < x < d (6-82) 

The magnetic flux If/ linking the current I
0 

is given by the surface integral of 
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the magnetic flux density over the area bounded by any contour along which 
the current flows. This area is simply the cross-sectional area of the magnetic 
material normal to the magnetic field lines. Since the magnetic field lines 
are straight, it may seem like they do not link the current. However, straight 
lines are circles of infinite radii and hence the magnetic field does link th� 
current. For the structure of Fig. 6.13(c), since the magnetic flux density is:

I 

uniform, we can obtain the required magnetic flux If/ by simply multiplying; 
the magnetic flux density by the cross-sectional area normal to it. Th�: 
quantity If/ is known as the magnetic flux linkage associated with thJ,! 
current I

0
• Thus f 

If/ = B (di) = µIo di 
y 

w 

I 
(6-83/i)

I' 
1' 

We now define a quantity known as the "inductance" ( � ), denote{d 
by the symbol L, as the ratio of the magnetic flux linkage associated with th!

,e 
current I

0 
to the current I

0
• From (6-83), the inductance of the magnetrc 

material slab arrangement of Fig. 6.13(c) is given by 

L = !I!... = µdi (6-8jl) 
� w l 

We note from (6-84) that the inductance is a function purely of the dimensio,�s 
of the magnetic material and its permeability. The units of inductance a1re
(henrys/meter)(meter2/meter) or henrys. i The phenomenon associated with magnetic field in a magnetic materi;al
medium is energy storage. From Chapter 5, the magnetic stored ener)gy 
density is given by 

(6-85) 

Performing volume integration of the magnetic stored energy density over 
the volume of the magnetic material of Fig. 6.13(c), we obtain the to,tal 
magnetic stored energy in the magnetic material as 

Wm = f Wm dv = f � µH2 dv 
vol vol 

= f .!_µn dv
vol 

2 W
2 

(6i86) 
= � '::2

5 (volume of the magnetic material) 
! 

=_lµn
(dwl)=_lµdln=.lLI5 2 w

2 2 W 2 
Equation (6-86) gives the physical interpretation that inductance is/ the 
parameter associated with storage of magnetic energy in a magnetic mat�rial. 

To write general expressions for the conductance, capacitance I and 
inductance in terms of the fields, let us consider the three structures shown 
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From (6-92) and (6-95), we note that 

£e = µE henry-farad/m2 

Sec. 6.4 

(6-96) 

Equations (6-93) and (6-96) provide simple relationships between the con
ductance per unit length, capacitance per unit length, and inductance per 
unit length of a structure consisting of two infinitely long, parallel perfect 
conductors having arbitrary but uniform cross sections. Expressions for 
these three quantities are listed in Table 6.2 for some common configurations 
of conductors having the cross sections shown in Fig. 6.15. 

1+------w--------+-1 

r 
d 

L __ 
(a) (b) 

(c) G) co 
2d a << d 

(b
2 - d 2

)
4 

>> a2 

2a 

(d) (e) 

Fig. 6.15. Cross sections of some common configurations of par
allel infinitely long conductors. 

2a 

E AMPLE 6-12. It is desired to obtain the conductance, capacitance, and inductance 
per unit length of the parallel cylindrical wire arrangement of Fig. 6.15(c). 

In view of (6-93) and (6-96), it is sufficient if we find one of the three 
quantities. Hence we choose to find the capacitance per unit length. To do 
this, we refer to Example 6-11 and Fig. 6.12 and note that placing a cylindrical 
conductor coinciding with the equipotential cylindrical surface having its 
axis at a distance b from the line charge PLo 

and on the side opposite to the 
grounded conductor will not alter the field. Hence the field of the parallel 
wire arrangement of Fig. 6.15(c) is exactly the same as the field due to equal 









I! 
ii 
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Alternatively, we can obtain £1 from energy considerations by making use
of the result (6-86) that the magnetic stored energy is equal to 1;Lf2. For £1, 

we have to consider the energy stored in the volume internal to the current
distribution. For unit length of the conductor, this is given by

Wm, = f �µH2 dv 
vol 

= r=o s::o r=o � µ('tr r dr d¢ dz= nµ(Ja
4 

The internal inductance is then given by

£, _ 2Wm, _ (nµJ5a
4/8) _ J!:... 

' - --yi:- - (J5n2a4) - 8n 
which is the same as (6-101). Finally, to find the total inductance per unit
length of the arrangement of Fig. 6. l 7(a), we have to add the external induc
tance due to the flux in the region a < r < b to the internal inductance
given by (6-101). This external inductance is given in Table 6.2. I 

From the steps involved in the solution of Example 6-13, we observe
that the general expression for the internal inductance is 

(6-102a)

where S is any surface through which the internal magnetic flux associated
with I passes. We note that (6-102a) is also good for computing the external
inductance since for external inductance N is independent of di/I, Hence

Lext = � f S 

di/I = N j (6-102b)

In Eq. (6-102b), the value of N is unity if /is a surface current as for the struc
tures of Figs. 6.13(c) and 6.14(c). On the other hand, for a filamentary wire
wound on a core, N is equal to the number of turns of the winding in which
case 1/1 represents the flux through the core, that is, the flux crossing the
surface formed by one turn. To explain this, let us consider a two-turn winding
abcdefghi carrying current I as shown in Fig. 6.18(a) and imagine the flux
lines penetrating the surface formed by the two-turn winding. According
to definition, the magnetic flux linking I is the flux crossing the surface formed
by the two-turn winding. Let us twist the portion cdef of the winding and
stretch the winding to the shape shown in Fig. 6.18(b). We can now see that
the flux lines come from underneath the surface of the first turn (abed), go
below the surface of the second turn (efgh), and come out ofit again as shown
in Fig. 6.18(b) so that the flux linking I is equal to twice the flux passing
through one of the surfaces abed and efgh. 

The discussion pertaining to inductance thus far has been concerned
with "self inductance," that is, inductance associated with a current distribu-
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Fig. 6.21. Lines of magnetic flux 
density at the boundary between 
free space and a magnetic material 
of permeability µ )> µ0 • 

Thus OG 1 � OG2, and 
B2 = s�n OG 1 � l
B1 

sm OG2 

Sec. 6.5 

/.J,1 >> /J-o 

/.J,2 = /.J,O 

For example, if the values of µ
1 

and OG2 are 1000µ
0 

and 89°, respectively, 
then OG 1 = 3°16' and sin OG1/sin OG2 = 0.057. We can assume for all practical 
purposes that the magnetic flux is confined entirely to the magnetic core 
just as the conduction current is confined to the conductor. The structure 
of Fig. 6.20(b) is then known as a "magnetic circuit" similar to the "electric 
circuit" of Fig. 6.20(a). 

For the structure of Fig. 6.20(a), we have 
V x E = 0 (6-105a) 

s: E • dl = V
0 

Jc
= aE 

I = f J • dS
c c 

For the structure of Fig. 6.20(b), we have 
VxH=O 

(H 0 dl=Nl0 

B=µH 

If/ = f 
A

B. dS

(6-105b) 

(6-105c) 

(6-105d) 

(6-106a) 

(6-106b) 

(6-106c) 

(6-106d) 

Equation (6-106a) results from the fact that there are no true currents in 
the magnetic material. In Eq. (6-106b), the factor Non the right side takes 
into account the fact that the filamentary wire penetrates a surface bounded 
by the path C as many times as there are number of turns in the entire 
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6.20(b) is 
<R = NI

0 = _I
If/ µA 

Sec. 6.5 

(6-109) 

In fact, if we assume that the magnetic field intensity H is uniform over the 
cross-sectional area and equal to its value at the mean radius of the toroid, 
we have 

IH,t, = NI0 

B,t, = µH<I> = µ�Io

If/ = B,t,A = µNf oA

<R = NI0 = _!_
If/ µA 

which agrees with (6-109). The equivalent circuit representations of (6-108) 
and (6-109) are shown in Figs. 6.22(a) and (b). 

Vo ± R Nio ± 

(a) (b) 

Fig. 6.22. Equivalent circuit representations for the structures 

of Figs. 6.20(a) and (b). 

EXAMPLE 6-15. The structure shown in Fig. 6.23(a) is that of a magnetic circuit
containing three legs with an air gap in the center leg. A filamentary wire 
of N turns carrying current I is wound around the center leg. The core 
material is annealed sheet steel, for which the B versus H curve is shown in 
Fig. 6.23(b). The dimensions of the magnetic circuit are 

A
2 

= 5 cm2 A
1 

= A
3 

= 3 cm2 

/2 = 10cm /
1 

= /
3 

= 20cm, l
g

= 0.1 cm 
We wish to obtain the equivalent circuit and find NI required to establish 
a magnetic flux of 8 x 10-4 Wb in the air gap. 
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(a) 

B, Wb/m2 

2.0 

1.0 

0 1000 

H, Amplm 

(b) 

r.--;i 
Effective _j_Q :__ l gl2

Actual L: - - � 

(c) 

Fig. 6.23. (a) A magnetic circuit. (b) B-H curve for annealed 
sheet steel. (c) Effective and actual cross sections for the air gap of 
the magnetic circuit of (a). 

2000 

Im 

The current in the winding establishes a magnetic flux in leg 2 which 
divides between legs 1 and 3. In the air gap, fringing of the flux occurs. This 
is taken into account by using an effective cross section which is greater than 
the actual cross section, as shown in Fig. 6.23(c). Using subscripts 1, 2, 3, 
and g for the fields and permeabilities associated with the three legs and 
the air gap, respectively, we can write the following equations: 

NI= Hzf
2 + Hg

l
g + H/1 

- 12 + lg + 11 - lfl2
µ A 'fig µ A lfli 

µ A2 2 g g I I 

= 1J1/R2 + IJI/Rg + lfl,<R1
0 = Hi

3 - H1!1 

- 13 l, 
- lf/3 µ A - lf/1

µ A 3 3 I I 

= 'fl 3(R3 - 'fl I (RI 

I 

(6-qo) 
I 
I 
! 

(6-111) 

The equivalent circuit corresponding to Eqs. (6-110) and (6-111) can:be 
I 

drawn as shown in Fig. 6.24, taking into account the fact that If/ g = /1f12 • 

To determine the required NI, we note that 

I 

B - lf/2
-

8 x 10-4 - 1 6 Wb/ 2 

2 - A2 - 5 x 10 4 - • 
m 



I
I 

I 
I 

1
16.6 
I 

I 

I 
I 
I 

393 Quasistatics; The Field Basis of Low-Frequency Circuit Theory 

¥'3 

¥'3 

¥'! ¥'3 

Fig. 6.24. Equivalent circuit for analyzing the magnetic 
circuit of Fig. 6.23(a). 

Sec. 6.6 

From Fig. 6.23(b), the value of H
2 

is 2200 amp/m. Since legs I and 3 
are identical, their reluctances are equal so that the flux If/ 2 divides equally 
between the two legs. Thus lf/

1 
= 1f1

3 
= lf/2

/2 = 4 x 10-4 Wb/m2. Then 

B -
lf/1 - 4 x 10-4 - I 333 Wb/ 2 

i - A1 - 3 x 10 4 - • 
m 

From Fig. 6.23(b), the value of H
1 

is 475 amp/m. The effective cross 
section of the air gap is (,./) + l

g
)2 = 2.34 cm 2. The flux density in the 

air gap is 

B - 'fig - 8 x 10-4 - I 46 Wb/ 2 
g - Ag - 2.342 x 10-4 -

. m 

The magnetic field intensity in the air gap is 

H = Bg = Bg = 1.46 = 0.1162 x 107 Wb/m2 

g µ
g 

µ
0 

4n X 10 7 

From (6-110), we then have 

NI= H
2!2 

+ H
g
l
g 
+ H

1!1 

= 2200 x 0.10 + 0.1162 x 107 
x 10-3 + 475 x 0.20

= 1477 amp-turns 

We note that a large part of the ampere-turns is due to high reluctance of the 
air gap. I 

Ouasistatics; The Field Basis of Low-Frequency Circuit Theory 

In Section 6.4 we considered three structures, shown in Figs. 6.13(a), (b), 
and ( c ), from the point of view of static fields. Let us now consider the three 
structures driven by time-varying sources. The resulting fields are then time 
varying. From Maxwell's equations for time-varying fields, we know that 
a time-varying electric field is accompanied by a time-varying magnetic field 
and vice versa. Thus, for example, a time-varying voltage source applied 
to the structure of Fig. 6.13(b) results in a time-varying electric field which 
has associated with it a time-varying magnetic field as shown in Fig. 6.25(a). 
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(a) 

lx x
a 

l

x 

l

x dl lV(t) XHX x x 
± x x x x E 

x x x x 

X Xb X X C 
z = 0 z = l 

Chap. 6 

1r--,g 
/x = 0

1
1 

/ I W 
I I 

I I 

h 

x = d 

(b) 

all
e l x

l

hxx 
x x x x xH x XEX xx 

x x x x x 

b x x x 

z = 0 z = l 

Fig. 6.25. For illustrating the behavior of the structures of 
Figs. 6.13(b) and (c) for time-varying sources. 

A certain amount of magnetic energy is then associated with the structu�e 
in addition to the electric energy. We can no longer say that the structu�e 
behaves like a single capacitor as in the case of static fields. Furthermore, 
applying Faraday's law to a rectangular path abcda as shown in Fig. 6.25(a;), 
we have 

area 

abed 

(6-112) 

I 

It follows from (6-112) that the voltage between a and b is not necessarily 
equal to the voltage between d and c because of the time-varying magnetic 
field. The voltage along the structure is dependent on z. However, under 
certain conditions, the time-varying magnetic field is negligible so that the 
electric field distribution at any time can be approximated by the static field 
distribution resulting from a constant voltage source between the pl�tes 
having a value equal to that of the source voltage at that time. Such approx
imations are known as quasistatic approximations and the corresponding 
fields are known as quasistatic fields. Thus, for the structure of Fig. 6.13(b) 
under the quasistatic approximation, aB/at is negligible so that 

VxE=O 

Ex(t) = Vst) 

(6-113) 

(6-114) 
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The magnitude of the resulting time-varying charge on either plate is 

Q(t) = (lw)f E,/t) = €;! V(t) = CV(t) (6-115) 

where C = €wl/d is the same as the capacitance obtained for the direct
voltage source. Differentiating both sides of (6-115) with respect to time, 
we have 

dQ = !!_(CV)dt dt (6-116) 

But, according to the law of conservation of charge, dQ/dt must be equal
to the current I flowing into the plate from the voltage source. Thus Eq. 
( 6-116) becomes 

d 
I= -(CV)dt (6-117) 

which is the familiar voltage-to-current relationship used in circuit theory 
for a capacitor. For the sinusoidally time-varying case, Eq. (6-117) reduces 
to 

i = jwCV (6-118) 

where i and V are the phasor current and phasor voltage, respectively, and 
a, is the radian frequency of the voltage source. 

Similarly, a time-varying current source applied to the structure of 
Fig. 6.13(c) results in a time-varying magnetic field which has associated 
with it a time-varying electric field as shown in Fig. 6.25(b). A certain amount 
of electric energy is then associated with the structure in addition to the mag
netic energy. We can no longer say that the structure behaves like a single 
inductor as in the case of static.fields. Furthermore, applying the integral 
form of Maxwell's curl equation for H to a rectangular path ef ghe as shown 
in Fig. 6.25(b), we have 

f: H • di - f: H • di= ft f €Ex dS (6-119) 

area 

efgh 

Since H is zero outside the structure, it follows from ( 6-119) that the current 
crossing the line ef is not necessarily equal to the current crossing the line 
hg because of the time-varying electric field. The current flowing along the 
structure is dependent on z. However, under the quasistatic approximation, 
an/at is negligible so that the magnetic field distribution at any time can be 
approximated by the static magnetic field distribution resulting from the 
flow of a direct current having a value equal to that of the source current 
at that time. Thus 

VxH�o 

H (t) � I(t)
)' 

w 

(6-120) 

(6-121) 
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The resulting time-varying magnetic flux linking the current is 

lfl(t) = (dl)µHy(t) = µ:! I(t) = LI(t) (6-122:) 

where L = µdl/w is the same as the inductance obtained for the direct curre t
source. Differentiating both sides of (6-122) with respect to time, we ha e

dlfl = !!_(LI)dt dt 
However, applying Faraday's law to the rectangular contour bounding t e
magnetic flux linking the current and noting that the contribution o
§ E • dl is entirely from the path ab shown in Fig. 6.25(b), we have 

J
b 

E • di = dlfl
a d! 

The left side of (6-124) is the voltage V(t) across the current source. T us
Eq. (6-123) becomes 

V = ft (LI)

which is the familiar voltage-to-current relationship used in circuit the ry
for an inductor. For the sinusoidally time-varying case, Eq. (6-125) reduce to 

V = jcoLi (6-126) 
where V and i are the phasor voltage and phasor current, respectively, nd
co is the radian frequency of the current source. / 

Finally, for the structure of Fig. 6.13(a) under the quasistatic apprcbxi-
mation, both aB/at and ao/at are negligible so that 

i 
V x E � 0 (6-127a) 
V x H � J

c (6-127b) 
In view of (6-127a), we have ! 

E
x
(t) = VJ!) (6-/128) 

The conduction current flowing from the upper plate to the lower platl is 

I,(t) - (lw)uE,(t) -
u;

l V(t) (61129) 

In view of (6-127b), § H • dl around a rectangular path surroundin the
conductor in the cross-sectional plane is equal to the conduction cu rent
J

c
. But the same quantity is also equal to the current I drawn from the v ltage

source. Thus 
I(t) = u;l V(t) = GV(t)

or 

V(t) = ...!!:__1I(t) = RI(t)
(1W 

(6-130b) 
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where G = uwl/d and R = d/uwl are the same as the conductance and resis
tance, respectively, obtained for the direct voltage source. Equations (6-130a) 
and (6-130b) are the familiar voltage-to-current relationships used in circuit 
theory for conductance and resistance, respectively. For the sinusoidally time
varying case, we have 

(6-131a) 
and 

(6-131b) 
where i and V are the phasor current and phasor voltage, respectively. 

To summarize what we have learned thus far in this section, the voltage
to-current relationships used in circuit theory for a capacitor, inductor, 
and resistor given by ( 6-117), ( 6-125), and ( 6-130b ), respectively, are valid 
only under the quasistatic approximation. For the quasistatic approximation 
to hold, aBjat must be negligible for the case of the capacitor, ao;at must 
be negligible for the case of the inductor, and both aB/at and ao/at must be 
negligible for the case of the resistor. To illustrate a method for determining 
the quantitative condition for the quasistatic approximation to hold in a 
particular case, we consider the structure of Fig. 6.25(b) in detail for the 
sinusoidally time-varying case in the following example. 

EXAMPLE 6-16. The parallel plate structure of Fig. 6.25(b) is driven by a sinusoidally
time-varying current source. It is desired to. show that the quasistatic approx
imation holds, that is, that the structure behaves like a single inductor as 
viewed by the current source for the condition 

1 
f � 2nl,/µ€

wherefis the frequency of the current source andµ and€ are the permeability 
and permittivity, respectively, of the medium between the plates. 

Under the quasistatic approximation, the time-varying magnetic field 
distribution at any particular time must be approximately the same as that 
of the static magnetic field resulting from a direct current equal to the value 
of the source current at that time. Thus, denoting the phasor corresponding 
to this magnetic field by ni, we have 

(6-132) 

where i
0 
= [Il

z= o is the phasor corresponding to the source current. This 
time-varying magnetic field induces a time-varying electric field in the x
direction in accordance with Maxwell's curl equation for E, given in phasor 
form by 

v x E = -jcoB 



398 Applied Electromagnetics Chap. 6 

Denoting the phasor corresponding to this electric field by E�, we have 
aE� = -jwBq = -jwµffq = -jwµ 10 (6-133)
az y y 

w 

Integrating (6-133) with respect to z, we obtain 
- jE� = -jwµ ; (z - l) (6-134) 

where we have evaluated the arbitrary constant of integration by using the 
boundary condition that [E�],_ 1 

= 0. If ao;at is not negligible, the time
varying electric field corresponding to the phasor E� produces a time-varying 
magnetic field in they direction in accordance with Maxwell's curl equation 
for H, given in phasor form by 

v xii= jwD 
Denoting the phasor corresponding to this induced magnetic field by ff�, 
we have 

aff' - - i --a Y = jwD� = jw€E� = w2 
µ€ __Q_(z - l)

z w 

Integrating (6-135) with respect to z, we obtain 

H' = -OJ2
µ€ lo [(z - /)2 - !:....]

Y 
w 2 2 

(6-135) 

(6-136) 

where we have evaluated the arbitrary constant of integration by using th 
boundary condition that [H�L-o = 0 since the condition that the current a . 
z = 0, as determined by the tangential magnetic field intensity at z = 0 
must be equal to the source current is satisfied by (6-132) alone. 

Now, the time-varying magnetic field corresponding to the phasor give 
by (6-136) induces a time-varying electric field. Denoting the phasor corre 
sponding to this induced electric field by E�, we have 

aE� . ff' _ . 3 2 1
0 [(z - !)2 12

] az = -.-Jwµ 
y -

1w µ €
w 2 - 2 

Integrating (6-137) with respect to z, we obtain 

E� = jOJ3 
µ

2€ � [(z 6 /)3 
- /2(z

2
- /)]

(6-137) 

(6-138) 
I 

where we have again evaluated the arbitrary constant of integration by using 
the boundary condition that [E�],_ 1 

= 0. Continuing in this manner, we 
obtain the successively induced magnetic and electric fields as 

H" = OJ4

µ
2€2 1

0 [(z - /)4 _ l2(z - /)2 + 5/4] 

y w 24 4 24 (6-139) 

E"' = _ jOJs 
µ

3€2 lo [(z - /)5 
_ l2(z - /)3 + 5l4(z - /)]

x w 120 12 24 (6-1�0) 
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ii'" = _ 6 3 3 io [(z - 1)6 
_ 

/2(z - /)4 + 5/4(z - /)2 _ �]
)' ro µ 

€ w 720 48 48 720 
E�' = .. . 

ii"" - . . .

)' 
-

The total electric field is given by 
E = E' + E" + E"' + ... 

x x x x 

= -jc.oµ io (z _I)+ jro3 µ2€ 
i0 [(z - 1)3 _ /2 (z - /)]w w 6 2 

· s 3 2 io [(z - /)5 /2(z - /)3 + 5/4(z - /)] + - JO) µ € w 120 - 12 24 
...

= -j (µ io (1 + c.o2µ€12 + 5ro4µ2f2/4 + ... )
'Y?w 2 24 

Sec. 6.6 

(6-141) 

(6-142) 

X [ ro,v'µf(z - I) - (ro,v'µfiz 
31 

/)3 + (ro,/iif)5(z 
51 

/)5 
- ... J

= -j {µ i0 
sin ro,jµf(z - I)

'Y? w cos rov'µf/ 
The total electric field at z = 0 is given by 

[EJ,-o = j (µ io tan rov'µf/-v? w (6-143) 

This result could have been obtained simply by adding [E�],_ 0, [E�],_0, 

[E�'L-o, and so on. However, Eq. (6-142) was derived to point out that the 
electric field and hence the voltage along the structure varies sinusoidally 
with distance. Similarly, if we add iii, ii;, ii�, ii�', and so on, we obtain 
the total magnetic field as 

ii = i0 cos rov'µf(z - I) (6-144) 
>' w cos rov'µf / 

indicating that the magnetic field and hence the current along the structure 
varies cosinusoidally with distance. 

The phasor voltage across the current source is given by 

t\ = [V],-0 
= s: [Exlz-o di

= j (µ iod tan rov'µf/-v? w 

= jc.oµdl j tan rov'µf/
w O rov'µf/ 

= jc.oLio 
tan�/

(J) µ€ 

(6-145) 

where L = µdl/w is the inductance of the structure computed from static 
_field considerations. Equation (6-145) represents the voltage-to-current rela-
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I 

tionship at the source end of the structure under the condition for whicli 
ao;at is not negligible. For ro,/µ€! � 1, tan roJ;if/ � roJ;ifl and Eq.: 
(6-145) reduces to 

V0 = jroLi0 

which is the voltage-to-current relationship for a· single inductor. Thus, fo 
the quasistatic approximation to hold, the condition to be satisfied is 

1 
f � 2nl,/µ€ 

As a numerical example, for l = 0.1 m, µ = µ
0

, and € = €0, the value f 
I/2nl,./jii is (1500/n) x 106

• For a value of 1/10 for ro,/µ€1, the frequen y 
must be less than 150/n MHz for the structure to behave essentially Ii e 
a single inductor. I 

EXAMPLE 6-17. In Example 6-16 we showed that the quasistatic approximation hol s 
for the structure of Fig. 6.25(b) for the condition!� I/2nl,./jii. The structu e 
then behaves like a single inductor as shown in Fig. 6.26(a). It is desir d 
to examine the behavior of the structure as viewed from the source end 
frequencies beyond the value for which the quasistatic approximation hol 

lo L 
+r +l

lo Vo L Vo 

J
lo 

-1
Vo 

(a) (b) (c) 

Fig. 6.26. (a) Equivalent circuit for the input behavior of the 
structure of Pig. 6.25(b) under quasistatic approximation. (b) and 
(c) Same as (a) except for frequencies higher and higher than those
for which the quasistatic approximation is valid. The values of 
L and Care µdl/w and €wl/d, respectively. 

Expressing tan ro,./jiil as a sum of infinite series in powers of ro 
Eq. (6-145) can be written as 

V0 = jroLf0 ( 1 + � ro2 µ€12 + 1� ro4 µ2€2/4 + ... )

For the quasistatic approximation, we neglect all the terms involving porers
of ro,./jiil in comparison with 1 in the series on the right side of (6-147\For
a frequency slightly higher than the value for which condition (6-14

/ 
) is

! 
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acceptable, we have to include the second term in the series. Thus we have - - ( 1 )V0 
= jroL/

0 
1 + 3ro2 µ€12 

= jroLi
0 
( 1 + j ro2 Lc) 

(6-148) 

where C = Ewl/d is the capacitance computed from static field considera
tions if the structure were open circuited at z = I. Rearranging (6-148), we 
get 

I- i\ f\ (l 1 2L c) 0 = jroL( l  + !ro2 LC) = jroL 
- 3ro 

= V0 (
j
�L 

+ jro �) 
(6-149) 

The voltage-to-current relationship given by (6-149) corresponds to that of 
an inductor of value Lin parallel with a capacitor of value ! C  as shown in Fig. 
6.26(b). Thus the same structure which behaves almost like a single inductor 
at low frequencies governed by (6-146) acts like an inductor in parallel with 
a capacitor as the frequency is increased. For still higher frequencies, we 
have to include one more term in the series on the right side of (6-147), giving 
us 

or 

io = _Vo (1 + 3
1 ro2L c + J:....ro4£2 c2)-1

JOJL 15 

= j:L ( 1 - +ro2 LC - J5ro4 L2 C2 + higher-order terms)

= _Vo (1 - _!_ro2L c - _!_ro4£2 c 2) JOJL 3 45 
_ Vo + 

fl ( .roe 
+ 

.0)
3 LC2) 

- jroL O J 3 J 45 
t\ t\ = jroL 

+ 1/[(jroC/3 )(1 + ro2 LC/15)] 
- Vo Vo 
,..._. jroL 

+ (3/jroC)(l - ro2 LC/15)
Vo + Vo = jroL (3/jroC) + (jroL/5)

(6-150) 

The equivalent circuit corresponding to (6-150) is shown in Fig. 6.26(c). It is 
now evident that as the frequency is increased, more and more elements are 
added to the equivalent circuit. For an arbitrarily high frequency, we must 
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where £ = µd/w and e = Ew/d are the inductance and capacitance, re
spectively, per unit length of the structure computed from static fields. 

Equations (6-155) and (6-156) relate the time-varying voltage distribution 
along the z direction to the time-varying current distribution along the 
z direction. While we have obtained these equations for the particular case 
of a structure consisting of two parallel plane conductors, they are general 
and hold for any structure consisting of two parallel, infinitely long, perfect 
conductors having arbitrary but uniform cross sections. To prove this, let 
us consider such a structure having the cross section shown in Fig. 6.27. 

x 

zX---.y 

Fig. 6.27. For deriving the transmission-line equa
tions. 

For the sake of generality, we consider the dielectric to be imperfect with 
uniform conductivity u and also work with arbitrarily time-varying fields 
instead of sinusoidally time-varying fields. Thus the electric and magnetic 
fields between the conductors are given by 

E(x, y, z, t) = Ex
(x, y, z, t)ix + E

y
(x, y, z, t)iy 

= Ex/x, y, z, t) 

H(x, y, z, t) = Hx
(x, y, z, t)t + H/x, y, z, t)iy 

= Hx/x, y, z, t) 

Substituting (6-157a) and (6-157b) in 

we have 

aB V x E = -at

(6-157a) 

(6-157b) 

(6-158) 

Taking the cross product of both sides of (6-158) with the unit vector i,, 
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we get 

or 

(6-159) 

Performing line integration of both sides of (6-159) from point a on the:
inner conductor to point b on the outer conductor, we have 

or 

a
J

b = -at
a 

Bxy • i.1 d/1 
(6-160), 

where i.1 
is the unit vector normal to dl

1 
as shown in Fig. 6.27. The integra11 

on the left side of (6-160) is simply the voltage V between the conductors i 
the plane in which the line integral is evaluated since the magnetic field ha 
no z component. The integral on the right side of (6-160) is the magnetic flu 
per unit length in the z direction, linking the inner conductor if the conducto s 
are carrying a direct current equal to the current I crossing the pla e 
containing the path ab. It is therefore equal to £/, where J:, is the inductan e 
per unit length of the structure computed from static field considerationt 
Thus we have 

av�; 
t) = _ Ji [.CI(z, t)] = -.c a1�; 

t)

Similarly, substituting (6-157a) and (6-157b) in 

we have 

an anV x H = Jc + at = aE + at

(6-161) 

(6-16i2) 

Taking the cross product of both sides of (6-162) with the unit vector iz, we 
get 

or 

aHy. aHX • _ c· E ) a c· 0 )- az 
l
y - az 

Ix - a lz X xy + at lz X xy 

aHXY c· E ) a c· n ) �=-a lz x xy - at lz x xy (6-l63) 
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��&-� 

IV(z + !:iz, t) - V(z, t) = -£ !:iz aJ(
a
z, t) (6-166a) 
t I 

I(z + !:iz, t) - I(z, t) = -9 !:iz V(z + !:iz, t) - e /:iz av(z ti !:iz, t)
I (6-166b) 

The circuit theory equivalent of Eqs. (6-166a) and (6-166b) can be drawn a 
shown in Fig. 6.28 by recognizing that Eq. (6-166a) is Kirchhoff's voltag 

I(z,t) c 

b 

l(z + !:J.z,t) 

r
£.ilz 

·1
T

l V(z + Az,t) 

_j 
a 

d 

Fig. 6.28. Circuit equivalent for an infinitesimal length /:iz 
of a transmission line. 

law written for the loop abcda and that Eq. (6-166b) is Kirchhoff's curr�nt 
law written for node c. Thus an infinitesimal length /:iz of the structurel is 
equivalent to the circuit shown in Fig. 6.28 as /:iz - 0. It follows that ihe 
circuit representation for a portion of length l of the structure consists of 
infinite number of such sections in cascade as shown in Fig. 6.29. In other 

'--------- - - - -- -

00 

-----z

Fig. 6.29. Distributed circuit representation of a transmission 
line. 
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words, the structure can no longer be represented by a collection of lumped 
circuit elements. The conductance, capacitance, and inductance are "dis
tributed" uniformly and overlappingly along the structure, giving rise to the 
concept of a "distributed circuit." Physically, the electric stored energy, the 
magnetic stored energy, and the power dissipation due to conduction current 
flow are distributed uniformly and overlappingly along the line. 

Before we conclude this section, we wish to show that the power flow 
across any cross-sectional plane of the transmission line as computed from 
surface integration of the Poynting vector is equal to the product of the 
voltage and current in that plane. To do this, let us again consider the 
structure of Fig. 6.27. Considering an infinite plane surface (which is a spher
ical surface of infinite radius and hence a closed surface) in the cross-sectional 
plane and noting that the fields outside the conductors are zero, the power 
flow P across any cross-sectional plane is simply the surface integral of the 
Poynting vector over the cross-sectional surface S between the conductors. 
Thus 

P(z, t) = f s 
Ex/z, t) X Hx/z, t) • i, dS

= f f (E
xy X Hx) • (di! X dl2

) 
a c, 

= ff (E
xy 

• dl,)(H
xy 

• dl2
) 

a c, 

-f ,( (E
x
y • dl2

)(H
x
y • di,)

a jC2 

(6-167) 

Since we can always choose C
2 

such that dl
2 

is everywhere normal to E
xy 

or, 
alternatively, since we can al�ays choose the path ab such that dl 1 is every
where normal to Hx

y, the second integral on the right side of (6-167) is 
equal to zero. Since f: E

xy 
• di, is independent of the path on S chosen from 

a to b or, alternatively, since £ H
x
y • dl2 

is independent of the contour C
2 Ye, 

on S, Eq. (6-167) simplifies to 

P(z, t) = u: Ex
y • di, )(f c, 

Hx
y • dl2) 

= V(z, t) l(z, t)
which is the desired result. 

(6-168) 
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equations. Thus, in cartesian coordinates, we have 

v2E = µE a2Ex
x 

ai2 

v2E = µE a2Ey
y ai2 

V2£ = µE a2Ez z 
ai2 

Sec. 6.8 

In the most general case, we can have all three components of E and 
each one of these can be dependent on all three space coordinates x, y, and 
z and on time. But let us assume for simplicity that EY = Ez = 0. Then we 
have 

(6-174) 

We are still faced with a three-dimensional second-order partial differential 
equation. Our aim at present is to illustrate that time-varying electric and 
magnetic fields give rise to electromagnetic wave propagation. Hence let us 
simplify the problem further by assuming that Ex is independent of x and y.

Thus 

and Eq. (6-174) simplifies to 
a2Ex _ € a2Ex 
az

2 - µ 
at2 

(6-175) 

(6-176) 

Equation (6-176) is the one-dimensional scalar wave equation. Its solution 
can be found by using the Laplace transform technique or the separation of 
variables technique. However, we will here write down the solution and show 
that it indeed satisfies the equation. Thus let us consider 

Ex(z, t) = A f(t - ,Jjiiz) + B g(t + ,Jjiiz) (6-177) 
where f and g are any functions of the respective arguments and A and B 
are arbitrary constl:!,nts. Then 

a:/ = -A,Jjii f'(t - ,Jjiiz) + B g'(t + ,Jjiiz) 

a2E �
az/ = Aµ€ f"(t - ,v µEZ) + BµE g"(t + ,Jjiiz) (6-178a) 

a:/ = A f'(t - ,Jjiiz) + B g'(t + ,Jjiiz)

a;ix = A f"(t - ,Jjiiz) + B g"(t + ,Jjiiz) (6-178b) 

where the primes denote differentiation with respect to the respective argu
ments. From (6-178a) and (6-178b), we note that (6-177) satisfies (6-176) 
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and hence is the solution for (6-176). The forms of the functions f and lg
depend upon the particular problem under consideration. Some examplces 
are cos ro(t - ,Jiifz), e-<,-&zi•, and (t + ,Jiiiz) sin (t + ,Jiiiz). In tf,1.e 
general case, the solution can be a superposition of several different functio�1s 
of (t - ,Jiifz) and (t + ,Jiiiz).

To discuss the meaning of the functions f and g in the solution for x• 
let us consider a specific example 

f(t - ,Jiifz) = e-<t-,/µ,z>u(t - ,Jiiiz)
Assigning one value for t at a time, we can obtain a series of functions of z.

The time history of these functions can be illustrated conveniently b a 
three-dimensional plot in which the three axes represent time t, distance: z,

and the value of the functionf Such a plot for the function under considera
tion is shown in Fig. 6.30. We note from Fig. 6.30 that the function of� at 

exp[-(t -yr,Iez)J u(t -yr,Iez)

3/ffe 

/ 
/ 

/ 

Fig. 6.30. Three-dimensional representation of the function 
e-c,-,iµ,z>u(t - ,./µ€z) for illustrating the concept of a traveling
wave.

any value of time is exactly the same as the function of z at a preceding 
1
value 

of time but shifted towards the direction of increasing z. For examplle, by 
following the peak in the function, we note that from time t = 0 td time 
t = 1, the peak shifts from z = 0 to z = 1/ ,Jjii. Thus the function f(t- ]�z) 
represents a waveform traveling in the positive z direction with a ;Jl;ity 
1/,Jiif. The solution is said to correspond to a traveling wave in the pbsitive 
z direction, or a ( +) wave. The word "wave" is used here in the sense khat it 
represents any arbitrary function of z and not necessarily a sinusJ)idally 









414 Applied Electromagnetics Chap. 6 

(a) 

(b) 

[Ex(t) ]z=zo 
- - _ _j_Eo oos (-wyµ:i,, + <j>o) 

I 
I 

w 

Fig. 6.32. (a) Electric field intensity in a z = constant plane 
versus time. (b) Electric field intensity at a fixed time versus z,

for a uniform plane wave in the sinusoidal steady state and 
traveling in the z direction. 

as the phase velocity since the argument of the cosine function is known, as 
the phase and an observer has.to travel with a velocity 1/,/iif in the z direc
tion to follow a constant phase of the field, that is, to stay on a particular 
constant phase surface. The constant phase surfaces are the planes z = con
stant. Denoting the phase velocity by v

p
, we have 
1 

v - - (6-186) 
p - ,/µ€ 

Substituting (6-186) into (6-185), we get 
(6-187) 

Equation (6-187) is an important relationship which relates the space and 
time variations of the fields in an electromagnetic wave. For free sp�ce, 
Eq. (6-187) gives a simple formula 

(wavelength in meters) x (frequency in megahertz) = 300 
The quantity w,/iif is the rate at which the phase changes with distance 
z at any particular time. It is known as the phase constant and is denote� by 
�� 

J
I 

p = w,/iif (6 /188) 
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and 

Sec. 6.8 

(6-189) 

(6-190) 

The units of p are (radians/second)(seconds/meter) or radians per meter. 
For a wave traveling in the z direction, the phase changes most rapidly 

in the z direction since, looking in any other direction, the distance between 
any two particular constant phase surfaces is longer than the distance 
between the same two �onstant phase surfaces as seen looking in the z direc
tion, as shown in Fig. 6.33. Thus, if we choose the coordinate system such 

�Constant Phase
/ i/ Surface 

� / Distance Between
:;::::::----y / Constant Phase 

(
Surfaces 

.c;..-----+-----11--- z, Direction
of 

Propagation

Fig. 6.33. Distances between two constant phase sur
faces for a uniform plane wave as seen along different
directions.

that the wave is traveling in an arbitrary direction with reference to the 
coordinate system, the rates at which the phase changes along the coordinate 
axes are all less than the rate at which the phase changes along the direction 
of propagation which is normal to the constant phase surfaces. Denoting the 
phase constants along the x, y, and z directions by fix

, Py
, and Pz

, respectively, 
and the phase at the origin at t = 0 by cp

0
, we note that the phase at any 

point (x, y, z) is rot - (Px
x + p

y
y + fiz

z) + ¢
0

• The constant phase surfaces
are the planes given by 

Px
x + PYY + fiz

z= constant (6-191) 

The direction of the gradient of the scalar function Px
x + py

y + fiz
z is 

the direction of the normal to the constant phase surfaces and hence is the 
direction of propagation whereas the magnitude of the gradient gives 
the rate of change of phase with distance or the phase constant p along the 
normal and hence along the direction of propagation. Thus, noting that 

V(fix
x + PYY + fizz) = P)x + P)y + fiz

i
z 
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the direction of propagation is along the vector P)x + Pyiy + P,i, and the 
phase constant along the direction of propagation is 

P = (P; + P; + P;>112 (6-192) 
We can combine these two facts by defining vector p as 

P = P)x + P)y + P,i, (6-193) 
so that the direction of P is the direction of propagation and the magnitude 
of p is the phase constant. Hence p is known as the propagation vector. 
The phase at any point (x, y, z) can then be written as wt - p • r + <p0 , 

where r is the position vector xix + yiy + zi,. 
Denoting the electric field intensity in the plane of zero phase as E

0
, 

we can now write the expression for the electric field intensity vector asso
ciated with a uniform plane wave propagating along the direction of p as 

E = E
0 

cos (rot - P • r + <p0) (6-194a) 
or the complex vector as 

_ 
E = E0

ehl•e-JP·r = E
0
e-JP·r (6-194b) I 

where E
0 

= E0
eN°. Since E

0 
must be entirely transverse to the direction of 

propagation, it follows that 
p • E

0 
= 0 or (6-195) 

Similarly, the magnetic field intensity vector associated with the wave which 
is in phase with E can be written as 

H = H
0 

cos (rot - p • r + <p0) (6-196a) 
or the complex vector as 

ii= Hoeloi\oe-lP·r = Hoe-JP·r (6-196bj 
where ii

0 
= H0

ehl•. Since H
0 

must be entirely transverse to the direction of 
propagation, it follows that ·· 

p • H
0 

= o or p • ii
0 

= O (6-197r
Furthermore E

0 
and H

0 
must be normal to each other with their cros,s 

product (Poynting vector) pointing in the direction of propagation and with 
the ratio of their magnitudes given by 

/ 
Eo = /µ = wµ = wµ (6-198) 
H0 'Y € w,Jii; P

In vector notation, we express the preceding statement as 

and hence 
- 1 -
H=-PXEwµ 

(6-199) 
I 

i 

(6-200) 
I 
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The phase velocity along the direction of propagation is given by 
w 

VP =p (6-204) 

For an observer moving along the x axis, y and z are constants. Hence the 
observer has to travel with a velocity equal tow/ fi

x 
to remain on a particular 

constant phase surface. This velocity is known as the apparent phase velocity 
in the x direction. Thus the apparent phase velocities vpx, vPY' and vpz in the 
x, y, and z directions are 

i 
(6-205) ,'1 

w 
vpx =

Px 
Substituting (6-204) and (6-205) into (6-192), we have 

1 1 1 1 
2=-2-+--r+2 
VP Vpx Vpy Vpz 

(6-206)i 
I 

' 

Note that the apparent wavelengths and phase velocities along the coordinate' 
axes are greater than the wavelength and the phase velocity, respectively, 
along the direction of propagation, since the phase changes less rapidly 
with distance along the coordinate axes than along the direction of prov-. 
agation. We will now consider an example to consolidate our understandirl\l;f 
of the uniform plane wave propagating in an arbitrary direction with referenc�

r to a set of coordinate axes. 

EXAMPLE 6-19. The orientation of the propagation vector p for a uniform plane
wave of 12 MHz propagating in free space is as shown in Fig. 6.35. It makes 

z 

0 Fig. 6.35. Orientation of the prop
agation vector P for the uni

x form plane wave of Example 6-19. 

an angle of 30° upwards with the horizontal (xy) plane and its projection on 
the xy plane makes an angle of 60° with the x axis. The electric field intensity 
has no upward (z) component and its magnitude as a function of time at 
x = 0, y = 0 and z = 0 is 10 cos (wt - 30°) volts/m, where w is the angular 
frequency. It is desired to find the expressions for the complex field vectors 
E and it
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Since the medium is free space, the phase velocity along the propagation 
vector is 1/� = 3 x 108 m/sec. From (6-204), we have 

P
_ ro _ 2nf _ 2n X 12 X 106 

_ 0 OS 
- VP - VP -

3 X J08 
- • 'IT, 

From the given orientation of the propagation vector, we have 

P = 0.08n(cos 30° cos 60° ix + cos 30° sin 60° iy + sin 30° iz) 
= 0.02n(�ix + 3iy + 2iz) 

The solution for Eis of the form E
0 

e-jp·r. Since E has no z component, we 
can write 

From (6-195), we have 

P • Eo = Px
Exo + PY

E
YO = 0 

Since Px 
and PY are both real, E

xo 
and E

Y0 must be either in phase or in 
phase opposition for the above equation to be true. Hence let 

and 

so that 

and 

or 

Exo = -�Eyo 

From the given function of time for the electric field intensity magnitude 
at x = 0, y = 0 and z = 0, that is, r = 0, we have 

I Exot + EyOjy I eja. = IOe-j30° 

or 

and 

Substituting Exo 
= -� Eyo in the above equation, we obtain 4£;0 = 100 

or Eyo 
= 5 and Exo = -5�. Thus 

E0 = (-5� e-j"16t + 5e-j"/6iy)

The required expression for E is then given by 

it= 5(-�t + iy)e-j,,/6e-jo .02,,<VJx+3y+2z>

The corresponding expression for ii can be obtained by using· (6-200) as 
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follows: 
- 1 -
H=-PxE 

OJµ 

t i
y 

iz 
- 1 i"T 3 2 e-inl6e-j0.02n(,J3"x+3y+2z) 

- 96n ,v ., 
-� 1 0

= _1_(-i 
- /""Ti + 2 /""Ti )e-inl6e-j0.02n(,J3"x+3y+2z) 

48n x ,v ., Y ,v ., z 

Chap. 6: 

We can also find the wavelength along the direction of propagation and 
the apparent wavelengths and velocities of propagation along the x, y, and 
z axes. Thus 

Note that 

and 

1 2n 2n 
11. 

= 1f = 0.08n = 25 m

2n 2n
l

x = Px 
= o.o2� n = 57.7 m

1 2n 2n 
11.y 

= PY = 0.06n = 33.3 m

2n 2n ,l = - = -- = 50 mz 
Pz o.o4n 
ro 24n x 106 

8 

vp
x = 

Px 
= 0.02� 1l = 6.928 X 10 m/sec

v = 
OJ = 24n x 106 = 4 X 10s m/secPY Py 

0.06n 
_ OJ _ 24n x 106 

_ s 
vpz - Pz - 0.04n - 6 X 10 m/sec

1 1 1 1 
6.9282 + 42 + 62 = 32

in agreement with (6-203) and (6-206), respectively. I 

In Section 4.9 we discussed polarization of vector fields. The fields 
we found in the preceding example are linearly polarized. We then say !that 
the wave is linearly polarized. If we combine two linearly polarized uniform 
plane waves propagating in the same direction and having electric /field 
vectors equal in magnitude but oriented perpendicular to each other' and 
differing in phase by n/2, we obtain a circularly polarized uniform f:)lane 
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wave. For example, a uniform plane wave characterized by the electric field 
intensity vector 

E = 2.5(-t _ ,�-J\ + 2,v1Ti,)ei"l3e-jo. 02,,c..r:rx+Jy+2,> 

when superimposed with the uniform plane wave of Example 6-19, would 
result in a circularly polarized uniform plane wave. In general, two linearly 
polarized uniform plane waves propagating in the same direction result in an 
elliptically polarized uniform plane wave. 

We have introduced the topic of electromagnetic wave propagation by 
considering uniform plane waves. The uniform plane waves are a special class 
of waves known as transverse electromagnetic waves, abbreviated TEM 
waves, so named because the electric and magnetic fields are entirely trans
verse to the direction of propagation, that is, components of E and H along 
the direction of propagation are zero. For a general TEM wave, the fields 
are not uniform but are functions of position in the transverse plane .. The 
electromagnetic field between the conductors of a transmission line made 
up of perfect conductors is entirely transverse to the line axis and is in general 
nonuniform in the cross-sectional plane. In fact, we considered such a field 
[Eqs. (6-157a) and (6-157b)] in Section 6.7 and, by substituting into Maxwell's 
curl equations, we obtained the transmission-line equations given by (67161) 
and (6-165). For a perfect dielectric medium between the conductors, that is, 
for a = 0, these equations are 

and 

aV(z, t) = -£aI(z, t)
az at 

aJ(z, t) _ -eaV(z, t) 
az - at 

where, with reference to Fig. 6.27, 

and 
V(z, t) = J: E(x, y, z, t) • dl 1 

J(z, t) = ,i:: H(x, y, z, t) • dl2 :r c, 

(6-207) 

(6-208) 

(6-209a) 

(6-209b) 

are, respectively, the voltage between the conductors and the current along 
the conductors for any (z, t). 

Eliminating I from (6-207) and (6-208), we obtain a differential equation 
for V alone as 

(6-210) 

This equation is completely analogous to Eq. (6-176). It is the wave equation 
for the TEM wave propagation guided by the conductors of the transmission 
line except that it is written in terms of the voltage between the conductors 
instead of the electric field in the medium between the conductors. We can 
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write the solution for (6-210) from our experience with the solution of 
(6-176). The solution is 

V(z, t) = v+(t - �z) + v-(t + �z) (6-211) 
where the subscripts + and - indicate (+)and (-)waves.The correspond
ing solution for the line current I can be obtained by substituting (6-211) into 
(6-207) or (6-208). This gives 

I(z, t) = If [V+(t - �z) - v-(t + �z)] 

Defining 

(6-212) 

we have 

l(z, t) = i [V+(t - �z) - v-(t + �z)] 
0 

(6-213 

The quantity Z 
O 

is the characteristic impedance of the transmission line analo, 
gous to the intrinsic impedance of the dielectric medium. 

f 

Thus the general solutions for the voltage and current along a trans} 
mission line are superpositons of ( +) and ( -) traveling waves along thy 
line with velocities equal to 1/ � in the respective directions. We will refef 
to these voltage and current waves as "transmission-line waves." They art 
completely analogous to the uniform plane waves with the analogy as followsl: 

v-E
x 

!�>-H
y 

£�>-µ

e <->-f 

1 1 

�
<-

>- ,./µ€

fi<->-f?-

i 
(6-214) 

I 

I 

We should, however, keep in mind that the phenomenon is one of transverse 
electromagnetic waves guided by the conductors of the transmission liqe. 
It is not necessary to work with the fields since, because of the transvense 
electromagnetic nature of the fields, we are able to define uniquely the voltage 
and current for any transverse plane. In other words, if we consider two 
points a and b in the same transverse plane on the two conductors, the 
voltage between these two points is uniquely defined by the electric field/in 
that plane since a closed path lying in that plane and passing through a a.ind 
b does not enclose any magnetic flux. Similarly, the current flowing acros� a 
transverse plane in one direction along the inner conductor and returning in 
the opposite direction along the outer conductor is uniquely defined by the 

! 
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impedances Z01 and Z02 
and velocities of propagation v

p 1 and v
p2, respec

tively, connected in cascade as shown in Fig. 6.37(b). The specification of 
Z0 

and v
p 

for a transmission line is equivalent to the specification of£ and e 
since Z0 

= ft1e and v 
P 

= 1/ ,,/JSe. A ( +) wave characterized by voltage 
v+ and current J+ is incident on the junction z = 0. We are not interested 
in the time variation of the incident waves at present. We merely wish to 
determine the transmission and reflection properties at the boundary. 
Obviously, there is no need to write equations for both the plane wave and 
transmission line cases because of the analogy. Hence we will simply write 
the equations in terms of the transmission-line parameters V, I, and Z0 

with 
the understanding that they can be replaced by E

x, H
y
, and t/, respectively. 

The relationship between v+ and J+ is given by 

J+ = � (6-218) 
Zo1 

The incident wave cannot be transmitted into line 2 as it is, since the voltage
to-current ratio in line 2 must be equal to Z02 ' Thus, let the transmitted wave 
voltage and current be v++ and J++, respectively. The incident and transmitted 
waves alone cannot satisfy the boundary conditions at the junction, which 
require that the voltages on either side of the junction be equal and the 
currents on either side of the junction be equal. These conditions are analo
gous to the boundary conditions for the fields, which state that the tangential 
electric fields (EJ must be continuous and that the tangential magnetic fields 
(Hy) must be continuous (in the absence of a surface current) at the boundary 
between the dielectrics. To satisfy the boundary conditions, there is only one 
possibility. This is setting up a (-) wave in line 1 which reflects part of the 
incident power into line 1. Let the voltage and current in this reflected wave 
be v- and 1-, respectively. The voltage-to-current relationships for the trans
mitted and reflected waves are 

and 

V++ 

]++ = -
Zo2 

The boundary conditions at z = 0 are 
v+ + v- = v++ 

r+r=r+ 

Substituting (6-218), (6-219), and (6-220) into (6-221b), we have 
v+ v- v++ 

Zo1 - Zo1 
= 

Zo2
Solving (6-221a) and (6-222) for v-, we get 

v- = v+ Zo2 - Zo1
Zo2 + Zo1 

(6-219) 

(6-220) 

(6-22l a) 
(6-221b) 

(6-222) 

(6-223) 
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We now define a quantity r, known as the voltage reflection coefficient 
as the ratio of the (-) wave or reflected wave voltage to the ( +) wave o 
incident wave voltage. From (6-223), the voltage reflection coefficient i 
given by 

r - v- - Zo2 - Zo1 - v+ - Zo2 + Zo1 

We then note that the current reflection coefficient is 
1- -v-;z v-
r = 

v+ / z 

O 1 = - v+ 
= -r

0 1 
We also define a quantity "t'v, known as the voltage transmission coefficien,

1 
t, 

as the ratio of the ( + +) wave or transmitted wave voltage to the ( +) wa
y

e
or incident wave voltage. Thus 

I/ 
v++ v+ 

+ v- v- 11 

"Cv 
= 

v+ 
= 

v+ 
= l + v+ 1 1 

(6-22
r
i6) 

= 1 + r = 2Zo2 I Zo2 + Zo1 

The current transmission coefficient "C1 is given by 
r+ 

r + 1- 1-

"C1 
=y

= 
r 

= I+ 
r

= 1 - r = 2Zo1 

Zo2 + Zo1 

(6-2 7) 

At this point, we may be surprised to note that the transmitted voltage1 or
the transmitted current can be greater than the incident voltage or the incident 
current, respectively, depending upon whether r is positive or negative, hat 
is, Z02 > Z01 or Z02 < Z01 . However, this is not of concern since it is the 
power balance that must be satisfied. To check this, we note that 

p+, incident power = v+ J+ 

p-, reflected power = v-1-= crv+)(-rJ+) 
= -r2 v+1+ = -r2P+ 

where the minus sign signifies that the actual power flow is in the neg tive 
z direction, and 

p++, transmitted power= v++1++ = [(1 + nv+][(l - r)l+] 
= (1 - P)v+l+ = (1 - P)P+ 

Thus p++ = p+ + p-, which verifies the power balance at the junction. The 
fact is that if the transmitted voltage is greater than the incident voltag , the 
transmitted current is less than the incident current and vice versa so that 
the transmitted power is less than the incident power. We will now co sider 
an example to illustrate the application of the formulas for the reflectio and 
transmission coefficients. 















433 Traveling Waves in Sinusoidal Steady State; Standing Waves

can be seen from 

<P) = 1 ffi£[V(d)i*(d)] 

= 1 <R£[('2jv+ sin Pd)( 2 �* cos pd)] 

= 1 ffi£(2} �: 1
2 

sin 2Pd) = 0 

Sec. 6.10 

The amplitudes of the sinusoidally time-varying line voltage and line current 
as functions of d are 

I V(d) I= 2 ljl Iv+ 11 sin Pdl = 21 v+ 11 sin Pdl 
- Iv+ I I I(d) I = 2

--:z-
I cos pd I 

0 

(6-232a) 

(6-232b) 

These amplitudes are sketched in Fig. 6.44. The patterns of Fig. 6.44 are 
known as "standing wave patterns." Standing wave patterns are easily meas
ured in the laboratory with the aid of moving probes which sample the 
electric field. 

d•� ll'I 

2A 3?.. ?.. ?.. O 

d•� 1r1

9?.. n 5?.. 3A ?.. O 

4 4 4 4 4 

Fig. 6.44. Standing wave patterns for voltage and current along
a short-circuited line. 

E XAMPLE 6-21. A transmission line of length I and short circuited at both ends has
certain energy stored in it. From the preceding discussion, this energy must 
exist in the form of complete standing waves on the line. What are the pos
sible standing wave patterns and the corresponding frequencies? 

The voltage must be zero at both ends of the line since it is short cir
cuited at both ends. It follows from the standing wave patterns of Fig. 
6.44 that the current must be maximum at both ends. Thus the possible 
voltage and current standing wave patterns are as shown in Fig. 6.45. They 
must consist of integral numbers of half-sinusoidal variations over the length 
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or 
sin 2Pd = 0.5 

2Pd= � 

l d= 24

or 

or 

5n 

6 

5l 

24 

Sec. 6.11 

Thus the stub must be located at a distance A/24 or 5Af24 from the load. 
_ (e) To find the length of the stub, we note that the imaginary part of 
Y(d) is (0.02 cos 2Pd)/(l.25 - sin 2Pd). Its value at the stub location is 

B- 1
0.02 x 1.15 ford= f

4

5l 0.02 x (-1.15) ford= 24
(f) The input impedance of a short-circuited line of length l is given by

(6-234). The input admittance is 

fin = 1- =. 
l = -jY

0 
cot PlZin JZ

0 
tan Pl

Thus the stub length l must be such that 

or 

1
-j0.02 x 1.15

-jY
0 

cot Pl=
j0.02 x 1.15

l ford= 24
5l ford= 24

l 
= 1

0.113l

0.387l 

l ford= 24
5l ford= 24 I

The steps involved in the analytical solution of the stub matching 
problem in the preceding example consist of conversion from line impedance 
to reflection coefficient, then going along the constant \ f' \ circle in the 
complex-plane diagram of Fig. 6.47 to find f'(d) and then converting back to 
impedance. This process of conversion and reconversion from one quantity 
to the other can be eliminated by constructing a chart which associates 
with each point in the complex f' plane the corresponding impedance or 
admittance. One such chart is known as the Smith chart. To discuss the basis 
of Smith chart construction, we define the normalized line impedance, z(d), 
as the ratio of the line impedance Z(d) to the characteristic impedance Z

0
• 

Thus 

z(d) = Z(d) = 1 + f'(d)
Z

0 
1 - r(d) (6-243) 
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1.2 

Constant 
VSWR Circle, 

O.ISS A Unit Conductance 
/ Circle 

---

I 

/ Toward 
Generator 

Fig. 6.54. For illustrating the various procedures to be followed 
in using the Smith chart. 

(d) To find the VSWR, we recall that at the location of a voltage maxi
mum, the line impedance is purely real and maximum. Denoting this impe4-
ance as Rmax, we have 

R _ Vmax _ I y+ I (1 + It I) = z (VSWR)max 
- I min - (I v+ 1/Zo)(l - Ir I)

0 
(6-245) 

Thus the normalized value of Rmax is equal to the VSWR. We therefore mqve 
along the line to the location of the voltage maximum, which involves going 
around the constant If I circle to the point on the positive real axis. To 1<10 

this on the Smith chart, we draw a circle passing through A and with center 
at 0. This cir�e is known as the "constant VS�R circle"_since for point

�

1on 
this circle, Ir I and hence VSWR = (1 + Ir 1)/(1 - Ir I) is a const nt. 
Impedance values along this circle are normalized line impedances as s en 
moving along the line. In particular; since point B (the intersection of he 
constant VSWR circle with the horizontal axis to the right of 0) correspo ds 
to voltage maximum, the normalized impedance value at point B whic is 
purely real and maximum, is equal to the VSWR. Thus, for this exam le, 
VSWR=4. 

(e) Just as point B represents the position of a voltage maximum
the line, point C (intersection of the constant VSWR circle with the horizo 
axis to the left of 0, i.e., the negative real axis of the f plane) represrnts
the location of a voltage minimum. Hence, t0 find the distance of the ilfirst 
voltage minimum from the load, we move along the constant VSWR ci,lrcle 
starting at point A (load impedance) towards the generator ( clock;wise
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and then find y(Q) diametrically opposite to i(Q). To find the location
nearest to the load at which the real part of the line admittance is equal to 
the line characteristic admittance, we first locate y(O) at point F diametrically 
opposite to point A which corresponds to i(O). We then move along the 
constant VSWR circle towards the generator to reach point G on the circle 
corresponding to constant real part equal to unity (we call this circle the 
"unit conductance circle"). Distance moved from F to G is read off the chart 
as (0.325 0.185)1 = 0.141. This is the distance closest to the load at which 
the real part of the normalized line admittance is equal to unity and hence 
the real part of the line admittance is equal to the line characteristic admit
tance. I 

EXAMPLE 6-27. It is desired to solve the stub matching problem of Example 6-25 
by using the Smith chart. 

J We make use of the principle of stub matching illustrated in Examply 
6-25 and the procedures learned in Example 6-26 to solve this problem irli
the following step-by-step manner with reference to Fig. 6.55. /! 

(a) Find the normalized load impedance.

- Z, 
R 

_ 30 - j40 = 0 6 _ ·o 8 ZR Z - 50 • ] • 
0 

Locate the normalized load impedance on the Smith chart at point A. 

0 

1.16 

o
_
. 
_
12
_
s 
,.
"A 
___ 

o.;.:. .. 137 "A

0.6 

\ 
\ 
\ 
" 

I 

I 
I 
I 

-0.8 0.363 "A 

-1.16

X; 

Fig. 6.55. Solution of transmission-line matching problem by 
using the Smith chart. 
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(b) Draw the constant VSWR circle passing through point A. This is
the locus of the normalized line impedance as well as the normalized line 
admittance. Starting at point A, go around the constant VSWR circle by 
half a revolution to reach point B diametrically opposite to point A. Point 
B corresponds to the normalized load admittance. 

(c) Starting at point B, go around the constant VSWR circle towards
the generator until point C on the unit conductance circle is reached. This 
point corresponds to the normalized line admittance having the real part 
equal to unity and hence it corresponds to the location of the stub. The 
distance moved from point B to point C (not from point A to point C) is 
equal to the distance from the load at which the stub must be located. Thus 
the location of the stub from the load= (0.1665 - 0.125)l = 0.0415k 

(d) Read off the Smith chart the normalized susceptance value corre
sponding to point C. This value is 1.16 and it is the imaginary part of the 
normalized line admittance at the location of the stub. The imaginary part 
of the line admittance is equal to 1.16 x Y0 = (1.16/50) mhos. The input 
susceptance of the stub must therefore be equal to -(1.16/50) mhos. 

(e) This step consists offinding the length of a short-circuited stub having
an input susceptance equal to -(1.16/50) mhos. We can use the Smith chart 
for this purpose since this simply consists of finding the distance between 
two points on a line (the stub in this case) at which the admittances (purely 
imaginary in this case) are known. Thus, since the short circuit corresponds 
to a susceptance of infinity, we start at point D and move towards the gen
erator along the constant VSWR circle through D (the outermost circle) 
to reach point E corresponding to -jl.16, which is the input admittance 
of the stub normalized with respect to its own characteristic admittance. 
The distance moved from D to Eis the required length of the stub. Thus 
length of the short-circuited stub= (0.363 - 0.25)l = 0.113l. 

(f) The results obtained for the location and the length of the stub agree
with one of the solutions found analytically in Example 6-25. The second solu
tion can be obtained by noting that in step (c) above, we can go around the 
constant VSWR circle from point B until point Fon the unit conductance 
circle is reached instead of stopping at point C. The stub location for this 
solution is (0.3335 - 0.125)l = 0.2085l. The required input susceptance of 
the stub is (1.16/50) mhos. The length of the stub is the distance from point 
D to point G in the clockwise direction. This is (0.137 + 0.25)l = 0.387.A.. 
These values are the same as the second solution obtained in Example 
6-25. I

We have illustrated the use of the Smith chart by considering the trans
mission-line matching problem. However, from the procedures learned in 
Example 6.26, it can be seen that the Smith chart can be used for all trans
mission-line and analogous plane-wave problems involving reflection, 
transmission, and matching. As a further illustration of the applications of 
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Since the boundary condition at a perfect conductor surface dictates 
that the tangential component of the electric field be zero, a reflected wave 
must exist which cancels completely the tangential component (which is 
the only component in this case) of the electric field vector of the incident 
wave at the surface of the conductor. Such cancellation is possible only if 
the tangential component of the electric field in the reflected wave at the 
surface of the conductor is entirely in the y direction, that is, the same as 
the direction of the tangential component of the electric field vector of the 
incident wave. Furthermore, since we are dealing with linearly polarized 
uniform plane waves, the electric field in the reflected wave must everywhere 
be in the same direction. Hence it must have a y component only everywhere. 
Thus the electric and magnetic fields of the reflected wave can be written as 

E = E' e-iP,·•j 
r O y 

= E�e-i(-p cos (JT i:1:+P sin 8r i::)•rjJ' 
= E�el(Px cos e,-Pz sin e,)jy 

- 1 -
H, = -P, x E,wµ 

= 1€(-E' sine i - E' cos e i )ei(Px cos e,-Pz sine,) 
'\/µ 0 rx O rz 

(6-248a) 

(6-248b) 

where E� is a constant, p = w�, and e, is the angle between the propaga
tion vector P, and the normal to the conductor as shown in Fig. 6.56. 

Adding the incident and reflected fields, we obtain the components of 
the total electric and magnetic fields as 

Ey = Eoe-j(px cos e,+Pz sin Oil + E�ej(px cos e,-Pz sine,) 

ii = /€[-E sine. e-j(px cos e,+Pz sine,) 
x 'Vµ 0 , 

- E'o sin er ei(Px cos e,-Pz sine,)] 

ii = /€ [E cose.e-j(pxcose,+pzsinO,)
z 'Vµ 0 , 

- E'o cos e, ei(Px cos e,-Pz sine,)] 

(6-249a) 

(6-249b) 

(6-249c) 

Applying the boundary condition at the surface of the conductor, we have 

[E] = t e-jpz sine,+ E' e-jpz sine, = 0y x= O O O for all z (6-250) 
Equation (6-250) can be satisfied only if the exponential factors are equal for 
all z. Thus we obtain the result 

(6-251) 
that is, the angle of reflection is equal to the angle of incidence, which is the 
familiar law of reflection in optics. Substituting (6-251) into (6-250), we have 

(6-252) 
Substituting (6-251) and (6-252) into (6-249a)-(6-249c), we obtain the follow-
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involving TE modes in waveguides. The proof is left as an exercise (Problem 
6.68) for the student. We will now consider some examples, to consolidate. 
what we have learned thus far in this section. 

EXAMPLE 6-28. The dimension a of a parallel-plate waveguide is 5.0 cm. Determin
the propagating TEm,o modes for a wave frequency of 10,000 MHz, assumin
free space between the plates. For each propagating mode, find (a) the cuto
frequency fc, (b) the angle O; at which the wave bounces obliquely betwee
the conductors, (c) the guide wavelength A

g
, (d) the phase velocity v

p
,, an

(e) the guide impedance 11
g
·

i 

From (6-257), the cutoff wavelengths are Ac = 2a/m = 10/m cm. Th
wave frequency of 10,000 MHz corresponds to a wavelength A of 3 cm i 
free space. Hence the propagating TEm ,o modes are TE1 ,0(Ac = 10 cm , 
TE2 ,0(Ac = 5 cm), and TE3 ,0(Ac = 10/3 cm). For each propagating mod , 
the quantities fc, (),., Ag

, v
p
,, and 11

g 
can be computed by using the followi g 

formulas: 

J, = Vp = I 
c Ac Ac� 

() _ -1 A 
.--COS T 

c 

A - A 
g - ,JI - (A/Ac)2 

V = Vp 

pz ,JI - (A/Ac)2

11 -
11 

g - ,JI - (A/AY 

The computed values are as follows: 

Mode 

fc, MHz 
(};,deg 

Ag,Cffi 

Vpz, m/sec 
17e, ohms 

TE1,o 

3000 

72.55 

3.145 

3.145 x 108 

395.2 

1where v p = r;-;-;:--
"-' µofo 

where 11 = flio
'V� 

TE2,o 

6000 

53.13 

3.75 

3.75 x 108 

471.2 

TE3,o 

9000 

25.15 

6.883 

6.883 x 1 8 

864.9 I 

EXAMPLE 6-29. A parallel-plate waveguide extending in the z direction and hating 
a = 3 cm has a dielectric discontinuity at z = 0 as shown in Fig. 6.60(a). 
For TE1 ,0 waves of frequency 6,000 MHz incident from the free-space side, 
(a) find the fraction of the incident power transmitted into the region z > 0, 
and (b) find the length and permittivity of a quarter-wave section required 
to achieve a match between the two media. 













! 
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! 

The variation of Pz 
with w is shown in Fig. 6.64. A diagram of this kind is!

known as thew - Pz 
diagram or the dispersion diagram. The phase velocity) 

corresponding to any particular frequency is given by the slope of the lin�

w 

We 

'/ 

/ 

/ 
/ 

/ 
/

)(Slope = Vgz /
/ 

� Slope = Vpz

/ 

/ 

/ 
/ 

/ 

Fig. 6.64. Pz versus w for the parallel-plate wave
guide. 

I 

drawn from the origin to the point on the curve corresponding to that ftte
quency. The group velocity corresponding to any two frequencies w 1 and m2 

is given by the slope of the line joining the two points on the curve corre
sponding to those two frequencies. If we have a band of frequencies, we can
find group velocities for each pair of these frequencies in this manner. We
can attribute a group velocity to the entire group only if all these group
velocities are equal. From Fig. 6.64, we see that this is not possible for a
wide band of frequencies because of the nonlinear dependence of p z upon

w. Hence it is not meaningful to talk of a group velocity for a group of waves
comprising a wide band of frequencies. If, on the other hand, the frequencies
are contained in a narrow band about a predominant frequency w, then 'we
can approximate the nonlinear w - Pz 

curve in that narrow band by a
straight line having the slope equal to that of the actual curve at w so tbat
it is meaningful to attribute a velocity to that group. This group velo�ity
is given by 

(6- 67)
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try associated with the bouncing of the waves between the walls, it is known 
as "geometric dispersion." There are other types of dispersion as we will 
learn in later sections. The relationship (6-267) also holds for these other 
types of dispersion since its derivation is independent of the mechanism 
causing the dispersion. 

6.13 Waves in Imperfect Dielectrics and Conductors; 
Attenuation and the Skin Effect 

Thus far we have been concerned with wave propagation in perfect dielectri 
media (a = 0). In this section we will discuss wave propagation in los

1 media, especially in good conductors. We restrict our discussion to sinusoid 
steady state. For a medium characterized by conductivity a, permittivity , 
and permeability µ, we recall that Maxwell's curl equations are given b. 

v x E = -aB = - µ aH /a1 at 

ao aE V x H = J + at = aE + € at

For sinusoidally time-varying fields, we have 
v x E = -jwµii 
V x ii = aE + jw€E = (a + jw€)E 

(6-270�) 
(6-270�) 

Taking the curl of (6-270a) on both sides and using the vector identity :d r 
V x V x E, we obtain 

V(V. E) - V2E = -jwµV xii 
But from (6-270b), we have 

V·E= ). V·Vxii=O 
O' ]W€ 

(6-2 1) 

(6-2 2)

Substituting (6-272) and (6-270b) into (6-271), we obtain the vector w ve 
equation for the electric field as 

V2E = jwµ(a + jw€)E 
Defining a complex quantity ji as 

we write (6-273) as 
ji2 = jwµ(a + jw€) 

V2E = y2E 
Assuming that the electric field has only an x component, which is depen ent 
on the z coordinate only, that is, 
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second term in the integrand can be ignored since a» WE. Hence the integral 
is simply the conduction current flowing in the conductor. Denoting this 
by i

x
, we have 

wH/0) = t or 

Substituting (6-292) into (6-290), we get 

jj (0) = 
t 

y 
w 

- 1 - I - 2 Pin= 211wllxl

Substituting for fj in (6-293) from (6-286c), we have 

pin= 1 (1 +j)� � ltl2 

= 1 (I + j) aJw It 12

I I 
I i 12 + . 1 I I i 12= 2 <10W x }2 <10W x 

(6-292) 

(6-293) 

(6-294) 

From (5-206), the real part on the right side of (6-294) is the time
average power dissipated in the conductor. It is also exactly the result that 
would be obtained by computing the time-average power dissipated under 
quasistatic conditions in a conductor of length I, width w, thickness o, a11d 
conductivity a if the current t were distributed uniformly over the crass 
section of the conductor. This gives an alternative significance for the skin 
depth o. We will denote the resistance 1/aow by the symbol R

s
. From (5-206), 

the imaginary part on the right side of (6-294) is 2w times the time-avenage 
magnetic stored energy in the conductor since the time-average electric 
stored energy is negligible in view of a» WE. In fact, a volume integration 
of Jµ I H

Y 
12 gives exactly the imaginary part of the right side of (6-294)

divided by 2w, that is, 
I I Ii 124 W<10W x 

This energy is the same as the time-average magnetic energy stored under 
quasistatic conditions in an inductor of value 1/waow if the current It I were 
flowing in it. This inductance is the internal inductance of the conduc:tor 
which we denote as L;, Thus the impedance offered by a portion of the con
ductor of length I and width w to the current flowing in it is given by 

Z; = R
s 
+ jwL; = -i-- + j-i-- (6-i95) <1uw auw 

i 
This impedance is known as the "internal impedance." We may empMsize 
that the formulas for skin depth and internal impedance developed �ere 
are strictly valid for plane conductors only. However, if the radius pf a 
cylindrical conductor is very large compared to the skin depth for the mat

/
l::rial 

of the conductor, these formulas can be used with negligible error. 
I 
I 
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EXAMPLE 6-31. Figure 6.67 shows the cross section of a hollow cylindrical conductor 
of radius a and thickness d « a, in which current flows axially. It is desired 
to find the approximate expression for the internal impedance of the con
ductor per unit length in the axial direction if the skin depth o for the material 
is« d.

Fig. 6.67. Cross section of a 
hollow cylindrical conductor of 
thickness small compared to its 
radius. 

Since dis« a, we can assume that the required internal impedance is ap
proximately equal to the internal impedance of a plane conductor of appropri
ate width. If dis not« a, we cannot use this approximation and the problem 
must be solved in cylindrical coordinates. If o is « d, it is actually immaterial 
whether the conductor is hollow or not since the current does not penetrate 
much below the surface and hence the depth can be assumed to be infinity 
for the purpose of computing the internal impedance. Thus the required 
internal impedance is approximately the same as the internal impedance of 
a plane conductor of infinite depth and width equal to 2na. From (6-295), 
this is equal to (1 + j)/2naao per unit length in the axial direction. I 

In Sections 6.8, 6.9, and 6.10, we considered transmission-line waves 
between perfect conductors with the medium between them as a perfect 
dielectric. These waves are exactly TEM since the perfect conductors (a = oo) 
do not require any axial electric field to maintain a current flow along them. 
If the dielectric is now made imperfect, the waves are still exactly TEM 
except that attenuation takes place as they propagate down the line. In fact, 
the transmission-line equivalent circuit in Section 6.7 was derived by con
sidering the dielectric to be imperfect. On the other hand, if the conductors 
are imperfect, the finite conductivity requires an axial electric field for the 
current to flow along the conductors. This axial electric field in the conductors 
is accompanied by an axial electric field in the dielectric since the boundary 
condition at the interface between the dielectric and the conductor requires 
that the tangential electric field be continuous. Thus the electric field between 



l 

) 
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the conductors is no longer entirely transverse and hence the waves are 
no longer exactly TEM waves. However, if the conductors are good con
ductors, as is the case in practice, the axial electric field is very small compared 
to the transverse electric field and the waves between the conductors are 
almost TEM waves. In the conductors, the axial component of the electric 
field dominates so that power flow is almost normal to the dielectric-con
ductor interface. The situation as compared to the perfect conductor case 
is illustrated in Fig. 6.68. Thus, as the wave propagates, it gets attenuated 

Perfect Conductor Imperfect Conductor 

x 

x 

x 

x x x 

x x x 
H 

x x x 

(a) 

I 

E,J 

l 

x x 

x XH 

x x 

(b) 

Fig. 6.68. Fields for a transmission line employing (a) perfect 
conductors, and (b) imperfect conductors. 

partly due to power dissipation in the lossy dielectric and partly due to ene gy 
leakage into the conductors which is dissipated in the conductors. The po er 
dissipation in the lossy dielectric is accounted for in the distributed equiva ent 
circuit by the conductance in parallel with the capacitor. The power diss pa
tion in the conductors can be accounted for by introducing into the s ries 
branch an impedance which is offered by the conductors to the current ow. 
Since the current flow is almost parallel to the conductor surface, this im ed
ance is approximately the same as the internal impedance given by (6-��95) 
per unit length. Thus we obtain the distributed equivalent circuit for a Vbssy 
transmission line as shown in Fig. 6.69, where the factor 2 takes into acc�i>unt 
the two conductors and ;: 

CR, = resistance per unit length of the conductor due to skin eilrect, 
£

1 
= internal inductance per unit length of the conductor du:le to

k. 
fli 

,1 s me ect, 
g, £, e = conductance, inductance, and capacitance per unit le;ingth 

if the conductors were perfect. 
The circuit of Fig. 6.69 forms the basis for lossy transmission-line tlJleory 
which follows along lines similar to lossless transmission-line theory t\ut is 
characterized by attenuation and dispersion. 
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distributed counterpart of a lumped parameter resonant circuit. The fre
quencies f. = n/21,,/iit are the resonant frequencies or the natural frequencies 
of oscillation of the parallel-plate resonator. 

The same concept can be extended to waveguides, discussed in Section 
6.12. For example, by superimposing two TE

m
,o waves of equal amplitude� 

propagating in positive and negative z directions in a parallel-plate wave� 
guide, we can obtain complete standing TE

m
,o waves in the guide, having 

nodes (zeros) of E
y 

at intervals of integer multiples of A
g
/2 in z. By placin

i 
perfect conductors in these planes, we do not alter the fields in any othe 
plane. Conversely, by placing perfect conductors in two transverse plane 
of a parallel-plate waveguide, separated by a distance d, we create a resonato 
which supports standing waves of guide wavelengths ).,

gn 
= 2d/l, wher 

I= I, 2, 3, .... The corresponding modes are designated as TE
m
,o,i modes 

where I stands for the number of half-wavelengths in the z direction. Procee -
ing in this manner to rectangular waveguides leads to resonators which a e 
enclosed by perfect conductors on all sides. These are known as cavi y 
resonators although the term "cavity" is also used for partially enclosed 
resonators. We will, however, not pursue these ideas any further, but consid ,r 
the effect of conductor losses. 

If the conductors of a resonator are imperfect, some of the energy is 
dissipated in them as it oscillates from one field to the oth�r. We then ass 
ciate a Q or "quality factor" to the resonator. The quality factor is defin d 
as 

Q _ 2 energy stored 
- n energy dissipated per cycle

_ 2 energy stored 
- n energy dissipated per second/number of cycles per second

_ 2 f 
energy stored

- n time-average power dissipated
If the conductors are good conductors, the losses are small. The stored ene gy 
and power dissipated are then computed by assuming that the fields in he 
resonator are the same as in the lossless case, that is, perfect conductor c 
We will use this technique to find the Q of a parallel-plate resonator in 
following example. 

EXAMPLE 6-32. For the parallel-plate resonator of Fig. 6.70, it is desired to find he 
Q, assuming that the plates are made up of imperfect conductors of con uc
tivity a and having thickness of several skin depths for the frequencie of 
interest. 

From (6-299), the energy stored in the resonator per unit area of the 
plates is given by 

w � €E5! (6-�0 1) 







,· 
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fields in all these waves. Thus it is given by 
E(z) = Eoe-rz + f' Eoe-2r1erz

+ f'2£ e-2fle-fz + f'3£ e-4flefz
0 · 0 

+ f'4£oe-4f/e-fz + , , ,

= £0 [e-fz(l + f2e-2r1 + f'4e-4fl + ... )

+ f'erze-2r1(l + f2e-2r1 + ... )]

-
e-fz + f e-2flefz

-E ----'-�---
- 0 

1 - r2e-2f/ 

Sec. 6.15 

(6-304) 

From (6-304), we note that the condition for oscillation, that is, for a field 
to be set up in the medium for zero £

0
, is 

or 
(6-305) 

Denoting f' = If' I e19 and substituting for ji in terms of 0G and p, we write 
(6-305) as 

or 
1r1 e-oo/ = 1

1 -
OG = T1n1r1

and 

and 

n = 0, 1, 2, 3, ... 

0- Pl= ±nn 

pt= 0 ± nn, n = 0, 1, 2, 3, ... (6-306) 

where we choose only those values of n for which pt is greater than zero. 
While the condition pt= 0 + nn can be satisfied for several frequencies 
for a given/, the condition OG = (1//) In If' I is satisfied by a particular active 
medium only for a narrow range of frequencies, so that oscillation occurs 
only in that narrow range of frequencies. Note that for f' = -1 as is the 
case for perfectly conducting plates, the condition for oscillation is 

1 OG = T In 1 = 0 and pt= nn, n = 1, 2, 3, ... 

which agrees with the result for the parallel-plate resonator. 

�.15 Waves in Plasma; Ionospheric Propagation 

Thus far we have discussed wave propagation in free space and perfect 
dielectrics and then in lossy dielectrics and good conductors. In free space 
and perfect dielectrics, the conduction current is zero so that the current is 
entirely of the displacement type. In lossy dielectrics, we have both conduc
tion and displacement currents but the conduction current is small compared 
to the displacement current. In good conductors, the displacement current 
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Since the free electrons and heavy positive particles are distributed with 
statistical uniformity in the ionized region, the net space charge is zero so 
that 

(6-312) 

Taking the curl of both sides of (6-311a) and making use of (6-311b) and 
(6-312), we obtain 

-
( Ne2 )-

v2E = -ro2µ0
€

0 
1 - --

2
- E mOJ €0 

(6-313) 

Equation (6-313) is the wave equation for a plasma medium. Comparing it 
with (6-173), we note that it is similar to the wave equation for a perfect 
dielectric medium with the permittivity f replaced by fo( l  - Ne2/mro2€

0
). 

We may therefore call the quantity €
0
(1 - Ne2/mro2

€
0

) the effective per
mittivity of a plasma medium. 

We now define a quantity known as the plasma frequency, JN, as 

1
1

Ne2 --

JN = -2 - = ,j80.6N
n m€

0 

(6-314) 

where f 
N 

is in hertz and N is in electrons per cubic meter. The plasma fre
quency is simply another way of specifying the electron density in the plasma. 
Substituting (6-314) into (6-313), we have 

V2E = -ro2µ0
f

0
(1 - :?)E = y2E

where the propagation constant r is given by 

- · I (1 11)Y = JOJ,y µofo - J2 (6-315) 

Thus wave propagation in plasma is characterized by the propagation con
stant given by (6-315). We note that for f> fm (I - JU /2) > 0, y is purely 
imaginary, and the wave is propagated. For f < Im (1 - f U f 2) < 0, y is 
purely real, and the fields are attenuated. For the propagating range of fre
quencies, the phase constant is 

and the phase velocity v 
P 

is given by 

ro 1 c 

VP
= 

7J = ,j µ0€0,/1 - JU/2 = ,/1 - JU/2

(6-316) 

(6-317) 

where c is the velocity of light in free space. In view of the dependence of 
v

p 
on the wave frequency, wave propagation in plasma is characterized by 

dispersion. This dispersion is known as parametric dispersion from the 
point of view that it is a consequence of the frequency dependence of the 
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effective permittivity of the medium. The group velocity is given by 

_ dw _ I !tr 
Vg - dfi - CV 1 - f2 

Note that 

EXAMPLE 6-33. An important example of plasma is the ionosphere, which is a region
of the upper atmosphere extending from about 50 km to more than 1000 kn:t 
above the earth. In this region the constituent gases are ionized, mostly due 
to ultraviolet radiation from the sun. The electron density in the ionosphere 
exists in several layers known as D, E, and Flayers in which the ionization 
changes with the hour of the day, the season, and the sunspot cycle. For the 
purpose of our discussion, we will assume that the electron density increases 
continuously from zero at the lower boundary, reaching a peak at some 
height, typically lying between 250 and 350 km, and then decreases continu
ously as shown in Fig. 6.73(a). We will assume that it is uniform geograph
ically, which is not the case in reality, and that the geometry is plane instea,d 
of spherical. Furthermore, wave propagation in the ionosphere is complicated 
by the presence ofthe earth's magnetic field. We will here ignore the effect 
of the earth's magnetic field. Let us consider a uniform plane wave of fre
quency f incident obliquely at the lower boundary of such a plane ionosphere 
at an angle 00 

with the normal to the boundary, as shown in Fig. 6.73(�). 

Height 

......_ _________ N 

(a) (b) 

Fig. 6.73. (a) Variation of electron density versus height for a 
simplified ionosphere. (b) Path of a wave incident obliquely on 
the ionosphere. 
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We wish to investigate the path of the wave as it propagates in the ionized 
medium. 

We divide the region into several infinitesimal slabs, in each of which 
the electron density can be considered to be uniform with height. Let us 
consider the boundary between the free space and the first slab, for which 
we will denote the plasma frequency as JN, i • From (6-317), the phase velocity 
along the direction of propagation, that is, normal to the constant phase 
surfaces in this slab, is given by 

c 

V p, I = ,v'l - f'fv. ii j2 
For the waves in the free space and in the slab to be in step at the boundary, 
their apparent phase velocities along the boundary must be equal. This is 
the same as saying that the apparent wavelengths along the boundary must 
be equal. Since v P, 1 > c, this is possible only if the direction of travel of the
wave is bent away from the normal to the boundary as shown in Fig. 6.74. 

/N,2 

Free Space 

Fig. 6.74. For illustrating the bending of the path of a wave 
as it propagates in the ionosphere. 

Thus, denoting the angle between the normal to the boundary and direction 
of travel in the slab by B

i
, we have 

or 

c 
· e  · e-sin 1 =sm O 

Vp,I 









491 Radiation of Electromagnetic Waves 

equation reduces to 

v2v= _.!!....

Sec. 6.16 

which is Poisson's equation for the electrostatic potential. Let us consider 
a point charge Q

0 
at the origin. The electrostatic potential due to this point 

charge is given by 
V(r) = Qo 

411:Er
For the time-varying case, we know that electromagnetic effects propagate 
with a finite velocity v which for the homogeneous wave equation correspond
ing to (6-324) is 1/,../iif. Hence, if the point charge at the origin is varying 
with time (due to current flowing into and/or away from the origin), its 
effect is felt at a distance r from the origin after a time delay of r/v. Conversely, 
the effect felt at a distance r from the origin at time t is due to the value of 
the charge which existed at the origin at an earlier time t - r/v. Thus, if the 
point charge at the origin is varying in the manner Q

0 
sin wt, we expect the 

time-varying electric potential due to it to be 

V(r, t) = Qo sin �)(t - r/v) (6-327) 71:Er 
To verify if our reasoning is correct, we note that 

v2v = v2[Qo sin w(t - r/v)]411:Er 

= 2;E{[sinw(t- �)Jv2{ 

+ 2V sin w(t - �) • v{ + { v2 sin w(t - �)} 

Q0
o(r) sin wt w2Q

0 
sin w(t - r/v)

E 4nav2 

where we have used the vector identity 
V2(</>'/I) = </> V2f/l + 2 V<f> • Vf/1 + '/I V2<p 

and the relation (see Problem 2-58) 

We also note that 

v2_!_ = -4nt:5(r) 
r 

w2Q0 sin w(t - r/v)
4nErV2 

From (6-328a) and (6-328b), we have 

v2v _ µi2V = _Q0o(r) sin wt
at2 

E 

(6-328a) 

(6-328b) 

which agrees with (6-324) for a point charge Q
0 

sin wt at the origin. 
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It follows from (6-327) that, for a time-varying volume charge of density 
p(r', t) in an infinitesimal volume dv' at a point P(r'), the time-varying electric 
potential at a point Q(r) is given by 

dV(r t) = p(r', t - Ir - r' 1/v) 
dv' (6-329a) ' 4nf I r - r' I '/ 

Similarly, from Eq. (6-325), the time-varying magnetic vector potentiaj} 
at a point Q(r) due to a time-varying volume current of density J(r', t
in an infinitesimal volume dv' at a point P(r') is given by 

dA(r t) = µJ(r', t - Ir - r'I /v) 
dv'' 4nlr - r' I 

(6-329b 

Equations (6-329a) and (6-329b) tell us that, to find the time-varying ele

i


tromagnetic potentials at a point Q(r) at a time t due to a volume char e 
p dv' and a volume current J dv' at a point P(r'), we can make use of t e 
expressions for V and A for the static case except that we have to use tho e 
values of p and J which existed at P at a time t - Ir - r' 1/v. For th's 
reason, these potentials are known as the "retarded potentials." T�e 
retarded potentials for volume charge and current distributions in 1n 
extended volume V' are given by the integrals of (6-329a) and (6-329b). 
These are 

V(r, t) = f p(r', t - Ir - ,r'
 1/v) 

dv'
v' 4n€ Ir - r I (6-330) 

A(r, t) = f µJ(r', t - Ir -; r' 1/v) 
dv'

v' 4n Ir - r I 
(6-331) 

We will now evaluate the retarded potentials and then the fields fot a 
simple but a very useful source known as the Hertzian dipole. We will find 
that the field expressions we will obtain are quite complicated even for this 
simplest case. The Hertzian dipole is an oscillating version of the static 
electric dipole. It consists of two equal and opposite time-varying charges 
Q

1 
(t) = Q

0 
sin cot and Qz(t) = -Q

0 
sin cot separated by an infinitesirnal 

distance di. We will place the dipole at the origin and orient it along the 
z axis. The dipole moment is then given by dp = Q

0 
di sin cot i,. To satisfy 

the continuity equation, we connect the two charges by a filamentary ire 
so that the current flowing in the wire from Q

2 
to Q 

1 
is 

J(t) = dQ
1 = _ dQ

2 = coQ
0 

cos cot= I cos cot
dt dt O 

where /0 = coQ
0

• The Hertzian dipole and the time variations of Qi , Q2, 

and I are shown in Fig. 6.75. 
With reference to the notation of Fig. 6.75(a), the time-varying ele1 tric 

,1 







495 Radiation of Electromagnetic Waves 

E = i0 di sin o( _ _l_ + _1 + jm)e-1"',1" 
e 4nf mr3 vr2 v2r 

= _P211i0 di sin 0[_1_ + _1_ + _l_Je-JPr 
4n (jfir)3 (jfir)2 jpr 

jj = io di sin () (_!___ + jm) e-Jwr/v 
if> 4n r2 vr 

p2i0 di sin ()[_1_ + 1-Je-JPr
4n (jfir)2 jpr 

where P = m/v, 11 = � = 1/cv, and i
0 

= /
0 

= mQ
0 • 

Sec. 6.16 

(6-337) 

(6-338) 

We note from (6-335a)-(6-335c) or (6-336)-(6-338) that the field expres
sions contain terms involving 1 / r3 , 1 / r2

, and 1 / r. Very close to the dipole, the 
1/r3 and 1/r2 terms dominate the 1/r terms. Far from the dipole, the 1/r3 

and 1/r2 terms are negligible and the fields are determined by the 1/r terms. 
To see how far from the dipole, let us first consider the Hif> component. The 
magnitudes of the two terms are equal for r = v/m = 1/P = ),/2n � 0.162. 
For the Ee component the combined magnitude of the 1/r3 and 1/r2 terms 
is equal to the 1/r term for 

or 
r4 - (�)\2 - (

2
�r = 0

= /1+�.!�02 1 r ,y . 2 21' "'-' • IL 

Thus, even in a distance of few wavelengths from the dipole, we can neglect 
the 1/r3 and 1/r2 terms in comparison with the 1/r terms. The field expressions 
then reduce to 

E, = o

E = jmi
0 di sin() e-Jwr/v = jfi11i0 

di sin() e-Jpr e 4ncv2r · 4nr 
jj = jmi

0 di sin() e-Jwr/v = jpi
0 di sin() e-JPr 

if> 4nvr 4nr 

(6-339) 

(6-340) 

These fields are known as the "radiation fields" because they are the com
ponents which contribute to radiation of electromagnetic waves away from 
the dipole. In fact, we will learn later that the l/r3 and 1/r2 terms do not 
contribute to the time-average power flow even near the dipole. We note 
that the ratio of Ee to Hif> given by (6-339) and (6-340) is equal to 11 = ,JiifE
as for the case of the fields associated with a uniform plane wave, although 
the constant phase surfaces are r = constant and the constant amplitude 
surfaces are (sinO)/r = constant. However, let us consider a spherical surface 
of large radius and centered at the dipole and divide it into small regions, 
in each of which sin () may be considered to be constant. Then each small 
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We now see why the near fields cannot contribute to time-average power 
flow. The reason is that, from conservation of energy, the time-average power 
flow across a spherical surface of one radius must be equal to the time
average power flow across a spherical surface of a different radius, that is, 
it must be independent of r as indicated by (6-343). Since the surface area 
of the sphere varies as r2, only those components of E and H which vary as 
l/r can satisfy this condition. 

Rewriting (6-343) as 

<Prad> = � I fo 12 [2

;11 ( f) 2] 

we note that the power radiated by the dipole is the same as the time-average 
power dissipated in a resistance of value [(2n17/3)(dl/).,)2] when a current 
!

0 
cos rot is passed through it. This is known as the "radiation resistance" 

and is denoted by the symbol R,ad· Thus, for the Hertzian dipole, 

R,ad = 2;11 (fr ohms

For 11 = 17
0 

= 120n, that is, for the dipole in free space, we have 

R,ad = 80n2 (fr ohms (6-344) 

As a numerical example, for di/)., equal to 0.01, R,.d is equal to 0.08 ohms. 
This value is too small to make a Hertzian dipole of di/)., equal to 0.01 an 
effective radiator. This is why a practical dipole must be an appreciable 
fraction of a wavelength long. But then, Eq. (6-344) is no longer correct for 
the radiation resistance since the variation of current along the length of 
the dipole must be takeri into account in obtaining the radiation fields and 
hence the radiated power. This can be done by considering the dipole as a 
series of Hertzian dipoles connected end to end and then using superposition. 
We will illustrate this by means of an example. 

E XAMPLE 6-34. A practical short dipole is a center-fed straight wire antenna, having
a length that is short compared to a wavelength. The current distribution 
along the wire can be approximated as shown in Fig. 6.76(a) in which the 
magnitude decreases uniformly from a maximum at the center to zero at the 
ends. It is desired to find the radiation resistance of the short dipole. 

With reference to Fig. 6.76(a), the current distribution along the dipole 
can be written as 

L for O < z < 2
L for -2 < z < 0

(6-345) 

where i
0 

is a constant. To determine the radiation fields, we can represent 
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6.7. The region r < a in spherical coordinates is occupied by a medium characterize
by the magnetization vector M = M0iz, where M0 is a constant. (a) Set up th
analogous electrostatic problem for obtaining H and B both inside and outsid ,
the region r < a. (b) Find the electric field intensity for this electrostatic proble
from the answer to part (d) of Problem 5.11. (c) Find Hand B both inside an
outside the region r < a.

6.8. A conductor occupying the surfaces x > 0, y = 0 and y > 0, x = 0 is kept at
zero potential. A second conductor occupying the surface xy = 2 is kept at
potential of 100 volts, making sure that the edges where the two conductors touc
are insulated. The medium between the conductors is charge free. Find the sol
tions for the potential and the electric field intensity between the conductor .
Find the surface charge densities on the conductors.

6.9. The potential distribution at the mouth of the slot of Fig. 6.6 is given by

V V . ny V . 3ny = 1 smb+ 2smb for x = a, 0 < y < b

where V1 and V2 are constants. Find the solution for the potential distribution n
the slot. Repeat the problem for

V= Vi sin3 6 for x = a, 0 < y < b

6.10. Two conductors occupying the planes x = 0 and x = a are kept at zero potentia s.
A third conductor occupying the surface y = 0, 0 < x < a is kept at a const nt
potential V0 , making sure that the edges are insulated. Find the solutions for the
potential in the region O < x < a for both y > 0 and y < 0. Show that the pot n
tial at large values of I y I varies with x approximately as sin (nx/a).

6.11. A thin rectangular slab of uniform conductivity a O mhos/m, shown in Fig. 6. 8,
has its edges coated with perfectly conducting material, making sure that he

Edge I
y = 0

Edge 2
--�x = a

y

\Edge 4
x = 0

Fig. 6.78. For Problem 6.11.

Edge 3
�y = b















509 Problems 

(a) What is the direction of propagation of the wave?
(b) Find the wavelength along the direction of propagation.
(c) Find the frequency of the wave.

Chap. 6 

(d) Find the apparent wavelengths and the apparent phase velocities along the x, y,

and z axes.
(e) Discuss the polarization of the wave.
(f) Obtain the expression for the complex magnetic field vector of the wave .

6. 43. A complex electric field vector is given by

E = [ ( -,y'3 _ j � )ix + ( 1 _ j�)i
y 

+ j ,y13i, ]e-jo. 02n(./"3"x+3y+2z> volts/m 

(a) Perform the necessary tests and determine if the given E represents the electric
field of a uniform plane wave.

(b) If your answer to part (a) is "yes," repeat Problem 6.42 for the electric field
vector of this problem. 

6 44. The complex electric and magnetic field vectors in a perfect dielectric medium are 
given by 

E = (-jix - 2i
y 

+ j,v13i,)e-i0· osn<..r3"x+•> vo!ts/m 

fl:= 6�n(ix - j2i
y - ,y13i,)e-j0.05n(./"3"x+z) amp/m

(a) Perform the necessary tests and determine if these vectors represent the fields
associated with a uniform plane wave.

(b) If your answer to part (a) is "yes," find the direction of propagation, the wave
length along the direction of propagation, the velocity along the direction of
propagation, and the frequency. Also, discuss the polarization of the wave. 

6.45. Show that the units of 1/,./JSe are meters per second and the units of� are 
ohms. 

6.46. The plane z = 0 is occupied by a perfect conductor. The medium z < 0 is free 
space. The leading edge of a uniform plane wave traveling in the positive z direction 
and having Ex(z) as shown in Fig. 6.84 is incident on the plane z = -150 m at 

I
37.7 Vim I 

.i111Ill.ll1Ii;:l 
-450 m -300 m I 

J..lo, co I 
I 

z = -150 m z = 0 
Fig. 6.84. For Problem 6.46. 
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t = 0. Find and sketch Ex and Hy versus z for t equal to i µsec, i µsec, 1 µsec,
1{ µsec, and 2 µsec. Also sketch Ex and Hy versus t in the plane z = -150 m.

6.47. For the problem of Example 6-20:
(a) Sketch Ex versus z for t = 0.015 µsec and 0.035 µsec.
(b) Draw the bounce diagram for Hy and sketch Hy in the planes z = -3 m and

z = 2.5 m as functions of time for t :::=:: 0. Also sketch Hy versus z for values of
t equal to 0.015 µsec and 0.035 µsec.

6.48. In the transmission-line system shown in Fig. 6.85, the switch Sis closed at t = 0.
(a) Show that, for O < t < l/v, a ( +) wave of voltage

V
+(z, t) = R

g

� Zo V
g
(t - : )

exists on the. line. What is the current associated with the ( +) wave?

Zo, v

z = 0 z =
Fig. 6.85. For Problem 6.48.

(b) Show that for l/v < t < 21/v, a(-) wave of voltage
- � r ( u z) 

V (z, t) = R
g 

+ Zo 
R V

g 
t -

v 
+ 

v 
h r RL -Zow ere R = RL + Zo 

exists on the line in addition to the ( +) wave specified in part (a). What is
the current associated with the ( -) wave?

(c) Show that for 21/v < t < 31/v, a ( - +) wave of voltage
-+( ) _ Zo r r ( 2/ z )V z, t - Rg + Zo R g

V
g 

t -
v

-

v 
R -Zowhere rg = R; + Zo

exists on the line in addition to the ( +) and ( -) waves specified in parts (a)
and (b), respectively. What is the current associated with the(-+) wave?

(d) Show that the line voltage and line current at t = oo are given by the expressions
Vss(z, t) = R � z [� er Rr

g
)" V

g
(t - 2n1 - ..!....)

g O n=O V V 

+ rR � crRrg)"Vg(t - 2nl 
+ ..!.... - 21)]

n=O V V V 

_ 1 [ = r r " ( 2nl z )lss(z, t) - R + z � ( R g) V
g 

t - - - -
g O n=O V V 

= r r (. 2n1 z 21)]- rR � c R g
)"V

g 1 - - +- --
n=O V V V 

(e) Obtain closed-form expressions for V88(z, t) and l88(z, t) for two cases:
(i) Vg(t) = V0, a constant and (ii) Vg(t) = V0 cos Wt.
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Fig. 6.89. For Problem 6.77.

Free Space µo, ea 

Lossy Conductor 
Chap. 6 

Perfect 
j Dielec,tric 

Perfect Conductor 
t.. 

4 

and a = l/1701, where OCc and a are the attenuation constant and conductivity, respectively, of the good conductor. 6,78. For the semiinfinite plane slab conductor of Fig. 6.66, show that (a) the real part on the right side of (6-294) is the same as the result that would be obtained by a volume integration of the time-average power dissipation density ±a I Ex 12 and (b) the imaginary part on the right side of (6-294) divided by 2co is the same asthe result that would be obtained by a volume integration of the time-average
\ magnetic stored energy density {µ I H

y 
12.

6.79. For the lossy transmission line of Fig. 6.69,(a) Write the transmission-line equations.(b) Find y and Z0 • 

6.�o.

I 

! 6.8i1. 

I 

(c) Show that for 2CR;/(2£1 + £) = g;e, p = co�(2£; + £)e. What is the attenu-ation constant for this condition?For the parallel-plate resonator of Fig. 6.71, show that the total energy density in the two fields from d = 0 to d = l computed by considering the energy density in the electric field at a time at which the magnetic field is zero everywhere between the plates is the same as that given by (6-299).The arrangement shown in Fig. 6.90 is that of a parallel-plate resonator made up of two dielectric slabs of thicknesses t and (l - t) and backed by perfect conductors. 

Fig. 6.90. For Problem 6.81. "- '/ 









6.92. 

6. 93. 
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(c) Find the electromagnetic fields due to the oscillating quadrupole.
(d) Find the radiation fields due to the oscillating quadrupole. Verify by deriving

them directly from the radiation fields due to the oscillating dipole given by
Eqs. (6-339) and (6-340). 

Find the radiation resistance of a straight copper wire of length 1 cm carrying
current of frequency 100 MHz. Compare the radiation resistance with the ohmic
resistance of the wire (taking into account skin effect) if it has a cylindrical cross
section of radius 1 mm. Repeat for a frequency of 300 MHz . 

A half-wave dipole is a center-fed, straight wire antenna having a length equal to 
half the wavelength. The current distribution along the half-wave dipole is given by 

- - nz 
l(z) = 10 cos L for L L 

-T<z<T

as shown in Fig. 6.94. 

L

z = 2 

z = 0 

I 

I 

Current 
/ Distribution

Fig. 6,94. For Problem 6.93. 
z = 

L 

2 

(a) Show that the radiation fields of the half-wave dipole are

- _ Mioe-i(n/L)r cos [(n/2) cos 0]E
e 

- �---- --��-� 

2nr sin O 
jj = jloe-j(n/L)r COS [(7t/2) COS 0]

"' 
2nr sin O 

",Jb) Show that the radiation resistance of the half-wave dipole in free space is 
73 ohms, given that 

Jn/2 cosz [(n/2) cos 0] dO = 0.609 
e-o sin O 

(c) Sketch the normalized radiation intensity pattern.
(d) Show that the directivity of the half-wave dipole is 1.64.

6.94. Two identical short dipoles form an array as shown in Fig. 6.95. Show that the
radiation fields due to the array are given by the radiation fields due to one of
the dipoles multiplied by the factor 2 cos [(ftd sin O cos ¢)/2]. Plot the normalized
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APPENDIX 

�NITS AND DIMENSIONS 
I 

I 

I 

In 1960, the International System of Units was given official status at the 
Eleventh General Conference on weights and measures held in Paris, France. 
This system of units is an expanded version of the rationalized meter
kilogram-second-ampere (MKSA) system of units and is based on six 
fundamental or basic units. The six basic units are the units of length, mass, 
time, current, temperature and luminous intensity. 

The international unit of length is the meter. It is exactly 1,650,763.73 
times the wavelength in vacuum of the radiation corresponding to the 
unperturbed transition between the levels 2p

10 
and 5d

5 
of the atom of 

krypton-86, the orange-red line. The international unit of mass is the kilo
gram. It is the mass of the International Prototype Kilogram which is a 
particular cylinder of platinum-iridium alloy preserved in a vault at Sevres, 
France, by the International Bureau of Weights and Measures. The inter
national unit of time is the second. It is equal to 9,192,631,770 times the 
period corresponding to the frequency of the transition between the hyperfine 
levels F = 4, M = 0 and F = 3, M = 0 of the fundamental state 2S112 of 
the cesium-133 atom unperturbed by external fields. 

To present the definition for the international unit of current, we first 
define the newton, which is the unit of force, derived from the fundamental 
units meter, kilogram and second in the following manner. Since velocity is 
rate of change of distance with time, its unit is meter per second. Since 
acceleration is rate of change of velocity with time, its unit is meter per 
second per second or meter per second squared. Since force is mass times 
acceleration, its unit is kilogram-meter per second squared, also known as 
the newton. Thus, the newton is that force which imparts an acceleration 
of 1 meter per second squared to a mass of 1 kilogram. The international 
521 
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unit of current, which is the ampere, can now be defined. It is the constant 
current which when maintained in two straight, infinitely long, parallel 
conductors of negligible cross section and placed one meter apart in vacuum 
produces a force of 2 x 10- 7 newtons per meter length of the conductors. 

The international unit of temperature is the Kelvin degree. It is based 
on the definition of the thermodynamic scale of temperature by means of 
the triple-point of water as a fixed fundamental point to which a temperature 
of exactly 273.16 degrees Kelvin is attributed. The international unit of 
luminous intensity is the candela. It is defined such that the luminance of ai 

blackbody radiator at the freezing temperature of platinum is 60 candela� 
per square centimeter. 

We have just defined the six basic units of the International System of 
Units. Two supplementary units are the radian and the steradian for plan� 
angle and solid angle respectively. All other units are derived units. For 

I 

example, the unit of charge which is the coulomb is the amount of 9harg¢ 
transported in 1 second by a current of 1 ampere; the unit of energy whiclji. 
is joule is the work done when the point of application of a force of 1 newtob. 
is displaced a distance of 1 meter in the direction of the force; the unit qf 
power which is the watt is the power which gives rise to the production 3f 
energy at the rate of 1 joule per second; the unit of electric potential differen<f 
which is the volt is the difference of electric potential between two points 
of a conducting wire carrying constant current of 1 ampere, when the pow�r 
dissipated between these points is equal to 1 watt; and so on. The units f1r 
the various quantities used in this book are listed in Table A. l ., togeth .r 
with the symbols of the quantities and their dimensions. 

Dimensions are a convenient means of checking the possible validi y 
of a derived equation. The dimension of a given quantity can be express d 
as some combination of a set of fundamental dimensions. These fundamen al 
dimensions need not be the same as the quantities corresponding to t. e 
basic units. In mechanics, the fundamental dimensions are mass(M),length( ) 
and time (T). In electromagnetics, it is the usual practice to consider t e 
charge (Q), instead of the current, as the additional fundamental dimensi n. 
For the quantities listed in Table A.I., these four dimensions are sufficie t. 
Thus, for example, the dimension of velocity is length (L) divided by time ( 
that is Lr- 1; the dimension of acceleration is length (L) divided by ti e 
squared (T2), that is, Lr- 2; the dimension of force is mass (M) times ac el
eration (LT-2), that is, MLr-2; the dimension of ampere is charge (Q) divi ed 
by time (T), that is, Qr- 1 ; and so on. 

To illustrate the application of dimensions for checking the possi le 
validity of a derived equation, let us consider the equation for the velo ·ity 
of propagation of an electromagnetic wave in free space, given by 

1
V=---

� 
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\ANSWERS TO
\ODD-NUMBERED PROBLEMS 
I 
i 
I 

Chapter 1 

1.1. (a) 4,v1"3 units and directed 30° south of east (b) 0.51764 units and directed 45° 

north of east (c) 9.928 units and directed 30° south of east (d) -6,v13 (e) 6 units
and directed upwards (f) 0 (g) 0 (h) 2.784 (i) 1.607 units and directed upwards
(j) 0 (k) 0 (I) 24 units and directed towards the north (m) 24 units and directed
30° north of east

13. C2 = A2 + B2 
- 2AB cos (} where (} is the angle between A and B.

1.5. (c) di = .../ u2 + v2 du iu + .../ u2 + v2 dv iv + dz i, (d) dv = (u2 + v2) du dv dz

1.7. (c) rt= 129.25°, L\ = 29.38°, S = 38673 Km (d) 208.97°, 25.17° 

1.15. Cix + 2i
y 

+ 3i,)/ �

1.17. (a) Surfaces of constant magnitudes, T0 , are ellipsoids with intercepts on the x, y, 

and z axes at ±�, ±.../TJ4, and ±,./TJ9, respectively.
(b) Surfaces of constant magnitudes, U0 , are cylinders parallel to the z axis, having

radii equal to 1/2U0 and with their axes passing through x = ±1/2U0, y = 0.
(c) Surfaces of constant magnitudes, V0 , are toruses obtained by revolving, about

the z axis, circles in the <p = constant plane with centers at r c = 1 /2 V0 and
z = 0 and with radii equal to 1/2V0 • 

1.19. F = -(mMG/r2)i, in the spherical coordinate system having its origin at the 
center of the earth. Constant magnitude surfaces are spheres concentric with the 
earth. Direction lines are radial lines converging towards the center of the earth. 

1.23. (a) v = ai, + abti4,, !; = -ab2ti, + 2abi4, 

(b) v = -(J)a sin (J)f ix + wb cos (J)f iy + ci,

529 

dv z • 2b . • 
dt

= -()) a cos Wt Ix - (J) sm wt Iy 
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1.25. (i, - 'V/'J\)/2 
1.27. Scalar function 

Gradient 
1.29. 6.983 
1.31. (a) 1/720 (b) 2nal (c) n/16
1.33. (a) 0 (b) a2//2
1.35. (a) n/2 (b) n/2 (c) n/2 (d) n/2
1.37. -2/3
1.39. (e- 1 

- l)n/2 
1.43. Unit vector ix iy iz i,c i,.; 

rs 

i,s 

i,s ie 

e 
(1/rs)ie 

l)ivergence O O O 1/rc O 2/rs (cot 0)/rs 

1.49. (a) 21/16 (b) 1/2 (c) 0 (d) 0
1.53. (a) -yix - ziy - xiz (b) -2i, (c) (2 + 2 sin <p)i, (d) 0 except for z = 0

(e) -(e-'/r)i,.; 

1.63. (a) 6xyz 2 + 2x 3y (b) 0 (c) e-'/r (d) 2(yzix + zxiy + xyi,)

2.1. 
2.3. 

2.5. 
2.7. 

2.9. 

2.11. 

2.13. 

2.15. 

2.17. 

2.19. 

Chapter 2 

-(mg/q)i,, 55.7 x 10- 12 N/C 
(b) YL = qEoL2/2mv5, vL = voix + (qEoL/mvo) iy 
(c) Yd = (qE0L/mv5)[(L/2) + d]
Q2/€0 / 2mg = 4n/,,/6
(a) 6Qd2/4n€0z 4 away from the quadrupole
(b) 3Qd2/4n€0r4 towards the quadrupole
(a) Ex = 0, Ey = 0, E, = PLoaz/2€0(a2 + z2)

312 

(b) Ex = 0, Ey = -PLoa2/n€0(a2 + z 2)3 12, E, = 0
(c) Ex = -pL0a2/4€0(a2 + z2)

312, Ey = 0, E, = 0
(d) Ex = 0, Ey = -pLOa2/4€0(a2 + z2)312, E, = 0
(a) Ofor\z\< a,Psoa2\z[/€0z 3 for[z[> a 

(b) -Pso/3€o for [z\ < a, 2Psoa3/3€o [z 3 [ for [z[ > a 

(p0r/2€0)i, for r < a, and (p0a2/2€0r)i, for r > a, where the axis of the cylindric1l
charge is the z axis.
(a) E = (pLOd/2n€0r2)(cos cf> i, + sin</> i,.;)
(b) x2 + (y - c/2)2 = (c/2)2, z = constant; circles in planes normal to the z

axis, with centers at x = 0 and y = ±c/2, and having radii c/2.

E = p LO [( z + a _ z - a 
) i 4n€or y(z + a)2 + r2 y(z - a)2 + rz ' 

+( r r )·] y(z - a)
2 + r2 - y(z + a)

2 + r 2 
1
' 

where the line charge is located along the z axis between z = -a and z = a. 
l)irection lines are given by 
,vi(z + a)2 

+ r 2 - y'�(z---a�)2�+ -r�2 =:== constant

(a) n (b) 2n/3 (c) n/6 (d) 2n (e) n/2 (f) n/2





2.49. 

2.51. 

2.53. 

2.55. 

3.1. 

3.3. 

3.5. 

3.9. 

3.11. 

3.13. 

3.15. 

3.17. 

532 Answers to Odd-Numbered Problems

Equipotential surfaces are given by
(c - 1)2 

(.!....)
2 (c - 1)2 

(2-)
2 = 1

4c a 

+ 
(c + 1)2 

a 

where c is constant. 

h(a
2 - .!!..) for r < a 

Poa3 

for r > a 
2€0 3 '3€or 

p p a2 a (a) -0 (a
2 - r2) for r < a, -0 

- In - for r > a 4f o 2f o r 
Po (a2 - r2 a) (b) 0 for r < a, 2fo 2 - a

2 ln r for a < r < b,
.P..9._ (a

2 - b2 - z I !!....) + Po(b2 - a
2 ) I .!!_ ,. > b2€0 2 a n b 2€0 

n r 1or r 
p a2 a p (c) -0

- In- for r < a, -0-(a3 
- r 3) for r > a 3f o r 9€ 0a 

(a) P,oz for \z\ < a, P,oa\z\ for \z\ > a f o f oZ 
(b) P

fs
oa In.!!_ for r < a, P,oa In.!!_ for a < r < b, 0 for r > b
o a f o r 

p a
2 

( 1 1 ) p a
2 

( 1 1 ) (c) �o a - b for r < a, �o r - b for a < r < b, 0 for r > b
(a) '1ta

2 PLoix (b) 0 (c) (pLOa
2/2)( -nix + 2n2i.v)

Dipole moments for cases (a) and (b) about any point other than the origin are the
same as the respective dipole moments about the origin.

Chapter 3 

-eix 

µ0nla2 sin (2n/n)
4n[(a cos n/n)2 + z2](a

2 + z 2)1;2 
1•

µola2 { 1 1 } . (a) -2- [a2 + (z - b)2]312 
+ [a

2 + (z + b)2p12 I, 



















INDEX 

A (see Magnetic vector potential) 

Acceleration: 
due to gravity, 122 

experienced by an electron, 74, 75 

unit of, 521 
Addition of vectors, 2, 20 

associative property of, 3 

commutative property of, 2 
parallelogram law of, 2 

Admittance: 

characteristic, 443 

input, 445 
line, 443 

Air gap, 391, 393 

Aircraft, locating the position of, 517 

Allowed bands, 264, 265 
Ampere, 140 

as unit of current, 522 

Ampere-turn, 393 ,
Ampere's circuital law, 154, 163, 173, 

178 
dilemma of, 210-213 

Ampere's circuital law in differential 

form, 162-163, 178 
for surface current, 163 

modified, 218 

541 

Ampere's circuital law in integral 

form, 154-162, 178, 201 

applications of, 159-162 

modified, 210-217, 218 

statement of, 156 

Ampere's law of force, 139-141, 178, 

196 

Analogous source distributions, elec

tric and magnetic fields for, 

177, 179 

Analogy: 

between electric and magnetic cir

cuits, 390 

between transmission-line and uni

form plane wave parameters, 

422 

Anisotropic conductors, 268 

Anisotropic dielectric materials, 281 

Anisotropic magnetic materials, 304 

Anode, 350 

Antenna, 497 

directivity of, 500 

half-wave dipole, 519 

Hertzian dipole (see Hertzian 

dipole) 



















J 

K 

550 Index

Imperfect conductor (see Good con
ductor) 

Imperfect dielectric (see Good dielec
tric) 

Impulse function (see Dirac delta 
function) 

Incident wave, 425 
Induced electric field, 198, 199, 201 

solenoidal character of, 201 
Induced voltage, 197 
Inductance (see also Inductor) 

definition of, 378 
external, 383 
internal, 383 
mutual, 386 
physical interpretation for, 378 
self, 385 
units of, 378 

Inductance per unit length: 
for some structures, 382 
general expression for, 380 
related to capacitance per unit 

length, 381 
Inductor (see also Inductance) 

condition for quasistatic approxima
tion for, 395, 397 

magnetic energy stored in, 382 
voltage-to-current relationship for, 

396 
Inhomogeneous wave equations, 490 
Input admittance, of short-circuited 

line, 445 
Input behavior: 

beyond quasistatic approximation, 
400-402

under quasistatic approximation, 
397-400

Input impedance, of short-circuited 
line, 434 

Input reactance, of short-circuited 
line, 435 

Input susceptance,453 
Insulators, 263 

J (see Volume current density) 

Kelvin degree, definition of, 522 
Kilogram, definition of, 521 
Kinetic energy, 135, 322 

Integral: 
closed line (see Circulation) 
closed surface, 39 
line,40-43 
surface, 37-40 
volume, 36-37 

Integration of vectors, 43 
Intensity: 

electric field (see Electric field in
tensity) 

gravitational field, 73 
magnetic field (see Magnetic field ! 

intensity) 
radiation (see Radiation intensity) 

Internal impedance, 474 
application of, 477 
for hollow cylindrical conductor,. 

475 
Internal inductance: 

definition of, 383 
general expression for, 385 

Internal inductance per unit length, 
383 

computation of, 383-385 
International system of units, 521 
Intrinsic impedance: 

definition of, 411-412 
for good conductor, 471 
for good dielectric, 470 
for perfect dielectric, 411 
units of, 412 

Intrinsic semiconductor, 265 
Ionic polarization, 276 
Ionosphere, 486 

condition for reflection of wave, 
488 

description of, 486 
path of wave in, 486-489 

Irrotational fields, 118 
Isotropic conductors, linear, 268 
Isotropic magnetic materials, 304 
Iteration, 3 69 

Joule, definition of, 522 

Kirchoff's current law, 406 
Kirchoff's voltage law, 406 





552 Index 

Magnetic dipole moment (contd.)

of plane loop of wire, 169 
Magnetic domain, 299 
Magnetic energy: 

for cylindrical surface current, 229-
230 

in a nonlinear magnetic material, 
324 

stored in an inductor, 378 
stored in a resonator, 479 

Magnetic energy density: 
in free space, 229 
in a magnetic material, 324, 378 
time-average, 249, 324 

Magnetic field (see also Magnetic flux 
density) 

concept, 135-136, 193 
energy density in, 229, 324 
energy storage in, 226-230 
realizability of, 172-173 

Magnetic field intensity, 312 
definition of, 312 
relationship with B, 312, 318 
units of, 312 

Magnetic flux, 172, 196, 197 
Magnetic flux density: 

definition of, 135-136, 178 
due to current element, 142, 178 
due to cylinder of current, 151-154, 

161-162
due to finitely long wire, 144, 177, 

179 
due to infinite sheet of current, 

149-151, 159-161, 179
due to infinitely long solenoid, 147-

149, 173-177 
due to infinitely long wire, 144, 177, 

179 
due to line current, 142-143, 178 
due to magnetic dipole, 144-147 
due to surface current, 178 
due to volume current, 178 
from A, 164, 178 
units of, 136 

Magnetic force: 
between two current elements, 140 
between two current loops, 139-141 
in terms of current, 138 

Magnetic force (contd.)

on a closed loop of wire, 139 
on filamentary wire, 138 
on a moving charge, 135 

Magnetic materials, 296 
anisotropic, 304 
effects of magnetization in, 305-

310 
isotropic, 304 
magnetization of, 296-301 
secondary fields in, 305, 307, 310 

Magnetic polarizability, 301 
Magnetic quadrupole, 186 
Magnetic scalar potential, 356, 357 
Magnetic susceptibility, definition of 

304 
Magnetic susceptibilities, 

values of, 304 
Magnetic vector potential, 

177 

table of I

163-172, 

due to loop of wire, 167-169 
due to time-varying current, 492 
for Hertzian dipole, 494 
for infinitely long wire, 165-166 
for line current, 164, 178 
for surface current, 164, 178 
for volume current, 164, 178 
Laplace's equation for, 171 
Poisson's equation for, 171 

Magnetization, 296 
Magnetization current, 134, 317 
Magnetization currents, compared o 

true currents, 317 
Magnetization energy density, 324 
Magnetization surface current, 3 

310 
Magnetization surface current densi y, 

308 
in terms of magnetization vect r, 

310 
Magnetization vector: 

definition of, 301 
relationship with B, 304 
units of, 301 

Magnetization volume current, 3 07, 
310 

Magnetization volume current den ity, 
308 
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Newton's third law, 141, 182 
Nonmagnetic materials, classification 

of, 319 
Nonpolar molecule, 275 
Normal component of B, boundary 

condition for, 330 
Normal component of D, boundary 

condition for, 329 
Normal component of J, boundary 

condition for, 332 
Normal component of P, boundary 

condition for, 333 
Normal vector to a surface: 

from cross product, 33-35 

Observations: 
macroscopic scale, 262 
microscopic scale, 262 

Observer: 
moving, 206, 207 
stationary, 206 

Occupied levels, 264-265 
Ohm, 375 
Ohm's law, 268, 375 
w-{3. diagram, 466 

P (see Polarization vector, Poynting 
vector) 

p (see Electric dipole moment) 
Paddle wheel, 54, 118 
Parabolic cylindrical coordinate sys

tem, 62 
Parallel conductor structures: 

capacitance per unit length, 378-380 
conductance per unit length, 378-

380 
inductance per unit length, 378-380 

Parallel-plate resonator, 477-483 
energy storage in, 478-479 
Q factor for, 480-481 
resonant frequencies for, 480 

Parallel-plate waveguide, 456 
constant amplitude surfaces, 459 
constant phase surfaces, 459 
cutoff frequencies for, 458 
cutoff wavelengths for, 458 
group velocity in, 467 
guide wavelength, 458 

Normal vector to a surface (contd.)

from gradient, 33-35 
Normalized line admittance, 451-453 
Normalized line impedance, 445, 451-

453 
definition of, 445 

Normalized radiation intensitf, 500 
Notation: 

source point-field point, 89 
transmission-line waves, 423 
vector, 1 

Nuclear spin, 296 
Nucleus, 263 

Operation, Laplacian, 59 
Operator, del, 32 
Optical frequencies, 481 
Orbit, electronic, 297-298 
Orientational polarization, 276, 299 
Origin, 11 
Orthogonality property, of sine fun -

tions, 364 
Oscillation, laser, 481--483 

Parallel-plate waveguide (contd.)

TE
m

, 0 modes, 458 
TE waves in, 456 
time-average power flow in, 459 

Parallelepiped, 7 
Parallelogram law: 

of vector addition, 2 
of vector subtraction, 3 

Paramagnetic materials, 299, 300 
values of X

m 
for, 304 

Paramagnetism, 299 
Parametric dispersion, 485 
Partial derivatives, of unit vectors, 3 
Partial standing waves, 436 

patterns for, 436-439 
VSWR for, 438 

Path, closed (see Closed path) 
Pauli's exclusion principle, 264 
Penetration, depth of, 472 
Perfect conductor, 319 

boundary conditions, 333, 334-3. 6 
normal incidence of uniform pl�e 
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Polarization surface charge density, 284, 286 in terms of polarization vector, 288 Polarization vector: definition of, 278 relationship with E, 281 units of, 278 Polarization volume charge, 284, 287, 288, 289 Polarization volume charge density, 286 in terms of polarization vector, 288 Polarizing field, 276, 279 Position vector: in cartesian coordinates, 13-14 in cylindrical coordinates, 16 in spherical coordinates, 17-18 Potential, 106, 107 electric scalar (see Electric scalar potential) electrostatic (see Potential field) magnetic scalar, 356, 357 magnetic vector (see Magnetic vector potential) time varying scalar, 210; see alsoElectric scalar potential time varying vector, 210; see alsoMagnetic vector potential Potential difference, 103-105, 202, 221 compared to voltage, 202 units of, 105, 522 Potential energy, 103, 105, 119, 155, 228 of continuous charge distribution, 223, 224 of solenoidal current distribution, 226-228of system of point charges, 222 Potential field: at large distances, 109-112 of electric dipole, 109 of infinite line charge, 113-115 of line charge, 115, 178 of point charge, 107, 109-111, 178 of point charges, 108, 111-112 of spherical volume charge, 348-350 of surface charge, 115, 178 

Potential field (contd.)of volume charge, 115, 178 Potentials: differential equations for, 178 for Hertzian dipole, 492-494 retarded, 492 wave equations for, 490 Power: associated with movement of charge, 230-231dissipated in a conductor, 322, 376 radiated by an antenna, 233-234 time-average, 250 unit of, 522 Power balance, at junction of trans-mission lines, 426 
IPower density: associated with electromagnetic field,, 232 complex, 249 time-average, 249 Power dissipation density, ductor, 322, 376 Power flow: 

;n a conj 

along a transmission line, 407, 442 for a parallel-plate waveguide, 456 in an electromagnetic field, 230+ 234 into a good conductor, 473-474 Poynting, 232 Poynting theorem, 232 complex, 250, 325 Poynting vector, 232, 246, 247 complex, 248, 325 for material medium, 325 interpretation, 232 surface integral of, 232, 247 time-average, 248 units of, 232 Product: cross (see Cross product of vectors) dot (see Dot product of vectors) scalar (see Dot product of vectors) vector (see Cross product of vectors) Projection of vectors, 9 Propagation: electromagnetic wave, 252, 408; see
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Resonator (contd.) 

parallel-plate, 477-483 
Q of, 480 

Retarded potentials, 492 
for Hertzian dipole, 493-494 

Retentivity, 316 

Scalar: 
definition of, 1 
gradient of, 32 
Laplacian of, 59

Scalar fields, 25-27 
graphical representation of, 26 

Scalar function, 25 
rate of increase of, 32, 36 

Scalar potential: 
electric (see Electric scalar poten

tial) 
magnetic (see Magnetic scalar po

tential) 
Scalar product (see Dot product of 

vectors) 
Scalar triple product, 7, 21 
Scalar wave equation, one-dimensional, 

409 
Scalars, examples of, 1 
Second, definition of, 521 
Secondary fields, 281, 289, 305, 310, 

311 
Self inductance, 3 85 
Semiconductors, 263, 265, 267 

conductivity of, 268 
extrinsic, 265 
intrinsic, 265 

Separation of variables technique, 359-
360 

Sheet charge,83,99, 102, 103 
Shielding, 473 
Short-circuited line: 

input impedance of, 434-435 
standing wave patterns for, 433 
voltage and current on, 430-433 

Short dipole: 
current distribution along, 497, 498 

directivity for, 500 
normalized radiation intensity for, 

500 
radiation fields for, 499 

Right-hand coordinate system: 
cartesian, 11 
cylindrical, 15 
spherical, 1 7 

Ring charge, 123 

Short dipole (contd.) 

radiation resistance for, 499 
time-average power radiated by, 499 

Sink of charge, 157 
Sink of fluid, 93 
Sinusoidal steady state, traveling waves 

in, 429-442 
Sinusoidally time varying fields: 

Maxwell's equations for, 244-245 
phasor representation of, 234-245 

Skin depth, 4 72 
for copper, 473 

Skin effect, 473 
inductance due to, 476 
resistance due to, 476 

Slab charge, 102 
Smith chart, 445 

applications of, 448-454 
development of, 445-448 
use as admittance chart, 451-452 

Snell's law, 488 
Solenoid, 147 

magnetic field due to, 147-149, 
173-177

Solenoidal vector, 173 
Solid, crystalline, 263 
Solid angle, 94, 126, 522 

computation of, 212-214 
unit of, 94, 522 

Source distributions, analogous, 177, 

179 
Source of charge, 157 
Source of fluid, 93 
Source point-field point notation, f9, 

142 
Source points, 89 
Space charge, in vacuum diode, 35)-

352 
Spherical cavity: 

average electric field due to m in, 

302-303
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Spherical cavity (contd.) 

average electric field due to p in, 
279-280

Spherical coordinate system: 
coordinates for, 16, 18 
curl in, 53 
differential lengths, 17, 18 
differential surfaces, 17, 18 
differential volume, 17, 18 
divergence in, 47 
gradient in, 36 
Laplacian of scalar in, 59 
Laplacian of vector in, 60 
limits of coordinates, 18 
orthogonal surfaces, 16, 18 
position vector, 17-18 
unit vectors, 17, 18 

Spin: 
electronic, 296 
nuclear, 296 

Standing wave patterns, 433 
example of determination of, 439-

441 
for line short-circuited at both ends, 

434 
for partial standing wave, 436-439 
for short-circuited line, 433 

Standing wave ratio, voltage (see 

VSWR) 
Standing waves: 

complete, 432 
limitations imposed by, 443 
partial, 436 

Static electric field: 
conservative property of, 117, 178 
laws and formulas, 178 
Maxwell's equations for, 178 
realizability of, 118 

Static magnetic field: 
laws and formulas, 178 
Maxwell's equations for, 178 

Tangential component of E, boundary 
condition for, 330 

Tangential component of H, boundary 
condition for, 3 31 

Tapered trasmission line, 514 
TE

m
, 0 modes: 

Steady state, sinusoidal (see Sinusoidal 
steady state) 

Stokes' theorem, 56-58 
Stream lines (see Direction lines) 
Stub, 443 
Stub matching, 443 

analytical solution, 443-445 
solution by Smith chart, 452-453 

Subtraction of vectors, 2-3 
parallelogram law of, 3 

Surface: 
as a vector, 13 
Gaussian (see Gaussian surface) 

Surface charge, 82 
electric field of, 89, 178 
polarization, 283, 284, 287, 288, 

289 
potential field of, 115, 178 

Surface charge density, 82 
polarization, 284, 286, 288 
units of, 82 

Surface current, 149 
magnetic field of, 178 
magnetic vector potential due to, 

164, 178 
magnetization, 306, 310 

Surface current density, 149 
magnetization, 308, 310 

Surface integral, 37-40 
closed, 39 
evaluation of, 39-40 
to volume integral, 48 

Surfaces: 
differential (see Differential surfaces) 
equipotential (see Equipotential sur

faces) 
of constant phase, 245, 415 

Susceptance, input, 453 
Susceptibility: 

electric, 281 
magnetic, 304 

TE
m

, 0 modes (contd.) 

guide impedance for, 459 
in parallel-plate waveguide, 458, 460 
transmission-line equivalent for, 

459 
TE

m, o, 1 modes, 480 
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True currents: 
compared to magnetization currents, 

317 
compared to polarization currents, 

317 

Uniform plane wave, 412 
normal incidence on a good con

ductor, 472 
normal incidence on a perfect con

ductor, 430 
normal incidence on a perfect dielec

tric, 424 
oblique incidence on a perfect con

ductor, 454 
sinusoidally time-varying, 413 

Uniform plane wave fields: 
notation, 423 
space variation from time variation, 

412-413
Uniform plane wave impedance (see 

¥/ave impedance) 
Uniform plane wave in three dimen-

sions: 
apparent phase velocities, 418 
apparent wavelengths, 417 
circularly polarized, 421 
complex field vectors, 418-420 
electric field vector of, 416 
illustration of properties of, 417 
linearly polarized, 420 
magnetic field vector of, 416 

V (see Electric scalar potential) 
Vacancies, 265 
Vacuum diode: 

potential distribution in, 351-352 
simplified model of, 350 

Vector: 
area as a, 13 
curl of, 48-58 
definition of, 1 
divergence of, 44-48 
division by a scalar, 3, 20 
graphical representation of, 1 
Laplacian of, 59-60 
magnitude of, 1, 20 

True currents (contd.) 

examples of, 317 
Two-dimensional dipole: 

electric, 118, 125 
magnetic, 173, 185 

Uniform plane wave in three dimen
sions (contd.) 

propagation vector for, 416 
Uniform plane waves, 412 

analogy wi th  t ransmiss ion -l ine  
waves, 422 

power flow associated with, 412 
Uniqueness theorem, 362-363 
Unit circle, 446 
Unit conductance circle, 452 
Unit normal vector to a surface: 

from cross product, 34, 35 
from gradient, 35 

Unit vector, 4 
from cross product, 7 

Unit vectors: 
cross products of, 22 
dot products of, 22 
in cartesian coordinates, 11, 18 
in cylindrical coordinates, 15, 18 
in spherical coordinates, 17, 18 
partial derivatives of, 31 

Units: 
International system of, 521 
MKS rationalized, 76 
table of, 523-526 

Vector (contd.) 

multiplication by a scalar, 3, 20 
position (see Position vector) 
unit (see Unit vector) 
unique definition of, 490 

Vector addition (see Addition of vec
tors) 

Vector analysis, rules of, 1 
Vector cross product (see Cross prod

uct of vectors) 
Vector dot product (see Dot product 

of vectors) 
Vector fields, 27-29 
Vector identities, 56, 61, 62 





563 Index 

Wavelength (contd.) 

definition of, 413 
guide, 458 
times frequency, 414 

Waves: 
Electromagnetic (see Electromag-

netic waves) 
Standing (see Standing waves) 

Transient, 428 
Transmission-line (see Transmission-

Waves (contd.) 

line waves) 
Traveling (see Traveling waves) 

Work, 104, 117 
for assembling a solenoidal current 

distribution, 226-228 
for assembling a system of point 

charges, 221-223 
in displacing a charge, 230 
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