## INDEX

A (see Magnetic vector potential)
Acceleration:
due to gravity, 122
experienced by an electron, 74, 75
unit of, 521
Addition of vectors, 2, 20
associative property of, 3
commutative property of, 2
parallelogram law of, 2
Admittance:
characteristic, 443
input, 445
line, 443
Air gap, 391, 393
Aircraft, locating the position of, 517
Allowed bands, 264, 265
Ampere, 140
as unit of current, 522
Ampere-turn, 393
Ampere's circuital law, 154, 163, 173 , 178
dilemma of, 210-213
Ampere's circuital law in differential form, 162-163, 178
for surface current, 163
modified, 218

Ampere's circuital law in integral form, 154-162, 178, 201
applications of, 159-162
modified, 210-217, 218
statement of, 156
Ampere's law of force, 139-141, 178, 196
Analogous source distributions, electric and magnetic fields for, 177, 179
Analogy:
between electric and magnetic circuits, 390
between transmission-line and uniform plane wave parameters, 422
Anisotropic conductors, 268
Anisotropic dielectric materials, 281
Anisotropic magnetic materials, 304
Anode, 350
Antenna, 497
directivity of, 500
half-wave dipole, 519
Hertzian dipole (see Hertzian dipole)

Antenna (contd.)
radiation intensity of, 499
short dipole (see Short dipole)
Antiferromagnetic material, 300
Antiferromagnetism, 299, 300
Apparent phase velocity, 418, 420
Apparent wavelength, 417, 420
Area as a vector, 13
Array, 519
Arrowhead, 1
Associative property of vector addi-

B $\quad$ (see Magnetic flux density)
B-H curve, 316, 344
Band:
allowed, 264, 265
forbidden, 264, 265
Biot-Savart law, 142, 163, 211, 213, 214
applications of, 143-149
Bounce diagram, 428
Bound electrons, 263, 275
C Candela, definition of, 522
Capacitance:
definition of, 376
physical interpretation for, 377
units of, 377
Capacitance per unit length:
for parallel wires, 381-383
for some structures, 382
general expression for, 380
related to conductance per unit length, 380
related to inductance per unit length, 381
Capacitor: (see also Capacitance)
electric stored energy in, 377
quasistatic approximation for, 394, 397
voltage-to-current relationship for, 395
Cartesian coordinate system, 10-14
arbitrary curve in, 13
arbitrary surface in, 13
coordinates for, 11,18
curl in, 54
differential lengths, 13,18

Associative property (contd.) tion, 3
Atom, classical model of, 263
Atomic lattice, collisions with, 265
Attenuation, 469
Attenuation constant, 469
for good conductor, 471
for good dielectric, 470
units of, 469
Average macroscopic field, 279, 280, 302, 303

Boundary condition:
for normal component of $\mathbf{B}, 330$
for normal component of $\mathbf{D}, 329$
for normal component of $\mathbf{J}, 332$
for normal component of $\mathbf{P}, 333$
for tangential component of $\mathbf{E}, 330$
for tangential component of $\mathbf{H}, 331$
Boundary conditions, 327-336
statements of, 329, 330, 331, 332
summary of, 333
Cartesian coordinate system (contd.)
differential surfaces, 13,18
differential volume, 13, 18
divergence in, 47
gradient in, 33
Laplacian of scalar in, 59
Laplacian of vector in, 59
limits of coordinates, 18
orthogonal surfaces, 10,18
position vector, 14,15
unit vectors, 11, 18
Cathode, 350
Cavity resonator, 480
Characteristic admittance, 443
Characteristic impedance, 422
Charge, 73
conservation of, 74
continuous distributions of, 82
line, 82
magnetic, $172,203,210$
of an electron, 73
of a neutron, 73
of a proton, 73
surface, 82
unit of, 74, 522

Charge (contd.)
volume, 82
Charge density:
line, 82
surface, 82; see also Surface charge density
volume, 82; see also Volume charge density
Charge neutrality, in a dielectric, 283, 288
Charges:
conduction, 317
polarization, 317
true, 317
Child-Langmuir law, 352
Circuit:
electric, 389
distributed, 407
magnetic, 389; see also Magnetic circuit
Circuit theory, field basis of, 347
Circuital law, Ampere's (see Ampere's circuital law)
Circular current loop, 144
dipole moment of, 147
magnetic field due to, 144-147
Circular polarization, 243
left, 243
right, 244
Circulation, 41
of $\mathbf{H}$ compared to circulation of $\mathbf{B}$, 315
per unit area, 49
Closed path, line integral around (see Circulation)
Closed surface integral, 39
Coefficients, metric, 60
Coercivity, 316
Collisions, frictional mechanism due to, 265
Communication, with underwater objects, 472
Commutative property:
of vector addition, 2
of vector dot product, 4, 5
Complete standing waves, 432
Complex number, 234
Complex power, 248

Complex power density, 249
Complex Poynting's theorem, 250, 325
Complex Poynting vector, 248, 325
Components of vectors, $9,19-25$
relationships between, 23
Conductance:
definition of, 375
physical interpretation for, 376
units of, 375
voltage-to-current relationship for, 397
Conductance per unit length:
for some structures, 382
general expression for, 380
related to capacitance per unit length, 380
Conduction, 263-265
Conduction current, compared to convection current, 267
Conduction current density, 267
Conduction currents, 134, 317
Conduction electrons, 263
Conductive dispersion, 470
Conductivities:
ranges of, 268
table of, 269
Conductivity, 268, 318
definition of, 267
of semiconductors, 268
units of, 268
Conductor:
decay of charge placed inside, 270271
electric field at the boundary of, 272-274
power dissipated in, 326-327, 376
power dissipation density in, 322
secondary electric field inside, 271, 272, 275
Conductors, 263
anisotropic, 268
in electric fields, 269-275
linear isotropic, 268
Conservation of charge, 74
law of, 215, 219
Conservation of energy, 117
Conservative field, 117

Constant amplitude surfaces:
for radiation fields of Hertzian dipole, 495
in a parallel-plate waveguide, 459
Constant of universal gravitation, 73
Constant phase surfaces:
for radiation fields of Hertzian dipole, 495
for uniform plane wave, 414, 417
in parallel-plate waveguide, 459
Constant VSWR circle, 450
Constitutive relations, 72, 262, 318, 347
Continuity equation, 220, 244, 317, 318
in integral form, $320,321,328$
in phasor form, 245
Continuous distributions of charge, 82
Convection current, compared to conduction current, 267
Convection currents, 134, 317
Coordinate system:
cartesian, 10-14
cylindrical, 14-16
left hand, $11,15,17$
parabolic cylindrical, 62
right hand, 11, 15, 17
spherical, 16-18
Coordinates:
cartesian, 11, 18
cylindrical, 15,18
limits of, 18
relationship between, 19
spherical, 16, 18
Coulomb, 75
as unit of charge, 74
Coulomb field, 77
Coulomb potential, 107
Coulomb's law, 75-76, 139, 178, 193, 196
Cross product of vectors, 5, 20, 60
defining unit vector by, 7
differentiation of, 32
distributive property of, 6
Crystalline solid, 263
Curie temperature, 299
Curl, 48-58
definition of, 48

Curl (contd.)
divergence of, 56
in cartesian coordinates, 54
in cylindrical coordinates, 54
in general coordinates, 61
in spherical coordinates, 53
of curl of a vector, 59
of gradient of a scalar, 56
physical significance of, 54-56
Curl meter, 54
Current:
conduction, 267
convection, 267
displacement, 215, 295
filamentary, 141
Current density:
conduction, 267
displacement, 219, 295
relation to charge density, 137-138
surface, 149; see also Surface current density
volume, 149; see also Volume current density
Current element:
magnetic field of, 142,178
magnetic force on, 137-139
Current enclosed by closed path, uniqueness of, 157-158, 210, 211
Current loop:
dipole moment of, 169
vector potential at large distances, 167-169
Current sheet, magnetic field due to, 149-151
Current transmission coefficient, 426
Currents:
conduction, 134, 317
convection, 134, 317
magnetization, 134, 317
polarization, 134, 317
true, 317
Cutoff frequency, 458
Cutoff wavelength, 457-458
Cycloid, 196
Cylindrical coordinate system, 14-16
coordinates for, 15,18
curl in, 54

Cylindrical coordinate system (contd.)
differential lengths, 16,18
differential surfaces, 16,18
differential volume, 16,18
divergence in, 46
gradient in, 36
Laplacian of scalar in, 59
D $\quad \mathbf{D}$ (see Displacement flux density)
Degree Kelvin, definition of, 522
Del operator, 32
Delta function, Dirac (see Dirac delta function)
Density:
charge (see Charge density)
current (see Current density)
Depth, skin, 472
Depth of penetration, 472
Diagram:
dispersion, 466
$\Gamma$-plane, 437
$\omega-\beta_{z}, 466$
Diamagnetic effect, 296
illustration of, 297-298
Diamagnetic materials, 296, 300
values of $\chi_{m}$ for, 304
Diamagnetism, 296, 299
Dielectric, 265
charge neutrality in, 283, 288
electric stored energy density in, 322-323
polarization energy density in, 323
Dielectric constant, 291
Dielectrics, 263
anisotropic, 281
effects of polarization in, 281-289
linear isotropic, 281
polarization in, 275-278
secondary fields in, 281, 283, 289
table of relative permittivities for, 292
Differential lengths:
in cartesian coordinates, 13, 18
in cylindrical coordinates, 16, 18
in spherical coordinates, 17,18
Differential surfaces:
in cartesian coordinates, 13,18
in cylindrical coordinates, 16,18

Cylindrical coordinate system (contd.)
Laplacian of vector in, 60
limits of coordinates, 18
orthogonal surfaces, 14, 18
position vector, 16
unit vectors, 15,18

Differential surfaces (contd.)
in spherical coordinates, 17, 18
Differential volume:
in cartesian coordinates, 13, 18
in cylindrical coordinates, 16,18
in spherical coordinates, 17, 18
Differentiation of vectors, 29-32
Dimensions, 522, 526
table of, 523-526
Diode, vacuum, 350
Dipole:
electric (see Electric dipole)
half-wave, 519
Hertzian (see Hertzian dipole)
magnetic (see Magnetic dipole)
short (see Short dipole)
Dipole antenna (see Dipole)
Dipole layer, electric, 349
Dipole moment:
electric (see Electric dipole moment)
magnetic (see Magnetic dipole moment)
of circular loop of current, 147
of current loop, 169
per unit volume, 278, 301
Dipole moment per unit volume:
electric, 278
magnetic, 301
Dirac delta function, 102, 103, 163
three-dimensional, 133
Direction lines, 29, 90-92, 108, 109, 119
for electric dipole field, 91-92
for infinite line charge, 115
of $\mathbf{D}$ compared to direction lines of E, 292, 293, 295
of $\mathbf{P}, 295$
Directivity:
definition of, 500

Directivity (contd.)
of Hertzian dipole, 500
of short dipole, 500
Dispersion, 463
conductive, 470
geometric, 468
parametric, 485
Dispersion diagram, 466
Displacement, 295
Displacement current, 215, 295
consequence of, 216
Displacement current density, 219, 295
Displacement flux, 295
Displacement flux density, 290, 295
definition of, 290
relationship with $\mathbf{E}, 290,291,318$
units of, 290
Distributed circuit:
concept, 407
representation of transmission line
E E (see Electric field intensity)
Earth, gravitational field of, 73
Effective permittivity, of a plasma medium, 485
Electrets, 276
Electric dipole, 80
analogy with magnetic dipole, 47
direction lines for the field of, 9192
electric field of, 80-83
equipotential surfaces for, 109-110
potential field of, 109
schematic representation of, 276
two-dimensional, 118, 125
Electric dipole layer, 349
Electric dipole moment:
definition of, 82
due to electronic polarization, 276278
Electric energy:
for spherical volume charge, 225
stored in a capacitor, 377
stored in a resonator, 479
Electric energy density:
in a dielectric, 323,377

Distributed circuit (contd.) by, 406
Distributive property:
of vector cross product, 6
of vector dot product, 5
Divergence, 44-48
definition of, 44
in cartesian coordinates, 47
in cylindrical coordinates, 46
in general coordinates, 61
in spherical coordinates, 47
of curl of a vector, 56
of gradient of a scalar, 59
Divergence theorem, 47-48
Division of vector by a scalar, 3,20
Domains, magnetic, 299
Dominant mode, 459
Dot product of vectors, $4,20,60$
commutative property of, 4,5
differentiation of, 32
distributive property of, 5
Drift velocity, 265, 266, 267
Electric energy density (contd.)
in free space, 225
time-average, 249, 323
Electric field (see also Electric field intensity)
as viewed by a moving observer, 206, 207
at the surface of a conductor, 273
concept, 73-75, 193
energy density in, 225, 324
energy storage in, 221-225
induced, 198, 199, 201
Electric field flux, 93-96, 212
evaluation of, 96-97
Electric field intensity:
definition of, 74, 135
due to dipole, $80-83$
due to infinite line charge, 83-85, 97-99, 177, 179
due to infinite sheet charge, 85-86, 99-100, 179
due to line charge, 89,178
due to point charge, $77,79,178$
due to point charges, 77-78, 79-80
due to spherical volume charge,

Electric field intensity (contd.) 87-89, 100-101, 348-350
due to surface charge, 89,178
due to volume charge, 89,178
from $V, 120,178$
unit of, 74
Electric force:
as viewed by a moving observer, 207
between two point charges, 75, 76
on a test charge, 74
Electric polarization (see Polarization in dielectrics)
Electric scalar potential (see also Potential field)
due to a time-varying point charge, 491
due to a time-varying volume charge, 492
time-varying, 202
Electric susceptibility, 281
Electromagnetic energy transmission, 405
Electromagnetic field, 72, 193
power flow in, 230-234
Electromagnetic field laws, summary of, 251,252
Electromagnetic wave propagation, 252,408 ; see also Wave propagation
Electromagnetic waves, 347, 412
radiation of, 489-500
Electromotance, 197
Electromotive force, 197
Electron, 73
charge of, 73
mass of, 73
mobility of, 266, 267
Electron cloud, 263, 264
Electron drift, 263
Electron spin, 296
Electronic polarizability, 278
Electronic polarization, 275
illustration of, 276-278
Electrons:
bound, 263
conduction, 263
free, 263

Electrostatic field (see Static electric field)
Electrostatic potential (see also Potential field)
for line charge, 115,178
for surface charge, 115, 178
for volume charge, 115, 178
from Laplace's equation, 353-369
from Poisson's equation, 348-350
Elliptical polarization, 243
Empty energy levels, 265
Energy:
electric (see Electric energy)
kinetic, 135, 322
magnetic (see Magnetic energy)
potential (see Potential energy)
unit of, 522
Energy band, 264
Energy density:
in electric field, 225, 323
in magnetic field, 229, 324
magnetization, 324
polarization, 323
Energy levels, 263-265
Energy storage:
in electric field, 221-225
in magnetic field, 226-230
in parallel-plate resonator, 477-483
Equality of vectors, 1, 20
Equation, continuity (see Continuity equation)
Equations, Maxwell's (see Maxwell's equations)
Equipotential surfaces, 107, 108, 109, 119
for electric dipole, 109-110
for infinite line charge, 115
for point charge, 107-108
Equivalent circuit representation:
for input behavior beyond quasistatic approximation, 400-401
for magnetic circuit, 391-393
for transmission-line equations, 405407
External inductance, 383
Extrinsic semiconductor, 265

F Fabry-Perot resonator, 481-483
Farad, 377
Faraday, 193, 196, 215
Faraday's law, 197
Faraday's law in differential form, 203-210
statement of, 204
Faraday's law in integral form, 196203
applications of, 198-201
consequences of, 202
statement of, 197
Feedback loop, 282, 305
Fermi level, 264, 265
Ferrimagnetic material, 300
Ferrimagnetism, 299, 300
Ferrites, 300
Ferroelectric materials, 276
Ferromagnetic materials, 299, 300
Ferromagnetism, 299, 300
theory of, 299-300
Field:
definition of, 25
electric (see Electric field)
gravitational, 73
local, 279, 301
magnetic (see Magnetic field)
magnetizing, 301, 303
polarizing, 276, 279
Field intensity:
electric (see Electric field intensity)
gravitational, 73
magnetic (see Magnetic field intensity)
Field points, 89
Field vectors:
fundamental, 317
mixed, 318
Fields:
conservative, 117
irrotational, 118
quasistatic, 394
radiation, 495
scalar, 25-27
solenoidal, 173
static, 72
time-varying, 72

Fields (contd.)
vector, 27-29
Filamentary current:
magnetic field due to, 142
magnetic force on, 138
Flux:
displacement, 295
magnetic, 172
of D compared to flux of $\mathbf{E}, 295$
of electric field, 93-96
of a vector quantity, 37
per unit volume, 44
Flux density:
displacement (see Displacement flux density)
magnetic (see Magnetic flux density)
Flux lines, 90
Flux linkage, 378
Forbidden band, 264, 265
Force:
Ampere's law of, 139-141
electric (see Electric force)
gravitational, 139
Lorentz, 194
magnetic (see Magnetic force)
unit of, 522
Force equation, Lorentz, 193, 194
Force per unit volume, 194
Fourier series, 365
Free electrons, 263
Free space:
intrinsic impedance of, 412
permeability of, 140
permittivity of, 76, 140
velocity of light in, 140
Frequency, 413
cutoff, 458
plasma, 485
Frequencies of oscillation, natural, 434
Function:
scalar, 25
vector, 27
Fundamental frequency of oscillation, 434
Fundamental mode, 434

Gauss' law, 154, 163, 178, 214, 215
Gauss' law in differential form, 101103, 163, 178
for sheet charge, 103-104
statement of, 102
Gauss' law in integral form, 92-101, 178,273
applications of, 97-101
statement of, 96
Gaussian surface, $97,98,99,100$
Geometric dispersion, 468
Good conductor, 319
attenuation constant, 471
intrinsic impedance for, 471
Maxwell's equations for, 321
phase constant, 471
skin effect in, 473
Good dielectric, 319
attenuation constant, 470
intrinsic impedance for, 470
phase constant, 470
H $\quad \mathbf{H}$ (see Magnetic fleld intensity)
Henry, 378
Hertzian dipole:
directivity of, 500
electromagnetic fields for, 494-495
normalized radiation intensity for, 500
radiation fields for, 495
radiation intensity for, 500
radiation resistance for, 497
retarded potentials for, 493-494

Identities:
involving curl, 56
vector, 61-62
Image charge:
for line charge near cylindrical conductor, 371-373
for point charge near plane conductor, 370-371
for point charge near spherical conductor, 373, 503
Images, method of, 370-373
Imaginary part, 237

Gradient, 32-36
curl of, 56
definition of, 32
in cartesian coordinates, 33
in cylindrical coordinates, 36
in general coordinates, 61
in spherical coordinates, 36
physical significance of, 33
Gravitation, constant of universal, 73
Gravitational field, $73,75,103-105,117$
Gravitational field intensity, 73
Gravitational force, 139
Gravity, acceleration due to, 122
Ground, 295
Grounded conductor, 293, 370, 371
Group velocity, 463-468
concept of, 463-465
in a parallel-plate waveguide, 465467
in a plasma medium, 486
physical interpretation for, 467
Guide impedance, 459
Guide wavelength, 458

Hertzian dipole (contd.)
time-average radiated power, 496
Holes, 263, 265
mobility of, 267
Hysteresis, 300, 315
Hysteresis curve, 316
Hysteresis curves, characteristics of, 316
Hysteresis effect, development of, 316
Hysteresis loop, 316

Impedance:
characteristic, 422
guide, 459
input, 434
internal, 474
line, 434,436
normalized, 445
wave, 434, 436
Impedance matching:
by quarter wave transformer, 442
by stub (see Stub matching)

Imperfect conductor (see Good conductor)
Imperfect dielectric (see Good dielectric)
Impulse function (see Dirac delta function)
Incident wave, 425
Induced electric field, 198, 199, 201
solenoidal character of, 201
Induced voltage, 197
Inductance (see also Inductor)
definition of, 378
external, 383
internal, 383
mutual, 386
physical interpretation for, 378
self, 385
units of, 378
Inductance per unit length:
for some structures, 382
general expression for, 380
related to capacitance per unit length, 381
Inductor (see also Inductance)
condition for quasistatic approximation for, 395, 397
magnetic energy stored in, 382
voltage-to-current relationship for, 396
Inhomogeneous wave equations, 490
Input admittance, of short-circuited line, 445
Input behavior:
beyond quasistatic approximation, 400-402
under quasistatic approximation, 397-400
Input impedance, of short-circuited line, 434
Input reactance, of short-circuited line, 435
Input susceptance, 453
Insulators, 263

J J (see Volume current density)
$\mathbf{K} \quad$ Kelvin degree, definition of, 522
Kilogram, definition of, 521
Kinetic energy, 135, 322

Integral:
closed line (see Circulation)
closed surface, 39
line, 40-43
surface, 37-40
volume, 36-37
Integration of vectors, 43
Intensity:
electric field (see Electric field intensity)
gravitational field, 73
magnetic field (see Magnetic field intensity)
radiation (see Radiation intensity)
Internal impedance, 474
application of, 477
for hollow cylindrical conductor, 475
Internal inductance:
definition of, 383
general expression for, 385
Internal inductance per unit length, 383
computation of, 383-385
International system of units, 521
Intrinsic impedance:
definition of, 411-412
for good conductor, 471
for good dielectric, 470
for perfect dielectric, 411
units of, 412
Intrinsic semiconductor, 265
Ionic polarization, 276
Ionosphere, 486
condition for reflection of wave, 488
description of, 486
path of wave in, 486-489
Irrotational fields, 118
Isotropic conductors, linear, 268
Isotropic magnetic materials, 304
Iteration, 369

Joule, definition of, 522

Kirchoff's current law, 406
Kirchoff's voltage law, 406

Laplace's equation:
applications of, 353-369
for electrostatic potential, 120, 348, 353
for magnetic vector potential, 171
in two dimensions, 359
numerical solution of, 367-369
solution of, 353, 359-360
solution of steady current problems, 365-367
Laplace's equations, solutions for onedimensional cases, 356
Laplacian of a scalar, 59
in cartesian coordinates, 59
in cylindrical coordinates, 59
in general coordinates, 61
in spherical coordinates, 59
Laplacian of a vector, 59-60
in cartesian coordinates, 59
in cylindrical coordinates, 60
in spherical coordinates, 60
Laser oscillation, 481-483
Lattice, atomic, 265
Law of conservation of charge, 215, 219
in differential form, 220
Law of reflection, in optics, 455
Leakage, of magnetic flux, 388
Left hand coordinate system, 11, 15, 17
Lenz's law, 198, 298
Level, Fermi, 264, 265
Light, velocity of (see Velocity of light)
Line admittance, 443
from the Smith chart, 448-452
Line charge, 82

M (see Magnetization vector)
m (see Magnetic dipole moment)
Macroscopic field, average, 279, 280, 302, 303
Macroscopic scale observations, 262
Magnetic charge, 172, 203, 210
Magnetic circuit, 389
analogy with electric circuit, 390
analysis of, 391-393
equivalent circuit representation for,

Line charge (contd.)
electric field of, 89,178
infinitely long, 83
potential field of, 115,178
Line charge density, 82
units of, 82
Line current:
magnetic field due to, 142-143, 178
magnetic vector potential due to, 164, 178
Line impedance:
for general case, 436
for short-circuited line, 434
from the Smith chart, 448-451
Line integral, 40-43, 105
around closed path, 41
evaluation of, 42-43
to surface integral, 58
Linear isotropic conductors, 268
Linear isotropic dielectrics, 281
Linear polarization, 243
Linear quadrupole, 122
Lines:
direction (see Direction lines)
transmission (see Transmission lines)
Linkage, flux, 378
Local field, 279, 301
Loop, current (see Current loop)
Lorentz condition, 490
Lorentz force, 194
Lorentz force equation, 72, 193, 194
230, 317
Lossy media, 468
Lossy transmission line, 475-477
Low-frequency circuit theory, field basis of, 393-402

Magnetic circuit (contd.) 391
Magnetic dipole, 144
magnetic field of, 144-147
oscillating, 518
schematic representation of, 296
two-dimensional, 173, 185
Magnetic dipole moment:
definition of, 147
diamagnetic effect on, 297-298

Magnetic dipole moment (contd.)
of plane loop of wire, 169
Magnetic domain, 299
Magnetic energy:
for cylindrical surface current, 229230
in a nonlinear magnetic material, 324
stored in an inductor, 378
stored in a resonator, 479
Magnetic energy density:
in free space, 229
in a magnetic material, 324,378
time-average, 249, 324
Magnetic field (see also Magnetic flux density)
concept, 135-136, 193
energy density in, 229, 324
energy storage in, 226-230
realizability of, 172-173
Magnetic field intensity, 312
definition of, 312
relationship with $\mathbf{B}, 312,318$
units of, 312
Magnetic flux, 172, 196, 197
Magnetic flux density:
definition of, 135-136, 178
due to current element, 142, 178
due to cylinder of current, 151-154, 161-162
due to finitely long wire, 144, 177, 179
due to infinite sheet of current, 149-151, 159-161, 179
due to infinitely long solenoid, 147149, 173-177
due to infinitely long wire, 144, 177, 179
due to line current, 142-143, 178
due to magnetic dipole, 144-147
due to surface current, 178
due to volume current, 178
from A, 164, 178
units of, 136
Magnetic force:
between two current elements, 140
between two current loops, 139-141
in terms of current, 138

Magnetic force (contd.)
on a closed loop of wire, 139
on filamentary wire, 138
on a moving charge, 135
Magnetic materials, 296
anisotropic, 304
effects of magnetization in, 305310
isotropic, 304
magnetization of, 296-301
secondary fields in, 305, 307, 310
Magnetic polarizability, 301
Magnetic quadrupole, 186
Magnetic scalar potential, 356, 357
Magnetic susceptibility, definition of 304
Magnetic susceptibilities, table of values of, 304
Magnetic vector potential, 163-172, 177
due to loop of wire, 167-169
due to time-varying current, 492
for Hertzian dipole, 494
for infinitely long wire, 165-166
for line current, 164, 178
for surface current, 164, 178
for volume current, 164, 178
Laplace's equation for, 171
Poisson's equation for, 171
Magnetization, 296
Magnetization current, 134, 317
Magnetization currents, compared to true currents, 317
Magnetization energy density, 324
Magnetization surface current, 306, 310
Magnetization surface current density, 308
in terms of magnetization vector, 310
Magnetization vector:
definition of, 301
relationship with B, 304
units of, 301
Magnetization volume current, 307,
310
Magnetization volume current density, 308

Magnetization volume current density (contd.)
in terms of magnetization vector, 310
Magnetizing field, 301, 303
Magnitude of vector, 1,20
Mass, 73
of an electron, 73
of a neutron, 73
of a proton, 73
Mass spectrograph, 180
Matching:
between two dielectric media, 441442
by quarter wave transformer, 442
in a waveguide, 460-462
stub (see Stub matching)
transmission-line (see Transmissionline matching)
Materials:
antiferromagnetic, 300
conductive (see Conductors)
constitutive relations for, 318
diamagnetic (see Diamagnetic materials)
dielectric (see Dielectrics)
ferrimagnetic, 300
ferroelectric, 276
ferromagnetic, 299, 300
magnetic (see Magnetic materials)
Maxwell's equations for, 317-321
nonmagnetic, 263
paramagnetic (see Paramagnetic materials)
power and energy in, 321-325
Maxwell, 193, 214, 215, 295
Maxwell's equations, 72, 347
applications of, 348-500
for good conductors, 321
for perfect dielectrics, 320, 321, 408
for static fields, 178, 318, 320-321
for time-varying fields, 244,252 , 317, 320-321

Natural frequencies of oscillation, 434
Natural modes of oscillation, 434
Neper, 469
Neutron, 73

Maxwell's equations (contd.)
in integral form, 320-321, 328
in phasor form, 244-245, 251, 319
independence of, 317
summary of, 317-321
table of, 320-321
Meter, definition of, 521
Method of images, 370
application of, 370-373
Metric coefficients, 60
Mho, 375
Microscopic scale observations, 262
MKS rationalized units, 76, 521
Mobility, 266, 267
units of, 267
Mode, 458
dominant, 459
Modes:
TE, 458
TM, 463
Modes of oscillation, natural, 434
Modified Ampere's circuital law: in differential form, 218
in integral form, 210-217, 218
Molecular polarizability, 278
Molecule:
nonpolar, 275
polar, 275
Moment:
electric dipole (see Electric dipole moment)
magnetic dipole (see Magnetic dipole moment)
Moving charge, magnetic force on, 135
Moving observer, electric field viewed by, 206, 207
Multiplication of vector, by a scalar, 3, 20
Multipole, 82
Mutual inductance:
computation of, 386-387
definition of, 386
Neutron (contd.)
charge of, 73
mass of, 73
Newton, definition of, 521

Newton's third law, 141, 182
Nonmagnetic materials, classification of, 319
Nonpolar molecule, 275
Normal component of B, boundary condition for, 330
Normal component of D, boundary condition for, 329
Normal component of $\mathbf{J}$, boundary condition for, 332
Normal component of $\mathbf{P}$, boundary condition for, 333
Normal vector to a surface:
from cross product, 33-35
0 Observations:
macroscopic scale, 262
microscopic scale, 262
Observer:
moving, 206, 207
stationary, 206
Occupied levels, 264-265
Ohm, 375
Ohm's law, 268, 375
$\omega-\beta_{z}$ diagram, 466
P $\quad \mathbf{P}$ (see Polarization vector, Poynting vector)
p (see Electric dipole moment)
Paddle wheel, 54, 118
Parabolic cylindrical coordinate system, 62
Parallel conductor structures:
capacitance per unit length, 378-380
conductance per unit length, 378380
inductance per unit length, 378-380
Parallel-plate resonator, 477-483
energy storage in, 478-479
$Q$ factor for, 480-481
resonant frequencies for, 480
Parallel-plate waveguide, 456
constant amplitude surfaces, 459
constant phase surfaces, 459
cutoff frequencies for, 458
cutoff wavelengths for, 458
group velocity in, 467
guide wavelength, 458

Normal vector to a surface (contd.) from gradient, 33-35
Normalized line admittance, 451-453
Normalized line impedance, 445, 451453
definition of, 445
Normalized radiation intensity, 500
Notation:
source point-field point, 89
transmission-line waves, 423
vector, 1
Nuclear spin, 296
Nucleus, 263

Operation, Laplacian, 59
Operator, del, 32
Optical frequencies, 481
Orbit, electronic, 297-298
Orientational polarization, 276, 299
Origin, 11
Orthogonality property, of sine functions, 364
Oscillation, laser, 481-483

Parallel-plate waveguide (contd.)
$\mathrm{TE}_{m, 0}$ modes, 458
TE waves in, 456
time-average power flow in, 459
Parallelepiped, 7
Parallelogram law:
of vector addition, 2
of vector subtraction, 3
Paramagnetic materials, 299, 300
values of $\chi_{m}$ for, 304
Paramagnetism, 299
Parametric dispersion, 485
Partial derivatives, of unit vectors, 31
Partial standing waves, 436
patterns for, 436-439
VSWR for, 438
Path, closed (see Closed path)
Pauli's exclusion principle, 264
Penetration, depth of, 472
Perfect conductor, 319
boundary conditions, 333, 334-336
normal incidence of uniform plane

Perfect conductor (contd.) waves on, 430
oblique incidence of uniform plane waves on, 454-456
Perfect dielectric, 319
boundary conditions, 333
intrinsic impedance, 411
Maxwell's equations for, 320
phase constant, 414
velocity of propagation, 411
Permanent magnetization, problems involving, 356-359
Permeability, 313, 318
definition of, 313
of free space, 140
of magnetic material, 313
relative, 312
units of, 140
Permittivity, 291, 318
definition of, 291
of dielectric material, 291
of free space, 76, 140
relative, 291
units of, 76
Phase, 414
Phase angle, 234
Phase constant, 414, 469
for good conductor, 471
for good dielectric, 470
for perfect dielectric, 414
for plasma, 485
units of, 415
Phase refractive index, 488
Phase velocity, 414
apparent, 418
Phasor, 234
graphical representation of, 234 , 235
Phasor form:
continuity equation in, 245
Maxwell's equations in, 244-245, 251, 319
Phasor technique, 235-242
extension to vector quantities, 239242
illustration of, 235-239
Phasors, differences and similarities with vectors, 239-242

Plane wave, uniform (see Uniform plane wave)
Plasma:
description of, 484
effective permittivity of, 485
example of, 486
phase constant, 485
wave propagation in, 484-489
Plasma frequency, definition of, 485
Point charge:
electric field of, $77,79,178$
equipotential surfaces for, 107,108
potential field of, $107,109-111$, 178
Point charges:
electric field of, 77-78, 79-80
potential field of, 108, 111-112
Poisson's equation:
applications of, 348-352
for electrostatic potential, 120, 348
for magnetic vector potential, 171
Polar molecule, 275
Polarizability:
electronic, 278
magnetic, 301
molecular, 278
Polarization in dielectrics, 263, 275
electronic, 275, 276-278
ionic, 276
orientational, 276
Polarization of vector fields, 242-244, 420-421
circular, 243
elliptical, 243
left-circular, 243
linear, 243
right-circular, 244
Polarization charges, compared to true charges, 317
Polarization current, 134, 285, 288, 289, 317
Polarization current density, 285
in terms of polarization vector, 288
Polarization currents, compared to true currents, 317
Polarization energy density, 323
Polarization surface charge, 283, 284, 287, 288, 289

Polarization surface charge density, 284, 286
in terms of polarization vector, 288
Polarization vector:
definition of, 278
relationship with $\mathbf{E}, 281$
units of, 278
Polarization volume charge, 284, 287, 288, 289
Polarization volume charge density, 286
in terms of polarization vector, 288
Polarizing field, 276, 279
Position vector:
in cartesian coordinates, 13-14
in cylindrical coordinates, 16
in spherical coordinates, 17-18
Potential, 106, 107
electric scalar (see Electric scalar potential)
electrostatic (see Potential field)
magnetic scalar, 356, 357
magnetic vector (see Magnetic vector potential)
time varying scalar, 210 ; see also Electric scalar potential
time varying vector, 210; see also Magnetic vector potential
Potential difference, 103-105, 202, 221
compared to voltage, 202
units of, 105, 522
Potential energy, 103, 105, 119, 155, 228
of continuous charge distribution, 223, 224
of solenoidal current distribution, 226-228
of system of point charges, 222
Potential field:
at large distances, 109-112
of electric dipole, 109
of infinite line charge, 113-115
of line charge, 115,178
of point charge, 107, 109-111, 178
of point charges, 108, 111-112
of spherical volume charge, 348-350
of surface charge, 115,178

Potential field (contd.)
of volume charge, 115,178
Potentials:
differential equations for, 178
for Hertzian dipole, 492-494
retarded, 492
wave equations for, 490
Power:
associated with movement of charge, 230-231
dissipated in a conductor, 322, 376
radiated by an antenna, 233-234
time-average, 250
unit of, 522
Power balance, at junction of transmission lines, 426
Power density:
associated with electromagnetic field, 232
complex, 249
time-average, 249
Power dissipation density, in a conductor, 322, 376
Power flow:
along a transmission line, 407, 442
for a parallel-plate waveguide, 456
in an electromagnetic field, 230234
into a good conductor, 473-474
Poynting, 232
Poynting theorem, 232
complex, 250, 325
Poynting vector, 232, 246, 247
complex, 248, 325
for material medium, 325
interpretation, 232
surface integral of, 232, 247
time-average, 248
units of, 232
Product:
cross (see Cross product of vectors)
dot (see Dot product of vectors)
scalar (see Dot product of vectors)
vector (see Cross product of vectors)
Projection of vectors, 9
Propagation:
electromagnetic wave, 252, 408; see

Propagation (contd.) also Wave propagation
velocity of (see Velocity of propagation)
Propagation constant:
for lossy medium, 469
$Q$ factor:
definition of, 480
for parallel-plate resonator, 480481
Quadrupole, 82, 109, 111, 112
linear electric, 122
magnetic, 186
oscillating electric, 518
rectangular electric, 129
Quality factor (see $Q$ factor)
Quantum theory, 263
Quarter wave transformer, 442
R Radiation, 489-500
Radiation fields:
for Hertzian dipole, 495
for short dipole, 499
Radiation intensity:
definition of, 499-500
for Hertzian dipole, 500
normalized, 500
Radiation resistance:
definition of, 497
for Hertzian dipole, 497
for short dipole, 499
Rationalized MKS units, 76, 521
Reactance, input (see Input reactance)
Real part, 237
Rectangular coordinate system (see Cartesian coordinate system)
Rectangular waveguide, 462
TE modes in, 462
TM modes in, 463
Reference point, 107, 113, 114
Reference potential, 107
Reflected wave, 425
Reflection coefficient:
current, 426
from the Smith chart, 448-449
generalized, 436

Propagation constant (contd.)
for plasma, 485
Propagation vector, 416
Proton, 73
charge of, 73
mass of, 73
Quarter wave transformer (contd.) in a waveguide, 460-462
Quasistatic approximation: behavior for frequencies beyond, 400-402
for a capacitor, 394, 397
for an inductor, 395,397
for a resistor, 397
method of finding condition for, 397-400
Quasistatic fields, 394
Quasistatics, 393-402
Reflection coefficient (contd.) voltage, 426
Reflection condition, for incidence on ionosphere, 488
Refractive index, phase, 488
Relative permeability, 312
for ferromagnetic materials, 315, 316
incremental, 316
Relative permittivity, 291
table of values of, 292
Reluctance, definition of, 390
Remanence, 316
Resistance:
definition of, 375
radiation (see Radiation resistance)
voltage-to-current relationship for, 397
units of, 375
Resistor (see also Resistance)
quasistatic approximation for, 397
Resonance, 479
Resonant frequencies, for parallel-plate resonator, 480
Resonator:
cavity, 480
Fabry-Perot, 481-483

Resonator (contd.)
parallel-plate, 477-483
$Q$ of, 480
Retarded potentials, 492
for Hertzian dipole, 493-494
Retentivity, 316
Scalar:
definition of, 1
gradient of, 32
Laplacian of, 59
Scalar fields, 25-27
graphical representation of, 26
Scalar function, 25
rate of increase of, 32, 36
Scalar potential:
electric (see Electric scalar potential)
magnetic (see Magnetic scalar potential)
Scalar product (see Dot product of vectors)
Scalar triple product, 7, 21
Scalar wave equation, one-dimensional, 409
Scalars, examples of, 1
Second, definition of, 521
Secondary fields, 281, 289, 305, 310, 311
Self inductance, 385
Semiconductors, 263, 265, 267
conductivity of, 268
extrinsic, 265
intrinsic, 265
Separation of variables technique, 359360
Sheet charge, 83, 99, 102, 103
Shielding, 473
Short-circuited line:
input impedance of, 434-435
standing wave patterns for, 433
voltage and current on, 430-433
Short dipole:
current distribution along, 497, 498
directivity for, 500
normalized radiation intensity for, 500
radiation fields for, 499

Right-hand coordinate system:
cartesian, 11
cylindrical, 15
spherical, 17
Ring charge, 123

Short dipole (contd.)
radiation resistance for, 499
time-average power radiated by, 499
Sink of charge, 157
Sink of fluid, 93
Sinusoidal steady state, traveling waves in, 429-442
Sinusoidally time varying fields:
Maxwell's equations for, 244-245
phasor representation of, 234-245
Skin depth, 472
for copper, 473
Skin effect, 473
inductance due to, 476
resistance due to, 476
Slab charge, 102
Smith chart, 445
applications of, 448-454
development of, 445-448
use as admittance chart, 451-452
Snell's law, 488
Solenoid, 147
magnetic field due to, 147-149, 173-177
Solenoidal vector, 173
Solid, crystalline, 263
Solid angle, 94, 126, 522
computation of, 212-214
unit of, 94, 522
Source distributions, analogous, 177, 179
Source of charge, 157
Source of fluid, 93
Source point-field point notation, $£ 9$, 142
Source points, 89
Space charge, in vacuum diode, 350352
Spherical cavity:
average electric field due to m in, 302-303

Spherical cavity (contd.)
average electric field due to $\mathbf{p}$ in, 279-280
Spherical coordinate system:
coordinates for, 16, 18
curl in, 53
differential lengths, 17, 18
differential surfaces, 17, 18
differential volume, 17, 18
divergence in, 47
gradient in, 36
Laplacian of scalar in, 59
Laplacian of vector in, 60
limits of coordinates, 18
orthogonal surfaces, 16,18
position vector, 17-18
unit vectors, 17,18
Spin:
electronic, 296
nuclear, 296
Standing wave patterns, 433
example of determination of, 439441
for line short-circuited at both ends, 434
for partial standing wave, 436-439
for short-circuited line, 433
Standing wave ratio, voltage (see VSWR)
Standing waves:
complete, 432
limitations imposed by, 443
partial, 436
Static electric field:
conservative property of, 117, 178
laws and formulas, 178
Maxwell's equations for, 178
realizability of, 118
Static magnetic field:
laws and formulas, 178
Maxwell's equations for, 178
T Tangential component of E, boundary condition for, 330
Tangential component of $\mathbf{H}$, boundary condition for, 331
Tapered trasmission line, 514
$\mathrm{TE}_{m, 0}$ modes:

Steady state, sinusoidal (see Sinusoidal steady state)
Stokes' theorem, 56-58
Stream lines (see Direction lines)
Stub, 443
Stub matching, 443
analytical solution, 443-445
solution by Smith chart, 452-453
Subtraction of vectors, 2-3
parallelogram law of, 3
Surface:
as a vector, 13
Gaussian (see Gaussian surface)
Surface charge, 82
electric field of, 89, 178
polarization, 283, 284, 287, 288, 289
potential field of, 115, 178
Surface charge density, 82
polarization, 284, 286, 288
units of, 82
Surface current, 149
magnetic field of, 178
magnetic vector potential due to, 164, 178
magnetization, 306, 310
Surface current density, 149
magnetization, 308, 310
Surface integral, 37-40
closed, 39
evaluation of, 39-40
to volume integral, 48
Surfaces:
differential (see Differential surfaces)
equipotential (see Equipotential surfaces)
of constant phase, 245, 415
Susceptance, input, 453
Susceptibility:
electric, 281
magnetic, 304
$T E_{m, 0}$ modes (contd.)
guide impedance for, 459
in parallel-plate waveguide, 458,460
transmission-line equivalent for, 459
$\mathrm{TE}_{m, 0, l}$ modes, 480

TE wave, 423
in parallel-plate waveguide, 456
TEM wave, 421
TEM wave propagation, wave equation for, 421
Test charge, 74
in crossed electric and magnetic fields, 194-196
moving, 135, 193
Test mass, 73
Tetrahedron, volume of, 62
Thermal agitation, 263
Three-dimensional representation, of traveling wave, 410
Time-average energy density:
in electric field, 249,323
in magnetic field, 249, 324
Time-average power, 250
Time-average power flow:
along a parallel-plate waveguide, 456
along a transmission line, 442
Time-average Poynting vector, 248
for Hertzian dipole fields, 496
Time constant, for decay of charge inside a conductor, 271
Time domain, traveling waves in, 424429
Time-varying fields, Maxwell's equations for, 252, 317, 320-321
TM modes, 463
TM wave, 423
Toroid, 188
Toroidal conductor, 387
Toroidal magnetic core, 388
Torque:
on a current loop, 341
on an electric dipole, 339
Transient waves, 428
Transmission coefficient:
current, 426
voltage, 426
Transmission line, 405
characteristic impedance of, 422
distributed circuit representation of, 406, 476, 477
lossy, 475-477

Transmission line (contd.)
power flow along, 407
tapered, 514
Transmission-line admittance (see Line admittance)
Transmission-line current, notation, 423
Transmission-line equations, 405
circuit representation of, 405-406 derivation of, 403-405
Transmission-line equivalent, for power flow for TE waves, 459
Transmission-line impedance (see Line impedance)
Transmission-line input impedance, variation with frequency, 443
Transmission-line matching, 442-454 by stub (see Stub matching)
Transmission-line voltage, notation, 423
Transmission-line waves, 422
analogy with uniform plane waves, 422
between imperfect conductors, 475476
power flow associated with, 423-424
Transmission lines, power balance at junction of, 426
Transmitted wave, 425
Transverse electric wave (see TE wave)
Transverse electromagnetic wave, 421
Transverse magnetic wave, 423
Transverse plane, 421, 422
Traveling wave:
three-dimensional representation of, 410
velocity of propagation of, 410
Traveling waves:
in sinusoidal steady state, 429-442
in time domain, 424-429
True charge density, 289, 311, 317
True charges:
compared to polarization charges, 317
examples of, 317
True current density, 289, 311, 317
True currents:
compared to magnetization currents,
317
compared to polarization currents,
317

True currents (contd.) examples of, 317
Two-dimensional dipole:
electric, 118,125
magnetic, 173, 185

Uniform plane wave in three dimensions (contd.)
propagation vector for, 416
Uniform plane waves, 412
analogy with transmission-line waves, 422
power flow associated with, 412
Uniqueness theorem, 362-363
Unit circle, 446
Unit conductance circle, 452
Unit normal vector to a surface:
from cross product, 34,35
from gradient, 35
Unit vector, 4
from cross product, 7
Unit vectors:
cross products of, 22
dot products of, 22
in cartesian coordinates, 11,18
in cylindrical coordinates, 15,18
in spherical coordinates, 17,18
partial derivatives of, 31
Units:
International system of, 521
MKS rationalized, 76
table of, 523-526

Vector (contd.)
multiplication by a scalar, 3, 20
position (see Position vector)
unit (see Unit vector)
unique definition of, 490
Vector addition (see Addition of vectors)
Vector analysis, rules of, 1
Vector cross product (see Cross product of vectors)
Vector dot product (see Dot product of vectors)
Vector fields, 27-29
Vector identities, 56, 61, 62

Vector notation, 1
Vector product (see Cross product of vectors)
Vector subtraction (see Subtraction of vectors)
Vector wave equation, 408
Vectors:
addition of, 2, 20
components of, 19,25
cross product of, 5, 6, 20
differences and similarities with phasors, 239-242
differentiation of, 29-32
dot product of, 4, 20
equality of, 1,20
examples of, 1
integration of, 43
proportionality of, 91
scalar triple product of, 7, 21
subtraction of, 2, 3
unit (see Unit vectors)
Velocity:
drift, 265, 266, 267
group (see Group velocity)
phase (see Phase velocity)
Velocity of light, in free space, 140
Velocity of propagation, of traveling wave, 410
Volt, definition of, 105, 522
W Watt, definition of, 522
Wave:
incident, 425
reflected, 425
TE (see TE wave)
TEM, 421
TM, 423
transmitted, 425
Wave equation:
for a plasma medium, 485
for TEM wave propagation, 421
scalar (see Scalar wave equation)
vector, 408
Wave equations:
inhomogeneous, 490
scalar, 408-409
Wave impedance, 434; see also Line impedance

Voltage:
compared to potential difference, 202
induced, 197
Voltage reflection coefficient, 426
Voltage standing wave ratio:
definition of, 438
from the Smith chart, 450
Voltage transmission coefficient, 426
Volume, differential (see Differentia' volume)
Volume charge, 82
electric field of, 89,178
potential field of, 115,178
spherical, 83
Volume charge density, 82
polarization, 286
units of, 82
Volume current, 149
magnetic field of, 178
magnetic vector potential due to, 164, 178
Volume current density, 149
magnetization, 308, 310
polarization, 285, 288
Volume integral, 36-37
evaluation of, 37
VSWR (see Voltage standing wave ratio)

Wave impedance (contd.)
for normal incidence on perfect conductor, 434
for partial standing wave, 436
for TE waves in parallel-plate waveguide, 459
Wave propagation:
in good conductor, 472
in lossy media, 468
in perfect dielectric, 408
in plasma, 484
Waveguide:

```
parallel-plate (see Parallel-plate
        waveguide)
rectangular (see Rectangular wave-
        guide)
```

Wavelength:
apparent, 417

Wavelength (contd.)
definition of, 413
guide, 458
times frequency, 414
Waves:
Electromagnetic (see Electromagnetic waves)
Standing (see Standing waves)
Transient, 428
Transmission-line (see Transmission-

Waves (contd.)
line waves)
Traveling (see Traveling waves)
Work, 104, 117
for assembling a solenoidal current distribution, 226-228
for assembling a system of point charges, 221-223
in displacing a charge, 230

