ANSWERS TO ODD-NUMBERED PROBLEMS

Chapter 1

1.1. (a) $4 \sqrt{3}$ units and directed 30° south of east (b) 0.51764 units and directed 45° north of east (c) 9.928 units and directed 30° south of east (d) $-6 \sqrt{3}$ (e) 6 units and directed upwards (f) 0 (g) 0 (h) 2.784 (i) 1.607 units and directed upwards (j) 0 (k) 0 (l) 24 units and directed towards the north (m) 24 units and directed 30° north of east
13. $C^{2}=A^{2}+B^{2}-2 A B \cos \theta$ where θ is the angle between \mathbf{A} and \mathbf{B}.
1.5.
(c) $d \mathbf{l}=\sqrt{u^{2}+v^{2} d u} \mathbf{i}_{u}+\sqrt{\overline{u^{2}+v^{2}}} d v \mathbf{i}_{v}+d z \mathbf{i}_{z} \quad$ (d) $d v=\left(u^{2}+v^{2}\right) d u d v d z$
1.7.
(c) $\alpha=129.25^{\circ}, \Delta=29.38^{\circ}, S=38673 \mathrm{Km}$
(d) $208.97^{\circ}, 25.17^{\circ}$
1.15. $\quad\left(i_{x}+2 i_{y}+3 i_{z}\right) / \sqrt{14}$
1.17. (a) Surfaces of constant magnitudes, T_{0}, are ellipsoids with intercepts on the x, y, and z axes at $\pm \sqrt{T_{0}}, \pm \sqrt{T_{0} / 4}$, and $\pm \sqrt{T_{0} / 9}$, respectively.
(b) Surfaces of constant magnitudes, U_{0}, are cylinders parallel to the z axis, having radii equal to $1 / 2 U_{0}$ and with their axes passing through $x= \pm 1 / 2 U_{0}, y=0$.
(c) Surfaces of constant magnitudes, V_{0}, are toruses obtained by revolving, about the z axis, circles in the $\phi=$ constant plane with centers at $r_{c}=1 / 2 V_{0}$ and $z=0$ and with radii equal to $1 / 2 V_{0}$.
1.19. $\mathrm{F}=-\left(m M G / r^{2}\right) \mathbf{i}_{r}$ in the spherical coordinate system having its origin at the center of the earth. Constant magnitude surfaces are spheres concentric with the earth. Direction lines are radial lines converging towards the center of the earth.
1.23. (a) $\mathbf{v}=a \mathbf{i}_{r}+a b t \mathbf{i}_{\phi}, \frac{d \mathbf{v}}{d t}=-a b^{2} t \mathbf{i}_{r}+2 a b \mathbf{i}_{\phi}$
(b) $\mathbf{v}=-\omega a \sin \omega t \mathbf{i}_{x}+\omega b \cos \omega t \mathbf{i}_{y}+c \mathbf{i}_{z}$ $\frac{d \mathbf{v}}{d t}=-\omega^{2} a \cos \omega t \mathbf{i}_{x}-\omega^{2} b \sin \omega t \mathbf{i}_{y}$
1.25. $\quad\left(i_{r}-\sqrt{3} i_{\phi}\right) / 2$
1.27. $\begin{array}{lllllccc}\text { Scalar function } & x & y & z & r_{c} & \phi & r_{s} & \theta \\ & \text { Gradient } & \mathbf{i}_{x} & \mathbf{i}_{y} & \mathbf{i}_{z} & \mathbf{i}_{r c} & \left(1 / r_{c}\right) \mathbf{i}_{\phi} & \mathbf{i}_{\mathbf{i}_{s}}\end{array}$
1.29. 6.983
1.31. (a) $1 / 720$
(b) $2 \pi a l$
(c) $\pi / 16$
1.33. (a) 0
(b) $a^{2} l / 2$
1.35. (a) $\pi / 2$
(b) $\pi / 2$
(c) $\pi / 2$
(d) $\pi / 2$
1.37. $-2 / 3$
1.39. $\left(e^{-1}-1\right) \pi / 2$
1.43. $\begin{array}{llllllll}\text { Unit vector } & \mathbf{i}_{x} & \mathbf{i}_{y} & \mathbf{i}_{z} & \mathbf{i}_{r c} & \mathbf{i}_{\phi} & \mathbf{i}_{r s} & \mathbf{i}_{\theta} \\ & \text { Divergence } & 0 & 0 & 0 & 1 / r_{c} & 0 & 2 / r_{s}(\cot \theta) / r_{s}\end{array}$
1.49.
(a) $21 / 16$
(b) $1 / 2$
(c) 0 (d) 0
1.53.
(a) $-y \mathbf{i}_{x}-z \mathbf{i}_{y}-x \mathbf{i}_{z}$
(b) $-2 \mathbf{i}_{z}$
(c) $(2+2 \sin \phi) \mathbf{i}_{2}$
(d) 0 except for $z=0$
(e) $-\left(e^{-r} / r\right) \mathbf{i}_{\phi}$
1.63.
(a) $6 x y z^{2}+2 x^{3} y$
(b) 0
(c) e^{-r} / r
(d) $2\left(y z \mathbf{i}_{x}+z x \mathbf{i}_{y}+x y \mathbf{i}_{z}\right)$

Chapter 2

2.1. $\quad-(m g / q) i_{r}, 55.7 \times 10^{-12} \mathrm{~N} / \mathrm{C}$
2.3. (b) $y_{L}=q E_{0} L^{2} / 2 m v_{0}^{2}, \mathbf{v}_{L}=v_{0} \mathbf{i}_{x}+\left(q E_{0} L / m v_{0}\right) \mathbf{i}_{y}$
(c) $y_{d}=\left(q E_{0} L / m v_{0}^{2}\right)[(L / 2)+d]$
2.5. $\quad Q^{2} / \epsilon_{0} l^{2} m g=4 \pi / \sqrt{6}$
2.7. (a) $6 Q d^{2} / 4 \pi \epsilon_{0} z^{4}$ away from the quadrupole
(b) $3 Q d^{2} / 4 \pi \epsilon_{0} r^{4}$ towards the quadrupole
2.9. (a) $E_{x}=0, E_{y}=0, E_{z}=\rho_{L 0} a z / 2 \epsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}$
(b) $E_{x}=0, E_{y}=-\rho_{L 0} a^{2} / \pi \epsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}, E_{z}=0$
(c) $E_{x}=-\rho_{L 0} a^{2} / 4 \epsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}, E_{y}=0, E_{z}=0$
(d) $E_{x}=0, E_{y}=-\rho_{L 0} a^{2} / 4 \epsilon_{0}\left(a^{2}+z^{2}\right)^{3 / 2}, E_{z}=0$
2.11. (a) 0 for $|z|<a, \rho_{s 0} a^{2}|z| / \epsilon_{0} z^{3}$ for $|z|>a$
(b) $-\rho_{s 0} / 3 \epsilon_{0}$ for $|z|<a, 2 \rho_{s 0} a^{3} / 3 \epsilon_{0}\left|z^{3}\right|$ for $|z|>a$
2.13. $\left(\rho_{0} r / 2 \epsilon_{0}\right) \mathbf{i}_{r}$ for $r<a$, and $\left(\rho_{0} a^{2} / 2 \epsilon_{0} r\right) \mathbf{i}_{r}$ for $r>a$, where the axis of the cylindrical charge is the z axis.
2.15. (a) $\mathbf{E}=\left(\rho_{L 0} d / 2 \pi \epsilon_{0} r^{2}\right)\left(\cos \phi \mathbf{i}_{r}+\sin \phi \mathbf{i}_{\phi}\right)$
(b) $x^{2}+(y-c / 2)^{2}=(c / 2)^{2}, z=$ constant; circles in planes normal to the z axis, with centers at $x=0$ and $y= \pm c / 2$, and having radii $c / 2$.
2.17. $\quad \mathbf{E}=\frac{\rho_{L 0}}{4 \pi \epsilon_{0}}\left[\left(\frac{z+a}{\sqrt{(z+a)^{2}}} \overline{\overline{+r^{2}}}-\frac{z-a}{\sqrt{(z-a)^{2}+r^{2}}}\right) \mathbf{i}_{r}\right.$

$$
\left.+\left(\frac{r}{\sqrt{(z-a)^{2}+r^{2}}}-\frac{r}{\sqrt{(z+a)^{2}+r^{2}}}\right) \mathbf{i}_{2}\right]
$$

where the line charge is located along the z axis between $z=-a$ and $z=a$.
Direction lines are given by
$\sqrt{(z+a)^{2}+r^{2}}-\sqrt{(z-a)^{2}+r^{2}}=$ constant
2.19.
(a) π
(b) $2 \pi / 3$
(c) $\pi / 6$
(d) 2π
(e) $\pi / 2$
(f) $\pi / 2$
2.21. $Q / 8 \epsilon_{0}$
2.23. (a) $\frac{\rho_{0} z}{\epsilon_{0}} \mathbf{i}_{z}$ for $|z|<a, \frac{\rho_{0} a|z|}{\epsilon_{0} z} \mathbf{i}_{z}$ for $|z|>a$
(b) $\frac{\rho_{0}}{\epsilon_{0}}(|z|-a) \mathbf{i}_{z}$ for $|z|<a, 0$ for $|z|>a$
(c) $\frac{z^{3}}{2 \epsilon_{0}|z|} \mathbf{i}_{z}$ for $|z|<a, \frac{a^{2}|z|}{2 \epsilon_{0} z} \mathbf{i}_{z}$ for $|z|>a$
(d) $\frac{z^{2}-a^{2}}{2 \epsilon_{0}} \mathbf{i}_{z}$ for $|z|<a, 0$ for $|z|>a$
(e) $\frac{1}{\epsilon_{0}}\left(a z-\frac{z^{3}}{2|z|}\right) \mathbf{i}_{z}$ for $|z|<a, \frac{a^{2} z}{2 \epsilon_{0}|z|} \mathbf{i}_{z}$ for $|z|>a$
2.25. (a) 0 for $r<a, \frac{\rho_{0}}{3 \epsilon_{0} r^{2}}\left(r^{3}-a^{3}\right) \mathbf{i}_{r}$ for $a<r<b, \frac{\rho_{0}}{3 \epsilon_{0} r^{2}}\left(b^{3}-a^{3}\right) \mathbf{i}_{r}$ for $r>b$
(b) $\frac{\rho_{0} r^{2}}{4 \epsilon_{0} a} \mathbf{i}_{r}$ for $r<a, \frac{\rho_{0} a^{3}}{4 \epsilon_{0} r^{2}} \mathbf{i}_{r}$ for $r>a$
(c) $\frac{\rho_{0}\left(5 a^{2} r^{3}-3 r^{5}\right)}{15 \epsilon_{0} a^{2} r^{2}} \mathbf{i}_{r}$ for $r<a, \frac{2 \rho_{0} a^{3}}{15 \epsilon_{0} r^{2}} \mathbf{i}_{r}$ for $r>a$
2.27. $\left(\rho_{0} / 2 \epsilon_{0}\right) \mathbf{c}$ where \mathbf{c} is the vector drawn from the axis of the cylindrical surface of radius a to the axis of the cylindrical surface of radius b.
2.31.
(a) $\rho_{s}= \begin{cases}(2 / 3) \rho_{s 0} & z=0 \\ (4 / 3) \rho_{s 0} & z=a\end{cases}$
(b) $\rho=e^{-r} / r$
(c) $\rho_{s}= \begin{cases}Q / 4 \pi a^{2} & r=a \\ -Q / 4 \pi b^{2} & r=b\end{cases}$
2.35. 1 unit of work done by the field.
2.39. $\frac{3 Q(\Delta x)(\Delta z)}{4 \pi \epsilon_{0} r^{3}} \sin \theta \cos \theta \cos \phi$
2.41. (a) $\frac{5 Q}{32 \pi \epsilon_{0} r}+\frac{Q(9 \sin \theta \cos \phi+3 \sin \theta \sin \phi)}{32 \pi \epsilon_{0} r^{2}}$
(b) $-\frac{3}{4 \pi \epsilon_{0} r}-\frac{\sin \theta \cos \phi+\sin \theta \sin \phi+\cos \theta}{\pi \epsilon_{0} r^{2}}$
(c) $\frac{Q(\sin \theta \cos \phi+\cos \theta)}{2 \pi \epsilon_{0} r^{2}}$ $+\frac{Q\left(3 \sin ^{2} \theta \cos ^{2} \phi+3 \cos ^{2} \theta+3 \sin \theta \cos \theta \cos \phi-2\right)}{4 \pi \epsilon_{0} r^{3}}$
2.43. (a) $\frac{\rho_{L 0}}{4 \pi \epsilon_{0}} \ln \frac{\sqrt{r^{2}+z_{0}^{2}}+z_{0}}{\sqrt{r^{2}+z_{0}^{2}}-z_{0}}$
(b) $\frac{1}{2 \pi \epsilon_{0}}\left(\sqrt{r^{2}+z^{2}}-r\right)$
(c) 0
2.45. (a) $\left(\rho_{s 0} / 2 \epsilon_{0}\right)\left(\left|z_{0}\right|-|z|\right)$
(b) $\left(\rho_{s 0} / 2 \epsilon_{0}\right)\left(\left|\sqrt{r_{0}^{2}+z^{2}}\right|-\left|\sqrt{r_{0}^{2}+z_{0}^{2}}\right|-|z|+\left|z_{0}\right|\right)$
(c) $\left(\rho_{s 0} / 2 \epsilon_{0}\right)\left(\left|\sqrt{r_{0}^{2}+z_{0}^{2}}\right|-\left|\sqrt{r_{0}^{2}+z^{2}}\right|\right)$
(d) 0
(e) 0
2.47. For the line charge lying along the z axis between $z=-a$ and $z=a$, $V=\frac{\rho_{L 0}}{4 \pi \epsilon_{0}} \ln \frac{\sqrt{r^{2}+(z+a)^{2}}+(z+a)}{\sqrt{r^{2}+(z-a)^{2}}+(z-a)}$

Equipotential surfaces are given by
$\frac{(c-1)^{2}}{4 c}\left(\frac{r}{a}\right)^{2}+\frac{(c-1)^{2}}{(c+1)^{2}}\left(\frac{z}{a}\right)^{2}=1$
where c is constant.
2.49. $\frac{\rho_{0}}{2 \epsilon_{0}}\left(a^{2}-\frac{r^{2}}{3}\right)$ for $r<a, \frac{\rho_{0} a^{3}}{3 \epsilon_{0} r}$ for $r>a$
2.51. (a) $\frac{\rho_{0}}{4 \epsilon_{0}}\left(a^{2}-r^{2}\right)$ for $r<a, \frac{\rho_{0} a^{2}}{2 \epsilon_{0}} \ln \frac{a}{r}$ for $r>a$
(b) 0 for $r<a, \frac{\rho_{0}}{2 \epsilon_{0}}\left(\frac{a^{2}-r^{2}}{2}-a^{2} \ln \frac{a}{r}\right)$ for $a<r<b$,

$$
\frac{\rho_{0}}{2 \epsilon^{0}}\left(\frac{a^{2}-b^{2}}{2}-a^{2} \ln \frac{a}{b}\right)+\frac{\rho_{0}\left(b^{2}-a^{2}\right)}{2 \epsilon_{0}} \ln \frac{b}{r} \text { for } r>b
$$

(c) $\frac{\rho_{0} a^{2}}{3 \epsilon_{0}} \ln \frac{a}{r}$ for $r<a, \frac{\rho_{0}}{9 \epsilon_{0} a}\left(a^{3}-r^{3}\right)$ for $r>a$
2.53.
(a) $\frac{\rho_{s 0} z}{\epsilon_{0}}$ for $|z|<a, \frac{\rho_{s 0} a|z|}{\epsilon_{0} z}$ for $|z|>a$
(b) $\frac{\rho_{s 0} a}{\epsilon_{0}} \ln \frac{b}{a}$ for $r<a, \frac{\rho_{s 0} a}{\epsilon_{0}} \ln \frac{b}{r}$ for $a<r<b, 0$ for $r>b$
(c) $\frac{\rho_{s 0}}{\epsilon_{0}} \frac{a^{2}}{-}\left(\frac{1}{a}-\frac{1}{b}\right)$ for $r<a, \frac{\rho_{50}}{\epsilon_{0}} \frac{a^{2}}{-}\left(\frac{1}{r}-\frac{1}{b}\right)$ for $a<r<b, 0$ for $r>b$
2.55.
(a) $\pi a^{2} \rho_{L 0} \mathbf{i}_{x}$ (b) 0 (c) $\left(\rho_{L 0} a^{2} / 2\right)\left(-\pi \mathbf{i}_{x}+2 \pi^{2} \mathbf{i}_{y}\right)$

Dipole moments for cases (a) and (b) about any point other than the origin are the same as the respective dipole moments about the origin.

Chapter 3

3.1. $-\mathbf{i}_{x}$
3.3.
(b) $x_{L}=\frac{m v_{0}}{q B_{0}}\left[1-\sqrt{1-\left(\frac{q B_{0} L}{m v_{0}}\right)^{2}}\right]$

$$
\mathbf{v}_{L}=\frac{q B_{0} L}{m} \mathbf{i}_{x}+v_{0} \sqrt{1-\left(\frac{q B_{0} L}{m v_{0}}\right)^{2}} \mathbf{i}_{y}
$$

(c) $x_{d}=x_{L}+\frac{q B_{0} L d}{m v_{0}}\left[1-\left(\frac{q B_{0} L}{m v_{0}}\right)^{2}\right]^{-1 / 2}$
3.5. $m g / L B_{0}, 9800 \mathrm{amp}$ from west to east
3.9. $\quad \mathbf{F}_{21}=-\left(\mu_{0} / 4 \pi\right) I_{1} I_{2} d l_{1} d l_{2} \mathbf{i}_{z}, \mathbf{F}_{12}=\left(\mu_{0} / 4 \pi\right) I_{1} I_{2} d l_{1} d l_{2} \mathbf{i}_{z}$
$\mathbf{F}_{31}=\left(\mu_{0} / 12 \sqrt{3} \pi\right) I_{1} I_{2} d l_{1} d l_{3} \mathbf{i}_{y}, \mathbf{F}_{13}=\left(\mu_{0} / 12 \sqrt{3} \pi\right) I_{1} I_{2} d l_{1} d l_{3} \mathbf{i}_{x}$
$\mathbf{F}_{32}=\left(\mu_{0} / 8 \sqrt{2} \pi\right) I_{2}^{2} d l_{2} d l_{3} \mathbf{i}_{y}, \mathbf{F}_{23}=\left(\mu_{0} / 8 \sqrt{2} \pi\right) I_{2}^{2} d l_{2} d l_{3} \mathbf{i}_{x}$
3.11. $\frac{\mu_{0} I_{1} I_{2} a}{2 \pi}\left(\frac{1}{d}-\frac{1}{d+b}\right)$ towards the loop
$\frac{\mu_{0} I_{1} I_{2} a}{2 \pi}\left(\frac{1}{d}-\frac{1}{d+b}\right)$ towards the infinitely long wire
3.13. $\frac{d}{2} \sqrt{\frac{\pi W}{l L}}$
3.15. $\frac{\mu_{0} n I a^{2} \sin (2 \pi / n)}{4 \pi\left[(a \cos \pi / n)^{2}+z^{2}\right]\left(a^{2}+z^{2}\right)^{1 / 2}} \mathbf{i}_{z}$
3.17. (a) $\frac{\mu_{0} I a^{2}}{2}\left\{\frac{1}{\left[a^{2}+(z-b)^{2}\right]^{3 / 2}}+\frac{1}{\left[a^{2}+(z+b)^{2}\right]^{3 / 2}}\right\} \mathbf{i}_{z}$
3.19.
(a) $\frac{\mu_{0} n_{0} I}{2}\left[\ln \frac{a+\sqrt{a^{2}+z^{2}}}{|z|}-\frac{a}{\sqrt{a^{2}+z^{2}}}\right] \mathbf{i}_{z}$
(b) $\frac{\mu_{0} n_{0} I}{2}\left[\frac{1}{|z|}-\frac{1}{\sqrt{a^{2}+z^{2}}}\right] \mathbf{i}_{z}$
(c) $\frac{\mu_{0} n_{0} I a}{z^{2} \sqrt{a^{2}+z^{2}}} \mathbf{i}_{z}$
3.21. (a) $\left(\mu_{0} I d / 2 \pi r^{2}\right)\left(-\sin \phi \mathbf{i}_{r}+\cos \phi \mathbf{i}_{\phi}\right)$
(b) $(x-c / 2)^{2}+y^{2}=(c / 2)^{2}, z=$ constant; circles in planes normal to the z axis, with centers at $y=0$ and $x= \pm c / 2$, and having radii $c / 2$.
3.23. (a) $3 \mu_{0} I a^{2} d / z^{4}$ away from the quadrupole
(b) $3 \mu_{0} I a^{2} d / 2 r^{4}$ towards the quadrupole
3.27.
(a) $\frac{\mu_{0} J_{0} r}{2} \mathbf{i}_{\phi}$ for $r<a, \frac{\mu_{0} J_{0} a^{2}}{2 r} \mathbf{i}_{\phi}$ for $r>a$
(b) 0 for $r<a, \frac{\mu_{0} J_{0}}{2 r}\left(r^{2}-a^{2}\right) \mathbf{i}_{\phi}$ for $a<r<b, \frac{\mu_{0} J_{0}}{2 r}\left(b^{2}-a^{2}\right) \mathbf{i}_{\phi}$ for $r>b$
(c) $\frac{\mu_{0} J_{0} a^{2}}{(n+2) r}\left(\frac{r}{a}\right)^{n+2}$ for $r<a, \frac{\mu_{0} J_{0} a^{2}}{(n+2) r}$ for $r>a$
3.29. (a) $-\mu_{0} J_{0} y \mathbf{i}_{x}$ for $|y|<a$, $-\left(\mu_{0} J_{0} a|y| / y\right) \mathbf{i}_{x}$ for $|y|>a$
(b) $\mu_{0} J_{0}(|y|-a) \mathbf{i}_{x}$ for $|y|<a, 0$ for $|y|>a$
(c) $-\left(\mu_{0} y^{3} / 2|y|\right) \mathbf{i}_{x}$ for $|y|<a,-\left(\mu_{0} a^{2}|y| / 2 y\right) \mathbf{i}_{x}$ for $|y|>a$
(d) $\left[\mu_{0}\left(a^{2}-y^{2}\right) / 2\right] \mathrm{i}_{x}$ for $|y|<a, 0$ for $|y|>a$
(e) $-\mu_{0}\left[a y-\left(y^{3} / 2|y|\right)\right] \mathbf{i}_{x}$ for $|y|<a$, $-\left(\mu_{0} a^{2}|y| / 2 y\right) \mathbf{i}_{x}$ for $|y|>a$
3.31. (a) $\mu_{0} J_{s 0} \mathbf{i}_{x}$ for $|y|<a, 0$ for $|y|>a$
(b) 0 for $r<a$, $\left(\mu_{0} J_{s o} a / r\right) \mathbf{i}_{\phi}$ for $r>a$
(c) 0 for $r<a$, $\left(\mu_{0} J_{s 0} a / r\right) \mathbf{i}_{\phi}$ for $a<r<b, 0$ for $r>b$
3.33. 0 inside the sphere, $-\left(\mu_{0} I / 2 \pi r_{c}\right) i_{\phi}$ outside the sphere
3.37. (a) $\frac{2}{3} J_{s 0} \mathbf{i}_{z}$ for $y=0, \frac{4}{3} J_{s 0} \mathbf{i}_{z}$ for $y=a$
(b) $3 J_{0} r \mathbf{i}_{z}$ for $r<a, 0$ for $a<r<b,-\left(J_{0} a^{3} / b\right) \mathbf{i}_{z}$ for $r=b, 0$ for $r>b$
(c) $\frac{3}{2} J_{s 0} \sin \theta \mathbf{i}_{\phi}$ for $r=a$
3.41. $\quad \mathbf{A}=\frac{\mu_{0} I}{4 \pi} \ln \left[\frac{\sqrt{r^{2}+(z+a)^{2}}+(z+a)}{\sqrt{r^{2}+(z-a)^{2}}+(z-a)}\right] \mathbf{i}_{z}$
$\mathbf{B}=\frac{\mu_{0} I}{4 \pi r}\left[\frac{z+a}{\sqrt{r^{2}+(z+a)^{2}}}-\frac{z-a}{\sqrt{r^{2}+(z-a)^{2}}}\right] \mathbf{i}_{\phi}$
3.43. $\quad \mathbf{A}=\frac{\mu_{0} \pi \pi a^{2} \sin \theta}{4 \pi r^{2}} \mathbf{i}_{\phi}$
$\mathbf{B}=\frac{\mu_{0} I \pi a^{2}}{4 \pi r^{3}}\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right)$
3.45. (a) $-\frac{\mu_{0} J_{0} y^{2}}{2} \mathbf{i}_{z}$ for $|y|<a,\left[-\frac{\mu_{0} J_{0} a^{2}}{2}-\mu_{0} J_{0} a(|y|-a)\right] \mathbf{i}_{z}$ for $|y|>a$
(b) $\mu_{0} J_{0}\left(a y-\frac{y^{3}}{2|y|}\right) \mathbf{i}_{z}$ for $|y|<a, \frac{\mu_{0} J_{0} a^{2} y}{2|y|} \mathbf{i}_{z}$ for $|y|>a$
(c) $-\frac{\mu_{0}\left|y^{3}\right|}{6} \mathbf{i}_{z}$ for $|y|<a, \frac{\mu_{0}\left(2 a^{3}-3 a^{2}|y|\right)}{6} \mathbf{i}_{z}$ for $|y|>a$
(d) $\frac{\mu_{0}\left(3 a^{2} y-y^{3}\right)}{6} \mathbf{i}_{z}$ for $|y|<a, \frac{\mu_{0} a^{3} y}{3|y|} \mathbf{i}_{z}$ for $|y|>a$
(e) $\frac{\mu_{0}\left(\left|y^{3}\right|-3 a y^{2}\right)}{6} \mathbf{i}_{z}$ for $|y|<a, \frac{\mu_{0}\left(a^{3}-3 a^{2}|y|\right)}{6} \mathbf{i}_{z}$ for $|y|>a$
3.47. (a) $\mu_{0} J_{s 0} y \mathbf{i}_{z}$ for $|y|<a,\left(\mu_{0} J_{s 0}|y| \mid y\right) \mathbf{i}_{z}$ for $|y|>a$
(b) $\mu_{0} J_{s 0} a \ln \frac{b}{a}$ for $r<a, \mu_{0} J_{s 0} a \ln \frac{b}{r}$ for $a<r<b, 0$ for $r>b$
3.49. (a) $\mathbf{m}=\left(\pi n_{0} I a^{3} / 3\right) \mathbf{i}_{z} \quad \mathbf{A}=\left(\mu_{0} n_{0} I a^{3} / 12 r^{2}\right) \sin \theta \mathbf{i}_{\phi}$
(b) $\mathbf{m}=\left(\pi n_{0} I a^{2} / 2\right) \mathbf{i}_{z} \quad \mathbf{A}=\left(\mu_{0} n_{0} I a^{2} / 8 r^{2}\right) \sin \theta \mathbf{i}_{\phi}$
(c) $\mathbf{m}=\pi n_{0} I a i_{z}$
$\mathbf{A}=\left(\mu_{0} n_{0} I a / 4 r^{2}\right) \sin \theta \mathbf{i}_{\phi}$
3.51. $\left(\mu_{0} \rho_{0} \omega_{0} a^{5} / 15 r^{2}\right) \sin \theta \mathbf{i}_{\phi}$
3.53. $\left[x-\frac{d}{2}\left(\frac{c^{2}+1}{c^{2}-1}\right)\right]^{2}+y^{2}=\left(\frac{d c}{c^{2}-1}\right)^{2}$ where c is constant, $z=0$
3.57. (a) Group (a) (b) Group (d) (c) Group (c) (d) Group (b) (e) Group (c)

Chapter 4

4.1. $\quad \mathbf{E}=\mathbf{i}_{x}+\mathbf{i}_{y}, \mathbf{B}=\mathbf{i}_{z}$
4.3. $x=\frac{E_{0}}{\omega_{c} B_{0}}\left(\omega_{c} t-\sin \omega_{c} t\right)+\frac{v_{0}}{\omega_{c}}\left(1-\cos \omega_{c} t\right)$
$y=\frac{E_{0}}{\omega_{c} B_{0}}\left(1-\cos \omega_{c} t\right)+\frac{v_{0}}{\omega_{c}} \sin \omega_{c} t$
$z=0$
4.5. $\quad x=\frac{q E_{0}}{m} \frac{\omega_{c}}{\omega_{c}^{2}-\omega^{2}}\left(\frac{\sin \omega t}{\omega}-\frac{\sin \omega_{c} t}{\omega_{c}}\right)$
$y=\frac{E_{0}}{B_{0}} \frac{\omega_{c}}{\omega_{c}^{2}-\omega^{2}}\left(\cos \omega t-\cos \omega_{c} t\right)$
$z=0$
4.7. $\quad B_{0} v_{0} a b / y(y+a)$
4.9. $\left(B_{0} b \omega \ln \frac{y+a}{y}\right) \sin \omega t+\frac{B_{0} v_{0} a b}{y(y+a)} \cos \omega t$
4.11. $\omega a B_{0} \mathbf{i}_{r}$
4.15. $\quad \frac{\mu_{0} I}{2}\left(\frac{z+d}{\sqrt{a^{2}+(z+d)^{2}}}-\frac{z-d}{\sqrt{a^{2}+(z-\bar{d})^{2}}}\right)$
4.17. $\frac{\mu_{0} I}{2}\left(\frac{z-a}{\sqrt{r^{2}+(z-a)^{2}}}-\frac{z+a}{\sqrt{r^{2}+(z+a)^{2}}}\right)$ for C outside the sphere $\frac{\mu_{0} I}{2}\left(2+\frac{z-a}{\sqrt{r^{2}+(z-a)^{2}}}-\frac{z+a}{\sqrt{r^{2}+(z+a)^{2}}}\right)$ for C outside the sphere
4.19. $\quad(7 / 8) \mu_{0} I$
4.21. $1.0606 \mu_{0}$
4.23. The magnetic field due to the moving charge is given by
$\mathbf{B}=\frac{\mu_{0} Q_{0} v_{0}}{4 \pi} \frac{r}{\left[r^{2}+\left(v_{0} t-z\right)^{2}\right]^{3 / 2}} \mathbf{i}_{\phi}$
at an arbitrary point (r, ϕ, z).
4.25. $\quad 0.1471 / \epsilon_{0} \mathrm{~N}-\mathrm{m}$
4.27. (a) $\frac{2 \pi \rho_{0}^{2}}{15 \epsilon_{0}}\left(2 b^{5}+3 a^{5}-5 a^{3} b^{2}\right) \mathrm{N}-\mathrm{m}$
(b) $\frac{\pi \rho_{0}^{2} a^{5}}{7 \epsilon_{0}} \mathrm{~N}-\mathrm{m}$
4.31.
(a) $\frac{\mu_{0} I_{0}^{2}}{4 \pi}\left[\frac{c^{4}}{\left(c^{2}-b^{2}\right)^{2}} \ln \frac{c}{b}+\ln \frac{b}{a}-\frac{c^{2}}{2\left(c^{2}-b^{2}\right)}\right]$
(b) $\frac{\pi \mu_{0} J_{0}^{2}}{9}\left(a^{4} \ln \frac{b}{a}+\frac{a^{4}}{6}\right)$
4.33. The energies associated with the current distributions of Problem 4.32 are
(a) $\mu_{0} J_{s 0}^{2} a$
(b) $2 \mu_{0} / 15$
4.35. $\quad \pi \mu_{0}\left(I_{1}^{2} \ln c / a+2 I_{1} I_{2} \ln c / b+I_{2}^{2} \ln c / b\right)$
4.37. $\left(V_{0} I_{0} / 4\right) \sin 2 \beta z$
4.39. $\frac{8 \pi \beta E_{0}^{2}}{15 \mu_{0} \omega} \cos ^{2}(\omega t-\beta r)$
4.41. $\quad 4 \cos \left(2 t-96.87^{\circ}\right)$
4.43. (a) $\bar{E}_{x}=2 \not 135^{\circ}, \bar{E}_{y}=2225^{\circ}$
(b) The magnitude of the field vector is constant and equal to 2 units. The angle which the vector makes with the x axis varies as $\left(-\omega t+135^{\circ}\right)$ with time. Hence, the field is circularly polarized.
(a) $\sqrt{3} x-2 y-3 z=$ constant.
(c) The direction of polarization makes an angle of 25.67° with its projection, on to the $x y$ plane, which makes an angle of 73.9° with the x axis.
4.47. (a) $\sqrt{3} x+3 y+2 z=$ constant.
(c) $\mathrm{B}=\frac{0.04 \pi}{\omega}\left[(-1+j 2 \sqrt{3}) \mathbf{i}_{x}+(-\sqrt{3}-j 2) \mathbf{i}_{y}+2 \sqrt{3} \mathbf{i}_{z}\right] e^{-j 0.02 \pi(\sqrt{3} x+3 y+2 z)}$ The field is left circularly polarized.
4.49. $2 \epsilon_{0}$

Chapter 5

5.3. $-50 \epsilon_{0} y$ for $x=0, y>0 ;-50 \epsilon_{0} x$ for $y=0, x>0$;
$\left(50 \epsilon_{0} / x\right) \sqrt{x^{4}+4}$ for $x y=2$
5.7. 0 for $r=a, \rho_{L 1} / 2 \pi b$ for $r=b,-\rho_{L 1} / 2 \pi c$ for $r=c$, and $\left(\rho_{L 1}+\rho_{L 2}\right) / 2 \pi d$ for $r=d$
5.11. (c) $3 \epsilon_{0} E_{0} \cos \theta$
(d) $\mathbf{E}_{a}=E_{0} \mathbf{i}_{z}$
$\mathbf{E}_{s}=\left\{\begin{array}{l}-E_{0}\left(\cos \theta \mathbf{i}_{r}-\sin \theta \mathbf{i}_{\theta}\right) \text { for } r<a \\ \frac{E_{0} a^{3}}{r^{3}}\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right) \text { for } r>a\end{array}\right.$
5.17.
(b) $\frac{Q}{4 \pi \epsilon_{0} r^{2}} \mathbf{i}_{r}$ for $r<a, \frac{Q}{4 \pi \epsilon_{0}\left(1+\chi_{\epsilon 0}\right) r^{2}} \mathbf{i}_{r}$ for $a<r<b, \frac{Q}{4 \pi \epsilon_{0} r^{2}} \mathbf{i}_{r}$ for $r>b$
5.19.
(b) $\mathbf{E}_{a}=E_{0}\left(\cos \theta \mathbf{i}_{r}-\sin \theta \mathbf{i}_{\theta}\right)$
$\mathbf{E}_{s}=\left\{\begin{array}{l}-\frac{\chi_{e 0}}{3+\chi_{e 0}} E_{0}\left(\cos \theta \mathbf{i}_{r}-\sin \theta \mathbf{i}_{\theta}\right) \text { for } r<a \\ \frac{\chi_{e 0}}{3+\chi_{e 0}} \frac{E_{0} a^{3}}{r^{3}}\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right) \text { for } r>a\end{array}\right.$
(d) $\frac{3 \chi_{e 0}}{3+\chi_{e 0}} \epsilon_{0} E_{0} \cos \theta$
5.21.
(a) $\rho_{s 0} d / \epsilon_{0}$
(b) $\rho_{s o} d / 4 \epsilon_{0}$
(c) $\rho_{s 0}(d+t) / 4 \epsilon_{0}$
(d) $\frac{\rho_{s 0} d}{\epsilon_{2}-\epsilon_{1}} \ln \frac{\epsilon_{2}}{\epsilon_{1}}$
5.23.
(a) $\epsilon_{0} E_{0} \mathrm{i}_{z}$
(b) $\epsilon_{0} E_{0} \mathbf{i}_{z}$
(c) $\frac{E_{0}}{4}\left(1+\frac{z}{d}\right)^{2} \mathbf{i}_{z}$
(d) $\epsilon_{0} E_{0}\left[1-\frac{1}{4}\left(1+\frac{z}{d}\right)^{2}\right] \mathbf{i}_{z}$
(e) $-\frac{3}{4} \epsilon_{0} E_{0}$ for $z=0,0$ for $z=d$
(f) $\frac{\epsilon_{0} E_{0}}{2 d}\left(1+\frac{z}{d}\right)$
5.29.
(b) $\frac{\mu_{0} I}{2 \pi r} \mathbf{i}_{\phi}$ for $r<a, \mu_{0}\left(1+\chi_{m 0}\right) \frac{I}{2 \pi r} \mathbf{i}_{\phi}$ for $a<r<b, \frac{\mu_{0} I}{2 \pi r} \mathbf{i}_{\phi}$ for $r>b$
5.31. (b) $\mathbf{B}_{a}=B_{0}\left(\cos \theta \mathrm{i}_{r}-\sin \theta \mathrm{i}_{\theta}\right)$

$$
\mathbf{B}_{s}=\left\{\begin{array}{l}
\frac{2 \chi_{m 0}}{3+\chi_{m 0}} B_{0}\left(\cos \theta \mathbf{i}_{r}-\sin \theta \mathbf{i}_{\theta}\right) \text { for } r<a \\
\frac{\chi_{m 0}}{3+\chi_{m 0}} \frac{B_{0} a^{3}}{r^{3}}\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right) \text { for } r>a
\end{array}\right.
$$

(d) $\frac{3 \chi_{m 0}}{3+\chi_{m 0}} \frac{B_{0}}{\mu_{0}} \sin \theta \mathbf{i}_{\phi}$.
5.33.
(a) $\mu_{0} J_{s 0} d$
(b) $4 \mu_{0} J_{s 0} d$
(c) $\mu_{0} J_{s 0}(4 d-2 t)$
(d) $\left[\left(\mu_{1}+\mu_{2}\right) / 2\right] J_{s 0} d$
5.35.
(a) $\left(B_{0} / \mu_{0}\right) \mathbf{i}_{y}$
(b) $\left(B_{0} / \mu_{0}\right) \mathbf{i}_{y}$
(c) $\left(1+\frac{z}{d}\right)^{2} B_{0} \mathbf{i}_{y}$
(d) $\left[\left(1+\frac{z}{d}\right)^{2}-1\right] \frac{B_{0}}{\mu_{0}} \mathbf{i}_{y}$
(e) 0 for $z=0,\left(3 B_{0} / \mu_{0}\right) \mathbf{i}_{x}$ for $z=d$
(f) $-2\left(1+\frac{z}{d}\right) \frac{B_{0}}{\mu_{0} d} \mathbf{i}_{x}$
5.37. $\mu_{r}=k H, \mu_{i r}=2 k H, \chi_{m}=k H-1, \mathbf{M}=(k H-1) \mathbf{H}$
5.39.
(a) $\rho_{s 0}^{2} d / 2 \epsilon_{0}$
(b) $\rho_{s 0}^{2} d / 8 \epsilon_{0}$
5.41. (a) $\mu_{0} J_{s 0}^{2} d / 2$
(b) $2 \mu_{0} J_{s 0}^{2} d$
5.43. $\frac{2}{3 \sqrt{k \mu_{0}}} B_{0}^{3 / 2}$
5.47. $\quad B_{0}\left(5 \mathbf{i}_{x}+4 \mathbf{i}_{y}+5 \mathbf{i}_{z}\right) \mathrm{Wb} / \mathrm{m}^{2}$
5.49. (a) $\mathrm{H}_{1}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\left[E_{i} \cos \omega\left(t-\sqrt{\mu_{0} \epsilon_{0}} z\right)-E_{r} \cos \omega\left(t+\sqrt{\mu_{0} \epsilon_{0}} z\right)\right] \mathrm{i}_{y}$

$$
\mathbf{H}_{2}=2 \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} E_{t} \cos \omega\left(t-2 \sqrt{\mu_{0} \epsilon_{0}} z\right) \mathbf{i}_{y}
$$

(b) $\frac{E_{r}}{E_{i}}=-\frac{1}{3} \quad \frac{E_{t}}{E_{i}}=\frac{2}{3}$

Chapter 6

6.1. (a) $\frac{3 a^{2} z-z^{3}}{6 \epsilon}$ for $|z|<a, \frac{a^{3}|z|}{3 \epsilon z}$ for $|z|>a$
(b) $\frac{\rho_{0}}{4 \epsilon}\left(a^{2}-r^{2}\right)$ for $r<a,-\frac{\rho_{0} a^{2}}{2 \epsilon} \ln \frac{r}{a}$ for $r>a$
(c) $\frac{\rho_{0}}{2 \epsilon}\left(b^{2}-a^{2}\right)$ for $r<a,-\frac{\rho_{0}}{6 \epsilon}\left(r^{2}+\frac{2 a^{3}}{r}-3 b^{2}\right)$ for $a<r<b$,

$$
\frac{\rho_{0}}{3 \epsilon r}\left(b^{3}-a^{3}\right) \text { for } r>b
$$

(d) $-\frac{\rho_{0}}{\epsilon}\left(\frac{r^{2}}{6}-\frac{r^{4}}{20 a^{2}}-\frac{a^{2}}{4}\right)$ for $r<a, \frac{2 \rho_{0} a^{3}}{15 \epsilon r}$ for $r>a$
6.5. $V=\frac{V_{0}}{\ln \epsilon_{2} / \epsilon_{1}} \ln \frac{\epsilon_{1} d+\left(\epsilon_{2}-\epsilon_{1}\right) x}{\epsilon_{1} d}$

$$
\mathbf{E}=-\frac{V_{0}}{\ln \epsilon_{2} / \epsilon_{1}} \frac{\epsilon_{2}-\epsilon_{1}}{\epsilon_{1} d+\left(\epsilon_{2}-\epsilon_{1}\right) x} \mathbf{i}_{x}
$$

6.7. (a) $\rho_{s}=\epsilon M_{0} \cos \theta$ for $r=a$
(b) $\mathrm{E}= \begin{cases}-\left(M_{0} / 3\right) \mathbf{i}_{z} & \text { for } r<a \\ \left(M_{0} a^{3} / 3 r^{3}\right)\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{0}\right) & \text { for }\end{cases}$
(c) $\mathbf{H}= \begin{cases}-\left(M_{0} / 3\right) \mathbf{i}_{2} & \text { for } r>a \\ \left(M_{0} a^{3} / 3 r^{3}\right)\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right) & \text { for } r<a\end{cases}$
for $r>a$

$$
\mathbf{B}= \begin{cases}\left(2 \mu_{0} M_{0} / 3\right) \mathbf{i}_{2} & \text { for } r<a \\ \left(\mu_{0} M_{0} a^{3} / 3 r^{3}\right)\left(2 \cos \theta \mathbf{i}_{r}+\sin \theta \mathbf{i}_{\theta}\right) & \text { for } r>a\end{cases}
$$

6.9. $V=V_{1} \frac{\sinh (\pi x / b)}{\sinh (\pi a / b)} \sin (\pi y / b)+V_{2} \frac{\sinh (3 \pi x / b)}{\sinh (3 \pi a / b)} \sin (3 \pi y / b)$

$$
V=\frac{3 V_{1}}{4} \frac{\sinh (\pi x / b)}{\sinh (\pi a / b)} \sin (\pi y / b)-\frac{V_{1}}{4} \frac{\sinh (3 \pi x / b)}{\sinh (3 \pi a / b)} \sin (3 \pi y / b)
$$

6.11.

$$
\text { (a) } \begin{aligned}
V= & \sum_{n=1,3,5, \ldots,}^{\infty} \frac{4 V_{0}}{n \pi} \frac{\sinh [n \pi(x-a / 2) / b]}{\sinh (n \pi a / 2 b)} \sin (n \pi y / b) \\
\mathbf{J}_{c}= & -\frac{4 V_{0} \sigma_{0}}{b} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{\sinh (n \pi a / 2 b)} \\
& \times\left[\cosh \frac{n \pi}{b}\left(x-\frac{a}{2}\right) \sin \frac{n \pi y}{b} \mathbf{i}_{x}+\sinh \frac{n \pi}{b}\left(x-\frac{a}{2}\right) \cos \frac{n \pi y}{b} \mathbf{i}_{y}\right]
\end{aligned}
$$

(b) $V=\sum_{n=1,3,5, \ldots}^{\infty} \frac{4 V_{0}}{n \pi} \frac{\cosh [n \pi(x-a / 2) / b]}{\cosh (n \pi a / 2 b)} \sin (n \pi y / b)$ $\mathrm{J}_{c}=-\frac{4 V_{0} \sigma_{0}}{b} \sum_{n=1,3,5, \ldots}^{\infty} \frac{1}{\cosh (n \pi a / 2 b)}$
$\times\left[\sinh \frac{n \pi}{b}\left(x-\frac{a}{2}\right) \sin \frac{n \pi y}{b} \mathbf{i}_{x}+\cosh \frac{n \pi}{b}\left(x-\frac{a}{2}\right) \cos \frac{n \pi y}{b} \mathbf{i}_{y}\right]$
(c) $V=\sum_{n=1,3,5, \ldots}^{\infty}\left[\frac{4 V_{1}}{n \pi} \frac{\sinh (n \pi x / b)}{\sinh (n \pi a / b)} \sin (n \pi y / b)+\frac{4 V_{2}}{n \pi} \frac{\sinh (n \pi y / a)}{\sinh (n \pi b / a)} \cos (n \pi x / a)\right]$

$$
\begin{aligned}
\mathbf{J}_{c}= & -\sigma_{0} \sum_{n=1,3,5, \ldots}^{\infty} \\
& \left\{\left[\frac{4 V_{1}}{b} \frac{\cosh (n \pi x / b)}{\sinh (n \pi a / b)} \sin (n \pi y / b)+\frac{4 V_{2}}{a} \frac{\sinh (n \pi y / a)}{\sinh (n \pi b / a)} \cos (n \pi x / a)\right] \mathbf{i}_{x}\right. \\
& \left.+\left[\frac{4 V_{1}}{b} \frac{\sinh (n \pi x / b)}{\sinh (n \pi a / b)} \cos (n \pi y / b)+\frac{4 V_{2}}{b} \frac{\cosh (n \pi y / a)}{\sinh (n \pi b / a)} \sin (n \pi x / a)\right] \mathbf{i}_{y}\right\}
\end{aligned}
$$

6.13. The image charge is an infinitely long line charge of uniform density $-\rho_{L 0} \mathrm{C} / \mathrm{m}$ situated parallel to the actual line charge and at a distance d from the grounded conductor on the side opposite to that of the actual line charge.
6.17. (a) $-\frac{\epsilon_{2} V_{0}}{\epsilon_{2} t+\epsilon_{1}(d-t)} \mathbf{i}_{x}$ for $0<x<t,-\frac{\epsilon_{1} V_{0}}{\epsilon_{2} t+\epsilon_{1}(d-t)} \mathbf{i}_{x}$ for $t<x<d$
(b) $-\frac{\epsilon_{1} \epsilon_{2} V_{0}}{\epsilon_{2} t+\epsilon_{1}(d-t)}$ for $x=0, \frac{\epsilon_{1} \epsilon_{2} V_{0}}{\epsilon_{2} t+\epsilon_{1}(d-t)}$ for $x=d$
6.21. $\mu / 12 \pi$
6.23. $\quad \pi a^{2} \mu N^{2}$
6.25. $\pi a^{2} \mu N_{1} N_{2}$
6.27. 1257
6.31. For f slightly larger than $1 / 2 \pi l \sqrt{\mu \epsilon}$, the input behaviour of the structure is equivalent to a series combination of $C=\epsilon w / / d$ and $\frac{1}{3} L$ where $L \doteq \mu d / / w$. For still higher frequencies, the input behaviour of the structure is equivalent to C in series with the parallel combination of $\frac{1}{3} L$ and $\frac{1}{5} C$.
6.33.
(a) $-480 \pi^{2} \times 10^{-7} \sin 300 \pi t$ volts
(b) 0 volts
6.39. (a) For the region $r<(a-b), \mathbf{E}=0$ for all t.

For the region $(a-b)<r<(a+b)$,
\mathbf{E} is zero for $\cos 2 \pi t>(r-a) / b$ and $\left(Q / 4 \pi \epsilon_{0} r^{2}\right) \mathbf{i}_{r}$ for $\cos 2 \pi t<(r-a) / b$.
For the region $r>(a+b), \mathbf{E}=\left(Q / 4 \pi \epsilon_{0} r^{2}\right) \mathbf{i}_{r}$ for all t.
(b) No wave propagation
6.41. (a) $10 \cos 2 \pi \times 10^{7} t, 10 \sin 2 \pi \times 10^{7} t, 10^{7} \mathrm{~Hz}$
(b) $10 \cos 0.1 \pi z, 10 \sin 0.1 \pi z, 20 \mathrm{~m}$
(c) $2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
(d) $\frac{1}{8 \pi} \cos \left(2 \pi \times 10^{7} t-0.1 \pi z\right)$
6.43. (a) The given $\overline{\mathbf{E}}$ represents the electric field of a uniform plane wave
(b) Direction of propagation is along the unit vector $\frac{1}{4}\left(\sqrt{3} \mathbf{i}_{x}+3 \mathbf{i}_{y}+2 \mathbf{i}_{z}\right)$.
$\lambda=25 \mathrm{~m}$
$f=12 \mathrm{MHz}$
$\lambda_{x}=57.7 \mathrm{~m}, \lambda_{y}=33.3 \mathrm{~m}, \lambda_{z}=50 \mathrm{~m}$
$v_{p x}=6.928 \times 10^{8} \mathrm{~m} / \mathrm{sec}, v_{p y}=4 \times 10^{8} \mathrm{~m} / \mathrm{sec}, v_{p z}=6 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
The polarization is left circular

$$
\overline{\mathbf{H}}=\frac{1}{240 \pi}\left[(-1+j 2 \sqrt{3}) \mathbf{i}_{x}+(-\sqrt{3}-j 2) \mathbf{i}_{y}+2 \sqrt{3} \mathbf{i}_{z}\right] e^{-j 0.02 \pi(\sqrt{3} x+3 y+2 z)}
$$

6.47.

$$
\begin{aligned}
& \text { (a) }\left[E_{x}\right]_{t=0.015}= \begin{cases}2 / 3 & -1.5<z<0.75 \\
0 & \text { otherwise }\end{cases} \\
& {\left[E_{x}\right]_{t=0.035}= \begin{cases}-1 / 3 & -7.5<z<4.5 \\
-8 / 45 & -1.5<z<0.75 \\
8 / 15 & 2<z<3 \\
0 & \text { otherwise }\end{cases} } \\
& \text { (b) } \eta_{0}\left[H_{y}\right]_{z=-3}=\left\{\begin{array}{lr}
1 & 0<t<0.01 \\
1 / 3 & 0.02<t<0.03 \\
8 / 45 & 0.04<t<0.05 \\
-8 / 675 & 0.06<t<0.07 \\
8 / 1025 & 0.08<t<0.09 \\
\ldots &
\end{array}\right. \\
& \eta_{0}\left[H_{y}\right]_{z=2.5}= \begin{cases}24 / 15 & 0.03<t<0.04 \\
-8 / 75 & 0.05<t<0.06 \\
8 / 1125 & 0.07<t<0.08 \\
\ldots & \end{cases} \\
& \eta_{0}\left[H_{y}\right]_{t=0.035}= \begin{cases}4 / 3 & -1.5<z<0.75 \\
0 & \text { otherwise }\end{cases} \\
& \eta_{0}\left[H_{y}\right]_{t=0.035}=\left\{\begin{array}{lc}
1 / 3 & -7.5<z<4.5 \\
8 / 45 & -1.5<z<0.75 \\
24 / 15 & 2<z<3 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

E_{x} in volts $/ \mathrm{m}, H_{y}$ in amps $/ \mathrm{m}, t$ in $\mu \mathrm{sec}$, and z in m .
6.51. $V(0, t)=0$
$V(\lambda / 8, t)=-\sqrt{2}\left|\bar{V}^{+}\right| \sin \omega t$
$V(\lambda / 4, t)=-2\left|\bar{V}_{+}\right| \sin \omega t$
$I(0, t)=2\left(\left|\bar{V}^{+}\right| \mid Z_{0}\right) \cos \omega t$
$I(\lambda / 8, t)=\sqrt{2}\left(\left|\bar{V}^{+}\right| / Z_{0}\right) \cos \omega t$ $I(\lambda / 4, t)=0$

$$
\begin{array}{ll}
V(3 \lambda / 8, t)=-\sqrt{2}\left|\bar{V}^{+}\right| \sin \omega t & I(3 \lambda / 8, t)=-\sqrt{2}\left(\left|\bar{V}^{+}\right| / Z_{0}\right) \cos \omega t \\
V(\lambda / 2, t)=0 & I(\lambda / 2, t)=-2\left(\left|\bar{V}^{+}\right| \mid Z_{0}\right) \cos \omega t
\end{array}
$$

6.53.
(a) $\infty,|\bar{V}(d)|=10 \sin (\pi d / 2 l),|\bar{I}(d)|=0.2 \cos (\pi d / 2 l)$
(b) $0,|\bar{V}(d)|=2.5 \sin (\pi d l l),|\bar{I}(d)|=0.05|\cos (\pi d / l)|$
(c)

d	0	$l / 2$	l
Voltage, volts	0	5.303	7.07
Current, amps	0.1458	0.1	0.03535

6.57. No standing waves in medium 3.

In medium 2, standing wave ratio is 1.5 . Standing wave patterns consist of minima for $\left|\bar{E}_{x}\right|$ and maxima for $\left|\bar{H}_{y}\right|$ at either end of medium 2. Both patterns contain three wavelengths.
In medium 1, standing wave ratio is 3 . Standing wave patterns consist of minimum for $\left|\bar{E}_{x}\right|$ and maximum for $\left|\bar{H}_{y}\right|$ at the right end of medium 1.
Fraction of incident power transmitted into medium $3=\frac{3}{4}$.
6.59. $2.5 \mathrm{~cm}, 4 \epsilon_{0}$
6.61. Z_{0} of stub

50 ohms
50 ohms
100 ohms

stub location	stub length
0.033λ	0.0811λ
0.167λ	0.4189λ
0.033λ	0.0434λ
0.167λ	0.4566λ

100 ohms
0.167λ
0.4566λ
(a) $0.75 e^{j 0.264 \pi}$
(b) 7
(c) 0.316λ
(d) $(220-j 310)$ ohms
(e) $(0.0015+j 0.00215)$ mhos (f) 0.258λ
Propagating mode
f_{c}, MHz
θ_{i}, degrees
$\mathrm{TE}_{1,0}$
1875
71.79
2.631
1.5783×10^{8}
198.35

$\mathrm{TE}_{2,0}$	$\mathrm{TE}_{3,0}$
3750	5625
51.32	20.37
3.203	7.184
1.9215×10^{8}	4.3104×10^{8}
241.47	541.68

η_{8}, ohms
198.35
241.47
541.68
(a) $\bar{H}_{y}=2 \bar{H}_{0} \cos \left(\beta x \cos \theta_{i}\right) e^{-j \beta_{z} \sin \theta_{t}}$
$\bar{E}_{x}=2 \sqrt{\mu / \epsilon} \bar{H}_{0} \sin \theta_{i} \cos \left(\beta x \cos \theta_{i}\right) e^{-i \beta z \sin \theta_{i}}$
$\bar{E}_{z}=j 2 \sqrt{\mu / \epsilon} \bar{H}_{0} \cos \theta_{i} \sin \left(\beta x \cos \theta_{i}\right) e^{-j \beta z \sin \theta_{i}}$
(c) $\lambda_{c}=2 a / m, f_{c}=m / 2 a \sqrt{\mu \epsilon}, \lambda_{g}=\lambda / \sqrt{1-\left(\lambda / \lambda_{c}\right)^{2}}$, $v_{\underline{p} z}=v_{p} / \sqrt{1-\left(\lambda / \lambda_{c}\right)^{2}}, m=1,2,3, \ldots$
(d) $\underline{H}_{y}=2 \bar{H}_{0} \cos (m \pi x / a) e^{-j\left(2 \pi / \lambda_{0}\right) z}$
$\bar{E}_{x}=2 \eta \bar{H}_{0}\left(\lambda / \lambda_{g}\right) \cos (m \pi x / a) e^{-J\left(2 \pi / /_{0}\right) z}$
$\bar{E}_{z}=j 2 \eta \bar{H}_{0}\left(\lambda / \lambda_{c}\right) \sin (m \pi x / a) e^{-j\left(2 \pi / \lambda_{0}\right) z}$
(e) $\eta_{g}=\bar{E}_{x} / \bar{H}_{y}=\eta \sqrt{1-\left(\lambda / \lambda_{c}\right)^{2}}$

Transmission-line equivalent consists of $\bar{V} \leftrightarrow \bar{E}_{x}, \bar{I} \leftrightarrow \bar{H}_{y}, Z_{0} \leftrightarrow \eta_{g}$, and $v_{p} \leftrightarrow v_{p z}$.
6.73.

$\bar{I}(z)=\frac{e^{(1 / 2) a z}}{j \omega \mathcal{L}_{0}}\left[\frac{1}{2}\left(a-\sqrt{\left.a^{2}-4 \omega^{2} \mathcal{L}_{0} \mathcal{C}_{0}\right)} \bar{A} e^{(1 / 2) \sqrt{a^{2}-4 \omega^{2} \mathcal{L}_{0} \mathcal{E}_{0} z}}\right]\right.$ $+\frac{1}{2}\left(a+\sqrt{a^{2}-4 \omega^{2} \mathscr{L}_{0} \mathscr{C}_{0}}\right) \bar{B} e^{\left.-(1 / 2) \sqrt{a^{2}-4 \omega^{2} \mathscr{S}_{0} \varrho_{0}}\right]}$
$f_{c}=a / 4 \pi \sqrt{\mathcal{L}_{0} \mathfrak{C}_{0}}$
$\begin{array}{cccccc}\text { 6.75. } & \text { Frequency } & \alpha, \text { nepers } / \mathrm{m} & \beta, \mathrm{rad} / \mathrm{m} & \bar{\eta} \text {, ohms } & \lambda, \mathrm{m} \\ 100 \mathrm{MHz} & 0.0211 & 18.73 & 42.4 & 0.3354 \\ & 10 \mathrm{KHz} & 2 \pi \times 10^{-3} & 2 \pi \times 10^{-3} & (1+j) 2 \pi & 1000\end{array}$
6.77. (a) $\bar{E}_{x}(d)=\bar{E}_{x}^{+} e^{\bar{j} d}+\bar{E}_{x}^{-} e^{-\overline{\gamma d}}$

$$
\bar{H}_{y}(d)=\frac{1}{\bar{\eta}}\left[\bar{E}_{x}^{+} e^{\bar{j} d}-\bar{E}_{\bar{x}} e^{-\bar{y} d}\right]
$$

6.79.
(a) $\frac{\partial \bar{V}}{\partial z}=-\left[2 \mathscr{R}_{i}+j \omega\left(2 \AA_{i}+\mathscr{L}\right)\right] \bar{I}(z)$
$\frac{\partial \bar{I}}{\partial z}=-(\varsigma+j \omega \varrho) \bar{V}(z)$
(b) $\bar{\gamma}=\left[2 \mathcal{R}_{i}+j \omega\left(2 \mathscr{L}_{i}+\mathcal{L}\right)\right](\mathcal{S}+j \omega \mathbb{C})$
$Z_{0}=\sqrt{\frac{2 \Omega_{i}+j \omega\left(2 \mathcal{L}_{i}+\mathfrak{L}\right)}{\mathcal{G}+j \omega \mathbb{C}}}$
(c) $\sqrt{2 \mathbb{R}_{i} \mathrm{~S}}$
6.81. (b) $1824.42,4175.58,7824.42 \mathrm{MHz}$
6.83. (a) $f_{1,0,1}=5303.4 \mathrm{MHz}, f_{2,0,1}=f_{1,0,2}=8385.4 \mathrm{MHz}, f_{2,0,2}=10606.5 \mathrm{MHz}$.
(b) $\bar{E}_{y}=\bar{E}_{0} \sin \frac{\pi x}{a} \sin \frac{\pi z}{d}$

$$
\begin{aligned}
& \bar{H}_{x}=-j \frac{\bar{E}_{0}}{\eta} \frac{\lambda}{2 d} \sin \frac{\pi x}{a} \cos \frac{\pi z}{d} \\
& \bar{H}_{z}=j \frac{E_{0}}{\eta} \frac{\lambda}{2 a} \cos \frac{\pi x}{a} \sin \frac{\pi z}{d} \\
& Q=\frac{\pi \sigma \delta \eta}{4} \frac{\left(a^{2}+d^{2}\right)^{3 / 2}}{\left(a^{3}+d^{3}\right)}
\end{aligned}
$$

6.87. $\quad 56.3^{\circ}$
6.89. For currents equal in magnitude and phase: (a) linearly polarized in the z directiol ${ }_{\text {a }}$, (b) linearly polarized in the x direction, (c) linearly polarized parallel to the vect ${ }_{r r}$ ($\mathbf{i}_{x}+\mathbf{i}_{z}$), and (d) linearly polarized parallel to the vector ($-\mathbf{i}_{x}+\frac{1}{2} \mathbf{i}_{y}-\frac{1}{2} \mathbf{i}_{z}$).
For currents equal in magnitude but different in phase by $\pi / 2$: (a) linearly polarized in the z direction, (b) linearly polarized in the x direction, (c) circularly polarized normal to the y axis, and (d) elliptically polarized with major axis along \mathbf{i}_{x} at ${ }_{1 d}$ minor axis along ($\mathbf{i}_{y}-\mathbf{i}_{z}$) and with the ratio of the major to the minor axis equal to $\sqrt{2}$.
6.91. (a) $I_{1}(t)=I_{0} \cos \omega t, I_{2}(t)=-I_{0} \cos \omega t$, where $I_{0}=\omega Q_{0}$.
(b) $\overline{\mathbf{A}}=\frac{\mu \omega Q_{0}(d l)^{2} \cos \theta}{4 \pi r}\left(j \frac{\omega}{v}+\frac{1}{r}\right) e^{-j \omega r / v \mathbf{i}_{2}}$
(c) $\overline{\mathbf{E}}=-\frac{Q_{0}(d l)^{2} \sin \theta \cos \theta}{4 \pi \epsilon r}\left[\left(\frac{\omega}{v}\right)^{3}-j \frac{3}{r}\left(\frac{\omega}{v}\right)^{2}-\frac{6 \omega}{v r^{2}}+j \frac{6}{r^{3}}\right] e^{-j \omega r / v \mathbf{i}_{\theta}}$

$$
+\frac{Q_{0}(d l)^{2}\left(3 \cos ^{2} \theta-1\right)}{4 \pi \epsilon r^{2}}\left[j\left(\frac{\omega}{v}\right)^{2}+\frac{3 \omega}{v r}-j \frac{3}{r^{2}}\right] e^{-j \omega r / v \mathbf{i}_{r}}
$$

$$
\overline{\mathbf{H}}=\frac{\omega Q_{0}(d l)^{2} \sin \theta \cos \theta}{4 \pi r}\left[-\left(\frac{\omega}{v}\right)^{2}+j \frac{3 \omega}{v r}+\frac{3}{r^{2}}\right] e^{-j \omega r / v \mathbf{i}_{\phi}}
$$

(d) $\overline{\mathbf{E}}=-\frac{Q_{0}(d l)^{2} \omega^{3} \sin \theta \cos \theta}{4 \pi \epsilon r v^{3}} e^{-j \omega r / / \mathbf{i}_{\theta}}$

$$
\overline{\mathbf{H}}=-\frac{Q_{0}(d l)^{2} \omega^{3} \sin \theta \cos \theta}{4 \pi \epsilon \eta r v^{3}} e^{-j \omega r / v \mathbf{i}_{\phi}}
$$

6.93.
(c) $U_{n}=\frac{\cos ^{2}[(\pi / 2) \cos \theta]}{\sin ^{2} \theta}$

