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APPLIED ELECTROMAGNETICS

In Chapter 2 we set our goal to learn how to interpret Maxwell’s equations
and the associated constitutive relations and to use them to discuss various
applications. In the preceding chapters we achieved the first task, namely
that of introducing and understanding Maxwell’s equations,

V:.D=p
V.B=0
VxE= -0
VxH=J31 %

Jt

and the various related concepts. We now have the basic electromagnetic
theory necessary to venture into the realm of applied electromagnetic theory
to which this chapter serves as an introduction. The topics of applied elec-
tromagnetic theory are varied, but perhaps the most important among
them are concerned with the field basis of circuit theory and with electro-
magnetic waves. This is reflected in the topics covered in this chapter.
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PART 1. Statics, Quasistatics, and
Distributed Circuits

6.1 Poisson’s Equation

Maxwell’s equations for the static electric field are given by
VeD=p 6-1)
VXE=0 (6-2)

In view of (6-2), E can be expressed as the gradient of a scalar potential ¥
as we learned in Section 2.12. Thus we have

= —-VV (6-3)
and ‘
D=¢E=—eVV 6-9)
Substituting (6-4) into (6-1), we obtain
VeeVV = —p
or i
VV e« Ve -+ €V = —p (6-5)

where V2V is the Laplacian of V. Equation (6-5) is the differential equatifin
for the electrostatic potential ¥ in a region of volume charge density p. If
we assume that € is a constant in the region, Ve is equal to zero so that (6-5)
reduces to '

vy =2 (6:6)

Equation (6-6) is known as Poisson’s equation. If the medium is charge free,
then p = 0 and (6-6) reduces to

V2V =0 (6—?)
which is known as Laplace’s equation. In this section we discuss the appli-

cations of Poisson’s equation by considering two examples. !

|
ExampLE 6-1. Charge is distributed with uniform density p, C/m? throughout a
sphere of radius a centered at the origin. It is desired to find the electrostatic
potential and hence the electric field intensity both inside and out51de the
sphere by using Poisson’s equation for r < g and Laplace’s equatlonl for

r>a.
From Poisson’s and Laplace’s equations, we have ;
b forr<a E
Vi ={ € (6-8)
0 forr>a |

Because of the spherical symmetry of the charge distribution, the poté%ntial
is a function of r only. Thus all derivatives of V" with respect to 8 and (;S are
348 |
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zero, so that (6-8) becomes
P
d oV — for r < a
w5 = { ¢ 69
0 forr>a

Integrating both sides of (6-9) with respect to r and then dividing by r? and
integrating again with respect to r, we obtain

—p6°;2-—%+B forr <a
V= c : (6-10)
- + D forr > a

where 4, B, C, and D are arbitrary constants of integration.
We now have to evaluate the arbitrary constants A, B, C, and D by
using the boundary conditions and other considerations. First, the potential

can be arbitrarily set equal to zero at r = oo, so that D = 0. Second, from
E = —VV, we have

(%6’ —iz)i, forr<a
i, - forr>a

so that, from Gauss’ law, the charge contained within a sphere of radius
r(<< a) centered at the origin is 4nr2eE, = 4nr2€[(p,r/3€) — (4/r?)]. For
the charge distribution under consideration, this quantity must approach

zero as r.— 0. This is possible only if 4 is equal to zero. The solution for ¥
is thus reduced to :

_/)0_1'2+B forr<a

V- 61D
—% forr>a

Next, we note that, at the boundary r = g, the potential must be
continuous in the absence of an impulse type of discontinuity in the normal
component of electric field intensity (such discontinuities can exist in the
presence of an electric dipole layer at the surface). Also, at » = a, D, must

be continuous in the absence of a surface charge. Using these two boundary
conditions, we have

_ P2 - _C a
%+ B=— (6-12a)

I
|
m
|

Pol .
et (6-12b)

Solving (6-12a) and (6-12b) for B and C and substituting in (6-11), we obtain
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the required solution for V as

_ B P
3 + oF forr<a
V= " (6-13)
/’30? forr>a
The corresponding solution for E is
g—"; i, forr<a
E= , 6-19)
- ggfz i, forr>a

We note that this solution is in agreement with the result of Example 2-6. |

In the preceding example we illustrated the method of solving for the
potential for a given charge distribution, using Poisson’s and Laplace’s
equations. However, Poisson’s equation is more useful for another class of
problems, in which the charge distribution is the quantity to be determined.
We now consider an example of this type.

ExampPLE 6-2. A simplified model of a vacuum diode consists of two parallel con-

ducting plates occupying the planes x = 0 and x = d, between which an
electric field is established by maintaining a potential difference of ¥, volts
as shown in Fig. 6.1. The plate at the lower potential is called the cathode
and the plate at the higher potential is called the anode. The cathode is
heated so that it emits electrons into the space between the plates, to be
collected by the anode and thereby establish a current flow. Let us assume
for simplicity that (a) the electrons are emitted from the cathode with zero

x=dV="W Anode

M Space Charge
Region

x=0,V=20 Cathode

Fig. 6.1. Simplified model of a vacuum diode.
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initial velocity and (b) the number of electrons emitted from the cathode
is limited not by the cathode temperature but by the space charge between
the cathode and the anode. For steady current flow under these conditions,
the electric field at the cathode is zero. If it were some nonzero value and
directed towards the cathode, the electrons would be emitted from the cathode
with some acceleration and the current would then be temperature limited
but not space-charge limited. (In the actual case, the field intensity is slightly
nonzero and directed towards the cathode, since no electrons would leave
the cathode otherwise.) If the field intensity were some nonzero value and
directed towards the anode, there would be no space charge, since the elec-
trons could not leave the cathode. It is desired to find the potential distribu-
tion and hence the space charge distribution between the cathode and the
anode.

Let V be the potential at a distance x from the cathode, which is con-
sidered to be at zero potential. Then the work done by the electric field in
moving an electron through a distance x from the cathode is equal to |e|V,
where e is the charge of the electron. This work must be equal to the kinetic
energy acquired by the electron. Thus, denoting v = #(x)i, as the velocity
of the electron, we have

le| V = jmv? (6-15)
where m is the electronic mass. From (6-15), we get v = /2 |e| V/m so that

_ /2lelV. .
v=/2El (6-16)

If p(x) is the density of the space charge constituted by the electrons, the
current density J is given by

I=pv=p %wmix (6-17)

For steady current flow,
J = Jj, (6-18)

where J, is a constant. Comparing the right sides of (6-17) and (6-18) we
obtain
le|

p=1J, m_y-i2

2|e
From Poisson’s equation, we now have
d_z.l_/z_ﬁ—_ ﬁ\/ m -1/2 — -1/2
= e = e V= (6-19)

where k = —(J,/€,) A/m/| 2¢] is a constant. Equation (6-19) is the differential
equation for V in the region between the cathode and the anode. To solve
for V, we multiply the left and right sides of (6-19) by 2(d¥V/dx) dx and 2 dV,
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respectively, to obtain

|
av (dv\ _ -1/2 A |
2Ed(a)_2klf dv (6-20) |

Integrating both sides of (6-20), we get

(%’)2 — Va4 4

where A is the constant of integration to be evaluated from the boundary
condition for dV/dx at the cathode. But dV/dx is the negative of the electric
field intensity. Since the electric field intensity as well as the potential are
zero at the cathode, A is equal to zero. Thus

g;=2 /kV1/4

or

Integrating both sides of (6-21), we obtain

4V¥+ =2/kx+ B |
where B is the constant of integration. To evaluate B, we note that V' =0
for x = 0. Hence B = 0, giving us

V=(%ﬁx4/3 !

Finally, from the condition that V' = V, for x = d, we have

Vo = (‘%»\/Fd)‘m

f
|
V-veqy = 2./F dx (6-21j
|
[
|
|

so that

- V(,(%)‘“ (6-22)

Equation (6-22) is the required solution for the potential between the two
|

plates. The electric field intensity is given by “
I | __iV,,(i 13, |
e = LT

The space charge density is given by

p=€0V.E=Eng‘=_? d2
The current density is given by

— 2lel 12 ___4_ 2le| V32, I
J=p mV i, = 9604%’” i, {‘

for
of

This equation is known as the Child-Langmuir law. The negative sign
J arises from the fact that the current flow is opposite to the directio
motion of the electrons. ’
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6.2 Laplace’'s Equation

A very important class of problems encountered in practice are those for
which the charges are confined to the surfaces of conductors. For such
problems, either the charge distribution on the surfaces of the conductors,
or the potentials of the conductors, or a combination of the two are specified
and the problem consists of finding the potential and hence the electric field
in the charge-free region bounded by the conductors. Obviously, the potential
in the charge-free region satisfies Laplace’s equation

V2 =0 (6-7)

assuming € to be constant. Hence the solution consists of finding a potential
that satisfies Laplace’s equation and the specified boundary conditions. Since
the right side of Laplace’s equation is zero irrespective of the boundary con-
ditions, we can obtain a general solution for the potential that satisfies a
particular simplified form of Laplace’s equation once and for all. The general
solution consists of arbitrary constants of integration, which are evaluated
by using the boundary conditions for the specific problem.
Let us consider the cartesian coordinate system. In the general case for
! which the potential is a function of all three coordinates x, y, and z, Laplace’s
equation is given by
v | o | 9V
ot T =
However, if the potential is a function of only one of the coordinates, say
x, and independent of the other two, we obtain a simplified version of
Laplace’s equation as

(6-23)

0V __d*V .
o =dz =0 (6-24)
Integrating (6-24) with respect to x twice, we obtain
V=Ax+ B (6-25)

where 4 and B are the arbitrary constants of integration. Equation (6-25) is
the general solution for the electrostatic potential in a charge-free region for
the case in which the potential is a function of x only. In other words, all
problems for which the potential varies with x only but having different
boundary conditions must have solutions of the form given by (6-25). Only the
values of the arbitrary constants 4 and B differ from one problem to the other.
Thus, having found the general solution once and for all, it is a matter of
fitting the given boundary conditions to evaluate the arbitrary constants for
obtaining the particular solution to the problem. Let us consider a simple
example.

ExampLE 6-3. Two parallel conducting plates occupying the planes x = 0 and
x = d are kept at potentials ¥ = 0 and ¥V = V, respectively, as shown in
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Fig. 6.2. We wish to find the solution for the potential and hence for the :
electric field intensity between the plates and evaluate the charge densities
on the plates.

Vo . Fig. 6.2. Two parallel perfectly

¢ E=- 4 ' conducting plates separated by a

dielectric of permittivity € and

- - - - - = kept at potentials V' =0 and
=0,V=0 V="V,

The general solution for the potential between the two plates is give
by (6-25). The boundary conditions are

V=0 forx=0
V="V, forx=d
Substituting these boundary conditions in (6-25), we have
0= 4(0) + B or B=0
Vo=Ad) +B=Ad) +0 or A =_‘;,e
Thus the required solution for the potential is ‘

V=%’~x 0<x<d y

The electric field intensity is given by ‘
_ _ V. _ V. |
E= VV_—ax _—71,, O<x<d ;
The field is shown sketched in Fig. 6.2. The surface charge densities on the

two plates are given by w
Vo: . !
[ps]x 0 — [D]x=o * = _eTolx * lx = _% /
= (i) = (=0 ) o (=i = Fo
[pos = Ples () = (=0) ()= 1|
|

EXAMPLE 6-4. Let the region between the two plates in Example 6-3 consist of t#’VO
dielectric media having permittivities €, for 0 < x < tand €, for t < x < d
as shown in Fig. 6.3. It is desired to find the solutions for the potentials in
the tworegions0 < x < tand t < x < d.

Since the permittivities of the two regions are different, the solutions
for the potentials in the two regions must be different although having the
same general form as given by (6-25). We therefore choose different arbitrary
constants for the two different regions. Thus the general solutions for the
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x=0,V=0
Fig. 6.3. Two parallel perfectly conducting plates sep-
arated by two dielectric media of permittivities €, and
€, and kept at potentials V' = 0 and V = V.

potentials in the two regions are

V,=A4,x + B, O<x<t (6-262)
V,= A,x + B, t<x<d (6-26b)
The boundary conditions specified in the problem are
V,=0 forx=0 (6-27a)
V,="V, forx=d (6-27b)

However, we have four arbitrary constants 4,, B,, 4,, and B, to be deter-
mined. Hence we need two more boundary conditions. Obviously, we turn our
attention to the boundary x = ¢ between the two dielectrics for these two
conditions, which are

V,=1V, for x = ¢ (6-27¢)
and
D, = D,,
or
€, %é —e, %% for x = ¢ (6-27d)

Substituting the four boundary conditions (6-27a)-(6-27d) into (6-26a) and
(6-26b), we obtain
0= 4,0 + B,
Vo= Az(d) + B,
A1(t) + B, = Az(t) + B,
€4, = €,4,
Solving these four equations for the four arbitrary constants and substituting
the resulting values in (6-26a) and (6-26b), we find the required solutions for
V, and V, as
— €%
Vi= €1+ €,(d—1)

1% _62t+€1(x—t)',,
2t ted=0""

V, O<x<t

t<x<d
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The potential at the interface x = ¢ is \

€,1
cire@d—n’ 1 |

Thus far we have considered the one-dimensional case for which the
potential is a function of x only. The one-dimensional problems for Wthh
the potentials are a function of y only and z only are not any different from

the case considered, since the differential equations for V are the same as
(6-24) except that x is replaced by y or z. Thus there is only one one- dlmenL
sional problem in the cartesian coordinate system although there are three
coordinates. Considering the three commonly used coordinate systems, th :
is, cartesian, cylindrical, and spherical coordinate systems and arguing i

this manner, we note that there are only five different one-dimensional
problems in all although there are nine coordinates. There is not much to
be gained by considering in detail the remaining four one- dimension 1
problems. Hence we simply list in Table 6.1 the general solutions for each

case, a particular set of boundary conditions and the corresponding partJ1
cular solution. It is left as an exercise (Problem 6.3) for the student to

verify these. !

TABLE 6.1. General Solutions for One-Dimensional Laplace’s Equations and

Particular Solutions for Particular Sets of Boundary Conditions |

Coordinate i
with Which General Boundary Particular
V Varies Solution Conditions Solution
x Ax + B V=0, x=0 &x
V=Vo,x=d d
r (cylindrical) Alnr + B V=0, r=a Vo 1n1
V=V, r==b lnb/a
¢ A$ + B V=0, ¢=0 Vo ‘
V=Vob=a &? ‘
R é V=0, r=a Vo 1 1 “
r (spherical) p + B Ve Vo, r=b DD (7 7;)
0 V=0, 6= In [(tan 6/2)/(tan /2
0 Aln(ang)+B 7 Vo,0=8 V0 1ﬂ_u_nn [(tan B2/ (tan a2)]

. r

Before we take up the discussion of Laplace’s equation in two dimen-
sions, we consider briefly the use of analogy in solving magnetic field prob-
lems involving permanent magnetization. From Maxwell’s curl equation
for the static magnetic field, we have, for a region free of true currents, that
is, for J = 0,

VxH=0

We can then express H as the gradient of a scalar magnetic potential V.
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that is,

H= v, (6-28)

Substituting B = p,(H 4+ M) in Maxwell’s divergence equation for B, we
have
VeB=V.yuH+M=0

or
V.H=-V.M (6-29)

Substituting (6-28) into (6-29), we obtain
Vy,=V.M. (6-30)

Comparing (6-28) and (6-30) with (6-3) and (6-6), respectively, we observe
the following analogy:

H<>E (6-31a)
V, <>V (6-31b)
V.eM-< _./Ei (6-31c)

If M is discontinuous at a boundary, then V « M results in an impulse func-
tion. To find the appropriate analogy, we consider a rectangular box of
infinitesimal volume Av and enclosing a portion of the boundary at which
M is discontinuous as shown in Fig. 6.4. Then we have

f V-Mdv<—>—J‘ L
Av Aue
i

M;

Fig. 6.4. For showing that a
discontinuity in M at a boundary
is analogous to a surface charge
density.

From the divergence theorem, Ly V « M dv is equal to §S M . i, dS, where
S is the surface area of the box. Now, if we let the box shrink to the bound-
ary, this integral becbmes M, — M) « i, AS whereas Lu (ple) dv becomes
(p,/e) AS, where AS is the surface area on the boundary to which the box

shrinks and p, is the surface charge density. Thus we have

M, — M,) +i, AS < > —L: s
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or

M, —M,) +i, <> —L (6-31d)

Making use of the analogy indicated by (6-31a)—(6-31d), we can solve mag-
netostatic problems involving permanent magnetization. Let us consider an/
example,

ExAMPLE 6-5. The region 0 < x << d is occupied by a medium characterized by the
magnetization vector M = M,i,, where M, is a constant, as shown in
Fig. 6.5(a). It is desired to find H and B both inside and outside the region
0<x<d

E = _MOix

/Ps = &tM,

+4 + 4+ o+ o+

M = Moi’x

/H=0,B=0

x=d

/

I I ! N+
| I [ | N
l B = ol I ¢
| I | |
L (R (R IR SO S
\H = —Moi, \ps = —&eMy |
(@ (b) i

Fig. 6.5. (a) A medium characterized by magnetization vector
M = Mi,. (b) Electrostatic analog of (a). !

Since there are no true currents associated with the medium, we can
use the analogy developed above. For the given M, V « M = 0 so that the
analogous volume charge density is zero. However,

©— Mji)+(—i)=M, forx=0 |
0 — M) i, = —M, forx=d |

The analogous surface charge density is therefore given by |

. {—GMO forx =10
- €M, forx =d

From the solution to Example 6-3, the electrostatic potential and the electric
field intensity for this surface charge distribution are

V=Mx
—Mji, O0<x<d
0 otherwise

<M2—M1>-in={

-

E=
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The surface charge distribution and the electric field lines are shown in
Fig. 6.5(b). Now, from (6-31a), the required magnetic field intensity is
given by

Hz{_Moi" O0<x<d

0 otherwise

The corresponding magnetic flux density is

wo(—Mi, + M,i,) O<x<d

100 4 0) otherwise
=0 everywhere

These are shown in Fig. 6.5(a). i

B:ﬂo(H‘l"M):{

We now consider the solution of Laplace’s equation in two dimensions.
If the potential is a function of the two coordinates x and y and independent
of z, then it satisfies the equation
@V oV _
dxz " gy? —
Equation (6-32) is a partial differential equation in two dimensions x and y.
The technique by means of which it is solved is known as the “separation
of variables” technique. It consists of assuming that the solution for the
potential is the product of two functions, one of which is a function of x
only and the second, a function of y only. Denoting these functions to be
X and 7Y, respectively, we have

0 (6-32)

Vix, y) = X(x) Y(3) (6-33)

Substituting this assumed solution into the differential equation, we obtain
X a*yY

YE_*_XW =0 (6-34)

Dividing both sides of (6-34) by XY and rearranging, we get
1dX_ 1y
Xdx*~ ~ Y d?
The left side of (6-35) involves x only whereas the right side involves y only.
Thus Eq. (6-35) states that a function of x only is equal to a function of y
only. A function of x only other than a constant cannot be equal to a function
of y only other than the same constant for all values of x and y. For example,
2x is equal to 4y for only those pairs of values of x and y for which x = 2.
But we are seeking a solution which is good for all pairs of x and y. Thus the
only solution which satisfies (6-35) is that each side of (6-35) must be equal
to a constant. Denoting this constant as &2, we have
d*X
dx?

(6-35)

= a2X (6-36a)
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and
d*Y
dy*
Note that we have obtained two ordinary differential equations involving the
separate independent variables x and y, respectively, starting with the partigl
differential equation involving both of the variables x and y. It is for this
reason that the method is known as the separation of variables technique,
The constant a? is known as the separation constant.
For a nonzero a2, the solutions for Eq. (6-36a) must be functions of |x
which when differentiated twice result in the same functions multiplied by af2.
The functions that satisfy this property are the exponential functions ef=
and e~**. Since (6-36a) is a linear differential equation, the general solution
consists of a superposition of the two solutions multiplied by arbitrary coin-
stants. For a*> = 0, the solution for (6-36a) can be obtained by integrating
it twice. Thus

— —a2Y (6-36b)

™

Ae** 4 Be~* for o = 0
A.x + B, fora =0 ‘
where 4, B, A,, and B, are the arbitrary constants. Similarly, for a? {0,
the solutions for Eq. (6-36b) must be functions of y which when differentiated
twice result in the same functions multiplied by —a?. The functions that
satisfy this property are cos ay and sin ¢y. Again, since (6-36b) is a linear
differential equation, the general solution consists of a superposition of the
two solutions multiplied by arbitrary constants. For a2 = 0, the solution for
(6-36b) can be obtained by integrating it twice. Thus
Ccosay -+ Dsinay fora = 0

Y =
) {C(,y—l—D0 fora =0

where C, D, C,, and D, are the arbitrary constants. Substituting (6-37a) and
(6-37b) into (6-33), we obtain the required solution for (6-32) as

V(x, y) — {(Ae“" + Be™**)(Ccosay + Dsinay) fora =0
, (4ox + By)(Cyoy + D,) fora =0
We now consider an example of the application of (6-38).

X&) = { (6-37a)
(6-37b)

(6-38)

P

EXAMPLE 6-6. Let us consider the idealized problem of an infinitely long rectangular

slot cut in a semiinfinite plane conducting slab held at zero potential as shown
in Fig. 6.6."With reference to the coordinate system shown in the figure,
assume that a potential distribution given by V = V sin (ny/b), where V/, is
a constant, is created at the mouth x = a of the slot by the application of a
potential to an appropriately shaped conductor away from the mouth of the
slot not shown in the figure. It is desired to find the potential distribution in
the slot.

The problem is two dimensional in x and y and hence the general solution
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X =4
V = Vosinﬂ

/
b >

x
V

0
0

Fig. 6.6. An infinitely long rectangular slot cut in a semiinfinite
plane conducting slab at zero potential. The potential at the
mouth of the slot is ¥, sin (wy/b) volts.

for V is given by (6-38). The boundary conditions are

V=0 y=0,0<x<a (6-39a)
V=20 y=5b0<x<a (6-39b)
V=20 x=0,0<y<bd (6-39¢)
V=1, sin”—by x=a0<y<b (6-39d)

The solution corresponding to & = 0 does not fit the boundary conditions
since V is required to be zero for two values of y and in the range 0 < x < a.
Hence we can ignore that solution and consider only the solution for & = 0.
Applying the boundary condition (6-39a), we have

0 = (4de** + Be **){(C) for0<x<a

The only way of satisfying this equation for a range of values of x is by
setting C = 0. Next, applying the boundary condition (6-39c), we have
0= (4 -+ B)Dsinay for0 <y <b
This requires that (4 - B)D = 0, which can be satisfied by either D =0 or
A + B = 0. However, D = 0 results in a trivial solution of zero for the
potential. Hence we set '
A+B=0 or B= —4

Thus the solution for ¥ reduces to

V(x,y) = (de** — Ae **)D sin ay

6-40
= A’ sinh ox sin ay (6-40)



|
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where 4" = 24 D. Next, applying boundary condition (6-39b) to (6- 40),

we have |

0 = A’ sinh ax sin ab for0<x<a |
To satisfy this equation without obtaining a trivial solution of zero for th,
potential, we set r
sinab =0
or
ab = nn n=1213,...
(6-41)

_n_7z —3
= a=123,...

Since several values of & given by (6-41) satisfy the boundary condition,
several solutions are possible for the potential. To take this fact into account,
we write the solution as the superposition of all these solutions multipli¢d
by different arbitrary constants. In this manner we obtain

b

Vix,y) = 3 A,sinh ””—x sin” for0<y<b (642
n=1,2,3,. i
Finally, applying the boundary condition (6-39d) to (6-42), we get /

V,sin 72}) > 4,sinh m sin % for0<y<b (6-:{}3)
n=1,2,3,...

On the right side of (6-43), we have an infinite series of sine terms in y wher%as
on its left side, we have only one sine term in y. Equating the coefficients of
the sine terms having the same arguments, we obtain “

h nna VO fOl‘ nh = 1 ‘
b o forn =1 ‘
or I

sm

AI — Vo |
' sinh<ma/b) /
A,=0 forn==1
Substituting this result in (6-42), we obtain the required solution for V' a
_ smh (mx/b) _. 44
Vx») = Vo 5ol (ma/b) )
Having found the solution, it is always worthwhile to check if it satisfies
Laplace’s equation and the given boundary conditions to make sure that no
error was made in obtaining the solution. The above solution does satisfy
these two criteria. ]

sm— (6-

If the solution, irrespective of how it is obtained, satisfies Laplace’s
equation and the specified boundary conditions, it is the solution according
to the uniqueness theorem. To prove this theorem, let us assume to the
contrary that two solutions ¥, and ¥, are possible for the same problem.
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Then each of these must satisfy Laplace’s equation so that

vy, =0 (6-45a)
vy, =0 (6-45b)

The difference V; = V, — V, must also satisfy Laplace’s equation. Thus
VIV, =V, = V)=V, —VI,=0 (6-46)
Also, both V| and V, must satisfy the same boundary conditions, so that
Wis =1V, = Vals=lVils = [Vals = 0 (6-47)

where S represents the boundary surface. Now, using the vector identity
V.(VA)=VV.A+VF.A
we have
\ (VdVVd) =V, V2V, 4+ |VV,|? (6-48)

Integrating both sides of (6-48) throughout the volume enclosed by
the boundary S, we have ’

f \RIAIPYE f (VY dv + f AWV, (649)
However, from the divergence theorem and from (6-47),
j (V- ViWdv=§ (V,VV,)+dS =0
vol S
Also, noting that V2V/; = 0 in accordance with (6-46), Eq. (6-49) reduces to
f VW, dv=0 (6-50)
Since | VV,|? is positive everywhere, the only way that (6-50) can be satisfied
is if | VV,|? is equal to zero throughout the volume of interest. Thus
VV,=0
or
V, =V, — V, = constant (6-51)

However, V, is equal to zero on the boundaries and hence the constant on
the right side of (6-51) must be zero, giving us ¥, = ¥, throughout the volume
of interest and thereby proving the uniqueness theorem.

ExXAMPLE 6-7. The rectangular slot of Fig. 6.6 is covered at the mouth x = a by
a conducting plate which is kept at a potential V' = V, a constant, making
sure that the edges touching the corners of the slot are insulated as shown
by the cross-sectional view in Fig. 6.7(a). We wish to find the potential in
the slot for this new boundary condition.
Since the boundary conditions (6-39a)-(6-39c) remain the same, all
we have to do to find the required solution for the potential is to substitute
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Insulated Insulated

[V]x=a
\ x=a V=" /

— Vo
y=20 - b I | | | 1
V=0 J I I [ I )
V=0 "5 ol b 21 3 7
X | ! | I |
T L I _p, L J —_
X—>
Y x=0,V=0
(@) (b)

Fig. 6.7. (a) Cross section of an infinitely long rectangular slot
cut in a semiinfinite plane conducting slab held at zero potential
and covered at the mouth by a conducting plate held at a
potential of ¥, volts. (b) Choice of potential to create an odd
periodic function of period 26 in y for [V],—,.

the new boundary condition
V=V, x=a0<y<b
in (6-42) and evaluate the coefficients A4,. Thus we have

Vo= 3 Asinh?2sn"™  for0<y<b (6-J2)
n=1,2,3,... b b |
We have an infinite series of sine terms in y having periods 2b/n on the rigf;ht
side of (6-52) whereas the left side of (6-52) is a constant. Thus we canrlot
hope to obtain A, simply by comparing the coefficients of the sine terms
having like arguments. If we do so, we get the ridiculous answer of V', == 0
and all A4, = 0 since there is no constant term on the right side and there
are no sine terms on the left side. The correct way of evaluating A, is to make
use of the so-called orthogonality property of sine functions, which reads

» 0 m¥=n
f sin"ﬂsinwdy= p
»=0 p 14 5 m=n

where m and # are integers. Multiplying both sides of (6-52) by sin (mzy/b) dy
and integrating between the limits 0 and b, we have

5 -
V, sin @ dy = J 1;3 A, sinh % sin '%) sin m—ZZdy (6-53)
y=0 #=1,2,3,...

y=0

The integration and summation on the right side of (6-53) can be inter-
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changed, giving us

oo b
V, sin mny dy= 3 A,sinh"%2 sin 7Y sin @’ dy
yeo n=1,73,... b ), b
or
Vob1 _ — (4 «int.mma\ b
—02(1 — cos mm) = <A,,, sinh 7)7
or
4v, 1
A, = { mmn sinh (mralb for m odd (6-54)
0 for m even

Substituting this result in (6-42), we obtain the required solution for the
potential inside the slot as

o 4V, sinh (nnx/b nm

V= n 1;25, .. nm sinh Enna;bg sin =5 y (6-55)
The above procedure for evaluating the constants 4/, can also be appreciated
by recognizing that the right side of (6-52) is the Fourier series for an odd
periodic function in y having the period 2b. We must then have an odd
periodic function of period 2b on the left side of (6-52). To achieve this, we
note that, since the solution is for inside the slot only, it is sufficient if we
satisfy the boundary condition for [V], ., for the range 0 < y < b. We are
therefore at liberty to choose [V], -, for the remainder of y so that an odd
periodic function of period 26 is obtained. Obviously, the choice must be
as shown in Fig. 6.7(b). The evaluation of A, then consists of finding the
coefficients of the Fourier series for this function and comparing these with
the coefficients of the series on the right side of (6-52). The steps leading
from (6-53) to (6-54) are essentially equivalent to this procedure.

Another class of problems for which Laplace’s equation is applicable
is those involving the determination of steady current in a conducting slab
under the application of potential difference between different surfaces of
the slab. For the steady-current condition we have

V.J=0

where J, is the current density. Replacing J, by oE, where o is the conduc-
tivity of the slab, we have

V.cE=0
Substituting for E in terms of V, we get
—VeoVV=0 (6-56)
If o is constant, Eq. (6-56) reduces to
ViV =0
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Thus the potential associated with the steady current flow satisfies Laplace’s
equation. Hence the solution for this potential can be obtained in exactly
the same manner as for the charged conductor problems. In fact, the solution
for the potential for a particular steady-current problem can be written down
by inspection if the solution for the potential for an analogous charged con-
ductor problem is already known and vice versa. Having found the solution|
for the potential, the current density can be found by using

J.=0E=—aVV (6-57)

ExAMPLE 6-8. A thin rectangular slab of uniform conductivity o, mhos/m has it
edges coated with.perfectly conducting material. One of the edges is kept a
a potential ¥, relative to the other three by appropriate placement of insu
lators as shown in Fig. 6.8(a). It is desired to find the steady-current distri
bution in the conductor.

Insulator
Insulator Insulator / Insulator
F\
1 g
. 1
SNOAASIN [
’ Conductor o
o = oo | I
/ N
1
X x=0,V=0
A7 / </
(//L y . /\
y=0 y=b \ V=0
V=20 V=0 Current Equipotential {
Flow Line
@) (b)

Fig. 6.8. (a) A rectangular slab of conductivity g, with one of its
edges kept at a potential V, relative to the other three. (b)
Equipotentials and direction lines of current density for the
conducting slab for the case b/a = 1.

The problem is exactly analogous to the rectangular slot problem| of
Example 6-7. Hence, from the solution for the potential found in that problem
and given by (6-55), we obtain the required current density as

o & 4V sinh (nmx/b) . nmy)

J. = aov(n=1.3,s,... nw sinh (nna/b) o b/
W, o nwx nwy .
- T ,- 125 Sl'ﬂ'h'fﬂ /b)(COSh sin b -

+ sinh n;zx cos nTny y>
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The approximate shapes of the equipotentials and the direction lines

of J, are sketched in Fig. 6.8(b) for b = a, that is, for a square conducting
slab. |1

We have illustrated the solution of the two-dimensional Laplace’s equa-
tion in the cartesian coordinates x and y and its applications. The technique
of solution in the other coordinate systems or even in three dimensions is
the same, that is, the separation of variables technique except that we get
some complicated functions in certain cases. Hence, instead of pursuing this
topic further, we will discuss a numerical method of solving Laplace’s equa-
tion which is well suited for adaptation to a digital computer. To illustrate
the principle behind the method, let us pose the following problem: Suppos-
ing we know the potentials V', V,, . . . , ¥ at six points which are equidistant
from a point P (0, 0, 0) and lying on mutually perpendicular axes (which
we call x, y, and z) passing through P as shown in Fig. 6.9, how do we

z
A
Vs ¢ (0,0,0)
Vs
(—a0,0)
©,-a0) P ©a0)
Vs Vo Vs
Vi
(a,0,0)
x Vs $ (0.0,-a)

Fig. 6.9. For showing that the potential at a
point P is approximately equal to the average of
the potentials at six points equidistant from P and

lying along mutually perpendicular axes through
P.

evaluate approximately the potential at the point P consistent with Laplace’s
equation? To answer this question, we recognize that

2 2 2
[VZV]P = [VZV](o,o,o) = A V] =0
(0,0,0)

3z Tar T o (6-58)
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However,

ﬂ’} ~ L{ ‘i} _ [97[ }
0x* Jo,0,0 a |Lx las2,0,0 0x _li—ar2,0,0
= j—{[V](B'O’O) — Voo _ Vogo = [V]<—a,o,0)}
‘12 ’ ¢ (6-59a)
= (Vi = Vo= Vo +72)
1
= S0+ V, =21
Similarly, “
02V] 1 B e
[072 o S @ Vst Va2V (6-59b)
and f
v 1 !
[o? won S @ T Ve =20 (6-5%)
Substituting (6-59a)~(6-59¢) into (6-58) and rearranging, we have |
\
Vo %(Vl TVt VitV + Vs + Vo) (6-60>
|

Thus the potential at P is approximately equal to the average of the potentialIs
at the six equidistant points lying along mutually perpendicular axes through
P. The result becomes more and more accurate as the spacing @ becomes
less and less. If the potential is a function of two dimensions x and y only,
we then have V; =V =V, and (6-60) reduces to

Vo (Vi + Vot Vi + V) (6-61)
To illustrate the application of (6-61), rwe now consider an example.

ExampPLE 6-9. Two sides of an infinitely long box having a right-angled equilateral
triangular cross section are kept at zero potential whereas the third side.is
kept at a potential of 100 volts as shown in Fig. 6.10. The region inside the
box is charge free. It is divided into squares and right-angled equilateral
triangles as shown in the figure. It is desired to find the potentials at the points
a, b, and ¢ using (6-61).

The solution consists of finding a set of values for the potentials at
a, b, and ¢ which, together with the potentials at points on the boundaries,
are consistent with (6-61). By averaging the potentials at 4, f, 4, and j which
are equidistant from @ and lie on mutually perpendicular lines passing
through it, we find an initial value of 1(0 4 0 + 0 + 100) or 25 volts for
the potential at a. Using this value and the potentials at d, 7, and j, we then
find the potential at b to be (25 4 0 + 100 4 100) or 56.25. However, we
round off all numbers to the nearest tenth of a volt. In rounding off a decimal
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Fig. 6.10. For illustrating a numerical method of solving La-
place’s equation.

ending exactly with 5, we increase the previous number by 1 if it is odd and
keep it unchanged if it is even. Thus the potential at b is rounded off to 56.2
volts. Similarly, using the potentials at a, j, k, and A, we obtain a value of
56.2 volts for the potential at c¢. Since we now have potentials at points b
and ¢ which together with points e and g are closer to point a than the set of
points d, f, h, and j, we recompute the potential at a by averaging the poten-
tials at b, c, e, and g to obtain a value of 1(56.2 4- 56.2 + 0 + 0) = 28.1
volts. We now note that the potentials at 5 and ¢ have to be recomputed
because they are inconsistent with the newly computed potential at point
a and the potentials at the boundary points. We thus obtain a value of
1(28.1 4+ 0 4 100 + 100) & 57.0 volts for the potentials at » and c. This
requires a revision of the potential at a to (57 + 57 + 0 4 0) = 28.5 volts.
This process of iteration is continued until a set of values for the potentials at
a, b, and ¢ are obtained which, together with the potentials at the boundary
points, are consistent with (6-61). The final values obtained in this manner
are 28.6, 57.2, and 57.2 volts for a, b, and c, respectively. Obviously, these
values are approximate because of the finite spacing between the grid points.
By dividing the region inside the box into smaller squares and triangles,
more accurate values can be obtained. In cases where the potentials at the
insulated corners are required for the computation of initial values of

potentials at grid points inside, average values of potentlals on either side of
the corners are used. |
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The Method of Images ’

|

We learned in Chapter 5 that a conductor surface is an equipotential. We
also learned that the electric field at the conductor surface is entirely normal /
to it. In fact, these two properties are equivalent. In this section we will‘\
make use of this property to develop a method for computing the electric:
field due to charges in the presence of conductors. This method is called the;

“method of images.” We will illustrate the method of images by means of
two examples.

ExAMPLE 6-10. A point charge Q is situated at a distance d from a grounded infinite

plane conductor. We wish to find the electric field due to the point charge

and the induced surface charge density on the conductor. ‘
First, let us consider two point charges Q and — @ situated at a distance
2d apart as shown in Fig. 6.11. The potential at any point P located at a

distance r, from @ and r, from —Q is given by

Q Q (6-62)

= dner,  Amer,

If the point P lies in the plane normal to and bisecting the line joining the
point charges, r, is equal to #, and the potential is zero. Thus this plane is
an equipotential. In particular, it is at zero potential. If we insert an infinite

) Equipotentials
» . / |
Direction
Lines.of E
r 0
T
("‘ 4 in
> v
r 1 I -_l.-‘
N \)(/ /=
[
7N\ J/
Voo s
| - !

Fig. 6.11. For illustrating that the field due to a point charge
QO near a grounded infinite plane conductor is the same as that |
due to the point charge and an “image” charge (— Q) situated !
at the mirror image of Q in the plane conductor.
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plane conductor into this plane, the field distribution due to the point charges
will remain unaltered since the conductor satisfies the boundary condition.
Conversely, the field due to a point charge Q situated at a distance d from a
grounded infinite plane conductor is exactly the same as the field due to-
the charge Q plus an “image” charge — @ situated at the mirror image of
Q in the plane. The direction lines of the electric field intensity and the
equipotential surfaces due to the dipole formed by Q and — Q can be found
by using the methods of Chapter 2. These are sketched in Fig. 6.11. The
image charge is only a virtual charge. The field due to the real charge Q
exists only on the side of that charge, with the field lines terminating on the
induced charge formed on the surface of the grounded conductor. The virtual
nature of the image charge is shown by the broken field lines and equipo-
tentials on the side of the image charge.

The induced surface charge density is equal to the normal component
(which is the only component present) of the displacement flux density at
the conductor surface. With reference to the geometry shown in Fig. 6.11,
the displacement flux density at a point on the conductor surface situated
at a distance r from the projection of Q onto the surface is given by

D= —2WQ+—;*2) sine i,
Q4
2n(d2 _l_ r2)3/2 n
where i, is the unit vector normal to the conductor surface. The induced
surface charge density is thus given by

(6-63)

_ Qd
zn(dZ + r2)3/2

The total induced surface charge Q, is given by

- —Qd
0 = f p,dS = f J; N 2)3/21' dr dd
e (6-65)
0
=Q J. cos o doo = —Q
a=nr/2
Thus the total induced surface charge is equal to the image charge. This is
to be expected since all field lines ending on the conductor would end on

the image charge if the conductor were not present, but an actual charge of
— Q is present at the image point. |

p.=D i, = (6-64)

MPLE 6-11. Aninfinitely long line charge of uniform density p,, C/m is situated

parallel to and at a distance 4 from the axis of an infinitely long grounded
conducting cylinder of radius a (<<d) as shown by the cross-sectional view
in Fig. 6.12. We wish to find the image charge required for computing the
field outside the conducting cylinder.
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Let us postulate an infinitely long image line charge of uniform density
pro at a distance b from the axis of the conducting cylinder and in the plane
containing the axis of the cylinder and the real line charge, as shown in Fig.
6.12. Choosing the line through point P, and parallel to the axis of the cylinder

Equipotentials

Direction
Lines of E

9 ' PLY i
]

Fig. 6.12. For finding the image charge required for computing !
thea,ﬁeld due to a line charge of uniform density parallel to an °
infinitely long grounded conducting cylinder. ‘

as the reference for zero potential, the potential at any arbitrary point P\ on
the conductor surface can be written as {‘

V= —, 1n~/d2+a2+2adcos¢ pLo 1n~/b2+a2+2abcos¢‘
= 60 (d— a) 27:50 (a — b)

(6-66)

But this quantity must be equal to zero since the conductor is an equipotential

and the potential at P, is zero. This requires that !

PLo = —Pro ($_67)
and
/@’ F @ + 2ad cos § @a—20) —o
T W@-a /Pt ot 2abesgl |
or
~/d? + a® + 2ad cos ¢ (a —b) =1 (6-68)

(d—a) ~/b* + a* + 2abcos ¢
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To find the solution for (6-68), let us consider ¢ = 0. We then have
d+ a\(a— b\ _
(T=a)E=) =

a? = bd (6-69)

which satisfies (6-68) for all ¢. Thus, an image line charge of uniform density
—p., and located at a distance b = a?/d from the axis of the cylinder satisfies
the equipotential requirement for the grounded conducting cylinder. The
field outside the cylinder is therefore exactly the same as the field set up by
the actual line charge of density p,, at distance d from the axis and the
image line charge of density — p,, at distance @?/d from the axis. The direction
lines of the electric field intensity and the associated equipotential surfaces
can be obtained by the methods learned in Chapter 2. These are shown
sketched in Fig. 6.12. It is left as an exercise (Problem 6.15) for the student
to show that the total induced surface charge per unit length of the cylinder
is equal to the image charge density —p,,. The field inside the cylinder is,
of course, equal to zero since the image charge is only a virtual charge. ||

or

Proceeding in the same manner as in the preceding example, we can
obtain the image charge for a point charge near a grounded spherical con-
ductor. If the point charge Q is situated at a distance d from the center of the
spherical conductor of radius a, the image charge is a point charge of value
—Qa/d. 1t lies at a distance a?/d from the center of the sphere, along the
line joining the center to the charge Q and on the side of Q. We leave the
derivation as an exercise (Problem 6.16) for the student. The method of
images can also be applied for finding fields due to charges in the pres-
ence of dielectrics. We will, however, not pursue that topic here.

Conductance, Capacitance, and Inductance

In Chapter 5 we introduced conductors, dielectrics, and magnetic materials.
Let us now consider three different arrangements, each consisting of two
parallel perfectly conducting plates as shown in Figs. 6.13(a), (b), and (c).
For the structure of Fig. 6.13(a), the medium between the parallel plates is
filled with a conducting material of uniform conductivity . For the structure
of Fig. 6.13(b), the medium between the parallel plates is filled with a perfect
dielectric of uniform permittivity €. For the structure of Fig. 6.13(c), the two
parallel plates are joined at one end of the structure by a perfectly conducting
plate and the medium between the plates is filled with a magnetic material
of uniform permeability x. Note that free space may be considered as a
perfect dielectric of permittivity €, and a magnetic material of permeability
Uo. We apply a potential difference of ¥, volts between the parallel plates
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Fig. 6.13, Three different structures each consisting of two i
parallel perfectly conducting plates. The medium between the ’
plates is a conductor for structure (a), a dielectric for structure |
(b), and a magnetic material for structure (c). The two plates j
are joined at one end by another perfectly conducting plate for |
structure (c). |
I
of structures (a) and (b) by connecting appropriate constant voltage solrces
which are not shown in the figure. We pass a z-directed surface current 1,
uniformly distributed in the y direction along the upper plate of stru;cture
(c) and return it in the opposite direction along the lower plate by conlmect-
ing an appropriate constant current source which is not shown in the ﬁltgure.
The medium between the plates of structure (a) is then characterized by
an electric field from the upper to the lower plate and hence by a condLllction
current in the same direction. The medium between the plates of striicture
(b) is characterized by an electric field only from the upper to the lower
plate and no current. The medium between the plates of structuref(c) is
characterized by a magnetic field parallel to the plates and towards the
direction of advance of a right-hand screw as it is turned in the sense jof the
current flow. Since the conduction current cannot leave the conductor, it has
to be tangential to the conductor surface. This forces the electric field for
structure (a) to be in the x direction. On the other hand, the electric field at
the surface of a dielectric need not be tangential to it. This results in fx}inging
of the electric field in the case of structure (b). However, by assumix?ng that

|
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d is very small compared to w and /, or by assuming that the structure is
actually part of a much larger structure, we can neglect fringing and consider
the electric field to be entirely in the x direction. For the same assumption
in the case of structure (c), the magnetic field can be considered to be entirely
in the y direction.

From the result of Example 6-3, the electric field in the case of structures
(a) and (b) is then given by

— —gﬂix (6-70)
The current density J, for structure (a) is given by
J,=oE = "_;/_Oix (6-71)

The total current I, flowing from the upper plate to the lower plate is given
by the surface integral of the current density over the cross section of the
conductor. However, since the current density is uniform and directed
normal to the plates, we can obtain this current by simply multiplying the
magnitude of the current density by the area of the plates. Thus

I =Jwl)= ";’o wl (6-72)

We now define a quantity known as the “conductance” ( e—w— ), de-
noted by the symbol G, as the ratio of the current flowing from one plate
to the other to the potential difference between the plates. From (6-72), the
the conductance of the conducting slab arrangement of Fig. 6.13(a) is given
by
I, _owl

G= V=a (6-73)
We note from (6-73) that the conductance is a function purely of the dimen-
sions of the conductor and its conductivity. The units of conductance are
(mhos/meter)(meter?/meter) or mhos. The reciprocal of the “conductance”
is the “resistance” ( e—w»— ), which is denoted by the symbol R and
has the units of ohms. Thus

"
R=7t
or
V,=LR

which is the familiar form of Ohm’s law applicable to a finite region of con-
ducting material. The resistance of the slab conductor is given by

-4 _4d

“owl g4

where A is the area of the plates.
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The phenomenon associated with conduction current is power dissipa-
tion. From Chapter 5, the power dissipation density is given by ‘

p;=J,+E=0E.E =0E? (6-74)
Performing volume integration of the power dissipation density over thé

volume of the conductor of Fig. 6.13(a), we obtain the total power d1ss1pated
in the conductor as |

P,,=J. pddv=f°laE2dv J‘

— f aV0 dv ‘;

vol (6-75)

= Z—I;"(volume of the conductor) !

|

|

= Ziawh = 2y = 613 l
Equation (6-75) gives the physical interpretation that conductance is the

parameter associated with power dissipation in a conductor.
Turning our attention to the structure of Fig. 6.13(b), the dlsplacement
flux density is given by

D =¢E =i, (6-7(6)

The surface charge density on the upper plate is given by }
[pdemo = [Dlemy + () = 2 (6-772)

The surface charge density on the lower plate is given by ‘ ;
[pJems = [Dlewy + (—1) = —42 (67Tb)

I
The total charge on either plate is given by the surface integral of the cha}rge
density on that plate over the area of the plate. However, since the charge
densities here are uniform, we can obtain the total charge simply by multi-
plying the charge density by the area of the plate. Thus the magnitude Q of
the charge on either plate is given by

Q=p,wh) = EV‘Z (6-78)

We now define a quantity known as the “capacitance” ( o—}— ),
denoted by the symbol C, as the ratio of the magnitude of the charge on
either plate to the potential difference between the plates. From (6-78), the
capacitance of the dielectric slab arrangement of Fig. 6.13(b) is given by

C= % -f—d”” (6-79)

We note from (6-79) that the capacitance is a function purely of the dimen-
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sions of the dielectric slab and its permittivity. The units of capacitance are
(farads/meter)(meter?/meter) or farads.

The phenomenon associated with the electric field in a dielectric medium
is energy storage. From Chapter 5, the electric stored energy density is given
by

_lp.g—lLep (6-80)
We =3 2
Performing volume integration of the electric stored energy density over the
volume of the dielectric of Fig. 6.13(b), we obtain the total electric stored
energy in the dielectric as

We=f wedv=f ieEzdv
vo vol 2
. 1 eV3
_j 5D ia
(6-81)
1 eV}

=5 (volume of the dielectric)

6‘;/20“ 1 = 1 ele2 =%CV%A

Equation (6-81) gives the phys1ca1 interpretation that capacitance is the
parameter associated with storage of electric energy in a dielectric.

Turning our attention to the structure of Fig. 6.13(c) and neglecting
fringing, the magnetic field intensity between the plates is the same as that
due to infinite plane current sheets of densities given by

I—Oiz forx =20
w

—iiz forx=4d
w

J =

Hence the magnetic field intensity is uniform between the plates and zero
outside the plates, that is,

H,i, 0<x<d
H= .
0 otherwise

From the boundary condition for the tangential magnetic field intensity,
the value of H, is equal to the surface current density I /w since the field is
zero outside the plates. Thus

H=Dh; foo<x<d
w
and

B=ﬂH=E;VI—°iy for0<x<d (6-82)

The magnetic flux y linking the current I, is given by the surface integral of
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the magnetic flux density over the area bounded by any contour along which
the current flows. This area is simply the cross-sectional area of the magnetic
material normal to the magnetic field lines. Since the magnetic field lines
are straight, it may seem like they do not link the current. However, straight
lines are circles of infinite radii and hence the magnetic field does link the;
current. For the structure of Fig. 6.13(c), since the magnetic flux density is;
uniform, we can obtain the required magnetic flux y by simply multiplying;
the magnetic flux density by the cross-sectional area normal to it. The:
quantity w is known as the magnetic flux linkage associated with the[*
current /,. Thus

v = Bdl) = 1‘710 dl (6-83'9

We now define a quantity known as the “inductance” ( a—vrr— ), denotecd
by the symbol L, as the ratio of the magnetic flux linkage associated with th‘
current [, to the current /,. From (6-83), the inductance of the magnetlnc
material slab arrangement of Fig. 6.13(c) is given by I
_y _ pdl
L=f=5F (6-871)
We note from (6-84) that the inductance is a function purely of the dimensions
of the magnetic material and its permeability. The units of inductance a?re
(henrys/meter)(meter?/meter) or henrys. |
The phenomenon associated with magnetic field in a magnetic material
medium is energy storage. From Chapter 5, the magnetic stored ener,gy
density is given by
1
=7
Performing volume integration of the magnetic stored energy density owver
the volume of the magnetic material of Fig. 6.13(c), we obtain the total
magnetic stored energy in the magnetic material as

W H.B =L uH (6-85)

(6-86)
1 ul? ‘
=5 Wﬂ(volume of the magnetic material) ‘\
|
1 ul? 1 udl 1 "
= 5 &2 aw) = 2/‘ I} = 5 LI} |

Equation (6-86) gives the physical interpretation that inductance is\’ the
parameter associated with storage of magnetic energy in a magnetic material.

To write general expressions for the conductance, capacitance 'and
inductance in terms of the fields, let us consider the three structures shown
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by the cross-sectional views in Figs. 6.14(a), (b), and (c), which consist of
identical pairs of parallel, infinitely long, perfect conductors having arbitrary
but uniform cross sections. Let the medium between the two conductors of
structures (a), (b), and (c) be characterized by uniform conductivity o,

(2) (b) ©

Fig. 6.14. For writing general expressions for (a) conductance,
(b) capacitance, and (c) inductance.

uniform permittivity €, and uniform permeability u, respectively. As in the
case of the structures of Fig. 6.13, we apply a potential difference between
the two conductors of structures (a) and (b) and pass a current into the
plane of the paper along one conductor of structure (c), returning it out
of the plane of the paper along its second conductor. Structures (a) and
(b) are then characterized by an electric field whose direction lines originate
normal to the inner conductor and terminate normal to the outer conductor.
The electric field results in a conduction current in structure (a). Structure
(c) is characterized by a magnetic field, whose direction lines lie in the plane
of the paper and surround the inner conductor.

Let us now consider unit lengths of the three structures normal to the
plane of the paper. We can then write the following quantities:

For structure (a),

V,, potential difference between the conductors = J "E.dl (6-87a)

I, current flowing from the inner to the outer conductor
= current crossing the area formed by the contour C, and length
unity in the axial direction

=¢ Jei,dl=c$ E.i,d (6-87b)
Cz Cz

For structure (b),

V,, potential difference between the conductors = r E.dl (6-88a)
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|

. . |

0, magnitude of surface charge on either conductor 3
= displacement flux crossing the area formed by the contour C, and

length unity in the axial direction |

=¢ Dei,dl=¢f E.i,d (6-88b)
Cz

Cs
For structure (c),

I, surface current flowing on either conductor = § H.dl (6-8%2)
Cs

|
v, magnetic flux linking the current 7
= magnetic flux crossing the area formed by the contour C, d

=j"B.inld1=uj"H.inldl 6-8

From (6-87a)—(6-89b), we can write the general expressions for G, C, an
per unit length, denoted by G, @, and £, as

b)
L

; o Esigal j
§=p=—G— (6:90)
0 [E.a :
a J
ed Ei,d |
e-2_ f B 6-91)
V b (
°  [E.a i
b |
H.i,d ;
ey ALHE (6-92)
L, H.dl ;‘
Cz |
From (6-90) and (6-91), we note that
g _ g
T= ?mhos/farads (6-93)

From the discussion of Section 3.10, the electric field lines of structure (b)
and the magnetic field lines of structure (c) are everywhere orthogonhl to
each other and their magnitudes are proportional, since the conductor cross

sections for the two structures are the same. Thus we can write ‘
E=kHx i, (6 -94)

where k is the constant of proportionality and i, is directed into the plane of
the paper. Substituting (6-94) into (6~ -91), we have ‘

€d kHxi,«i,d !
e:—ci——
- [kHxi @

ek Heiyxi,dl e$ H.dl
—_ Co J—

C»

kfiH.i,xdl _sz-i,,ldz
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From (6-92) and (6-95), we note that
£€ = ue henry-farad/m? (6-96)

Equations (6-93) and (6-96) provide simple relationships between the con-
ductance per unit length, capacitance per unit length, and inductance per
unit length of a structure consisting of two infinitely long, parallel perfect
conductors having arbitrary but uniform cross sections. Expressions for
these three quantities are listed in Table 6.2 for some common configurations
of conductors having the cross sections shown in Fig. 6.15.

[ w

(3

(@) | R0

B 2d | a <<d

2a 2a
ﬁ (d) ©) QF Ib *’@
le—a—

Fig. 6.15. Cross sections of some common configurations of par-
allel infinitely long conductors.

s

ExXAMPLE 6-12. It is desired to obtain the conductance, capacitance, and inductance

per unit length of the parallel cylindrical wire arrangement of Fig. 6.15(c).

In view of (6-93) and (6-96), it is sufficient if we find one of the three
quantities. Hence we choose to find the capacitance per unit length. To do
this, we refer to Example 6-11 and Fig. 6.12 and note that placing a cylindrical
conductor coinciding with the equipotential cylindrical surface having its
axis at a distance b from the line charge p,, and on the side opposite to the
grounded conductor will not alter the field. Hence the field of the parallel
wire arrangement of Fig. 6.15(c) is exactly the same as the field due to equal
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TABLE 6.2. Conductance, Capacitance, and Inductance per Unit Length for Some Struc- “
tures Consisting of Infinitely Long Conductors Having the Cross Sections

Shown in Fig. 6.15
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G, Conductance e, Capacitance £, Inductance
Description per Unit Length per Unit Length per Unit Length
Parallel plane
conductors, 4 % € % u %
Fig. 6.15(a)
Coaxial
cylindrical 270 2ne £ n b
conductors, In (b/a) In (b/a) 2n " a
Fig, 6.15(b)
Parallel 2o e d
cylindrical wires, cos=1 (@) cosh=L (@a) £ cosh~1 =
Fig. 6.15(0) cos, (d|a) cosh~1! (d/a) a
Eccentric inner 2no 2ne “ cosh—1a2+b2—d2‘
conductor, cosh-1 (a2+b2—d2) bt (a2+b2—d2) 2n 2ab |
Fig. 6.15(d) 2ab cos 2ab |
Shielded parallel nd(bz d2/4) \
cylindrical wires, In [al(b2 —d 2/4)] n d(b2 — d2 /4)] a(b> + dz/a) |
Fig. 6.15(¢) a(b? + d2[4) a(b? 4 dz/4) f
I

\
and opposite line charges situated as shown in Fig. 6.16. The potential

|

difference between the two points 4 and B is then given by ;

2d
|
|
|
a
A P.LO o [‘
)

Fig. 6.16. For the determination of G, £, and @ for the parallel
cylindrical wire arrangement of Fig. 6.15(c).
|

However, from Example 6-11, !

a2
b=2—3 |

or |
b=d4 /d* —a* (6-98)
Ignoring the plus sign on the right side of (6-98), since b has to be less than

|
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d, and substituting for & in (6-97) we have
v, = p“’l 2d—a—d+ A/d* — a?
a—d+ J/d* — a?
_ pLo ad*—at+ (d—a) (6-99)
sz —a*—(d—a)

_pu,lnd—{—/\/dz—a pmcosh‘d
e

Finally, the capacitance per unit length is given by

— Pro _ ne -
€= = o () (6-100)
which agrees with the expression given in Table 6.2. The corresponding
expressions for § and £ obtained by using (6-93) and (6-96), respectively,
are given in Table 6.2.

For volume current distributions, we have to consider the magnetic
field internal to the current distribution in addition to the magnetic field
external to it. The inductance associated with the internal field is known as
the “internal inductance” as compared to the “external inductance” asso-
ciated with the external field. The inductance we defined by (6-84) and (6-92)
is the external inductance. To obtain the internal inductance, we have to
take into account the fact that different flux lines in the volume occupied by
the current distribution link different partial amounts of the total current.
We will illustrate this by means of an example.

i
ExhmpLE 6-13. A current 7 amp flows with uniform volume density J = J,i, amp/m?

along an infinitely long, solid cylindrical conductor of radius @ and returns
with uniform surface density in the opposite direction along the surface of
an infinitely long, perfectly conducting cylinder of radius b (> a) and coaxial
with the inner conductor. It is desired to find the internal inductance per
unit length of the inner conductor.

The cross-sectional view of the conductor arrangement is shown in
Fig. 6.17(a). From symmetry considerations, the magnetic field is entirely in
the ¢ direction and independent of ¢. Applying Ampere’s circuital law to
a circular contour of radius r (< a) as shown in Fig. 6.17(a), we have

2rrHy = 7r?J,

or

H=Hj,=%5 r<a

The corresponding magnetic flux density is given by

B=,uH='ug°ri¢S r<a
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b
l z
_______ p J
a — - ]
} A\
dr
| :
(
(@) (b)

Fig. 6.17. For evaluating the internal inductance per unit length
associated with a volume current of uniform density along an
infinitely long cylindrical conductor.

where u is the permeability of the conductor. Let us now consider a rectangle
of infinitesimal width dr in the r direction and length [ in the z direction |at
a distance r from the axis as shown in Fig. 6.17(b). The magnetic flux dy,
crossing this rectangular surface is given by

dy, = By(area of the rectangle) (

_ udyrldr ‘

= &0 |
where the subscript i denotes flux internal to the conductor. This flux sur-
rounds only the current flowing within the radius #, as can be seen from Fig.
6.17(a). Let N be the fraction of the total current / linked by this flux. Then

N _ Surrent flowing within radius r (< a)
B total current 7

_ Jomr® ( r )2
T Jyma®  \a
The contribution from the flux dy, to the internal flux linkage associated
with the current I is the product of N and the flux itself, that is, N dy,. To
obtain the internal flux linkage associated with I, we integrate N dy, between

the limits r = 0 and » = q, taking into account the dependence of N upon
dy,. Thus

o " (N pdolr pdla?
Finally, the required internal inductance per unit length is
e =¥ Whal® _ u (6-101)

T T Uma®) 8
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Alternatively, we can obtain £, from energy considerations by making use
of the result (6-86) that the magnetic stored energy is equal to 1LI%. For £,
we have to consider the energy stored in the volume internal to the current
distribution. For unit length of the conductor, this is given by

1

2

mi =
vol

—f f f —rdrdqbdz—"”i]é’a
r=0 =0 z=0

The internal inductance is then given by

e — 2W,, _ (mpdiat/8)
=

I LR 87: I

which is the same as (6-101). Finally, to find the total inductance per unit
length of the arrangement of Fig. 6.17(a), we have to add the external induc-
tance due to the flux in the region a < r < b to the internal inductance
given by (6-101). This external inductance is given in Table 6.2. ||

From the steps involved in the solution of Example 6-13, we observe
that the general expression for the internal inductance is

Liy =+ J N dy (6-102a)

where S is any surface through which the internal magnetic flux associated
with I passes. We note that (6-102a) is also good for computing the external
inductance since for external inductance N is independent of dy. Hence

La=%>| dg=NY¥ (6-102b)

In Eq. (6-102b), the value of N is unity if 7 is a surface current as for the struc-
tures of Figs. 6.13(c) and 6.14(c). On the other hand, for a filamentary wire
wound on a core, N is equal to the number of turns of the winding in which
case w represents the flux through the core, that is, the flux crossing the
surface formed by one turn. To explain this, let us consider a two-turn winding
abcdefghi carrying current I as shown in Fig. 6.18(a) and imagine the flux
lines penetrating the surface formed by the two-turn winding. According
to definition, the magnetic flux linking 7 is the flux crossing the surface formed
by the two-turn winding. Let us twist the portion cdef of the winding and
stretch the winding to the shape shown in Fig. 6.18(b). We can now see that
the flux lines come from underneath the surface of the first turn (abed), go
below the surface of the second turn (efgh), and come out of it again as shown
in Fig. 6.18(b) so that the flux linking I is equal to twice the flux passing
through one of the surfaces abced and efgh.

The discussion pertaining to inductance thus far has been concerned
with “self inductance,” that is, inductance associated with a current distribu-
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(a) (b)

Fig. 6.18. For illustrating that the flux linking a filamentary
wire of N turns is equal to N times the flux crossing the surface
formed by one turn.

tion by virtue of its own flux linking it. On the other hand, if we have t ,fvo
independent currents I, and I,, we can talk of the flux due to one current
linking the second current. This leads to the concept of “mutual inductance;.”
The mutual inductance denoted as L, is defined as ' !

L,= le (6—1(‘;;’)3)

where w,, is the magnetic flux produced by 7, but linking one turn of the
N,-turn winding carrying current /,. Similarly,

L, = NZ% (6-104)
1
where y,, is the magnetic flux produced by I, but linking one turn of ‘the
N,-turn winding carrying current I,. It is left as an exercise (Problem 6. 24)
for the student to show that L,, = L,,. We will now consider a 31mLple
example illustrating the computation of mutual inductance.

ExXAMPLE 6-14. A single straight wire, infinitely long and carrying current I,, lies
below to the left and parallel to a two-wire telephone line carrying curicent
I,, as shown by the cross-sectional and plan views in Figs. 6.19(a) and 6-19(b),
respectively. It is desired to obtain the mutual inductance between the smgle
wire and the telephone line per unit length of the wires. The thickness of’ the
telephone wire is assumed to be negligible.
Choosing a coordinate system with the axis of the single wire as the z
axis and applying Ampere’s circuital law to a circular path around the single
wire, we obtain the magnetic flux density due to the single wire as

N
B = 2r

The flux dy,, crossing a rectangular surface of length unity and width dy
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(a) (b)

Fig. 6.19. For the computation of mutual inductance per unit

length between a two-wire telephone line and a single wire paral-
Iel to it.

lying between the telephone wires as shown in Fig. 6.19(b) is then given by

- 7Y (S

dy,, = Bdycosa = 27z(h2+y2)
where « is the angle between the flux lines and the normal to the rectan-
gular surface as shown in Fig. 6.19(a). The total flux w,, crossing the

rectangular surface of length unity and extending from one telephone wire
to the other is

a+b atb
= = M
'//21 d‘//21 j 27[(}12 + yz) y
— Holy 1nh2 + (a+ b)?
4r h* 4 a? .
This is the flux due to I, linking 7, per unit length along the wires. Thus the
required mutuval inductance per unit length of the wires is given by

N b
£, = '//Tzli = 4_ __""_(i’*'—) henrys/m |}

y=a

Magnetic Circuits

Let us consider the two structures shown in Figs. 6.20(a) and (b). The struc-
ture of Fig. 6.20(a) is a toroidal conductor of uniform conductivity ¢ and
having a cross-sectional area 4 and mean circumference /. There is an infini-
tesimal gap a-b across which a potential difference of ¥, volts is maintained
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(@) (b)

Fig. 6.20. For illustrating the analogy between electric and
magnetic circuits.

by connecting an appropriate voltage source. Because of the potential differ-
ence, an electric field is established in the toroid and a conduction current
results from the higher potential surface a to the lower potential surface b
as shown in the figure. The structure of Fig. 6.20(b) is a toroidal magnetic
core of uniform permeability x4 and having a cross-sectional area 4 and
mean circumference /. A current I amp is passed through a filamentary wire
of N turns wound around the toroid by connecting an appropriate current
source. Because of the current through the winding, a magnetic field is estab-
lished in the toroid and a magnetic flux results in the direction of advance of
a right-hand screw as it is turned in the sense of the current.

Since the conduction current cannot leak into the free space surrounding
the conductor, it is confined entirely to the conductor. On the other hand, the
magnetic flux can leak into the free space surrounding the magnetic core and
hence is not confined completely to the core. However, let us consider the
case for which g > u,. Applying the boundary conditions at the bounda#y
between a magnetic material of x4 >> u, and free space as shown in Fig.
6.21, we have '

B, sing, = B, sin o, |
H, cosa, = H,cos o, (

or

B B
—Hiltanoc1 =F:tanoc2

tano, 4, 1
tanocz—,u1<< |
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I
I
| mi>>
[

freespaceand a magnetic material
of permeability x> u,.

B,
\\!
ay
|
Fig. 6.21. Lines of magnetic flux |I #2 = Ho
density at the boundary between | B,
I

Thus «, < a,, and

For example, if the values of u, and &, are 1000, and 89°, respectively,
then a, = 3°16" and sin «,/sin &, = 0.057. We can assume for all practical
purposes that the magnetic flux is confined entirely to the magnetic core
just as the conduction current is confined to the conductor. The structure
of Fig. 6.20(b) is then known as a “magnetic circuit” similar to the “electric
circuit” of Fig. 6.20(a).

For the structure of Fig. 6.20(a), we have

VXE=0 (6-1052)
jbE cdl=V, (6-105b)
J.=0E (6-105c¢)
1= j J . ds (6-105d)

A

For the structure of Fig. 6.20(b), we have
VxH=0 (6-1062)
$ H.a1=nI, (6-106b)
c

B — uH (6-106¢)
v = j B.dS (6-106d)

A

Equation (6-106a) results from the fact that there are no true currents in
the magnetic material. In Eq. (6-106b), the factor NV on the right side takes
into account the fact that the filamentary wire penetrates a surface bounded
by the path C as many times as there are number of turns in the entire



390 ’Applied Electromagnetics Chap. 15

winding. Alternatively, if we pull the path C out of the toroid, it will be cut
at as many points as there are number of turns in the entire winding, that is;,
N times. Equations (6-105a)-(6-105d) and (6-106a)-(6-106d) indicate ain
analogy between the electric and magnetic circuits of Figs. 6.20(a) and 6.20(t))
as follows:

E<—H (6-107z1)
V, <> NI, (6-1075)
J<>B (6-107)
o<~ U (6-107¢1)
I <>y (6-107 ¢)

This analogy permits the solution of magnetic circuit problems from a knovw-
ledge of the solution of electric circuit problems. |

The ratio of ¥, to I, is the resistance R of the electric circuit of Fiig.
6.20(a). The analogous quantity for the magnetic circuit of Fig. 6‘20(b)/: is
the ratio of NI, to y. It is known as the reluctance and is denoted by the
symbol ®. The resistance is purely a function of the dimensions of the
conductor and the conductivity. For a magnetic core of the same dimensicins
as the conductor, the reluctance can therefore be obtained simply by replaciing
o in R by u. We note, however, that, unlike o for conductors, u for magne‘:tic
materials used for the cores is a function of the magnetic flux density in jthe
material. This makes the reluctance analogous to a nonlinear resistor. Thus,
to complete the analogy, we have

R=Yocs@=N, (6-1017f)
IG '//

For the structure of Fig. 6.20(a), an exact expression for the resistance
can be obtained by taking into account the variation of E over the cross
section of the toroid. However, an approximate expression sufficient for
practical purposes can be obtained by assuming that E is uniform over the
cross-sectional area and equal to its value at the mean radius of the toroid,
especially if the radius of cross-section is small compared to the mean radius
of the toroid. Thus

\

IE, =V, |

\

I,=J4=""4 |

‘|

_Ve_ 1 |
R=o=L (6108

!
It follows from the analogy that the reluctance of the structure of| Fig.
|
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6.20(b) is
(6-109)

In fact, if we assume that the magnetic field intensity H is uniform over the
cross-sectional area and equal to its value at the mean radius of the toroid,

we have
IH, = NI,
B, = pH, = #01s
y = B4 'uNlIOA
_N, _ L
y ud

which agrees with (6-109). The equivalent circuit representations of (6-108)
and (6-109) are shown in Figs. 6.22(a) and (b).

1. ¥

(@ (b)

Fig. 6.22. Equivalent circuit representations for the structures
of Figs. 6.20(a) and (b).

EXAMPLE 6-15. The structure shown in Fig. 6.23(a) is that of a magnetic circuit
containing three legs with an air gap in the center leg. A filamentary wire
of N turns carrying current / is wound around the center leg. The core
material is annealed sheet steel, for which the B versus H curve is shown in
Fig. 6.23(b). The dimensions of the magnetic circuit are

A, = 5cm? A, = A, =3cm?
l,=10cm [I,=1,=20cm, /,=0.1cm

We wish to obtain the equivalent circuit and find NI required to establish
a magnetic flux of 8 x 10-* Wb in the air gap.
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B, Wb/m?
20| ,
Yy . ™3 -
— Yy 1 /——————
! X5 ! Lo
"I’ll: I~ [ :
| [l ), | 3
| 1 i A ! .
I 1] 0 oo 2000
I A : Iy 000 ‘
| ’ I A3\ | H, Amp/m |
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Actual — ——1 J
©) |

Fig. 6.23. () A magnetic circuit. (b) B-H curve for annealed
sheet steel. (c) Effective and actual cross sections for the air gap of
the magnetic circuit of (a).

The current in the winding establishes a magnetic flux in leg 2 which
divides between legs 1 and 3. In the air gap, fringing of the flux occurs. This
is taken into account by using an effective cross section which is greater than
the actual cross section, as shown in Fig. 6.23(c). Using subscripts 1, 2, 3,
and g for the fields and permeabilities associated with the three legs and
the air gap, respectively, we can write the following equations: 1

NI=H,, + H,l, + H,I, \

=%ﬁ+%ﬁ:+w1ﬁ (6-11‘3‘0)
=¥,®, + ¥, &, + ¥, &, “
0=H,l,— H
—yy iy, (6-111)
2V niA, ‘
=y,®; — ¥, &,

The equivalent circuit corresponding to Egs. (6-110) and (6-111) can‘w‘ be
drawn as shown in Fig. 6.24, taking into account the fact that w, =y,.
|

To determine the required NI, we note that |

e |
Yo X0 — 16 Whm® |

|

B, =
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7 NI £z
¥2
&, EE &2 EE ®s
&2 ®, v
Ra Y3

Fig. 6.24. Equivalent circuit for analyzing the magnetic
circuit of Fig. 6.23(a).

From Fig. 6.23(b), the value of H, is 2200 amp/m. Since legs 1 and 3
are identical, their reluctances are equal so that the flux y, divides equally
between the two legs. Thus y, = v, = y,/2 =4 X 10* Wb/m2. Then

B, =¥ 34X 107 _ 4 333 wh/m2

From Fig. 6.23(b), the value of H, is 475 amp/m. The effective cross
section of the air gap is (v/5 + /) = 2.34 cm?. The flux density in the
air gap is

_W,_ 8x107* 2
B, Zf = 533 < 10°F = 1.46 Wb/m
The magnetic field intensity in the air gap is ‘
H=B_Bs_ 146 _ 1165 x 10" Wb/m?

From (6-110), we then have
NI=H,l, + HJl, + H/],
= 2200 x 0.10 + 0.1162 x 107 x 1073 4+ 475 x 0.20
= 1477 amp-turns

We note that a large part of the ampere-turns is due to high reluctance of the
air gap. |

Quasistatics; The Field Basis of Low-Frequency Circuit Theory

In Section 6.4 we considered three structures, shown in Figs. 6.13(a), (b),
and (c), from the point of view of static fields. Let us now consider the three
structures driven by time-varying sources. The resulting fields are then time
varying. From Maxwell’s equations for time-varying fields, we know that
a time-varying electric field is accompanied by a time-varying magnetic field
and vice versa. Thus, for example, a time-varying voltage source applied
to the structure of Fig. 6.13(b) results in a time-varying electric field which
has associated with it a time-varying magnetic field as shown in Fig. 6.25(a).
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Fig. 6.25. For illustrating the behavior of the structures of
Figs. 6.13(b) and (c) for time-varying sources.

A certain amount of magnetic energy is then associated with the structuxfe
in addition to the electric energy. We can no longer say that the structure
behaves like a single capacitor as in the case of static fields. Furthermore,
applying Faraday’s law to a rectangular path abeda as shown in Fig. 6. 25(a)
we have

b ¢ i
waLJHLﬂ:%fumﬁ (6-112)
d

é \
area h
abed !

It follows from (6-112) that the voltage between a and b is not necessarily
equal to the voltage between d and ¢ because of the time-varying magnetic
field. The voltage along the structure is dependent on z. However, under
certain conditions, the time-varying magnetic field is negligible so that the
electric field distribution at any time can be approximated by the static ﬁeld
distribution resulting from a constant voltage source between the plates
having a value equal to that of the source voltage at that time. Such approx-
imations are known as quasistatic approximations and the corresponding
fields are known as quasistatic fields. Thus, for the structure of Fig. 6.13(b)
under the quasistatic approximation, dB/d? is negligible so that

VxE=0 (6-113)
B~ Y0 (6-114)
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The magnitude of the resulting time-varying charge on either plate is
0(0) = WEE.()) = v (1) = cv () (6-115)

where C = ewl/d is the same as the capacitance obtained for the direct
voltage source. Differentiating both sides of (6-115) with respect to time,
we have ‘

dQ _ d

= E(CV) (6-116)
But, according to the law of conservation of charge, dQ/dt must be equal

to the current / flowing into the plate from the voltage source. Thus Eq.
(6-116) becomes

d
1=2cv) (6-117)

which is the familiar voltage-to-current relationship used in circuit theory
for a capacitor. For the sinusoidally time-varying case, Eq. (6-117) reduces
to

I= joCV (6-118)

where 7 and ¥ are the phasor current and phasor voltage, respectively, and
w is the radian frequency of the voltage source.

Similarly, a time-varying current source applied to the structure of
Fig. 6.13(c) results in a time-varying magnetic field which has associated
with it a time-varying electric field as shown in Fig. 6.25(b). A certain amount
of electric energy is then associated with the structure in addition to the mag-
netic energy. We can no longer say that the structure behaves like a single
inductor as in the case of static-fields. Furthermore, applying the integral
form of Maxwell’s curl equation for H to a rectangular path efghe as shown
in Fig. 6.25(b), we have

f g d
fH-dl—j H-dl:E-JeEde (6-119)
e h

area
efgh

Since H is zero outside the structure, it follows from (6-119) that the current
crossing the line ef is not necessarily equal to the current crossing the line
hg because of the time-varying electric field. The current flowing along the
structure is dependent on z. However, under the quasistatic approximation,
dD/0¢ is negligible so that the magnetic field distribution at any time can be
approximated by the static magnetic field distribution resulting from the
flow of a direct current having a value equal to that of the source current
at that time. Thus

VxH~0 (6-120)

H) ~ % (6-121)
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The resulting time-varying magnetic flux linking the current is
w(0) = (duH @) = 42

where L = udlfw is the same as the inductance obtained for the direct current
source. Differentiating both sides of (6-122) with respect to time, we have

B2 14y = LIG) (6-122)

d
 — dan wi2p

However, applying Faraday’s law to the rectangu]ar contour bounding the
magnetic flux linking the current and noting that the contribution o
$ E . dl is entirely from the path ab shown in Fig. 6.25(b), we have

f E.dl = d*" (6-124)

The left side of (6-124) is the voltage V(t) across the current source. Thus

Eq. (6-123) becomes
_d

V=@ (6-125)

V = joLi (6-126)

where V and I are the phasor voltage and phasor current, respectively,
o is the radian frequency of the current source.

Finally, for the structure of Fig. 6.13(a) under the quasistatic apprl)xr
mation, both dB/d¢ and dD/d¢ are negligible so that

VXE=O0 (6-1?7a)

VxH=~J, (6-11:).7b)
In view of (6-127a), we have J
|

E() = V(‘) (6-128)

The conduction current flowing from the upper plate to the lower plate is
L) = (W) E.(f) = 2! 2y (1) (61129)

In view of (6-127b), § H « dl around a rectangular path surrounding the
conductor in the cross-sectional plane is equal to the conduction cuyrent
I.. But the same quantity is also equal to the current 7 drawn from the voltage
source. Thus

1) = "W’ 'viey = 6y (6-130a)
or
V() = aiwlz(t) — RI() (6-130b)
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where G = gwl/d and R = d/owl are the same as the conductance and resis-
tance, respectively, obtained for the direct voltage source. Equations (6-130a)
and (6-130b) are the familiar voltage-to-current relationships used in circuit
theory for conductance and resistance, respectively. For the sinusoidally time-
varying case, we have

=6V (6-131a)
and
V=Rl (6-131b)

where I and ¥ are the phasor current and phasor voltage, respectively.

To summarize what we have learned thus far in this section, the voltage-
to-current relationships used in circuit theory for a capacitor, inductor,
and resistor given by (6-117), (6-125), and (6-130b), respectively, are valid
only under the quasistatic approximation. For the quasistatic approximation
to hold, dB/d¢ must be negligible for the case of the capacitor, dD/d¢ must
be negligible for the case of the inductor, and both dB/d¢ and dD/d¢ must be
negligible for the case of the resistor. To illustrate a method for determining
the quantitative condition for the quasistatic approximation to hold in a
particular case, we consider the structure of Fig. 6.25(b) in detail for the
sinusoidally time-varying case in the following example.

EXAMPLE 6-16. The parallel plate structure of Fig. 6.25(b) is driven by a sinusoidally
time-varying current source. It is desired to show that the quasistatic approx-
imation holds, that is, that the structure behaves like a single inductor as
viewed by the current source for the condition

1
IAS 2nl./ ue

where fis the frequency of the current source and g and € are the permeability
and permittivity, respectively, of the medium between the plates.

Under the quasistatic approximation, the time-varying magnetic field
distribution at any particular time must be approximately the same as that
of the static magnetic field resulting from a direct current equal to the value
of the source current at that time. Thus, denoting the phasor corresponding
to this magnetic field by H¢, we have

A= (6-132)

where I, = [I],_, is the phasor corresponding to the source current. This
time-varying magnetic field induces a time-varying electric field in the x
direction in accordance with Maxwell’s curl equation for E, given in phasor
form by

VxE=—joB
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Denoting the phasor corresponding to this electric field by E’,, we have

E' . = L= .
%Z—" = —joBs = —jouH; = —jopl (6-133)

Integrating (6-133) with respect to z, we obtain
E. = —jwﬂ%-(z =1 (6-134)

where we have evaluated the arbitrary constant of integration by using the
boundary condition that [E’],-, = 0. If dD/dt is not negligible, the time-
varying electric field corresponding to the phasor E’, produces a time-varying
magnetic field in the y direction in accordance with Maxwell’s curl equation
for H, given in phasor form by

VxH=joD
Denoting the phasor corresponding to this induced magnetic field by A,
we have

0ﬁ'_-'/__- B! 52 I-o -
— dzy = joD', = jweE’, = w ‘UGW(Z — 1) (6-135)

Integrating (6-135) with respect to z, we obtain

)= —oueh[E— D" ’7] (6-136)

where we have evaluated the arbitrary constant of integration by using th
boundary condition that [H}],_, = 0 since the condition that the current a -
z =0, as determined by the tangential magnetic field intensity at z =0
must be equal to the source current is satisfied by (6-132) alone.

Now, the time-varying magnetic field corresponding to the phasor give
by (6-136) induces a time-varying electric field. Denoting the phasor corre
sponding to this induced electric field by E”, we have

il _ T AV 2
OLs  —joutl, = jorprea[@ = D8 ’7] (6-137)

Integrating (6-137) with respect to z, we obtain

El = jcoa,uze%[(z 5 _ 12(22_ 1)} (6-138)

where we have again evaluated the arbitrary constant of integration by using
the boundary condition that [E’/],., = 0. Continuing in this manner, we
obtain the successively induced magnetic and electric fields as

= I‘ — N4 2(, ]2 4 p
Y =Q+FHZ_4 26220 Chll)) _%_l) +%%] (6-139)

Fo_ s s ol [(Z—1° 1z—1) | 54z —I)] ‘
B =—jotwe - —— 12+ T ] (6-140)
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G _ s a3 do[(Z— D5 P(z—1D* | 514z —1)? 611] !
By = —owe Sy m m— Tt 70l ©14D
El=...

ﬁ//// —_ ...
¥
The total electric field is given by
E,=E,+E/+E/+ .-

= —jw‘u_{_s_(z -0 +jw3/‘25{3 IL(Z —6 1)3 _ 12(22__ l)'}

¥ Pz — I | S5z — 1))
7 Tt

___./ﬂI w’uel* | Swtprerl* |
M O(H" + T )

[wf (z—l)—(wfy(z Dt @vm g ]
_ /_I sin wa/ue(z — 1)

2 r(z
— jolue ° 20
(6-142)

€ W coswa/uel
The total electric field at z = 0 is given by
[E.-o = j\/ ~2 tan wa/pel (6-143)

This result could have been obtained simply by adding [E.],.,, [E"],- 0
[E"""],-,, and so on. However, Eq. (6-142) was derived to point out that the
electric field and hence the voltage along the structure varies sinusoidally
with distance. Similarly, if we add Hg, H!, HY, H)', and so on, we obtain
the total magnetic field as

= I, cosw/ue(z — 1)
H, == 6-144
7w cos wa/ uel ( )

indicating that the magnetic field and hence the current along the structure
varies cosinusoidally with distance.
The phasor voltage across the current source is given by

Py = [Pheo = [ 1Edo

=j ﬁl"—dtanco./,uel
_ mudl tan w./ uel
o wa/ el

_ijI tan coA/ €l
uel

(6-145)

where L = udi/w is the inductance of the structure computed from static
_field considerations. Equation (6-145) represents the voltage-to-current rela-
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!
tionship at the source end of the structure under the condition for which
0dD/d: is not negligible. For w./uel K 1, tan w./uel =~ w./pel and Eq.
(6-145) reduces to '

V, = joLI,
which is the voltage-to-current relationship for a single inductor. Thus, fo
the quasistatic approximation to hold, the condition to be satisfied is

1
< N (6-146)

As a numerical example, for / = 0.1 m, g = u,, and € = ¢,, the value gf
1/27l./ e is (1500/m) x 105, For a value of 1/10 for w./uel, the frequen
must be less than 150/z MHz for the structure to behave essentially like
a single inductor. |

EXAMPLE 6-17. In Example 6-16 we showed that the quasistatic approximation holgs

for the structure of Fig. 6.25(b) for the condition f < 1/27l./ pe€. The structuye
then behaves like a single inductor as shown in Fig. 6.26(a). It is desireq
to examine the behavior of the structure as viewed from the source end fiyr
frequencies beyond the value for which the quasistatic approximation holgsg,

\J
c$:|
s

L@ % L§ 7o( T :C ES

)Tl L’—T.I_O( L

(2) (b) (©)

|
_—  _u-
h

Fig. 6.26. (a) Equivalent circuit for the input behavior of the
structure of Fig. 6.25(b) under quasistatic approximation. (b) and
(c) Same as (a) except for frequencies higher and higher than those
for which the quasistatic approximation is valid. The values of
L and C are udl/w and ewl/d, respectively.

Expressing tan w./uel as a sum of infinite series in powers of wa/[yel,
Eq. (6-145) can be written as

v, =ijfo(l + %a)zlusl2 + %-a)“yzezl“ + .- ) (6-147)

For the quasistatic approximation, we neglect all the terms involving poyyers
of wa/uel in comparison with 1 in the series on the right side of (6-147), For
a frequency slightly higher than the value for which condition (6-14¢) s

!

I
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acceptable, we have to include the second term in the series. Thus we have

7, kjcoLI_o(l + %wzﬂelz)
’ (6-148)
- jcoLio(l + —3-w2L0>

where C = ewl/d is the capacitance computed from static field considera-
tions if the structure were open circuited at z = I Rearranging (6-148), we
get

= v, 170 1
I = ~ joL(T + cozLC) (1 3

=7 (jaz tioF)

The voltage-to-current relationship given by (6-149) corresponds to that of
an inductor of value L in parallel with a capacitor of value 4 C as shown in Fig.
6.26(b). Thus the same structure which behaves almost like a single inductor
at low frequencies governed by (6-146) acts like an inductor in parallel with
a capacitor as the frequency is increased. For still higher frequencies, we
have to include one more term in the series on the right side of (6-147), giving
us

w?LC
) (6-149)

V, ~ joLI, (1 + co *uel* + 1= 2w ,uzezl“)

- ijfo(l + ; W LC + —a)“LZCZ)

or
- ]C;OL(I + %wZLC + 1_256041,20)'1
= f"z(l - %szC — z‘%co“'LZCZ + higher-order terms)
~ —VI:(I F0ULC — 415604LZC2>
_ KL 7 ( + C"SLCZ (6-150)
~ ot 1/[(JOJC/3)(1V+ @*LCTT3)]
= chL/_)L ' (3/jcoC)(l_I: w?LC[15)
VO

=0 - -
= oL * @liaC) + GaLl5)
The equivalent circuit corresponding to (6-150) is shown in Fig. 6.26(c). It is

now evident that as the frequency is increased, more and more elements are
added to the equivalent circuit. For an arbitrarily high frequency, we must
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include all terms in the series. We then have, from (6-145),

L o/ el (6-151)
= iy/% tnoyIc v

Since tan w./LC can be negative if w./LC falls in the second or third quadl-
rant, the reactance viewed by the current source can even be capacitive!

Transmission-Line Equations; The Distributed Circuit Concept

In Example 6-16 we obtained the fields between the parallel plates of the
structure shown in Fig. 6.25(b) by starting with the quasistatic magnetic field
and using successively the two curl equations

VxE=—joB=—jouH (6-152a)
V x H = joD = joeE (6-152 )
to find the successively induced electric and magnetic fields. The total electric
field is the sum of all the electric fields found successively and the total
magnetic field is the sum of all the magnetic fields found successively. These
two total fields must satisfy the two curl equations simultaneously. Thus,

denoting the total electric field by E(z) = E (2)i, and the total magnetic field
by H(z) = H,(2)i,, we have, from (6-152a) and (6-152b), respectively,

JF

= —jouH, (6-153a)
07, . =
—o = JweE, (6-153b)

However, the voltage between the two conductors in any plane normal to
the z direction is given by

7o) = | io E(dx=Ed (6-1542)

The current along the conductors crossing any plane normal to the z direc-
tion is given by

i = | ”0 A dy = Hw (6-154b)

Substituting for £, and H, in (6-153a) and (6-153b) from (6-154a) and
(6-154b), respectively, we get

%g = —joldf = —joct (6:155)
I _ €7 — _joei (6156)
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where £ = ud/w and @ = ew/d are the inductance and capacitance, re-
spectively, per unit length of the structure computed from static fields.
Equations (6-155) and (6-156) relate the time-varying voltage distribution
along the z direction to the time-varying current distribution along the
z direction. While we have obtained these equations for the particular case
of a structure consisting of two parallel plane conductors, they are general
and hold for any structure consisting of two parallel, infinitely long, perfect
conductors having arbitrary but uniform cross sections. To prove this, let
us consider such a structure having the cross section shown in Fig. 6.27.

Fig. 6.27. For deriving the transmission-line equa-
tions.

For the sake of generality, we consider the dielectric to be imperfect with
uniform conductivity ¢ and also work with arbitrarily time-varying fields
instead of sinusoidally time-varying fields. Thus the electric and magnetic
fields between the conductors are given by

E(x,y,2,1) = E.(x,y, 2z, Oi, + E/(x, 3, 2, i,

(6-157a)
=E, (x, 721
H(x, y, 2, 1) = H(x, y, 2, Di, + H,(x, y, 2, D, (6-157b)
= ny(x: Y, 2, t)
Substituting (6-157a) and (6-157b) in
VxE= 9
we have
dE,, ,0E,. _ 0B,. 0B,. )
B P e L (&-158)

Taking the cross product of both sides of (6-158) with the unit vector i,,
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we get
OE,. OE,. _ 4.
g b= g x B,y |
or !
"gz -3 9. xB,) (6-159)

Performing line integration of both sides of (6-159) from point a on the |
inner conductor to point b on the outer conductor, we have

J‘b
or /
b
a f 1 - _%— B.xy * (iz X dll)

. (6-160)
= _g_tj B,, - i, dl, |

where i, is the unit vector normal to dl, as shown in Fig. 6.27. The integral
on the left side of (6-160) is simply the voltage V between the conductors i
the plane in which the line integral is evaluated since the magnetic field ha
no z component. The integral on the right side of (6-160) is the magnetic flu
per unit length in the z direction, linking the inner conductor if the conductors
are carrying a direct current equal to the current 7 crossing the plane
containing the path ab. It is therefore equal to £1, where £ is the inductan
per unit length of the structure computed from static field considerations.
Thus we have

JdE,, ("0
az . dll = J‘EW(IZ X Bxy) . dll

WD _ 9 rere )= —e %0 (6-161)
Similarly, substituting (6-157a) and (6-157b) in
dD dD
VxH= J+at_ E+6t
we have
"g x+‘90 ri, = 0E,i, + 0E,i, + O 0t +‘9£y1y (6-162)

Taking the cross product of both sides of (6-162) with the unit vector i,, ‘we
get

"gn — "gx i, = ol x E,) + 20, x D)
or
oH,,

P = —0(i, x E,,) — l%(i, x D) (6-163)
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Performing line integration of both sides of (6-163) around the closed path
C, surrounding the inner conductor, we have

on}' . _— 1 Y J— i i [
§C2 (92 dlz - §c, 0'(]2 X Exy) dlz §Cg dl (lz X ny) dlz
or

J _ . i)— 9 . i
= §Cz H,.dl, = §02 oE., + (dl, x i) — 3 iz D,, « (dl, x i,)

(6-164)
- —§ OE,, + i,y dl, — %§ D,, i, d,
Ce Ca

where i,, is the unit vector normal to dl, on C, as shown in Fig. 6.27. The
integral on the left side of (6-164) is the current I in the positive z direction
on the inner conductor (or the current in the negative z direction on the outer
conductor) crossing the plane in which the closed path C, lies since the electric
field has no z component. The first integral on the right side of (6-164) is
the conduction current per unit length in the z direction, flowing from the
inner to the outer conductor if the voltage between the two conductors is
a direct voltage equal to the voltage ¥V in the plane containing the path C,.
This current is equal to GV, where G is the conductance per unit length com-
puted from static field considerations. The second integral on the right side
of (6-164) is the displacement flux, per unit length in the z direction, from the
inner to the outer conductor if the voltage between the two conductors is a
direct voltage equal to the voltage ¥ in the plane containing the path C,.
This flux is equal to the magnitude of the charge per unit length on either
conductor, which in turn is equal to @V, where € is the capacitance per unit
length computed from static field considerations. Thus we have

D) _griz,0) — Leve 1)
(6-165)
= —GV(z, 1) — e‘lngT’t)

Equations (6-161) and (6-165) describe the behavior of the voltage and
current as functions of distance along the structure and of time. The structure
itself is known as a transmission line since electromagnetic energy transmis-
sion occurs along the structure due to the time-varying fields, as we will learn
later. Equations (6-161) and (6-165) are therefore known as the transmission-
line equations. To obtain the circuit equivalent of the transmission-line.
equations, let us consider a section of infinitesimal length Az along the line
between z and z 4 Az. From (6-161) and (6-165), we then have

Lim Vet Az — V) £01(azt, 1)

Az—0 AZ

Lim Iz + Az,AtZ) —1(z,t) _ Lim| —G¥(z + Az, £) — e&V(z + Az, 1)

Az—0 Az~0 ot
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or, for Az — 0, /

Vz+ Az, 0)— V(s 1) = — Az% (6-166a)

I(z+ Az,t) — I(z,t) = —GAzV(z+ Az, t) — C Az IV(z j;tAz’—t)
(6-166b)

The circuit theory equivalent of Egs. (6-166a) and (6-166b) can be drawn a
shown in Fig. 6.28 by recognizing that Eq. (6-166a) is Kirchhoff’s voltag

I(z,t) c I(z + Azyp)

bO—>— 1YYV _ i -— o

+ LAz +

CAz
V(z,t) V(iz + Azp)
GAz

y- -

a® 3 -0
d

Fig. 6.28. Circuit equivalent for an infinitesimal length Az
of a transmission line.

law written for the loop abcda and that Eq. (6-166b) is Kirchhoff’s curre/nt
law written for node ¢. Thus an infinitesimal length Az of the structure7 is
equivalent to the circuit shown in Fig. 6.28 as Az — 0. It follows that the
circuit representation for a portion of length / of the structure consists of
infinite number of such sections in cascade as shown in Fig. 6.29. In other

LAz LAz LAz
oO—rYY L — Y, -
3 __@Az 2 CAz 2 CAz 0
gaze T gaz? GAz S -
o I | -

———— 7

Fig. 6.29. Distributed circuit representation of a transmission
line.
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words, the structure can no longer be represented by a collection of lumped
circuit elements. The conductance, capacitance, and inductance are “dis-
tributed” uniformly and overlappingly along the structure, giving rise to the
concept of a “distributed circuit.” Physically, the electric stored energy, the
magnetic stored energy, and the power dissipation due to conduction current
flow are distributed uniformly and overlappingly along the line.

Before we conclude this section, we wish to show that the power flow
across any cross-sectional plane of the transmission line as computed from
surface integration of the Poynting vector is equal to the product of the
voltage and current in that plane. To do this, let us again consider the
structure of Fig. 6.27. Considering an infinite plane surface (which is a spher-
ical surface of infinite radius and hence a closed surface) in the cross-sectional
plane and noting that the fields outside the conductors are zero, the power
flow P across any cross-sectional plane is simply the surface integral of the
Poynting vector over the cross-sectional surface S between the conductors.
Thus

P(z,t) = J.s Exy(z, ) x H, (z,¢)+1i,dS
- I b §c E,, x H,,) « (dl, x dl,)
- .[: §c E,, « dll)(ny . dl,)

_J.: §C2 (Exy * dlz)(ny «dl)

Since we can always choose C, such that dl, is everywhere normal to E_, or,
alternatively, since we can always choose the path ab such that dl, is every-
where normal to H_,, the second integral on the right side of (6-167) is

Xy

(6-167)

equal to zero. Since jb E,,  dl, is independent of the path on Schosen from

a to b or, alternatively, since  H_,  dl, is independent of the contour C,
Ca

on S, Eq. (6-167) simplifies to

PG, 1) = (f E, dll)( H,- a,
=V(z, 1) I(z, 1)

which is the desired result.

(6-168)
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PART II. Electromagnetic Waves

The Wave Equation; Uniform Plane Waves and
Transmission-Line Waves

equations for such a medium are

VeD=0
V.-B=0
0B
VXE__W
JD
V><H=_é’7

Taking the curl of both sides of (6-169c), we have J

V><V><1«:=—V><‘f9_]t3 (6-1/70)

|
|

Using the vector identity
VxVxA=V(V.A— VA

for the left side of (6-170) and interchanging d/d¢ and the curl operatiori on
the right side since the curl operation has to do with differentiation f;vith

respect to space coordinates, we obtain ‘\
\

V(V.E)— VE — _%(v x B) (6-171)
|
|
However, from (6-169a), V « E = 0 and from (6-169d), V x B = ue dE/dt.

Thus (6-171) reduces to ‘(

\
V?E — pe %Ztlf (61172)

For sinusoidally time-varying fields, we have the phasor form of (6-172) as
|

V2E = —w?uck (6-173)
|

Note that the left side of (6-172) is the Laplacian of a vector and not of a
scalar. Equation (6-172) is known as the vector wave equation. Equating
the like components on either side of (6-172), we obtain three scalar "wave

408 1
|
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equations. Thus, in cartesian coordinates, we have

0%E,
d¢2

J°E,

VZEy = W

ViE, = ,ue%£

In the most general case, we can have all three components of E and
each one of these can be dependent on all three space coordinates x, y, and
z and on time. But let us assume for simplicity that E, = E, = 0. Then we
have

0’E, | 0*E, , §*E, d*E,

2 X — - 4

ViE, =G T 5 t g7 = KE G (€-174)

We are still faced with a three-dimensional second-order partial differential

equation. Our aim at present is to illustrate that time-varying electric and

magnetic fields give rise to electromagnetic wave propagation. Hence let us

simplify the problem further by assuming that E is independent of x and y.
Thus

E = E (2, i, (6-175)
and Eq. (6-174) simplifies to
2 2
%ZE — ue %ﬁz (6-176)

Equation (6-176) is the one-dimensional scalar wave equation. Its solution
can be found by using the Laplace transform technique or the separation of
variables technique. However, we will here write down the solution and show
that it indeed satisfies the equation. Thus let us consider -

E(z,t)= A f(t — /pez) + B gt + ~/pez) (6-177)
where f and g are any functions of the respective arguments and 4 and B
are arbitrary constants. Then

"f = —AJue f'(t — Juez) + Bg'(t + Ju‘éz)

s — Aue £t — /En) + Be g'(t + /e2) (6-178a)
9L, _ 41t — /uen) + Bg'(t + /e2)
"(,tz 47— JHED) + Bt + /D) (6-178b)

where the primes denote differentiation with respect to the respective argu-
ments. From (6-178a) and (6-178b), we note that (6-177) satisfies (6-176)
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and hence is the solution for (6-176). The forms of the functions f and 1g
depend upon the particular problem under consideration. Some examples
are cos w(t — ~/pez), e V¥ and (t + /uez)sin (¢t + ~/zez). In the
general case, the solution can be a superposition of several different functioxils
of (t — ~/uez) and (¢ + /pez).

To discuss the meaning of the functions ' and g in the solution for E,,
let us consider a specific example

f(t — N uez) = e EDu(t — /pez)

Assigning one value for ¢ at a time, we can obtain a series of functions of] z.
The time history of these functions can be illustrated conveniently b la
three-dimensional plot in which the three axes represent time ¢, distance) z,
and the value of the function f. Such a plot for the function under conside;‘ra-

tion is shown in Fig. 6.30. We note from Fig. 6.30 that the function of z at
|

L oxpl—(t = V)] u(t — ViEz) |

Fig. 6.30. Three-dimensional representation of the function
e-—Vauey(t — A/ pez) for illustrating the concept of a traveling
wave.

any value of time is exactly the same as the function of z at a preceding jvalue
of time but shifted towards the direction of increasing z. For example, by
following the peak in the function, we note that from time ¢ =0 t ' time
t =1, the peak shifts from z=0 to z = 1//u¢€. Thus the function f (¢ — }Ez)
represents a waveform traveling in the positive z direction with a velocity
1/+/ p€. The solution is said to correspond to a traveling wave in the ptBsitive
z direction, or a (+) wave. The word “wave” is used here in the sense (that it

|

I

represents any arbitrary function of z and not necessarily a sinusoidally
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varying function of z. The fact that the velocity of propagation is 1/./ ue can
be proved in general by following any particular point of the function and
noting down its positions z, and z, for two times #, and ¢,. Obviously then,

Iy — A HEZ) = 1, — A/ UEZ,

or the velocity of propagation is

v_Z—z _ 1
t,— 1t / UE
Note that the units of 1/./ue are
[ newtons (coulomb)? ]“‘/ % ampere-meters  meters
(ampere)® " (newton)(meter)> coulomb ~ second

For free space, 1//u€ = 1// 11,6, = 3 X 10% m/sec, which is the velocity
of light.

We now suspect that the function g(¢ 4 /u€z) represents wave motion
in the direction of decreasing values of z, that is, in the negative z direction.
To check if this is true, we note that, to follow a particular point associated
with the function, an observer has to move in space and time such that

t 4+ A/ H€z = constant

dt + Jucdz=20

or the velocity with which the observer has to move in the positive z direction
is

or

_dz 1

BT
The negative sign for the velocity signifies that the observer must actually
move in the negative z direction with a velocity of 1/./u¢€. Thus the function
g(t + /p€z) does indeed represent a traveling wave in the negative z direc-
tion, or a (—) wave.

Now, the solution for the magnetic field associated with the electric
field can be obtained by substituting (6-177) into (6-169c). Thus we obtain

_%_1; _ % i, = [—A/ue f'(t — S uez) + B/ ue g'(t + /ue)li,

v

or
H = Bz, 0, = | A€ 10— /i) — BJ< g+ VD),
Defining
n= @ (6-179)
we have

Hz 0= 5[4 = /AE) — Ba+ ae)]  (6180)
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The quantity # is known as the intrinsic or characteristic impedance of the
medium. Note that the units of # are

[newtons . (coulomb)? ]“ 2 npewton-meters __ volts

(ampere)? " (newton)(meter)? " coulomb-ampere  ampere

For free space, 1 = 17, = / Ho/€; = 1207 or 377 ohms.

Denoting the electric fields in the (4) and (—) waves as E} and Eg,
respectively, and the magnetic fields in the (+) and (—) waves as H;} and
H, respectively, we have

= ohms

E,=E: + E; : (6-181a)
H,= H; + H; (6-181b

Comparing (6-181a) and (6-181b) with (6-177) and (6-180), respectively, w
note that

Ef  and  H; = E: (6-182)
1 1

The Poynting vectors associated with the (4) and (—) waves are

H;:

P+ — Eti, x Hii, = Eti, x nxl — (E’;)Z (6-1838)

P™ = Exi, x H;l, = (E3i,) x (_Eﬂl i,) - —(ﬁ’;:—)zi, (6-1831%)

Equations (6-183a) and (6-183b) indicate that the power flow associate“d

with the (+) wave is indeed in the positive z direction and the power ﬂo‘w

associated with the (—) wave is indeed in the negative z direction. i
Summarizing what we have learned thus far in this section, tlme-varymg

_electric and magnetic fields give rise to electromagnetic wave propagation.

A simple solution consists of waves traveling in the positive and negative
z directions and having electric fields entirely in the x direction and magneﬁc
fields entirely in the y direction. Furthermore, the fields are uniform in :fle
planes transverse to the direction of propagation, that is, in the planes
z = constant. For this reason they are known as uniform plane waves. 'In
reality, uniform plane waves do not exist. However, at distances far from
a radiating antenna and the ground, the radiated waves are approx1mat‘ély
uniform plane waves. The uniform plane waves are a very important building

block in the study of electromagnetic waves.

ExaMPLE 6-18. A uniform plane wave traveling in the positive z direction in free

space has its electric field entirely along the x direction. The time variation
of the electric field intensity in the z = O plane is shown in Fig. 6.31 (a)
Find and sketch the variation with z of the magnetic field intensn)J

2 usec i
The magnetic field intensity is entirely in the y direction and its value
for any (z, £) is equal to the value of the corresponding electric field intensity

[
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[El;=0 , V/m [H))i=2 ysec » Amps/m
1 A
37.7
—————— (2) (b)
|
[ ——-0.1
| |
| |
| |
I I
] { fep ] [
0 1 2 3 4 5 - 600 0 600
t, pusec z,m

Fig. 6.31. (a) Electric field intensity in the z = 0 plane versus
time. (b) Magnetic field intensity at # = 2 usec versus z for the
uniform plane wave of Example 6.18.

divided by 377 ohms. The velocity of propagation of the wave in free space
is 3 x 10® m/sec. Since the wave is propagating in the positive z direction,
an amplitude which exists in the z = 0 plane at any time ¢ must exist in
the plane z = (2 X 1076 — ¢) X 3 X 108 m at ¢ = 2 usec. Hence the varia-

tion with z of the magnetic field intensity at ¢ = 2 usec is as shown in
Fig. 6.31(b). |

We now direct our attention to the (4) wave to define certain important
parameters for the sinusoidally time-varying case and to develop expressions
for the fields in a uniform plane wave traveling in an arbitrary direction with
reference to a coordinate system. Let us consider a uniform plane wave
characterized by sinusoidally time-varying electric and magnetic fields given
by

E(z, t) = E, cos [0(t — /uez) + @,li, (6-184a)
HG, f) = JE;? cos [o(t — ~/ez) + Boli, (6-184b)

where E; and ¢, are constants. At any particular value of z, say z,, the fields
vary with time in the manner shown in Fig. 6.32(a). Any particular value of
the field repeats in time at intervals of 2z/w. The number of times the value
repeats in 1 sec is equal to w/2z or f, which is the well-known parameter
frequency. At any particular value of time, say ¢ = ¢,, the fields vary with
distance z in the manner shown in Fig. 6.32(b). Any particular value of the
field repeats in distance at intervals of 27/w./ue. This interval is known as
the wavelength, A. Thus

1 2n 1

o ue  fAuE

But 1/./ ue is the velocity of propagation of the wave. In this case, it is known

(6-185)

m
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[Ex(t‘)]l=20 Eqcos (—w\/pezg + ¢0)

|
(2 ' —r
b L I L1 ] Ll >
®) 0 27 A >z
Ve @ Ve

Fig. 6.32. (a) Electric field intensity in a z = constant plane "
versus time. (b) Electric field intensity at a fixed time versus z, !
for a uniform plane wave in the sinusoidal steady state and
traveling in the z direction.

as the phase velocity since the argument of the cosine function is knowni as
the phase and an observer has.to travel with a velocity 1/./¢ in the z direc-
tion to follow a constant phase of the field, that is, to stay on a particular
constant phase surface. The constant phase surfaces are the planes z = con-
stant. Denoting the phase velocity by »,, we have

1
R (6-186)
Substituting (6-186) into (6-185), we get
v, =Af (6-187)

Equation (6-187) is an important relationship which relates the space and
time variations of the fields in an electromagnetic wave. For free space,

Eq. (6-187) gives a simple formula ;

(wavelength in meters) X (frequency in megahertz) = 300

The quantity w./u€ is the rate at which the phase changes with dlstance
z at any particular time. It is known as the phase constant and is denoted by
f. Thus |

B — o /iie <6J(188)
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and
(6-189)

(6-190)

v, =

=8 =¥

The units of B are (radians/second)(seconds/meter) or radians per meter.
For a wave traveling in the z direction, the phase changes most rapidly
in the z direction since, looking in any other direction, the distance between
any two particular constant phase surfaces is longer than the distance
between the same two constant phase surfaces as seen looking in the z direc-
tion, as shown in Fig. 6.33. Thus, if we choose the coordinate system such

Constant Phase
/ Surface

Distance Between
/ " Constant Phase
% 7 Surfaces
— 2, Direction
of
Propagation

Fig. 6.33. Distances between two constant phase sur-
faces for a uniform plane wave as seen along different
directions. -

that the wave is traveling in an arbitrary direction with reference to the
coordinate system, the rates at which the phase changes along the coordinate
axes are all less than the rate at which the phase changes along the direction
of propagation which is normal to the constant phase surfaces. Denoting the
phase constants along the x, y, and z directions by f,, B,, and f,, respectively,
and the phase at the origin at t = 0 by ¢,, we note that the phase at any
point (x, y, z) is wt — (B,x + B,y 4+ B.2) + ¢,. The constant phase surfaces
are the planes given by

B.x + B,y + B,z = constant (6-191)
The direction of the gradient of the scalar function B.x + B,y + B,z is
the direction of the normal to the constant phase surfaces and hence is the
direction of propagation whereas the magnitude of the gradient gives
the rate of change of phase with distance or the phase constant § along the
normal and hence along the direction of propagation. Thus, noting that

V(ﬁxx + ﬂyy + ﬁZZ) = ﬂxix + ﬂyiy + ﬁziz
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the direction of propagation is along the vector f.i, 4 fB,i, + f.i, and the
phase constant along the direction of propagation is

B=(Bi+ B+ B (6-192)
We can combine these two facts by defining vector B as
B=B.i. + B,i, -+ B.i. (6-193)

so that the direction of P is the direction of propagation and the magnitude
of P is the phase constant. Hence B is known as the propagation vector.
The phase at any point (x, y, z) can then be written as wt — B « r + ¢,,
where r is the position vector xi, 4+ yi, 4 zi,.

Denoting the electric field intensity in the plane of zero phase as E,,
we can now write the expression for the electric field intensity vector asso-
ciated with a uniform plane wave propagating along the direction of B as

E=E;cos(@wt—B+r+ ¢,) (6-194a)
or the complex vector as
E = Eje/%e 0t = Ejeior (6-194b) I

where E; = E,e’#. Since E, must be entirely transverse to the direction of
propagation, it follows that

B-E,=0 or PB-E,=0 (6-195)

Similarly, the magnetic field intensity vector associated with the wave which
is in phase with E can be written as

H=H;cos(wt—p-r+ ¢, (6-196a)
or the complex vector as |
H = H,e'te#+ = Hye /#~ (6-196b)

where H, = H,e’%. Since H, must be entirely transverse to the direction of
- |

propagation, it follows that ‘ |

B-H,=0 or PB-H,=0 (6-1971?

Furthermore E, and H, must be normal to each other with their cross
product (Poynting vector) pointing in the direction of propagation and with
the ratio of their magnitudes given by :

VZZ 7ﬂ_€ - % (6-194)

In vector notation, we express the preceding statement as

1
H, = B xE, (6-19?)

and hence |

A__LlpxE (6:200)

f
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These properties associated with a uniform plane wave are illustrated in

Fig. 6.34.
The wavelength A along the direction of propagation is given by

1= Eﬂ’_‘ (6-201)

t = Constant

Constant Phase Surface
$ = ¢g — 27

Constant Phase Surface
¢ = ¢o

Fig. 6.34. For illustrating the various. concepts associated with
a uniform plane wave traveling in an arbitrary direction.

The apparent wavelengths 4,, A,, and A, along the coordinate axes x, y,
and z, respectively, as shown in Fig. 6.34 are given by

2z 2n 2n
A, =7 A, =5 A, =5 6-202
5. *=F 2 (6202
Substituting (6-201) and (6-202) into (6-192), we have

1

1 1 1
r-ntptn (6-20%)
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The phase velocity along the direction of propagation is given by

v, = % (6-204)
For an observer moving along the x axis, ¥ and z are constants. Hence the
observer has to travel with a velocity equal to w/f, to remain on a particular

constant phase surface. This velocity is known as the apparent phase velocity

in the x direction. Thus the apparent phase velocities v,,,, v,,, and v,, in the
X, ¥, and z directions are L
Y, = ﬁ Vyy = % v,, = % (6-205) |
Substituting (6-204) and (6-205) into (6-192), we have
1 1 1 1 y
w=on tap Tz (200}

|
Note that the apparent wavelengths and phase velocities along the coordinate"
axes are greater than the wavelength and the phase velocity, respectively,
along the direction of propagation, since the phase changes less rapidly
with distance along the coordinate axes than along the direction of prog--
agation. We will now consider an example to consolidate our understanding;
of the uniform plane wave propagating in an arbitrary direction with referenc'é
to a set of coordinate axes. ?

ExaMpLE 6-19. The orientation of the propagation vector p for a uniform plane
wave of 12 MHz propagating in free space is as shown in Fig. 6.35. It makes

Fig. 6.35. Orientation of the prop-
agation vector B for the uni-
x  form plane wave of Example 6-19.

an angle of 30° upwards with the horizontal (xy) plane and its projection on
the xy plane makes an angle of 60° with the x axis. The electric field intensity
has no upward (z) component and its magnitude as a function of time at
x=0,y=0and z=0is 10 cos (wt — 30°) volts/m, where w is the angular
frequency. It is desired to find the expressions for the complex field vectors
E and H.
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Since the medium is free space, the phase velocity along the propagation
vector is 1/./u,€, = 3 X 108 m/sec. From (6-204), we have

p=0 a2z X 12 X190 _ 0.0z

v, v, 3 x 108

From the given orientation of the propagation vector, we have
B = 0.087(cos 30° cos 60° i, + cos 30° sin 60° i, + sin 30°i,)
= 0.027(,/ 31, + 3i, 4 2i,)

The solution for E is of the form E, e~/**. Since E has no z component, we
can write

E0 = E_xoix + E_iny
From (6-195), we have
B- I_Eo = ﬁxE_xU + ﬁyE_yo =0

Since B, and B, are both real, £ , and E,, must be either in phase or in
phase opposition for the above equation to be true. Hence let

E.,,=F,e"* and E,, = E,e™*"

so that
E, = (E,i, + E,l,)e’
and
B.E.., + B,E,, = 0.02n(/3E,, + 3E,) =0
or

E.n= v—«/_3— E,,
From the given function of time for the electric field intensity magnitude
atx =0,y =0and z = 0, that is, r = 0, we have '

|Epoi, + E,i, | €/ = 10e-13"
or

IEinx + Eyoiyl = [EJZCO + Eio]llz =10 and o = —16I_

Substituting E,, = —a/ 3 E,, in the above equation, we obtain 4E2, = 100
orE,,=5and E,, = —54/3. Thus

E, = (—5./3 e ™¢i, + Se~in/si)
The required expression for E is then given by

E — 5(_ / ; ix + iy)e—jn/Ge—i0,0Zn(s/_Ix—r3y+2:)

The corresponding expression for H can be obtained by using (6-200) as
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follows:
-1 —
H= w_,uﬁ x E
i, i, i,
zg—éﬁ ,\/—3— 3 2| e-in/6g=i0.02n(Fx+35+22)
/3 10

1 i i 1)o7 - 1 x z
= 1% —i, — /31, + 2,\/—3—1,)e Jnl6g=70.027(v I x+3y+22)

We can also find the wavelength along the direction of propagation and
the apparent wavelengths and velocities of propagation along the x, y, and
z axes. Thus

? = 008z — 25m
lx_%f:ﬁ?_n:”jm
A, = Z—ny = Q_%Fﬁ =333m ‘
i, = %" = & =50m
v,, = % = (2)_‘1)”2—:;_;(:: = 6.928 X 10° m/sec
v, = % = —2476.5;6;06 =4 X 10% m/sec
vp,=%=%=6 X 108 m/sec
Note that
TR R A
and

1 1 1 _ 1
A N L
in agreement with (6-203) and (6-206), respectively. ||

In Section 4.9 we discussed polarization of vector fields. The fields
we found in the preceding example are linearly polarized. We then say |that
the wave is linearly polarized. If we combine two linearly polarized uniform
plane waves propagating in the same direction and having electric /field
vectors equal in magnitude but oriented perpendicular to each other and
differing in phase by 7/2, we obtain a circularly polarized uniform plane
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wave. For example, a uniform plane wave characterized by the electric field
intensity vector

E=2.5—1i, — N Ti, 4 2,/ Fi,)ein3ei0-02x3x43r420)
when superimposed with the uniform plane wave of Example 6-19, would
result in a circularly polarized uniform plane wave. In general, two linearly
polarized uniform plane waves propagating in the same direction result in an
elliptically polarized uniform plane wave.

We have introduced the topic of electromagnetic wave propagation by
considering uniform plane waves. The uniform plane waves are a special class
of waves known as transverse electromagnetic waves, abbreviated TEM
waves, so named because the electric and magnetic fields are entirely trans-
verse to the direction of propagation, that is, components of E and H along
the direction of propagation are zero. For a general TEM wave, the fields
are not uniform but are functions of position in the transverse plane.. The
electromagnetic field between the conductors of a transmission line made
up of perfect conductors is entirely transverse to the line axis and is in general
nonuniform in the cross-sectional plane. In fact, we considered such a field
[Egs. (6-157a) and (6-157b)] in Section 6.7 and, by substituting into Maxwell’s
curl equations, we obtained the transmission-line equations given by (6-161)
and (6-165). For a perfect dielectric medium between the conductors, that is,
for ¢ = 0, these equations are

WV(z,t) di(z, t) :
7 -~ : (6-207)
and
61(2, t) _ _‘aﬂV(z, t) -
= 3t (6-208)
where, with reference to Fig. 6.27,
Ve = "Ex, 3, 7, 0) « dl, (6-209a)
and
I(z, 1) = § H(x, y,z,1) + dl, (6-209b)
C:2

are, respectively, the voltage between the conductors and the current along
the conductors for any (z, ¢).
Eliminating 7 from (6-207) and (6-208), we obtain a differential equation
for ¥V alone as
0?V(z,t) pd?V(z, 1) :
A £GT (6-210)
This equation is completely analogous to Eq. (6-176). It is the wave equation
for the TEM wave propagation guided by the conductors of the transmission
line except that it is written in terms of the voltage between the conductors
instead of the electric field in the medium between the conductors. We can
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write the solution for (6-210) from our experience with the solution of
(6-176). The solution is

V(z, 1) = V*(t — /€Cz) + V(t + /€C2) (6-211)

where the subscripts 4+ and — indicate (+) and (—) waves. The correspond-
ing solution for the line current I can be obtained by substituting (6-211) into
(6-207) or (6-208). This gives

I(z,1) _[[VW — JE€Cz) — V(¢ + /LC2)]

Defining

Z,— :(S_ (6-212)

we have

I(z,t) = —-[V+(t — JE£Cz) — V(t + /LC2)] (6-213

The quantity Z  is the characteristic impedance of the transmission line analo
gous to the intrinsic impedance of the dielectric medium. !
Thus the general solutions for the voltage and current along a transt
mission line are superpositons of (+) and (—) traveling waves along the
line with velocities equal to 1/,/£€ in the respective directions. We will refef
to these voltage and current waves as “transmission-line waves.” They are
completely analogous to the uniform plane waves with the analogy as follows':
V<—>E,
I<—H,
L<>u ‘
i
C<«¢ (6-2111)
1

<>

/£ ., &
C €
|

We should, however, keep in mind that the phenomenon is one of transverse
electromagnetic waves guided by the conductors of the transmission line.
It is not necessary to work with the fields since, because of the transveﬂse
electromagnetic nature of the fields, we are able to define uniquely the voltage
and current for any transverse plane. In other words, if we consider two
points a and b in the same transverse plane on the two conductors, the
voltage between these two points is uniquely defined by the electric ﬁe]d in
that plane since a closed path lying in that plane and passing through a and
b does not enclose any magnetic flux. Similarly, the current flowing across a
transverse plane in one direction along the inner conductor and returning in
the opposite direction along the outer conductor is uniquely defined by the

|

|

gﬁ
m
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magnetic field in that plane since a closed path surrounding the inner con-
ductor and lying in that plane does not enclose any electric flux. One or both
of these properties are not satisfied if one or both of the fields have axial
(or longitudinal) components. This is the case for TE or transverse electric
waves which contain a magnetic field component along the guide axis and
for TM or transverse magnetic waves which contain an electric field com-
ponent along the guide axis. We will discuss such waves in Section 6.12.
Returning to the solutions for the voltage and current for the trans-
mission-line waves given by (6-211) and (6-213), we write them concisely as

V="V*4 V- (6-215a)
I=1I"+1I" ' (6-215b)

In writing (6-215a) and (6-215b), we follow the notation that both I* and
I~ flow in the positive z direction along one conductor (say, a) and return
in the negative z-direction along the other conductor (say, b) and that both
V+ and ¥V~ have the same polarities with conductor a positive with respect
to conductor b, as shown in Fig. 6.36. These notations are consistent with

—_— Conductor a

+

1408

- Conductor b

—_—

Fig. 6.36. Polarities for voltages and currents as-
sociated with (+) and (—) transmission-line waves.

the corresponding notations for the z-directed uniform plane waves which
consider the electric fields for both (+) and (—) waves to be in the x direction
and the magnetic fields for both (4-) and (—) waves to - be in the y direction.
Comparing (6-215a) and (6-215b) with (6-211) and (6-213), respectively, we
have

y+
+ — -
It = z (6-216a)
and
V- .
I~ = ~Z (6-216Db)

The power flow in the z direction associated with the (4) wave is

Pt — VIt — V+(§) — (’g)z (6-2172)
0 0
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The power flow in the z direction associated with the (—) wave is

e VN _ (V) i

P =y =v( Zo> - (6-217b
where the minus sign on the right side signifies that the power flow is indee
in the negative z direction. Thus, if the notation of Fig. 6.36 is followed
together with Egs. (6-216a) and (6-216b), the different directions of powe;
flow for the (+) and (—) waves are taken care of automatically.

=y

-

=)

Traveling Waves in Time Domain

In the previous section we introduced uniform plane waves and transmissiof-
line waves and discussed the analogy between them. We are now ready to
consider simultaneously uniform plane waves incident normally on plape
boundaries between different dielectric media and transmission-line waves.
In this section we will discuss transient waves. To do this, let us consider
the case of two semiinfinite perfect dielectric media characterized by €,, %,
and €,, u,, respectively, and separated by the plane z = 0 as shown in Fig.
6.37(2). A uniform plane wave with electric field E} and magnetic field F;
is incident normally on the boundary. The transmission-line analogy |of
this problem consists of two transmission lines of different characteristic

Medium 1 Medium 2
Kt €1 "2, €2 /
EY.Ex Et
(+)
— {++)
_ (a)
(=)
HV.H;, Ht*
yoily ¥
z =0 {
It~ I It —_—z
€ = .I, = — “
]
Line 1 I Line 2 \
+ - ++ (b) |
Zot, vpi and b Zo, Vp2 “
| i
- ' _ !

Fig. 6.37. (a) Normal incidence of a uniform plane wave on a
plane boundary between two semiinfinite dielectric media.
(b) Transmission-line analog of (a).
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impedances Z,; and Z,, and velocities of propagation v, and v,,, respec-
tively, connected in cascade as shown in Fig. 6.37(b). The specification of
Z, and v, for a transmission line is equivalent to the specification of £ and @
since Z, = ,/£/€ and v, = 1/./€C. A (+) wave characterized by voltage
V* and current I* is incident on the junction z = 0. We are not interested
in the time variation of the incident waves at present. We merely wish to
determine the transmission and reflection properties at the boundary.
Obviously, there is no need to write equations for both the plane wave and
transmission line cases because of the analogy. Hence we will simply write
the equations in terms of the transmission-line parameters ¥, Z, and Z, with
the understanding that they can be replaced by E,, H,, and #, respectively.
The relationship between V'* and I* is given by

V+
I'=_— 6-218

The incident wave cannot be transmitted into line 2 as it is, since the voltage-
to-current ratio in line 2 must be equal to Z,,. Thus, let the transmitted wave
voltage and current be V'**and I**, respectively. The incident and transmitted
waves alone cannot satisfy the boundary conditions at the junction, which
require that the voltages on either side of the junction be equal and the
currents on either side of the junction be equal. These conditions are analo-
gous to the boundary conditions for the fields, which state that the tangential
electric fields (E,) must be continuous and that the tangential magnetic fields
(H,) must be continuous (in the absence of a surface current) at the boundary
between the dielectrics. To satisfy the boundary conditions, there is only one
possibility. This is setting up a (—) wave in line 1 which reflects part of the
incident power into line 1. Let the voltage and current in this reflected wave
be V'~ and I-, respectively. The voltage-to-current relationships for the trans-
mitted and reflected waves are

y++
I = 6-219
Zo (6-219)
and
=Y (6-220)
Zy,
The boundary conditions at z = 0 are
Vt4+ V=V (6-221a)
r+~r=r* (6-221b)

Substituting (6-218), (6-219), and (6-220) into (6-221b), we have
yr_r_r-
Z 01 Z 01 Z 02
Solving (6-221a) and (6-222) for V-, we get
ZOZ _ ZDl

V- = Lﬁ - 6-223
02 T Zoy ( )

(6-222)



426 Applied Electromagnetics Chap. 6"

We now define a quantity I', known as the voltage reflection coefficient
as the ratio of the (—) wave or reflected wave voltage to the (+) wave o
incident wave voltage. From (6-223), the voltage reflection coefficient i
given by

V- Z,,— Z
7= Zos T Zor (6-229)

We then note that the current reflection coefficient is

£_—V_/Zo1__K:__ o4

We also define a quantity ,, known as the voltage transmission coeflicientt,

as the ratio of the (4 ) wave or transmitted wave voltage to the (4) watye
or incident wave voltage. Thus
++ + — - A
(6-22,6)
— 14T =_22u
Zoy + Zo,
The current transmission coefficient t, is given by
I I+ I
=g = —}t—— =1+ Via
(6-227)
—1_T=_2%2u
ZOZ + ZDI

At this point, we may be surprised to note that the transmitted voltage: or
the transmitted current can be greater than the incident voltage or the incidfent
current, respectively, depending upon whether I" is positive or negative, fhat
is, Zy, > Z,, or Z,, < Z,,. However, this is not of concern since it is{the
power balance that must be satisfied. To check this, we note that

P*, incident power = V*I*
P, reflected power = VI~ = TV*)(—TI'I")
= —T2V+[* = —_T2P*

where the minus sign signifies that the actual power flow is in the negative
z direction, and

P**, transmitted power = V**I** = [(1 + D)V*[(1 — I)I*]
=0 -T)V*I*=01—-T?P"*

Thus P** = P* + P~, which verifies the power balance at the jurction. The
fact is that if the transmitted voltage is greater than the incident voltage, the
transmitted current is less than the incident current and vice versa so| that
the transmitted power is less than the incident power. We will now consider
an example to illustrate the application of the formulas for the reflectiom and
transmission coefficients.

v
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ExamrLE 6-20. In Fig. 6.38, the region z <C O is free space, the region 0 < z < 1.5m
is a perfect dielectric of permittivity 4¢,, and the region z > 1.5 m is a perfect
dielectric of permittivity 9¢,. The leading edge of a uniform plane wave of
0.01 usec duration and having E, equal to 1volt/m is incident on the z= —3m
plane at ¢ = 0. It is desired to find and sketch E, in the planes z = —3 m
and z = 2.5 m as functions of time for 1 > 0.

| 1
| Medium 1 Medium 2 |[Medium 3{
! Bo, €0 wo, 4eg ro. 9o

I |
E, |
| 2 :
i |
I : |
| l

z= -=3m z=0 z=15m z=25m

Fig. 6.38. Three dielectric media for Example 6-20.

The intrinsic impedances for the three media are #,, #,/2, and #,/3,
respectively, where #, (= ~/ 1,/€,) is 377 ohms. The velocities of propagation
in the three media are ¢, ¢/2, and ¢/3, respectively, where ¢ (= 1//f€,)
is 3 x 10® m/sec. The leading edge of the uniform plane wave strikes the
interface z = 0 at t = 3/(3 X 10®) sec = 0.01 usec. The reflection coefficient
for this wave at z = 0 is (17,/2 — 1,)/(11,/2 + 1,) = —% and the transmission
coefficient is 1 + (—4) = %. Hence the reflected wave E, has a value —%
that of the incident wave E, and its leading edge reaches the z= —3m
plane at ¢ = 0.02 usec. The transmitted wave E, has a value % that of the
incident wave E, and its leading edge strikes the interface z = 1.5m at
t =[10"% + 1.5/(1.5 x 10%)] sec = 0.02 usec. The reflection coefficient for this
wave at z = 1.5 m is (#,/3 — 1,/2)/(1,/3 + 1,/2) = —1 and the transmission
coefficient is 1 4 (—1) = 4. Thus the transmitted wave E, in medium 3 has
a value of (4 X %) or & that of the incident wave E, in medium 1. Its leading
edge reaches the z = 2.5m plane at t = (2 x 1073 4 1/10%) = 0.03 usec.
Now, the reflected wave at the interface z = 1.5 m travels towards the
interface z = 0 and strikes it at = 0.03 usec. It then violates the boundary
conditions at z = 0, which have thus far been satisfied by the incident and
reflected waves in medium 1 and the transmitted wave in medium 2 if they
still exist at the interface. In any case, to satisfy the boundary conditions, it
sets up a reflected wave into medium 2 and a transmitted wave into medium
1. By superposition, the reflection and transmission coefficients are the same
as if this wave alone were incident on the interface. Hence the reflection
coefficient for this wave at z =0 is (1, — #,/2)/(1, + #,/2) = % and the
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transmission coefficient is 1 + 1 = 4. The transmitted wave travels towards
the interface z = —3 m. The reflected wave travels towards the interface
z = 1.5 m and sets up reflected and transmitted waves. This process continues
indefinitely.

To keep track of the bouncing back and forth of the transient waves
between the interfaces, we resort to a “bounce diagram” as shown in Fig.
6.39. The bounce diagram is essentially a two-dimensional representation

e

frs l
wla w]a
—

I

T o=
[Ex]z= —-3m

0 1 [Ex]l:<25m

1 o—
—1/3 2/3 | 0.5
2 |
'——:’j—‘_waxw)
4
' 159
/(3x
tl 6l 8/(
I __8/(3)(153)
8
l 3/(3)(154)

10,

¢, 1078 sec

z= -3m z=0 z=15m z=25m

—_—

Fig. 6.39. Bounce diagram for keeping track of transient waves
in the dielectric media of Fig. 6.38.

of transient waves bouncing back and forth. Distance along the direction of
propagation is represented horizontally and time is represented vertically.
Reflection and transmission coefficient values at the interfaces are written
at the top of the diagram for quick reference, with appropriate arrows ingli-
cating directions of incidence. Criss-cross lines are drawn as shown on the
diagram to indicate the progress of the waves as functions of z and ¢, with the
numerical value of E, for each leg of travel shown beside the line corresponding
to that leg. The time functions of E, representing the waves for each leg are
drawn along the time axes in the planes of interest as shown on the bounce
diagram. The bounce diagram of Fig. 6.39 is for E, (or V). Similar bounce
diagrams can be drawn for H, (or I), taking note that the reflection coefficient
for H, (or I) is the negative of the reflection coefficient for E, (or V). From
Fig. 6.39, we can now draw the required sketches of E, versus ¢ in the planes
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z=—3m and z = 2.5 m. These are shown in Figs. 6.40(a) and (b), re-
spectively. |} '

[Ex]z= =3m » V/m

A
1
1
(@
2 3 a4 5 8/675 8 9
0 1 ] 6 7 —s/012s -8
hryyy t, 107° sec
—-1/3
[EX]Z=2.5m ) V/m
y
(b
8/15
. . ? l6 873375
0 1 2 34 —8/225 7 8 9 1, 1078 sec
Fig. 6.40. E, in the planes z = —3 m and z = 2.5 m versus

time from the bounce diagram of Fig. 6.39.

6.10 Traveling Waves in Sinusoidal Steady State;

|

Standing Waves

In the preceding section we discussed transient traveling waves. In this section
we consider traveling waves in sinusoidal steady state. Once again, we deal
simultaneously with uniform plane waves at normal incidence and trans-
mission-line waves, keeping in mind the analogy between the two. From
(6-211) and (6-213), the general solutions for the line voltage and line current
in the sinusoidal steady state are

V(z,t) = V* cos[w(t — /£C2) + ¢*] + V- cos[w(t + /£C2) + ¢7]
1(z, ) = ZL{V’L cos[w(t — /£€z) + ¢*] — V'~ cos[w(? + /£€2) + ¢7]}

The corresponding expressions for the phasor line voltage and phasor line
current are

V(z) = Vte it 4 V-eit= (6-228a)
Iz) = Zi(m—fﬂz — Veit?) (6-228b)
o

where we have substituted § for w./£€. For sinusoidal steady-state problems,
it is convenient to use a distance variable d which is in opposition to z, that
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|
is, a variable which increases as we go away from the load and towards the
generator as shown in Fig. 6.41. The wave which progresses away from the;
generator is still denoted as the (+) wave and the wave which progresseg"

= . ]

(+) Wave
Generator - Load
« ——
e
(—) Wave

—_—
d +——

Fig. 6.41. For illustrating the distance variable d used for sinu-
soidal steady-state analysis of traveling waves.

towards the generator is still denoted as the (—) wave. In terms of d, thee
solutions for ¥ and I are then given by

V(d) = Vteitd - Ve b (6-229%)
i(d) = ZL(17+efﬂd — ey (6-229b)
0

We will be working with these equations for the remainder of this sectiojn.

Let us now consider a semiinfinite perfect dielectric medium character-
ized by € and u and bounded by a perfect conductor in the plane d = 0 fas
shown in Fig. 6.42(a). The corresponding transmission-line equivalent is| a

Pctrfect . > Perfect
Dielectric Conductor
A

E, —

Hy

7
e

Zo, VP f/_
-~

d —— d= d

(@ (b)

Fig. 6.42. (a) Normal incidence of a uniform plane wave on a
plane perfect conductor. (b) Transmission-line analog of (a).

line short circuited at d = 0 as shown in Fig. 6.42(b). Let us assume that
sinusoidally time-varying traveling waves exist in the medium due to a
source which is not shown in the figure and that conditions have reaghed
steady state. We wish to determine the characteristics of the waves satisfying
the boundary condition at the perfect conductor (or short circuit). This bq‘)un-
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dary condition is
[EJizo =0 or [V]jey =0

Applying this boundary condition to the general solution for ¥ (d) given by
(6-229a), we obtain

=V++ V- or V- = —p+*
The particular solutions for the voltage and current are then given by
V(d) = V*eltd — V*e itd = 25V* sin fd (6-230a)
f(d) = L(Prem + Preinay — 2V o5 ga (6-230b)
Z, Z,

The instantaneous voltage and current are given by
V(d, t) = Re[V(d)e’]
= Re(2e/™ | V*| e sin fd &) (6-231a)
= —2 |V*|sin fd sin (et + 6)
I(d, 1) = Re[I(d) ']

= Qe (Zl—uef" cos fid ef“”)
Z, (6-231b)

— 217 o Bdcos (wt + 6)
Z,

where @ is the phase angle of ¥*. The instantaneous line voltage and line
current given by (6-231a) and (6-231b), respectively, are sketched in Fig.
6.43 as functions of d for various values of ¢. The following characteristics
can be inferred from these sketches:

(@) The line voltage is zero at d=0, #n/f, 27/B,...=0,1/2, 4,...for
all values of time. Hence there is no power flow across these planes
for all values of time. If we short circuit the line (or place perfect
conductors) at these values of d, there will be no effect on the voltage
and current (fields) at any other value of 4.

(b) The line current is zero at d = n/28, 3n/28,...= A/4, 3A/4, ... for
all values of time. Hence there is no power flow across these planes
for all values of time. If we open circuit the line (or place imaginary
magnetic conductors) at these values of d, there will be no change
in the voltage and current (fields) at any other value of d.

(c) Wherever the line voltage has maximum amplitude, the line current
has zero amplitude and vice versa. Thus the line voltage and line
current are out of phase in distance by z/2f or A/4.

(d) Whenever the line voltage is maximum at all values of d, the line
current is zero at all values of d and vice versa. Thus the line voltage
and line current are out of phase in time by #/2w or T/4, where T is
the period corresponding to .
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~I
+

>
D
™

Fig. 6.43. Voltage and current versus distance for various
values of time for the short-circuited line of Fig. 6.42(b).

We conclude from these characteristics that the situation for a short-
circuited line consists of voltage and current waves which stand still and onl
increase and decrease in amplitude in each section of 1/2 in length betwee
the voltage nodes (zeros) and between the current nodes (zeros), respectively,
similar to the oscillations executed by a string tied down at one end an
vibrated at a point half a wavelength from the tie-down point. These waves
are therefore known as “complete standing waves.” Complete standing waves
are the result of (+) and (—) traveling waves of equal magnitude. Whatever
power is incident on the short circuit by the (+4) wave is reflected entirely
in the form of the (—) wave since the short circuit cannot absorb any poweﬁr.
While there is instantaneous power flow at values of d between the voltage
and current nodes, there is no time-average power flow for any value of d, as
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can be seen from

(P> = L Reli(a)i*a))

(Re[(ZjV* sin ﬁd)(z’;_’:" cos [idﬂ

| I7+|2 .
Re ZJT sin2fd) =0
0

= N = =

The amplitudes of the sinusoidally time-varying line voltage and line current
as functions of d are

| V(d)| = 21/11 7*||sin Bd| = 2| P*||sin d|  (6-232a)
|Fd)| = 2IIZ/—+||cos Bd | (6-232b)
1]

These amplitudes are sketched in Fig. 6.44. The patterns of Fig. 6.44 are
known as “standing wave patterns.” Standing wave patterns are easily meas-
ured in the laboratory with the aid of moving probes which sample the
electric field.

17

Fig. 6.44. Standing wave patterns for voltage and current along
a short-circuited line.

EXAMPLE6-2]. A transmission line of length / and short circuited at both ends has
certain energy stored in it. From the preceding discussion, this energy must
exist in the form of complete standing waves on the line. What are the pos-
sible standing wave patterns and the corresponding frequencies ?

The voltage must be zero at both ends of the line since it is short cir-
cuited at both ends. It follows from the standing wave patterns of Fig.
6.44 that the current must be maximum at both ends. Thus the possible
voltage and current standing wave patterns are as shown in Fig. 6.45. They
must consist of integral numbers of half-sinusoidal variations over the length
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Voltage Current

— S

(@ (b)

Fig. 6.45. Standing wave patterns for (a) voltage and (b) current
along a line short circuited at both ends.

of the line; that is, the wavelengths A, corresponding to these standing wav
patterns must be such that

ln%

I

n=123,...

or

I

=2 a=1,23,...
n

The corresponding frequencies are

fn=j{_:=% n=1,2,3,...
where v, is the phase velocity. These frequencies are known as the “naturfl
frequencies of oscillation.” The standing wave patterns are said to correspond
to the different “natural modes of oscillation.” The lowest frequency (corrg-
sponding to the longest wavelength) is known as the “fundamental” frequency
of oscillation and the corresponding mode is known as the fundamental
mode. The quantity » is called the mode number. ||

Returning now to the expressions for the phasor line voltage and the
phasor line current given by (6-230a) and (6-230b), respectively, we define
the ratio of these two quantities as the line (or wave) impedance Z(d) at that
point seen looking towards the short circuit. Thus

Fay=VD _ _2Vsinpd _ 5 00 gy (6-2T3)
/

I(d) 2(V*]Z,)cos fd

In particular, the input impedance Z;, of a short-circuited line of length
given by }

is

|
Z. = jZ, tan Bl = jZ, tan ";;_”Jfl (6-234)
P |
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This expression is the same as the expression (6-151) derived by the step-by-
step solution of Maxwell’s curl equations for the fields in the parallel-
plate structure of Fig. 6.25(b). We now note that the condition for quasistatic
approximation given by (6-146) can be stated alternatively as

BlK1 or <A

For a fixed [, tan (2nf]/v,)| becomes alternatively positive and negative as -
f increases and hence the input reactance alternates between inductive and
capacitive as illustrated in Fig. 6.46. It can be seen that frequencies at which

Input Reactance
A

[
<
o

I

—_—— e e

|
|

21

~
=
~
N
=

Fig. 6.46. Variation of the input reactance of a short-circuited
line of length ! with frequency.

the input reactance is zero are the same as the natural frequencies of oscil-
lation if the input were short circuited. Likewise, the frequencies at which
the input reactance is infinity are the same as the natural frequencies of
oscillation if the input were open circuited. These properties of short-circuited
line sections permit them to be used as inductive and capacitive elements and
resonant circuits at high frequencies. We will illustrate an application by
means of the following example.

ExAMPLE 6-22. To determine the location of a short circuit in an air-insulated parallel
wire line, a voltage generator of variable frequency is connected at its input.
The generator frequency is varied continuously from a value of 100 MHz
upwards and the current drawn from the generator is monitored. It is found
that the current reaches a minimum at 100.02 MHz and then a maximum at
100.05 MHz. How far is the location of the short circuit from the generator?
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The current minimum occurs at a frequency for which the input imped-
ance is infinity. The current maximum occurs at a frequency for which the
input impedance is zero. From Fig. 6.46, the difference between adjacent
frequencies for which the input reactances of a short-circuited line are infinity
and zero is equal to v,/4/. Hence, for this problem, v,/4/is (100.05 — 100.02)
or 0.03 MHz. Since the line is air insulated, the velocity of propagation is
3 X 10®* m/sec. Hence /= (3 x 10%)/(4 x 0.03 x 10°) = 2500 m. Thus the
location of the short circuit is 2.5 km away from the generator. ||

We have thus far discussed complete standing waves which result from
the superposition of (+) and (—) waves of equal magnitudes. Let us now
consider the general case of the superposition of (+) and (—) waves of
unequal magnitudes, thereby giving rise to “partial standing waves.” Such
a situation can arise when uniform plane waves are incident normally on a
plane interface between two different dielectrics or interfaces between several
dielectrics in cascade. We first define the generalized reflection coefficient T'(d)
as the ratio of the phasor voltage associated with the (—) wave to the phasor
voltage associated with the (4) wave at a given d. Thus, from (6-229a), we
have _ _

T(d) = %F‘f _ l;:e—fw — F(0)e-72#¢ (6-235)
where T'(0) = V-/V* is the reflection coefficient at d = 0. We note that the
magnitude of I'(d) is constant whereas the phase angle changes linearly with
d. Using (6-235), we can write the general solutions for ¥(d) and I(d) as

(d) = V*e's 1 + T(d)] (6-236a)
i) = g—+efﬂ”’[1 — F(d)] (6-236b)
0 I
The line (or wave) impedance Z(d) is given by

Z(d) = ?((5)) — Zoi + II:EZ; (6-237)

Conversely, |

() = Zd) = Z, (6-238)

To study the standing wave patterns corresponding to (6-236a) and
(6-236b), we look at the magnitudes of ¥(d) and I(d). These are given by

| D) =171 4 T(@)]

— _ -239
7111+ Fe-) &P
@)= o)1 — Fay)
lel (6-239b)

T —j2pd
7 |1 = T@e ]
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To sketch | P(d)| and |I(d)|, it is sufficient if we consider the quantities
|1 + T'(0)e=/2#4| and |1 — ['(0)e72#4| since |V*| is simply a constant,
dependent upon the source of the waves. Each of these quantities consists
of two complex numbers one of which is a constant equal to (1 +;0) and
the other of which has a constant magnitude |I’(0)| but a variable phase
angle 6 — 28d, where 6 is the phase angle of I'(0). To evaluate
|1+ T(0)e~72#4| and |1 — T'(0)e~72#¢|, we make use of the constructions in
the complex I' plane as shown in Figs. 6.47(a) and (b), respectively. In both

gml Iml
I b

’@( d=0,A/2 A,

T A
v (-10 1o+

= O ) Qe ~ R —" QT
(=10 \lf(o)l /]\ﬁ _IT(0)|
iz N S d
d = 0, A/2, A, e

() (b)

Fig. 6.47. f'-plane diagrams for sketching the voltage and
current standing wave patterns for a partial standing wave.

diagrams, we draw circles with centers at the origin and having radii equal
to |T'(0)|. For d = 0, the complex number I'(0)e~/2#¢ is equal to I'(0) or
|T'(0) |e’?, which is represented by point 4 in Fig. 6.47(a). To add (1 + j0)
and I'(0), we simply draw a line from the point (—1, 0) to the point 4. The
length of this line gives |1 + I'(0) |, which is proportional to the amplitude
of the voltage standing wave at d = 0. As d increases, point 4, representing
I'(0)e~72#4 moves around the circle in the clockwise direction. The line joining
(—1, 0) to the point 4 whose length is |1 + I'(0)e~72#¢| executes the motion
of a “crank.” To subtract I"(0) from (1 -+ jO) we locate point B in Fig. 6.47(b),
which is diametrically opposite to point 4 in Fig. 6.47(a), and draw a line
from (—1, 0) to point B. The length of this line gives |1 — I'(0)|, which is
proportional to the amplitude of the current standing wave at d = 0. As
d increases, B moves around the circle in the clockwise direction following
the movement of 4 in Fig. 6.47(a). The line joining (—1, 0) to the point B
whose length is |1 — T'(0)e=/2#¢| executes the motion of a “crank.” From
these constructions, we note the following facts:

(@) Point A lies along the positive real axis and point B lies along
the negative real axis for 8 — 28d =0, —2x, —4n, —6x, ... or
d = (A/4n)(@ + 2nm), where n=0,1,2,3,.... Hence, at these
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values of d, the voltage magnitude is maximum and equal tjo
| 7*|[1 +|T°(0)|] whereas the current magnitude is minimuign
and equal to (| V*|/Z)[l — |T'(0)[]. The voltage and current age
in phase. Thus their ratio, that is, the line impedance, is real anjd
maximum, '

(b) Point A4 lies along the negative real axis and point B lies along the
positive real axis for 8 — 2fd = —n, —3n, —5n, —Tm,... @r
d=(A/4n)[@ + 2n — Dn], where n=1,2,3,4,.... Hence, at thefse
values of 4, the voltage magnitude is minimum and equal fto
| 7*|[1 — |T'(0)[] whereas the current magnitude is maximum apd
equal to (| 7* |/ Z,)[1 4| T(0) [|. The voltage and current are in phage.
Thus their ratio, that is, the line impedance, is real and minimumj.

(c) Between maxima and minima, the voltage and current magnitudles
vary in accordance with the lengths of the lines joining (—1, 0)(to
the points 4 and B, respectively, as they move around the circlles.
These variations are not sinusoidal with distance. The variatigns
near the minima are sharper than those near the maxima. Also, the
voltage and current are not in phase. Hence their ratio, that is, the
line impedance, is complex.

With the aid of the preceding discussion, we now sketch the standjing
wave patterns for the line voltage and line current as shown in Fig. 6{48.
The standing wave patterns should not be misinterpreted as the voltage and
current remaining constant with time at a given point. On the other halnd,

viated as VSWR, as the ratio of the maximum voltage V,,,, to the mini
voltage V,;, in the standing wave patterns. Thus

VSWR — Vous _ 70 +IFO0 _1+IFOL  (5pag)
A AT O] O]

measurable parameter. We note the following special cases:

(a) For a pure traveling wave, that is, for a (-) wave alone, V'~ |=
I' =0, and hence VSWR = 1; that is, the standing wave paftern
is simply a line representing constant magnitude. This is the case if
the line is infinitely long or if it is terminated by its characteristic
impedance.

(b) F_or a complete standing wave, ¥~ and 7* have equal magnitudes;
[T'| =1 and hence VSWR = co. This is indeed the case with the
standing wave pattern of Fig. 6.44.
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Fig. 6.48. Voltage and current standing wave patterns for a
partial standing wave. The insets show time variations of voltage
at points along the line.

ExiampLE 6-23. In Fig. 6.49(a), a plane dielectric slab of thickness 3.75 cm and per-

mittivity 4e, is sandwiched between two semiinfinite media 1 and 3. Medium
1 is free space and medium 3 is a perfect dielectric of permittivity 9¢,. A
uniform plane wave of frequency 3000 MHz is incident normally on the slab
from medium 1 and sinusoidal steady-state conditions are established in all
media. It is desired to find and sketch. the standing wave patterns for the
fields in all media.

The intrinsic impedances of the three media are #,, #,/2, and 7,/3,
respectively. The velocities of propagation in the three media are ¢, ¢/2, and
¢/3, respectively, where ¢ = 3 X 10%® m/sec. The wavelength in medium 2
for 3000 MHz is 5 cm. Hence the electrical length of medium 2 is 31/4. The
transmission-line analog of the problem is shown in Fig. 6.49(b). We solve
this problem in a step-by-step manner as follows:

(a) Line 3 has only a (-+) wave since it extends to infinity. Hence VSWR
for that line is equal to 1. The line impedance is independent of distance and
equal to the characteristic impedance 7,/3.

(b) At the junction between two lines, the boundary conditions dictate
that ¥ and I be continuous (analogous to E, and H, being continuous at
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Fig. 6.49. (a) A plane dielectric slab sandwiched between two
semiinfinite dielectric media. (b) Transmission-line analog of
(a) for uniform plane waves at normal incidence.

|

the interface between the two dielectric media). Hence the ratio of these two
quantities must be continuous. The line impedance at the right end of ltne
2 is therefore equal to the line impedance at the left end of line 3, whic

equal to #,/3.

(c) From (6-238), the reflection coefficient at the right end of line 2 is

| ol 770/3 _ 770/3 - 770/2 _1_
! mB+Zn Mol3+ 1,27 5

(d) From (6-240), VSWR for line 2 is

1+, 1414

1—F, 1-1

=15

Also, since I', is purely real and negative, the voltage magnitude is minimum
at the right end of line 2, as can be seen from the construction of Fig. 6.47(a).

(e) From (6-235), the reflection coefficient at the left end of line 32 is

FZ — I_-‘le".izﬂz(fllz/‘l) —_

1

e i3n —

i

5

(f) From (6-237), the line impedance at the left end of line 2 is

1+0, 1+

“1-T, 21—

1
3 _
1
5

371
470
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(g) Since the line impedance at a junction between two lines has to be
continuous from the discussion in (b) above, the line impedance at the right

end of line 1 is 3#,. From (6-238), the reflection coefficient at the right end
of line 1 is

1_“ _ 3’10/4_201 _3770/4_'770 1

P3[4+ Zy, 3n,/4 + 1, T
(h) From (6-240), VSWR for line 1 is
1+ |T,] _1+3 4

1—|T,| 1—-4 3

Also, since T, is purely real and negative, the line voltage is a minimum
at the right end of line 1.

From the above results and noting that the wavelength in medium I
for 3000 MHz is 10 cm, we now sketch the standing wave pattern for the
electric field intensity (based on a magnitude of unity in medium 3) as shown
by the solid curves in Fig. 6.50. The standing wave pattern for the magnetic

Medium 3

L
|r S cm 3.75 cm~—l

‘ Fig. 6.50. Standing wave patterns for the fields in the three
i media of Fig. 6.49.

i field intensity follows from the fact that |E, || Iu_(y] =1,/3 in medium 3
| and by noting that wherever | E, | is maximum, | H,| is minimum and vice
| versa. It is shown by the dashed curves in Fig. 6.50. ||
EXAMPLE 6-24. One important type of problem is that of matching between two
dielectric media of different permittivities. For example, in Fig. 6.49(a), we
can choose the thickness and permittivity of medium 2 so that reflected wave
is eliminated in medium 1. Then all the power incident on the interface
between media 1 and 2 is transmitted into medium 3 (although standing
waves exist in medium 2). Let us determine the minimum thickness and
permittivity of medium 2 required to achieve such a match.

To determine the required quantities, we note that, for a particular line
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of characteristic impedance Z,, the product of the line impedances at twq
values of d separated by an odd multiple of 1/4 is given by

(ZId) {Z[d—]—(Zn—l) ]

{ 1 + Td) 1+ Td + 2n— 1)/1/4]}
°1 — ') I{d 4+ (2n — 1)A/4]

}
1%

[ +rwq[ +rwk1”mle (6-241)
Ik

I"(d) 1 r(d)e F28(28—1)2/4
[ + T [1 + T(d)em 11
— (@)1 —T(@)eiev=

=%Li§ﬂL+%ﬁ=%

where n can take any integer value. For eliminating standing waves in line (I,
the impedance seen at the right end of line 1 must be equal to Z,, = #o-
Hence the line impedance at the left end of line 2 must be #,. However, tfi¢
impedance seen at the right end of line 2 is equal to Z,, = #,/3. Hend¢®,
according to (6-241), we must have a minimum length of A/4 and a character-
istic impedance equal to /7,(#1,/3) ot #1,/+/ 3 for line 2to achieve the required
match. For the intrinsic impedance of medium 2 to be #,/+/ 3, its pern'*it-
tivity must be 3¢,. Since the wavelength for 3000 MHz in medium 2 is thlen
10/,/3 cm, the minimum required thicknessis 2.5/,/3 or 1.4434cm. This tech-
nique of matching is known as matching by “quarter-wave transformer.” . i

Transmission-Line Matching; the Smith Chart

In the previous section we discussed complete standing waves resulting from
(+) and (—) waves of equal magnitudes, and then partial standing waves
resulting from (<) and (—) waves of unequal magnitudes. While standing
waves are useful from the point of view of energy storage, they are unwanted
from the point of view of energy transmission. To elaborate upon this, W
note that the time-average power flow down the line is given by

(P = 3 Re(VI¥)
- %(Re{p‘“ef'”[l i f(d)]’%‘ e ip] — I_“*(d)]}
= soe{lZLn — F@p + F@) - P} ‘

i - irarn = o —1ro (6:242
- (o + iron{ - iron) J

!
i

— Vmamein — ImaxlminZ }
- - 2

2 2
Vmax Imax

= 2(VSWR)Z, ~ 2(VSWR)
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where Vi.xs Viins Imaxs and I ;, are the maximum and minimum magnitudes
of voltage and current, respectively, in the standing wave patterns. From
(6-242), the limitations imposed by standing waves on power transfer down
a line are evident. For a particular line, there is an upper limit for the electric
field which the dielectric can withstand and hence there is a breakdown
voltage. For a particular value of the breakdown voltage, the power that can
be transmitted down the line is inversely proportional to the VSWR, accord-
ing to (6-242). Similarly, there can be an upper limit for the current that
‘ can be carried by the conductors of the line without overheating them. Again,
| (6-242) states that, for a particular value of this current, the power that can
\ be transmitted down the line is inversely proportional to the VSWR.
Another and perhaps more serious limitation imposed by standing waves
concerns the input impedance of the line. In the presence of standing waves,
that is, when the load impedance is not equal to the characteristic impedance,
\ it follows from (6-237) that the input impedance of the line will vary with
1 frequency since the electrical length of the line and hence I'(d) = T'(0)e-72#¢
‘ changes. This sensitivity to frequency increases with the electrical length of
the line. To show this, let the length of the line be / = ni. If the frequency
is changed by an amount Af, then the change in 7 is given by

| an=A1) =MLy =Lar=2ar=n?!
) A v, v, v, f
Thus An, the change in the number of wavelengths corresponding to the line
length, is proportional to .

For these reasons, it is necessary to eliminate standing waves on the line
by connecting a “matching” device near the load such that the line views an
effective impedance equal to its own characteristic impedance on the generator
side of the matching dévice. The matching device should not at the same
time absorb any power. Small sections of short-circuited lines known as
stubs connected in parallel with the line at appropriate distances from the
load are used for this purpose since their input impedance is purely reactive
and hence they do not absorb any power. Indeed we are making use of
standing waves (on the stub) to eliminate standing waves (on the line between
the generator and the stub)! This technique of matching is known as stub
matching. We now illustrate the principle behind the stub matching technique
by means of an example.

ExAMPLE 6-25. A lossless transmission line having a characteristic impedance of

50 ohms is terminated by a load impedance Z, equal to (30 — j40) ohms.

It is desired to find the location and the length of a lossless, short-circuited

stub connected in parallel with the line so that a match is obtained between

the generator driving this line and the load, assuming that the characteristic
impedance of the stub is 50 ohms.

The principle behind the stub matching technique consists of finding

. the location nearest to the load at which the real part of the line admittance

| (reciprocal of the line impedance) is equal to the line characteristic admittance
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Y, (reciprocal of the line characteristic impedance Z,). The imaginary par
of the line admittance is then cancelled by placing in parallel with the lin
a short-circuited stub of appropriate length so that its input susceptance is
equal to the negative of the imaginary part of the line admittance to the right
of the stub as shown in Fig. 6.51. The line admittance seen from the left of

|
I
| 1
Z, YO——’: > Yo + jB Zp
—jIIN
| -—d d

=0

Fig. 6.51. Transmission-line matching by means of a stub.

the stub is then equal to (¥, + jB) + (—jB) = Y,. The line impedance seen
from the left of the stub iuto the junction of the line and the stub is therefore
equal to Z; and a match is achieved. To find the required parameters, we
proceed in a step-by-step manner as follows:

(a) Find the reflection coeflicient at the load.

PO =Ze =2y - GO j0) =50 _ 5,
Zx+Z, (30 — j40) -+ 50
(b) Find the reflection coefficient as a function of 4.
I'(d) = T'(0)e~72#¢ = 0.5¢~(2pd+a/2)
(c) Find the line admittance as a function of d.
)= -1 [1 = I_'(d)]
Zd) Z,!1+T(d)
1 1 — 0.5¢—/(28d+x/2)
= 30 |:1 T 0.5€_j(zﬂd+”/2)j|

. 0.75 4 jcos 28d
= 0.02 1.25 — sin 2f3d

(d) Set the real part of ¥(d) equal to Y, and solve for d. !

0.75 _ !
0.021‘2—5__sil]_2‘ﬂ_d -_ 0-02 “
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or
sin 28d = 0.5

= Sn

2pd = or S

A 54

Thus the stub must be located at a distance 1/24 or 54/24 from the load.
_ (e) To find the length of the stub, we note that the imaginary part of
Y(d) is (0.02 cos 28d)/(1.25 — sin 2d). Its value at the stub location is

0.02 x 1.15 ford= 2
B 24

_ _ 52
0.02 x (—1.15) ford = 34

(f) The input impedance of a short-circuited line of length / is given by
(6-234). The input admittance is

1 |

fomt oL iy oeotp
Z., jZ,tan Bl J¥o cot B
Thus the stub length / must be such that
—j0.02 X 1.15  ford— ;_4
—jY,cot fl = 51
j0.02 x 1.15 ford=;;—4
or
_ A
. 0.1131 ford—ﬁ

03874  for =;_'1 i

The steps involved in the analytical solution of the stub matching
problem in the preceding example consist of conversion from line impedance
to reflection coefficient, then going along the constant |I'| circle in the
complex-plane diagram of Fig. 6.47 to find I'(d) and then converting back to
impedance. This process of conversion and reconversion from one quantity
to the other can be eliminated by constructing a chart which associates
with each point in the complex I' plane the corresponding impedance or
admittance. One such chart is known as the Smith chart. To discuss the basis
of Smith chart construction, we define the normalized line impedance, Z(d),
as the ratio of the line impedance Z(d) to the characteristic impedance Z,,.
Thus
Zd) 1+ T@)

) = Z, 1-T@)

(6-243)
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Conversely,

) = %—} (6-244)

Letting z2(d) = r + jx, we have

son_Fr+jx—1_ (r—1D+jx
By A S Ve

and
= _ (l" _ 1)2 __'_ xZ:(l/Z
D= <!

for positive values of r. Thus, for passive line impedances, the reflectio
coefficient lies inside or on the circle of unit radius in the I' plane. We will
hereafter call this circle the unit circle. Conversely, each point inside or o
the unit circle represents a possible value of reflection coefficient correspond-
ing to a unique value of passive normalized line impedance in view of (6-243).
Hence all possible values of passive normalized line impedances can be
mapped onto the region bounded by the unit circle.

To determine how the normalized line impedance values are mapped
onto the region bounded by the unit circle, we note that

f=r+jx—l_r2—l+x2+. 2x
r¥pxFl FEFx JrFD F R

so that
= 2 . 1 2
Re) = e
= 2x
D =iy r= |

Let us now discuss different cases: “

(a) zis purely real; that is, x = 0. Then

Re@®=""1 " and sm@® =0

r+1
Purely real values of Z are represented by points on the real axis.
For example, r =0, 1, 1,3, and oo are represented by I' = +1,

—1%, 0,4, and 1, respectively, as shown in Fig. 6.52(a).
(b) zis purely imaginary; that is, » = 0. Thus

sy |x2—-1 . 2x | _
IT= x2+1+Jx2—l—1 =1
and
= - 2x
I“=tan1x2__1

Purely imaginary values of 7 are represented by points on the |unit
circle. For example, x = 0, 1, co, —1, and —co are represented by
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r =

gml

(@)

©

©

Fig. 6.52. Development of the Smith chart by transformation
fromzto I,

= 1/, 1/m/2,1/0°% 1/—n/2 and 1/2m, respectively, as shown in
Fig. 6.52(b).

Z is complex but its real part is constant. Then

[Ge@) — L | + [omyr

- [(:2+_1;21x;2 T 4r- 1]2 + [(r + 12)35 + x2:|2 - <r_11LT>2

This is the equation of a circle with center at Re(I’) = r/(r + 1)
and 9m(I") = 0 and radius equal to 1/(r + 1). Thus loci of constant
r are circles in the T" plane with centers at [r/(r + 1), 0] and radii
1/(r + 1). For example, for r =0, 4,1, 3, and oo, the centers of
the circles are (0, 0), (4, 0), (1, 0), (3, 0), and (1, 0), respectively, and
the radii are 1, 3,1, 1, and 0, respectively. These circles are shown
in Fig. 6.52(c).
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(d) Z is complex but its imaginary part is constant. Then

[Re(T) — 1] + l:am(l_“) _ -lx-]z

- [’Z_—l_tﬁ _ 1]2 + [_EL_ _ L]z — (L)z
(r+ 1)+ x2 (r+ 1) 4+ x2 x x

This is the equation of a circle with center at Re() =1 an
gm(T") = 1/x and radius equal to 1/|x|. Thus locii of constant
are circles in the T plane with centers at (1, 1/x) and radii equal t
1/|x]. For example, for x = 0, 44, =1, £-2, and 4-oo0, the center,
of the circles are (1, ), (1, 42), (1, £1), (1, £4), and (1,0},
respectively, and the radii are oo, 2, 1, 4, and 0, respectively. Pox-
tions of these circles which fall inside the unit circle are shown in
Fig. 6.52(d). Portions which fall outside the unit circle represent
active impedances.

Combining (c) and (d), we obtain the chart of Fig. 6.52(¢). In a com-
mercially available form shown in Fig. 6.53, the Smith chart contains circles
of constant » and constant x for very small increments of r and x, respectively,
so that interpolation between the contours can be carried out accurately,
We now illustrate the application of the Smith chart by means of some
examples.

ExXAMPLE 6-26. A transmissio_p line of characteristic impedance 50 ohms is terminated
by a load impedance Z, = (15 — j20) ohms. It is desired to find the following
quantities by using the Smith chart.

(1) Reflection coefficient at the load.
(2) VSWR on the line.

(3) Distance of the first voltage minimum of the standing wave pattern
from the load.

(4) Line impedance at d = 0.0541.
(5) Line admittance at d = 0.054.

(6) Location nearest to the load at which the real part of the line adnit-
tance is equal to the line characteristic admittance.

We proceed with the solution of the problem in the following stepoy-
step manner with reference to Fig. 6.54.
(a) Find the normalized load impedance.
Z— % B0 _03—joa
(b) Locate the normalized load impedance on the Smith chart atthe
intersection of the 0.3 constant normalized resistance circle and —0.4 consant
normalized reactance circle (point A4).
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e s EEREEE
in s racer omrolEnTLd, oa CONPUCTANCE Comget

Fig. 6.53. The Smith chart (Copyrighted by and reproduced with
the permission of Kay Elemetrics Corp., Pine Brook, N.J.).

(c) Locating point A4 actually amounts to computing the reflection coeffi-
cient at the load since the Smith chart is a transformation in the I" plane.
The magnitude of the reflection coefficient is the distance from the center
(0) of the Smith chart (origin of the T" plane) to the point 4 based on a
radius of unity for the outermost circle. For this example, |T'(0)| = 0.6.
The phase angle of T'(0) is the angle measured from the horizontal axis to
the right of O (positive real axis in the I plane) to the line OA in the counter-
clockwise direction. This angle is indicated on the chart along its circum-
ference. For this example, m = 227°, Thus

I'(0) = 0.6e/227°
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0.185 A Unit Conductance
Circle

. 4
Toward
Generator

Fig. 6.54. For illustrating the various procedures to be followed
in using the Smith chart.

(d) To find the VSWR, we recall that at the location of a voltage maxi-
mum, the line impedance is purely real and maximum. Denoting this imped-
ance as R,,,, we have

Rupe = Ymex = LV IAFTD__ 7 vswr) (6249
L. (V'Z)A—|T)

Thus the normalized value of R, is equal to the VSWR. We therefore move
along the line to the location of the voltage maximum, which involves going
around the constant || circle to the point on the positive real axis. To do
this on the Smith chart, we draw a circle passing through 4 and with center
at O. This circle is known as the “constant VSWR circle” since for points jon
this circle, |I'| and hence VSWR = (1 + |T'|)/(1 — |T'|) is a constant.
Impedance values along this circle are normalized line impedances as s¢en
moving along the line. In particular; since point B (the intersection of the
constant VSWR circle with the horizontal axis to the right of O) correspopds
to voltage maximum, the normalized impedance value at point B whicl is
purely real and maximum, is equal to the VSWR. Thus, for this example,
VSWR = 4.

(e) Just as point B represents the position of a voltage maximum| on
the line, point C (intersection of the constant VSWR circle with the horizoptal
axis to the left of O, i.e., the negative real axis of the I" plane) repres F.nts
the location of a voltage minimum. Hence, to find the distance of the first
voltage minimum from the load, we move along the constant VSWR ciircle
starting at point A (load impedance) towards the generator (clock";wise

|
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direction on the chart) to reach point C. Distance moved along the constant
VSWR circle in this process can be determined by recognizing that one
complete revolution around the chart (I'-plane diagram) constitutes move-
ment on the line by 0.51. However, it is not necessary to compute in this
manner since distance scales in terms of 4 are provided along the periphery
of the chart for movement in both directions. For this example, the distance
from the load to the first voltage minimum = (0.5 — 0.435)4 = 0.0651.
Conversely, if the VSWR and the location of the voltage minimum are
specified, we can find the load impedance following the above procedures in
reverse.

(f) To find the line impedance at d = 0.054, we start at point 4 and
move along the constant VSWR circle towards the generator (in the clockwise
direction) by a distance of 0.054 to reach point D. This step is equivalent to
finding the reflection coefficient at d = 0.051 knowing the reflection coeffi-
cient at d = 0 and then computing the normalized line impedance by using
(6-243). Thus, from the coordinates corresponding to point D, the normalized
line impedance at d = 0.051 is (0.26 — j0.09) and hence the line impedance
at d = 0.051 is 50(0.26 — j0.09) or (13 — j4.5) ohms.

(g) To find the line admittance at d = 0.054, we recall that

Z@)|Z(d+ %) | =z

()] [z(d T %)] =1

7d) = z'(d + %) (6-246)

so that

or

Thus the normalized line admittance at a point D is the same as the nor-
malized line impedance at a distance A/4 from it. Hence, to find 7(0.054), we
start at point D and move along the constant VSWR circle by a distance 1/4
to reach point E (we note that this point is diametrically opposite to point
D) and read its coordinates. This gives 7(0.054) = (3.4 4+ j1.2). We then have
¥(0.051) = 7(0.051) X Y, = (3.4 + j1.2) X 1/50 = (0.068 -+ j0.024) mhos.

(h) Relationship (6-246) permits us to use the Smith chart as an admit-
tance chart instead of an impedance chart. In other words, if we want to
find the normalized line admittance 7(Q) at a point Q on the line, knowing
the normalized line admittance 7(P) at another point P on the line, we can
simply locate j(P) by entering the chart at coordinates equal to its real and
imaginary parts and then moving along the constant VSWR circle by the
amount of the distance from P to Q in the proper direction to obtain the
coordinates equal to the real and imaginary parts of y(Q). Thus it is not
necessary first to locate Z(P) diametrically opposite to j(P) on the constant
VSWR circle, then move along the constant VSWR circle to locate z(Q),
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and then find §(Q) diametrically opposite to Z(@). To find the location
nearest to the load at which the real part of the line admittance is equal to
the line characteristic admittance, we first locate y(0) at point F diametrically
opposite to point 4 which corresponds to Z(0). We then move along the
constant VSWR circle towards the generator to reach point G on the circle
corresponding to constant real part equal to unity (we call this circle the
“unit conductance circle”). Distance moved from F to G is read off the chart
as (0.325 — 0.185)4 = 0.14A. This is the distance closest to the load at which
the real part of the normalized line admittance is equal to unity and hence
the real part of the line admittance is equal to the line characteristic admit-

tance. §

ExampLE 6-27. It is desired to solve the stub matching problem of Example 6-25

by using the Smith chart. l
We make use of the principle of stub matching illustrated in Examplz

6-25 and the procedures learned in Example 6-26 to solve this problem i
the following step-by-step manner with reference to Fig. 6.55.

(a) Find the normalized load impedance.
Zy 30—}’40_06 —j08

Locate the normalized load impedance on the Smith chart at point A4.

1.16
0IBA  g137A

e,

G 0.1665 A
B
c
0 06 1 D} 0.25 A !
* |
\ |
N4 F f
/ Toward ;
7 Generator E
/ {
/ E 0.3335 A !
—03 0.363 A !
—-1.16

Fig. 6.55. Solution of transmission-line matching problem by
using the Smith chart.
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(b) Draw the constant VSWR circle passing through point 4. This is
the locus of the normalized line impedance as well as the normalized line
admittance. Starting at point 4, go around the constant VSWR circle by
half a revolution to reach point B diametrically opposite to point 4. Point
B corresponds to the normalized load admittance.

(c) Starting at point B, go around the constant VSWR circle towards
the generator until point C on the unit conductance circle is reached. This
point corresponds to the normalized line admittance having the real part
equal to unity and hence it corresponds to the location of the stub. The
distance moved from point B to point C (not from point 4 to point C) is
equal to the distance from the load at which the stub must be located. Thus
the location of the stub from the load = (0.1665 — 0.125)A = 0.04154.

(d) Read off the Smith chart the normalized susceptance value corre-
sponding to point C. This value is 1.16 and it is the imaginary part of the
normalized line admittance at the location of the stub. The imaginary part
of the line admittance is equal to 1.16 X ¥, = (1.16/50) mhos. The input
susceptance of the stub must therefore be equal to —(1.16/50) mhos.

(e) This step consists of finding the length of a short-circuited stub having
an input susceptance equal to —(1.16/50) mhos. We can use the Smith chart
for this purpose since this simply consists of finding the distance between
two points on a line (the stub in this case) at which the admittances (purely
imaginary in this case) are known. Thus, since the short circuit corresponds
to a susceptance of infinity, we start at point D and move towards the gen-
erator along the constant VSWR circle through D (the outermost circle)
to reach point E corresponding to —j1.16, which is the input admittance
of the stub normalized with respect to its own characteristic admittance.
The distance moved from D to E is the required length of the stub. Thus
length of the short-circuited stub = (0.363 — 0.25)A4 = 0.1134.

(f) The results obtained for the location and the length of the stub agree
with one of the solutions found analytically in Example 6-25. The second solu-
tion can be obtained by noting that in step (c) above, we can go around the
constant VSWR circle from point B until point F on the unit conductance
circle is reached instead of stopping at point C. The stub location for this
solution is (0.3335 — 0.125)A = 0.2085A. The required input susceptance of
the stub is (1.16/50) mhos. The length of the stub is the distance from point
D to point G in the clockwise direction. This is (0.137 + 0.25)A = 0.3874.
These values are the same as the second solution obtained in Example
6-25. 1

We have illustrated the use of the Smith chart by considering the trans-
mission-line matching problem. However, from the procedures learned in
Example 6.26, it can be seen that the Smith chart can be used for all trans-
mission-line and analogous plane-wave problems involving reflection,
transmission, and matching. As a further illustration of the applications of
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the Smith chart, we will learn in the following section that waveguide prob-
lems can be treated by using transmission-line equivalents. Thus the Smith
chart can be used for solving these and many other problems.

Waveguides ; Dispersion and Group Velocity

In Section 6.8 we obtained the solution for the one-dimensional wave equa
tion as (+) and (—) uniform plane waves traveling along that dimension ang
then deduced the expressions for the fields in a uniform plane wave travelin
in an arbitrary direction with reference to a coordinate system. We now mak
use of these expressions to discuss uniform plane waves incident obliquel
on a perfect conductor and then introduce the concept of waveguides. Sing
an arbitrarily polarized uniform plane wave can be decomposed into linear]
polarized uniform plane waves, we consider linearly polarized uniform plan
waves only for this discussion. Let us consider a perfect conductor occupyin
the x = 0 plane and upon which is incident a uniform plane wave havinpg

the electric field vector

E,

=

R o< o< &08

Eje=bri,
— E"oe—j(,e c0s 8; iz+f sin 6 i;)uriy (6-247 )

I

— F o7 8y+pz sin 6,03
— Eoe J{Bx cos Oyt Bz sin ‘ly

where E, is a constant, § = w./u€, and 8, is the angle between the propaga-
tion vector B, and the normal to the conductor as shown in Fig. 6.56. The
expression for the corresponding magnetic field vector can be obtained by
using (6-200) as follows: |

!
\

H, = wipx x E, |
£ (6-247b)
— ./ %(—.EO Sin ei ix + EO cos 01’ iz)e—i(ﬁx cos §;+ 8z sin 6;) ‘\
[
|
i
| |
\ / Hi ' H, / |
l \+/E,
E\ | W, £ Er i
I
B |
R
b; 9,
_ L Perfect
x=0 Y ¥ z Conductor

X

Fig. 6.56. Oblique incidence of a uniform plane wave on a
perfect conductor.
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Since the boundary condition at a perfect conductor surface dictates
that the tangential component of the electric field be zero, a reflected wave
must exist which cancels completely the tangential component (which is
the only component in this case) of the electric field vector of the incident
wave at the surface of the conductor. Such cancellation is possible only if
the tangential component of the electric field in the reflected wave at the
surface of the conductor is entirely in the y direction, that is, the same as
the direction of the tangential component of the electric field vector of the
incident wave. Furthermore, since we are dealing with linearly polarized
uniform plane waves, the electric field in the reflected wave must everywhere
be in the same direction. Hence it must have a y component only everywhere.
Thus the electric and magnetic fields of the reflected wave can be written as

E, = Eje/*i,
= Elei-hcostrixtpoia 0, iri (6-248a)
— E_Ioej(ﬁx cos 0,—fz sin 0')iy

B, — L8 xE,
~ (6-248b)
=,/ %(—E_’o sin, i, — E_’o cos @, iz)ei(ﬁx cos 8;—fz sin ;)

where E % is a constant, § = w~/ €, and 0, is the angle between the propaga-
tion vector B, and the normal to the conductor as shown in Fig. 6.56.

Adding the incident and reflected fields, we obtain the components of
the total electric and magnetic fields as

E — E e —Jj(Bx cos O+ fz sin 0‘) + El e;(px cos 6,—fz sin 6,) (6_2493)

H = A [ — E —Jj(Bx cos 6;+fz sin 6;)
[ sin 6 ¢ (6-249b)

— EIO sin er ej(/?x cos 8, —fz sin 0,)]

H =, /i[E-0 COS @, g™ J(Bx cos b1+ pz sin 60
z
y2i

_ E_IO cos 0r ej(ﬂx cos 8,~fz sin 0,-)]

(6-249¢)

Applying the boundary condition at the surface of the conductor, we have
(£, -y = Eje-ibesinec | Ere=itzsine: — 0 for all z (6-250)

Equation (6-250) can be satisfied only if the exponential factors are equal for
all z. Thus we obtain the result
0, =20, (6-251)

that is, the angle of reflection is equal to the angle of incidence, which is the
familiar law of reflection in optics. Substituting (6-251) into (6-250), we have

Ey = —E, (6-252)
Substituting (6-251) and (6-252) into (6-249a)—(6-249¢), we obtain the follow-
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ing expressions for the components of the total fields: |
E, = —2jE, sin (Bx cos §,) e~ 5= sin % (6-253a)

7. = A /%2;5‘0 sin 8, sin (Bx cos B,) ¢~z sin b (6-253b)
H,=,/ %250 cos B, cos (fx cos B,) e~z sin & (6-253¢)

The exponential factor in (6-253a)-(6-253¢) lends a pure traveling wave
character in the z direction to the fields whereas the sine and cosine factors|
involving x lend a complete standing wave character in the x direction. In
fact, the complex Poynting vector is given by

P

I

N[»— 0f —

[Eyﬁ?‘ix + (—E)HH)i,]

E x H*
1/ ,u —2j| E, |* cos 8, sin (2fx cos 8) i, (6-254L
+ 4| E, |? sin 8, sin®(Bx cos 8,) i,]

Thus the time-average power flow is entirely in the z direction whereas th
reactive power flow is associated entirely with the x direction. The situation
can therefore be described as one of complete standing waves in the x direc-
tion traveling as a whole in the z direction. \

We note from (6-253a) that E_y is equal to zero not only at the surface ¢of
the conductor (x = 0), but also in other planes given by

sin(Bxcosf) =0 :‘
or |
Bxcosf, = —mn m=1,2,3,...
or

X = g = 20”;’:9 m=1,2,3,. (6255)
where A = 2r/f is the wavelength along the direction of incidence (or
reflection). Introduction of perfect conductors in planes paralle! to the con-
ductor surface and at distances of integral multiples of 4/(2 cos 8,) fro it
does not alter in any way the total field, once it is established. Let us introduce
a perfectly conducting plate in the plane x = —ml/(2 cos 8,) as shown|in
Fig. 6.57, where m can take any integer value. The two conductors support
standing waves in the x direction while permitting traveling waves in the z
direction. The phenomenon is actually one of uniform plane waves bouncing
obliquely between the two plane conductors as shown in Fig. 6.57. The
structure is known as a parallel-plate “waveguide.” The total magnetic field
has a component in the z direction, which is the direction of time-average
power flow whereas the electric field is entirely transverse to the z direction.
For this reason, the waves are known as “transverse electric” or TE waves.

Let us now fix the spacing between the parallel plates as @ and discuss| the

/
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/\+/Hi
EiN 4

Fig. 6.57. Bouncing of a uniform plane wave obliquely along a
parallel-plate waveguide.

behavior of the guided waves as the frequency of the source exciting these
waves is varied. Setting mA/(2 cos 8,) equal to a, we have

_ ma

cos 0, =

(6-256)
From (6-256), we note that, for very high frequencies, 4 =~ 0, cos 8, = 0,
0, =~ 90°, and the waves slide between the plates almost like a TEM wave.
As the frequency is decreased, A increases, cos @, increases, 8, decreases,
and the waves bounce. obliquely between the plates, progressing in the z
direction until, for A = 2a/m, cos 8, = 1, 6, = 0°, and the waves bounce back

and forth between the plates and normal to them so that there is no progress
in the z direction. These different cases are illustrated in Figs. 6.58(a)-(d).

Small A
@ _ a (b)
f Very High Larger A Lower f
Still Still
Larger A Lower [ A= 22 f=- (@
m 2aVpe
© l

Fig. 6.58. Bouncing of uniform plane waves of different fre-
quencies between parallel plane conductors of fixed spacing for
illustrating the “cutoff” phenomenon.

For A > 2a/m,cos @, > 1, sin§, = /1 — cos? §, becomes imaginary, the
exponents in the expressions for the total fields become real, and the situation
no longer corresponds to one of wave propagation; the fields diminish in
magnitude along z. Thus there is a wavelength below which propagation
occurs and above which there is no propagation. This is known as the cutoff
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wavelength and is denoted by the symbol A,. Here,

L=22 1,23, .. (6-257)
m
The corresponding cutoff frequency is given by
=Y M —1,2,3... 6-258
fe 1~ %0 ne , (6-258)

where v, = 1/,/u€ is the phase velocity along the direction of incidence
(or reflection). For f > f,, propagation occurs and for f<C f,, there is no
propagation.

Substituting A, for 2a/m in (6-256), we have

cos §, = }%, sin §; = W

ﬂcose.szn)“ 2n _mn

A A a
Bsing, =27 1_(%—)2

But f sin 6, is the component of the propagation vector g, in the z directiot) ,
that is, along the guide axis. Hence the wavelength in the z direction, whiclh
we call the guide wavelength 4,, is given by

_ 2n A - 2 ~20%
be = peing, = JT= Gy ST G =y

Now, substituting for § cos 8, and g sin 8, in the expressions for the éor;i:—

ponents of the total fields given by (6-253a)-(6-253c), we obtain expressiojps
independent of 6, as

E, = —2jF, sin (”L;‘-’f) ¢~ itantio: (6-260/a)

A - 2]% L sin (7] gstartaos (6-260jb)
g

H = 270 %cos (r—"%> e /it (6-260c)

where 1 = »/ u/e and A, and A, are given by (6-259) and (6-257), respectively.
The solution for the fields corresponding to each value of m is called a mogde.
The x dependence of the fields is sinusoidal with m half-sine variations
between the plates. The fields are independent of the y coordinate; that| is,
they have zero half-sine variations along the y direction. The solutions [are
therefore said to correspond to TE, , modes, where the first and second
subscripts represent the number of half-sine variations of the fields in |the
x and y directions, respectively. The cutoff wavelength is smaller and |the
cutoff frequency is higher, the larger the value of m. For any particular
frequency, all modes for which the cutoff frequencies are less than the.
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frequency can propagate down the guide. The mode which has the lowest
cutoff frequency is known as the dominant mode. Here, the TE, , mode is
the dominant mode.

From the expressions for the fields, we note that the constant phase
surfaces are the planes z = constant. The rate of change of phase with
distance along z, that is, along the normal to the constant phase surfaces,
is 2m/4,. Hence the phase velocity in the z direction, which we denote as v,,,,
is given by

S N N v, _ vy
o Q@ali)  BsinG, JT— QLY ST—(FIN)?

where v, = 1//ue. We note that v, is simply the app_arent' phase velocity of
the obliquely bouncing waves along the z direction. We also note that v, is
a function of frequency f, the consequence of which we will discuss later in
this section. The constant amplitude surfaces are given by x = constant.
Thus, for the total fields, the amplitude is not constant over the constant
phase surfaces.

From the point of view of time-average power flow, the field components
of interest are ——E_y and H,, as can be seen from (6-254). The wave impedance
obtained by taking the ratio of these two components is known as the guide
impedance and is denoted by the symbol 7,. Thus

”:__E—y:nzi: n — n
* H, A NT—=GRY  ST—(fIf)

Now, using the analogy

(6-261)

(6-262)

—E <>V
H <«—>1T
Ag<—> 14 . (6-263)
v, <>, '
: e <1
we can develop a transmission-line equivalent as shown in Fig. 6,59 which is
valid for power flow in the z direction. Employing the transmission-line

techniques discussed in Sections 6.9, 6.10, and 6.11 in conjunction with this
equivalent, we can solve reflection, transmission, and matching problems

+ 7, = L/
& NT —(rir2
T . o 1= (fe/f)?
Fig. 6.59. Transmission-line equiv- = —Ey _ vp
alent for power flow along the Vpz = 1= (f/f)?
guide for TE waves in a parallel- - . < —~

plate waveguide. -z
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involving TE modes in waveguides. The proof is left as an exercise (Problem
6.68) for the student. We will now consider some examples, to consolidate
what we have learned thus far in this section. |

ExaMpLE 6-28. The dimension a of a parallel-plate waveguide is 5.0 cm. Determin
the propagating TE,, , modes for a wave frequency of 10,000 MHz, assumin,
free space between the plates. For each propagating mode, find (a) the cuto
frequency f,, (b) the angle 6, at which the wave bounces obliquely betwee
the conductors, (c) the guide wavelength 4,, (d) the phase velocity v,,, a
(e) the guide impedance #,.

From (6-257), the cutoff wavelengths are A, = 2a/m = 10/m cm. Th
wave frequency of 10,000 MHz corresponds to a wavelength 4 of 3 cm i
free space. Hence the propagating TE, , modes are TE, ;(4, = 10cm),
TE, ((4, = Scm), and TE, ((4, = 10/3 cm). For each propagating mode,
the quantities f,, 8,, 4,, v,,, and 7, can be computed by using the following
formulas:

f — vp —
A A/\/ﬂofo

0. = cos ‘%c
A, A
TGy
=Y where v, = 1
~1T—(@J2) ? Ho€o

= —_’Z__ where = Lo
= A=y T= Ve,

The computed values are as follows:

Mode TE\,o TE2,0 TE3, o
fe; MHz 3000 6000 9000
0;, deg 72.55 53.13 25.15
Ag,cm 3.145 3.75 6.883
vpz, M[sEC 3.145 x 108 3.75 x 108 6.883 x 108
g, Ohms 395.2 471.2 864.9 |

ExXAMPLE 6-29. A parallel-plate waveguide extending in the z direction and has‘[/ing
a = 3 cm has a dielectric discontinuity at z = 0 as shown in Fig. 6.60(a).
For TE, , waves of frequency 6,000 MHz incident from the free-space side,
(a) find the fraction of the incident power transmitted into the region z > 0,
and (b) find the length and permittivity of a quarter-wave section required
to achieve a match between the two media.
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/

3em Ko Eo tig, 4€5 (a)

z =0

|
|
|
ng1 = 682 Q | Ng2 = 207.35 Q (b)
|
I
|
i

z =0

Fig. 6.60. (a) Diclectric discontinuity in a parallel-plate wave-
guide. (b) Transmission-line equivalent for power flow across
the discontinuity for the TE, o mode.

Since the discontinuity exists over the entire transverse section of the
waveguide, we can use the transmission-line equivalent of Fig. 6.59 for each
section of the guide. For the TE, , mode, 4, = 2a = 6 cm. For f = 6000
MHz, the wavelength in free space is A, = 5cm and the wavelength in a
dielectric of permittivity 4¢, is 4, = 2.5 cm. Since 4, and A, are both less
than 4,, the TE, , mode can propagate in both sections. Denoting the guide
parameters associated with sections 1 and 2 by subscripts 1 and 2, respectively,
we have

7, _ 377

= = = 682

T = T Giy — JT= R oo ohms
g 185 _

N2 A=y~ A=05 207.35 ohms

The transmission-line equivalent for power flow in the z direction is shown
in Fig. 6.60(b). The reflection coefficient at z = 0 is then given by

5 fer — Moy 20735 — 682

=l e e — 0537
Thus the fraction of incident power transmitted into the region z > 0 is
1I'— |2 = 1 — 0,53372 = 0.715. The characteristic impedance of a quarter-
wave section required to achieve a match between line 1 and line 2 must be
equal to ./#,,%,,. Denoting the parameters associated with the quarter-
wave section by subscript 3, we have

=M - Snm
T = A=y e
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or

N/ €1/€; -
T = Oufa)ilefey) Y Meille J

€,/€, _ Haifler _ 682 X 207.35 _ 1 995 ‘6

T= GOy nt 37 |
€, = 1.6995¢, ' i

Hence the permittivity of the quarter-wave matching section must be equal
to 1.6995¢,. To determine the required length of the matching section, we
compute the guide wavelength in the section as

1 Ay _ 1,/,/1.6995
£ VT —=Gsfd)? /1= (Ay/A)2(1]1.6995)

3.8355
_ 38355 49874
/T —0.4036 T4cm

Hence the required length = 4,/4 = 1.24685 cm. |

|
We have merely introduced the concept of a waveguide by considering
TE,, , modes in a parallel-plate guide. Since the electric field is entirely along
the p direction, that is, tangential to the plates, introduction of two mor
conductors in two y = constant planes, say y = 0 and y = b, does not i
any way alter the field configuration of the TE, , mode. We then have
metallic pipe with rectangular cross section in the xy plane as shown in Fig.
6.61. Such a structure is known as a “rectangular waveguide.” The fields

Fig. 6.61. Cross section of a rejc-
a tangular waveguide.

in the TE,, , modes have m half-sinusoidal variations in the x direction and
no variations in the y direction. They are due to uniform plane waves having
electric field in the y direction only and bouncing obliquely between the wallls
x =0 and x = a. In a similar manner, we can have uniform plane wayes
having electric field in the x direction only and bouncing obliquely between
the walls y = 0 and y = b, resulting in TE, , modes. The cutoff wavelengths
and frequencies for these modes can be obtained by substituting b for a and
n for m in (6-257) and (6-258), respectively. We can even have TE,, , modes
due to uniform plane waves having both x and y components of electric
field and bouncing between all four walls, satisfying the boundary condition
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that the tangential electric fields at the walls are zero. We can repeat the
entire discussion by starting with uniform plane waves incident obliquely
on a perfect conductor with their magnetic field entirely parallel to the plane
of the conductor, leading to transverse magnetic or TM modes. We should,
however, note that TM,, , and TM, , modes are not possible in rectangular
waveguides. To see why this is so, we note, for example, that TM,, , modes
in parallel-plate waveguides contain x components of electric fields and it is
not possible to place conductors in y = constant planes without creating
half-sine variations of E, in the y direction. For a particular frequency, all
modes for which the cutoff frequencies are less than that frequency can prop-
agate along the guide. However, in practice, waveguides are designed to
transmit only the dominant mode, that is, the TE,, mode by a suitable choice
of the dimensions a and .

We will now discuss the consequence of v,,, the phase velocity along
the guide axis, being a function of frequency. Let us consider a wave which
is made up of a group of waves of different frequencies. If the phase velocity
is independent of frequency, the different frequency components maintain
the same phase relationships at each and every point along the direction of
propagation, thereby preserving the waveshape as it travels. We can then
say that the group as a whole travels with the phase velocity. If, on the other
hand, the phase velocity is dependent on frequency, the different frequency
components do not maintain the same phase relationships at points along the
direction of propagation, thereby changing the waveshape. This phenomenon
is known as “dispersion,” so termed after the phenomenon of dispersion of
colors by a prism. In the presence of dispersion, we cannot say that the
group as a whole travels with any one of the phase velocities of its com-
ponents. However, we can attribute a velocity known as the “group velocity,”
denoted by v, for the group travel under certain conditions.

To discuss the concept of group velocity, let us consider a group of two
waves of frequencies w, and w, (> w,). Let the associated phase constants
be f, and B,. Then the phase velocities associated with w, and w, are
v, = @,/f, and v,, = w,/f,, respectively. Let us consider an instant of
time, say ¢ = 0, at which the variations of the two waveforms with distance
are as shown in Fig. 6.62(a), in which there is a coincidence of the two
waveforms at the point designated 4,, 4,. For the parallel-plate waveguide,
Eq. (6-261) indicates that the phase velocity decreases as frequency is
increased. Hence, as the two waves travel along z, the waveform for w,
slides backwards relative to the waveform for w,. Thus, while the points
B, and B, of Fig. 6.62(a) both move in the positive z direction as time pro-
gresses, the spacing between them decreases continuously until, at a time
At, the two points coincide as shown in Fig. 6.62(b). The variation with dis-
tance of one waveform relative to the other is then exactly the same as in
Fig. 6.62(a). For an observer, the group as a whole appears to be shifted in
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Fig. 6.62. For illustrating the concept of group velocity and for
deriving an expression for the group velocity.

distance by d in time A¢. Hence the group velocity is

d

1)=A—

But
the distance moved by B, in time At = 4, + d
the distance moved by B, in time At = 4, + d

where 1, and A, are the wavelengths corresponding to @, and w,. From fthe
phase velocities associated with w, and w,, we then have

A4+d=21A
1 ta=rp
A d=%2A¢
2 Hd="p

These two equations can be solved to obtain Af and d as
Ay — 4, B, — B,
(w,/B, ) - (C"z/ﬂz) Jﬁz — 0,5,

_ (@y/BIA — (@,/B.)2, _ — gD — @y
(@/B,) — (@,/82) W f, — @,

At =




pz
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so that

Wy — @y
’Ug:———

(6-264)

17 ﬂ 1
Between times zero and A, the distance variation of one waveform
relative to the other is obviously such that the group is not identical to a

displaced version of the group at = 0. However, let us look at the waveform
obtained by adding the two signals. This is given by

E = E, cos(w,t — f,z) + E, cos(w,t — B,2) .
= E, cos[(wl '{2" @y By _?l: 'B2z) - (“’2 > CIPR - ﬂlz>]

+ E, Cos|:(w1 ‘2{" @ay __ B, ‘2i‘ ﬁzz) s (wz ;aht _ b ; ﬁlz)]

_—_2E0cos(w2_2_w1t—ﬁz;ﬁ%)cos(wlé—wzt—ﬂ‘_2)_322)

(6-265)
The right side of (6-265) represents a wave of frequency (0, + ®,)/2 travel-

ing with a phase velocity (0, + ®,)/(8, + B,) and with its amplitude modu-
lated in accordance with another wave of frequency (0, — ®,)/2 traveling

with a phase velocity (w, — w,)/(f, — B,), as shown in Fig. 6.63. Thus,

Wy — W]

T A~ B2 — B /”—/\\\
/f\/ /\ - ~ //7\ \\

. v )
Vd .

\ 7

M

Fig. 6.63. For illustrating that the envelope of the superposi-
tion of two waves of frequencies w; and @, and phase constants
B1 and f,, respectively, moves with the group velocity

(@, — @0:)/(B; — B1).

aJthough the waveform for (w, + w,)/2 is changing in phase in accordance
with the phase velocity (@, + @,)/(f, + f,), its envelope is moving with
the velocity (w, — w,)/(8, — B,). As far as the amplitude is concerned, the
entire group appears to be moving with the velocity (@, — w,)/(f, — B.)-

For the parallel-plate waveguide, the phase constant corresponding to

1S
1 i 3
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The variation of f, with @ is shown in Fig. 6.64. A diagram of this kind is{
known as the @ — f, diagram or the dispersion diagram. The phase velocity,
corresponding to any particular frequency is given by the slope of the ]ine“

w

i
|

3we
2w,

We

0 > B }

Fig. 6.64. [3, versus w for the parallel-plate wave- 1
guide. ’

drawn from the origin to the point on the curve corresponding to that fre-
quency. The group velocity corresponding to any two frequencies w, and ®,
is given by the slope of the line joining the two points on the curve corre-
sponding to those two frequencies. If we have a band of frequencies, we can
find group velocities for each pair of these frequencies in this manner. We
can attribute a group velocity to the entire group only if all these group
velocities are equal. From Fig. 6.64, we see that this is not possible for a
wide band of frequencies because of the nonlinear dependence of f, upon
. Hence it is not meaningful to talk of a group velocity for a group of waﬁ/es
comprising a wide band of frequencies. If, on the other hand, the frequencies
are contained in a narrow band about a predominant frequency w, then we
can approximate the nonlinear @ — B, curve in that narrow band by a
straight line having the slope equal to that of the actual curve at @ so that
it is meaningful to attribute a velocity to that group. This group velo&ity
is given by

'vgz = ZT? (6- 67)
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For B, given by (6-266),

and

(6-268)

Substituting for /1 — (A/,lc)2 in terms of 0,-, we have
v,, = v,sin @,
Thus the group velocity is the component of », along the z axis. It is the
distance between two constant z planes divided by the time taken by a point

on the obliquely bouncing wavefront to pass from one plane to the other
as shown in Fig. 6.65. This gives the physical interpretation for the group

Fig. 6.65. For illustrating that the group velocity is the velocity
with which energy propagates along the guide axis.

velocity as the velocity with which energy propagates along the guide

axis. In fact, this physical interpretation is valid not only in this case but,

in general, whenever a meaningful velocity can be attributed to the group.
Finally, we note a simple relationship between v,,, v,,, and v, as

V0, = V3 (6-269)

Because the dispersion which we have discussed here is caused by the geome-
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try associated with the bouncing of the waves between the walls, it is known
as “geometric dispersion.” There are other types of dispersion as we will
learn in later sections. The relationship (6-267) also holds for these other
types of dispersion since its derivation is independent of the mechanism
causing the dispersion.

Waves in Imperfect Dielectrics and Conductors;
Attenuation and the Skin Effect

Thus far we have been concerned with wave propagation in perfect dielectri
media (o = 0). In this section we will discuss wave propagation in loss
media, especially in good conductors. We restrict our discussion to sinusoid
steady state. For a medium characterized by conductivity o, permittivity ¢,
and permeability u, we recall that Maxwell’s curl equations are given b

0B _ JH
VxE= —gF= —H o
_ oD JE
VxH—J+W—aE+6W
For sinusoidally time-varying fields, we have
VxE=—jouA (6-270%1)
V x H = oE + jweE = (0 + jwe)E (6-270b)

Taking the curl of (6-270a) on both sides and using the vector identity f(")r
V x V x E, we obtain

V(V.E) — V:E = —jouV x H (6-271)
But from (6-270b), we have

1 0y — -
a—_l_—WV-VxH—O (6-272)
Substituting (6-272) and (6-270b) into (6-271), we obtain the vector wave
equation for the electric field as

V‘E:

V2E = jou(o + jwe)E (6-2173)
Defining a complex quantity 7 as
7* = joulo + joe) (6-274)
we write (6-273) as
V2E = 3E (6-275)

Assuming that the electric field has only an x component, which is dependent
on the z coordinate only, that is,

E = E (2,
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Eq. (6-275) reduces to

2
‘702E2 — PE (6-276)
The solution for (6-276) is given by
E (2) = Ae " + Ber* (6-277)

where 4 and B are arbitrary constants. Since ¥ is a complex number, we
can write

y=a -+ jf (6-278)
where o and B are the real and imaginary parts of 7, respectively. Substitut-
ing (6-278) into (6-277) and also writing 4 = Ae”® and B = Be’*, we have

E (2) = Ade 2 IP7ei® | Berzeibzeit (6-279)
and
E (z,1) = ®elE (z)e’']
= Ae”** cos (wt — Bz + ) - Be** cos (wt + Bz + @)

Ignoring the factors e~** and e** on the right side of (6-280) for a moment,
we note that the first and second terms represent the (4) and (—) waves,
respectively. The factor e™** decreases in value as z increases, thereby resulting
in attenuation of the (+) wave as it progresses in the positive z direction.
Similarly, the factor e** decreases in value as z decreases, thereby resulting
in the attenuation of the (—) wave as it progresses in the negative z direction.
The factor « is therefore known as the “attenuation constant.” The units of
o are nepers per meter. The word “neper” is a variation of the spelling of
the name Napier. The factor f is, of course, the “phase constant” associated
with the traveling waves. Since o and f together characterize the propagation
of the wave, the factor 7 is known as the “propagation constant.” Since we
have identified the two terms on the right side of (6- 277) as representing
(+) and (—) waves, respectively, we can replace 4 and B by E; and E3,
respectively, and write

(6-280)

E(z) = Ete™ + Eze (6-281a)
The corresponding solution for H contains a y component only which can
be obtained by substituting (6-281a) into (6-270a). Thus

A) = %(E;’e’” — Ezer) (6-281b)

i — Jou _ jou -
=15 ‘/a+jw€ (6-282)

is the intrinsic impedance of the medium, which is now complex. Equations
(6-281a) and (6-281b) together represent uniform plane-wave solution for
the lossy medium since, in the planes of constant phase, the amplitudes of
the fields are uniform although there is attenuation from one plane to another,

where
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To obtain the expressions for & and g, we substitute (6-278) into (6-274)
and equate the real and imaginary parts on both sides of the resulting equg-
tion. Thus we have

o2 — ft = —w?ue and  2af = wuoc

Solving these two equations for a, we get

2 2

The minus sign associated with the square root in the above equation malQies
o imaginary. Hence we ignore it to obtain "7'

o= o (14 Gm - 1)]" (6-283)

p—vo oo )1+ Ga+ 1) (28

Note that if ¢ = 0, Eqs. (6-283), (6-284), and (6-282) giveaa = 0, § = o~/ e,
and % = /pfe, which correspond to a perfect dielectric medium. Sirice
B given by (6-284) is not a linear function of e, the wave propagation in t.he
lossy medium is characterized by dispersion. This type of dispersion is knoy’wn
as “conductive” dispersion since it is due to the conductivity of the mediym.

The expressions for & and f given by (6-283) and (6-284), respectively,
are very complicated. They can, however, be reduced to simple expressipns
for two special cases. We now consider these two special cases:

(a) Good dielectrics: o < we; that is, conduction current is very srﬁall
compared to displacement current. We can then write

/ o\ __ o? ot
L+ (&) ~1+ e~ Bote

The simplified expressions for &, B, and 7 are
B o524 50 ) ~ o /me(1 + §£f—62) (6-285b)
~ e~ ) 125

where we have retained all terms up to and including the second powr in
o/we. Although the first-term approximation of the attenuation confstant
given by (6-285a) seems to be independent of frequency, ¢ and € are, in
general, functions of frequency as stated in Section 5.10. In fact, the quantity
o/we is very nearly constant for several dielectrics over wide freqTency
ranges.

and

~3I

(6-285¢)
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(b) Good conductors: ¢ >> we; that is, conduction current is very large
compared to displacement current. We can then write

V(G ~ 3

The simplified expressions for o, #, and 7 are

o~ o, HE ( —1~mﬁ F Jifue  (6-2862)
B~ w,/”f(w€+1)~wﬁ DU _ /afus  (6-286b)

1~ ja)ﬂ—— ] WL _ ] Zz.fﬁ -
i 128 = (4 ), [ = 1 4 ), [ (6-2860)

E‘&(AMPLE 6-30. For uniform plane waves in sea water (¢ = 4 mhos/m, € = 80¢,,
“ u=u,), find a, B,#%, and 1 for two frequencies: (a) 10,000 MHz and (b)
| 25 kHz.
The frequency at which ¢ = we is equal to 4/(2n x 80 x 107°/36x) or
900 MHz. Hence, for 10,000 MHz, 6 < we, sea water is a good dielectric
and for 25 kHz, ¢ >> we, sea water is a good conductor. '
Thus, for 10,000 MHz, we have

1 /_li(_0'2>~1 Z 1 Ly _ . 37
v~ 3 e\l ~8ge) = 79 € =7 X4 X430, = 2 X %0

= 84.3 nepers/m
ﬂkwﬁ(l +§£2L62)2w m:znx 1%>;11(2)98x¢8_0

= 1873 rad/m
7 %@]:(1 - %;%) +j2%g:| ~ @ = %% — 42.15 ohms
2= %t ~ 20— 3353 % 10 m = 3353 mm

as compared to 30 mm in free space.
For 25 kHz, we have

o~ /nfuc = /m X 25 X 10° x 4 x 1077 x 4 = 0.2z nepers/m
B & /nfuc = a = 0.2z rad/m /

s Ny . ~ 1 X 25 X 10% X 4z x 1077
A~ (4 Dy 2 =1 1)), .

= 0.05z(1 + j) ohms

2 2=n
A= =02

‘ as compared to 12 km in free space.

=10m



472  Applied Electromagnetics Chap.

From these values, we conclude that low-frequency waves are mor
suitable for communication with underwater objects. We should, however,
note that since the wavelength in free space is large for low frequencies, lonjg
antennas are required in air. ||

Let us now consider a uniform plane wave incident normally on
semiinfinite plane slab of good conductor as shown in Fig. 6.66. Since the

S
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Fig. 6.66. Normal incidence of a uniform plane wave on a
semiinfinite plane slab of good conductor, for illustrating the
concept of skin depth.

conductor is of infinite depth, only a (-}-) wave can exist inside the conductor.
The fields inside the conductor are therefore given by

E(2) = E,e77 = E, e /" norg1VaTuas (6-287a)
Afz) = %—e = Lo p-vapims - p/aFies (6-287b)

where E,, is the value of £, at the surface z = 0 of the conductor. To obltain
an idea of how rapidly the wave is attenuated, we use the concept of “g[skin
depth” or depth of penetration applied to plane conductors. The skin d‘ﬁ(epth
denoted by the symbol § is defined as the depth or distance from the surface
of the plane conductor at which the magnitude of the field is e™! times its
value at the surface. From (6-287a), we note that

1
~Tfuo

Thus the skin depth is inversely proportional to o, u, and f. For copper,

(6-288)
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the conductivity is 5.8 X 107 mhos/m so that the skin depth is given by

s 1 _ 0066
coerer T /pf X dm X 1077 x 5.8 x 107 T L/ f

For a frequency of 105 Hz, the skin depth of copper is 0.066 mm. Thus the
fields are attenuated to e~ ! times their values at the surface in a distance of
0.066 mm even at the low frequency of 1 MHz. In a distance of one wave-
length in the conductor, the attenuation is equal to e** = e*(2%/8) = ¢»
nepers/m since f is equal to a. In terms of decibels, this attenuation is
20 log,, €*" = 20 log, e**/log, 10 = 407/2.3026 = 54.5. In view of the rapid
attenuation of the fields inside the conductor, the fields and the current
given by density J = oK are concentrated close to the surface of the con-
ductor. This phenomenon is known as the “skin effect.”

Because of the skin effect, a conductor of finite thickness equal to a
few skin depths can for all practical purposes be considered as a conductor
of infinite depth. Hence, if a wave is incident upon it from one side, its effect
is not felt on the other side, thereby “shielding” one side of the conductor
from the other. Furthermore, since there is no reflected wave inside the
conductor, we can compute the power flow into the conductor by surface
integration of the Poynting vector corresponding to E, and H, given by
(6-287a) and (6-287b). Thus, noting that

(6-289)

E©=E, and H(0) :ffi

we obtain the complex Poynting vector at the conductor surface as

5 Loz o odxont L B
P — T[Ex(o)]x X J/(O)ly] - TEXOW*_IZ
L
2

l xolziz:_;‘_lﬁy(o_)lzlﬁlz
17*

1 _ 5 .
~ 7 O Pi,

.
lZ

For a surface S of length / in the x direction and width w in the y direction,
the complex power flow into the conductor is

B,=[ B.ds=FE@w) = 2w RO (6-290)
S

However, applying Maxwell’s curl equation for H in integral form to the
closed path abcda shown in Fig. 6.66, we have

ffi H.dl= j (oE + jweE) » dS (6-291)

abeda area
abed

The left side of (6-291) has a contribution from ab only, since along bc and
da, H is perpendicular to the path and along cd, H is zero. Along ab,
H = H(0)i, so that the integral is wH (0). On the right side of (6-291), the
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second term in the integrand can be ignored since o > we. Hence the integral
is simply the conduction current flowing in the conductor. Denoting this
by I, we have

wH©) =1, or H(0)= = (6-292)
Substituting (6-292) into (6-290), we get
R (6-293)
Substituting for # in (6-293) from (6-286c), we have
By=(+ iy e Lfp |
— 2+ D ILp (6-299)

1 7 5 .11 5 |

=7m|1x|2+1705_w|1x|2
From (5-206), the real part on the right side of (6-294) is the time-
average power dissipated in the conductor. It is also exactly the result that
would be obtained by computing the time-average power dissipated under
quasistatic conditions in a conductor of length /, width w, thickness d, and
conductivity ¢ if the current I, were distributed uniformly over the crass
section of the conductor. This gives an alternative significance for the skin
depth 6. We will denote the resistance //odw by the symbol R;. From (5-206),
the imaginary part on the right side of (6-294) is 2w times the time-average
magnetic stored energy in the conductor since the time-average electric
stored energy is negligible in view of o> we. In fact, a volume integration
of -},ulﬁy |* gives exactly the imaginary part of the right side of (6-294)

divided by 2w, that is,

1 !

1 T 12
4 wa&wll"]

This energy is the same as the time-average magnetic energy stored under
quasistatic conditions in an inductor of value //wadw if the current | I, | were
flowing in it. This inductance is the internal inductance of the conductor
which we denote as L,. Thus the impedance offered by a portion of the con-
ductor of length / and width w to the current flowing in it is given by

L !

Zi= R A jol =g T sy

+j (6-?.95)
This impedance is known as the “internal impedance.” We may emph#size
that the formulas for skin depth and internal impedance developed here
are strictly valid for plane conductors only. However, if the radius of a
cylindrical conductor is very large compared to the skin depth for the matErial

of the conductor, these formulas can be used with negligible error. ’

I
!
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ExAMPLE 6-31. Figure 6.67 shows the cross section of a hollow cylindrical conductor
of radius a and thickness d < a, in which current flows axially. It is desired
to find the approximate expression for the internal impedance of the con-
ductor per unit length in the axial direction if the skin depth § for the material
is<Kd.

Fig. 6.67. Cross section of a
hollow cylindrical conductor of
thickness small compared to its
radius,

Since d is < a, we can assume that the required internal impedance is ap-
proximately equal to the internal impedance of a plane conductor of appropri-
ate width. If dis not < a, we cannot use this approximation and the problem
must be solved in cylindrical coordinates. If § is < d, it is actually immaterial
whether the conductor is hollow or not since the current does not penetrate
much below the surface and hence the depth can be assumed to be infinity
for the purpose of computing the internal impedance. Thus the required
internal impedance is approximately the same as the internal impedance of
a plane conductor of infinite depth and width equal to 2za. From (6-295),
this is equal to (1 + j)/2racd per unit length in the axial direction. [

In Sections 6.8, 6.9, and 6.10, we considered transmission-line waves
between perfect conductors with the medium between them as a perfect
dielectric. These waves are exactly TEM since the perfect conductors (¢ = <o)
do not require any axial electric field to maintain a current flow along them.
If the dielectric is now made imperfect, the waves are still exactly TEM
except that attenuation takes place as they propagate down the line. In fact,
the transmission-line equivalent circuit in Section 6.7 was derived by con-
sidering the dielectric to be imperfect. On the other hand, if the conductors
are imperfect, the finite conductivity requires an axial electric field for the
current to flow along the conductors. This axial electric field in the conductors
is accompanied by an axial electric field in the dielectric since the boundary
condition at the interface between the dielectric and the conductor requires
that the tangential electric field be continuous. Thus the electric field between
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the conductors is no longer entirely transverse and hence the waves ar¢
no longer exactly TEM waves. However, if the conductors are good con-
ductors, as is the case in practice, the axial electric field is very small compared
to the transverse electric field and the waves between the conductors are
almost TEM waves. In the conductors, the axial component of the electric
field dominates so that power flow is almost normal to the dielectric-con-
ductor interface. The situation as compared to the perfect conductor case
is illustrated in Fig. 6.68. Thus, as the wave propagates, it gets attenuated

Perfect Conductor Imperfect Conductor
}
X X X X
rx f x ¥ x Y x [EJ EI,J
\ |
X X X X
} 4.—4/———!
(a) (b)

Fig. 6.68. Fields for a transmission line employing (a) perfect
conductors, and (b) imperfect conductors.

partly due to power dissipation in the lossy dielectric and partly due to energy
leakage into the conductors which is dissipated in the conductors. The power
dissipation in the lossy dielectric is accounted for in the distributed equivalent
circuit by the conductance in parallel with the capacitor. The power dissipa-
tion in the conductors can be accounted for by introducing into the sefries
branch an impedance which is offered by the conductors to the current
Since the current flow is almost parallel to the conductor surface, this imped-
ance is approximately the same as the internal impedance given by (6-295)
per unit length. Thus we obtain the distributed equivalent circuit for a lossy
transmission line as shown in Fig. 6.69, where the factor 2 takes into account
the two conductors and i‘

A

®, = resistance per unit length of the conductor due to skin equect
&£, = internal inductance per unit length of the conductor duie to
skin effect,
G, £, € = conductance, inductance, and capacitance per unit lewngth
if the conductors were perfect.

The circuit of Fig. 6.69 forms the basis for lossy transmission-line thleory
which follows along lines similar to lossless transmission-line theory but is
characterized by attenuation and dispersion.
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Fig. 6.69. Distributed equivalent circuit for a lossy transmission
line.

The concept of internal impedance is useful not only for a lossy trans-
mission line but for any system involving waves between imperfect but good
conductors, since it permits the estimation of the power loss in the conductors
from the solutions for the fields in the corresponding lossless case. This is
because, for good conductors, it is reasonable to assume that the fields
between the conductors differ very little from the lossless case so that the
current flowing in the conductors can be obtained from the tangential mag-
netic fields. Then, since these currents flow very nearly parallel to the con-
ductor surface, power loss can be computed by using 4|7[2R,. We will use
this technique in the following section for deriving the Q factor for a parallel-
plate resonator employing imperfect but good conductors.

Resonators; Laser Oscillation

In Section 6.10 we discussed complete standing waves resulting from the
superposition of (+) and (—) waves of equal magnitudes. For a short-
circuited line (or a semiinfinite dielectric medium terminated by a perfect
conductor), we found that the line voltage (or the electric field) is zero at
distances of integral multiples of A/2 from the short circuit (or the perfect
conductor). Hence, if we short circuit the line (or place a perfect conductor)
at these points, there will be no effect on the voltage and current (or fields)
at any other point. Alternatively, if we have a line of length / which is short
circuited at both ends (or a dielectric medium between two parallel, perfectly
conducting plates) and containing some stored energy, this energy must
exist in the form of complete standing waves having wavelengths such that
[ =n4,/2, that is, A, = 2l/n, or B, = 2xr/A, = nn/l, where n=1,2,3,...
as discussed in Example 6-21. The corresponding frequencies are given by
w, = nzv,/l

Thus let us consider a system of two infinite, parallel, perfectly conduct-
ing plates as shown in Fig. 6.70, between which the medium is a perfect
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Fig. 6.70. Parallel-plate resonator consisting of two [
infinite-plane, perfectly conducting plates.

dielectric and energy is stored in the form of standing waves having field
components E, and H,. From (6-231a) and (6-231b), the expressions for
these fields that satisfy the boundary condition at d = 0 can be written as

E.(d,t) = —2E, sin fd sin ot (6-296a)
Hd, 1) = 2% cos fd cos wt (6-2961)
where E, is a constant, the value of which we need not know, and # = ./ ,u/#

Substituting f = nzn/l and w = nav, [l = nn/l./ ue in (6-296a) and (6-296b),
we obtain

E(d, ) = —2E, sin 74 sin 17 297
(d, ©) o Sin == sin ; NI (¢ 29713')
Hyd, 1) =2,/ %Eo cos ”_’l’d cos - % (6-297)b)

which satisfy the boundary condition at d = [ for all ¢. The instantanedus
electric and magnetic stored energy densities associated with these fields are

w(d, 1) = é—eEi — 2¢E? sin? l’? sin2 l_:’/_’% (6-298a)
W (d, 1) = _é_ pH? = 2€E3 cos? @" cos? 1:1/7%2 (6-298b)

Let us for simplicity consider the case n = 1, that is, for which the standing
waves have one-half wavelength between the plates, and sketch the encrgy
densities as functions of d for different values of ¢, as shown in Fig. €71.
We note from Fig. 6.71 and from Eqs. (6-298a) and (6-298b) that the
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Fig. 6.71. Electric and magnetic energy densities versus d for
various values of ¢ for the parallel-plate resonator of Fig. 6.70.

stored energy density at all points is entirely magnetic at certain times
(t =0, 1./ ue, .. .) and entirely electric at certain other times (r = I./z€/2,
31/ €2, . ..) with the bulk of the magnetic energy stored close to the
conducting plates and the bulk of the electric energy stored close to half way
between the plates for all times. The total energy density in the two fields
from d = 0 to d = / must be constant with respect to time. To show that
this is indeed true, we write

wy= [ wi@dndi+ [ w@nd

= J 2¢E? sin? &2 7zd sin? dd
d=0

zf

+ f 2¢E2 cos? == nd cos? ljt_

l
= 2¢E? ( 2 2 __) — 2
€E}—(sin lf -+ cos I €.E5l
The same result holds for any value of n. This process of exchange of energy
stored between the plates from one field to the other is the phenomenon of
resonance. The parallel-plate structure itself is known as a resonator, the

(6-299)
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distributed counterpart of a lumped parameter resonant circuit. The fre-
quencies f, = n/2l./u€ are the resonant frequencies or the natural frequencies
of oscillation of the parallel-plate resonator.

The same concept can-be extended to waveguides, discussed in Section
6.12. For example, by superimposing two TE,, , waves of equal amplitudes
propagating in positive and negative z directions in a parallel-plate wave-
guide, we can obtain complete standing TE,, , waves in the guide, having
nodes (zeros) of E, at intervals of integer multiples of 1,/2 in z. By placing
perfect conductors in these planes, we do not alter the fields in any othe?‘
plane. Conversely, by placing perfect conductors in two transverse planes
of a parallel-plate waveguide, separated by a distance d, we create a resonatof
which supports standing waves of guide wavelengths 4,, = 2d/l, wher
1=1,2,3,.... The corresponding modes are designated as TE,, , , mode
where / stands for the number of half-wavelengths in the z direction. Proceed
ing in this manner to rectangular waveguides leads to resonators which are
enclosed by perfect conductors on all sides. These are known as cavitly
resonators although the term “cavity” is also used for partially enclose(d
resonators. We will, however, not pursue these ideas any further, but considgr
the effect of conductor losses.

If the conductors of a resonator are imperfect, some of the energy (is
dissipated in them as it oscillates from one field to the other. We then ass-
ciate a Q or “quality factor” to the resonator. The quality factor is defingd

72N

as
_ energy stored
Q=2n energy dissipated per cycle
— 21 _ energy stored (6-3000)
energy dissipated per second/number of cycles per second
— 2nf energy stored

time-average power dissipated

If the conductors are good conductors, the losses are small. The stored energy
and power dissipated are then computed by assuming that the fields in the
resonator are the same as in the lossless case, that is, perfect conductor cajse.
We will use this technique to find the Q of a parallel-plate resonator in the
following example.

ExampLE 6-32. For the parallel-plate resonator of Fig. 6.70, it is desired to find {the
0, assuming that the plates are made up of imperfect conductors of conduc-
tivity ¢ and having thickness of several skin depths for the frequencies of
interest.

From (6-299), the energy stored in the resonator per unit area of|the
plates is given by

|
w= eE2l (6-301)
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To find the time-average power dissipated, we note that the current flowing
in the conductor per unit width in the y direction is equal to the tangential
magnetic field at the surface of the conductor in accordance with (6-292),
since the thickness of the conductor is several skin depths. Thus, for the
conductor at d = 0,

_ _ i nw
IL=H0) =2,/ 4 E, cos —lmt

fx:2,/%E0

From (6-295), the resistance offered by the conductor per unit length in the
x direction and unit width in the y direction is

R =1 _ [nfi
2 o
where § is the skin depth for the frequency of interest. Thus the time-average
power dissipated in the conductor per unit surface area is

Po= g ILF R, =25 B3\ — 2ep3, [2 (6-302)

Similarly, the time-average power dissipated in the conductor at d = / can
be found to be the same as given by (6-302). Thus, from (6-300), (6-301),
and (6-302), we have

or

_ €E} 1 1 :
Q= 2”f4—“eEgW = —z—a/nf,ua' =5 (6-303)

As a numerical example, we note that, for /= 1cm and free space
between the plates, the wavelength corresponding to the fundamental fre-
quency of oscillation, that is, for n = 1, is 2 cm and hence the frequency is
15,000 MHz. For plates made of copper, the skin depth at 15,000 MHz
is 0.066/(./15 x 10°) m or 5.38 x 107° cm. Hence, from (6-303), the
value of Q is 1/(2 X 5.38 x 107%) or 9280, which is very large compared to
values encountered in circuit theory. It is left as an exercise (Problem 6.82)
for the student to show that for a particular mode of operation, that is, for
a fixed value of n, Q is inversely proportional to ./ f. The above formula
for Q takes into account only the losses in the conductors. In practice,
there are other losses, for example, losses in the dielectric and losses due
to radiation.

The bouncing of (4) and (—) waves between two parallel plates which
results in resonance as we discussed for the parallel-plate resonator is
employed at optical frequencies in the Fabry-Perot resonator for laser
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6

amplification ‘and oscillation. The Fabry-Perot resonator consists' of two
plane reflecting surfaces between which is an optically active medium charac-
terized by a propagation constant § = & + jB, where o is negative. To
determine the condition for oscillation, let us consider a normally incident
uniform plane wave passing through the surface z = 0 and setting up incident
and reflected waves in the active medium as shown in Fig. 6.72. The steady-
state situation in the medium can be thought of as a superposition of an

T r ——

Active Medium
l‘_:oe ~¥z
———————————— -
TEge 2t
e S

T2E e ~2¥le— 72

z=0 z z = ] between two parallel plates.

infinite number of (+) and (—) waves due to reflections and rereflections

Fig. 6.72. Bouncing of (4) and
(—) waves in an active medium

at

the plates z = 0 and z = /. Thus, denoting the electric field in the initjal
(+) wave in the medium (i.e., the wave which would exist if the mediyim

extended to z = oo) to be E(;e:fz, we obtain the field at z = / in the reflect
or (—) wave due to it as TE e ?, where T is the reflection coefficient

ed
at

z = [. Since this (—) wave is propagating towards z = 0, its field at gny

value of z is T Eje e 702 or T'E e *"¢’. Thus the (—) wave field

at

z =0 is ['E,e 2. Then the field at z = 0 in the rereflected or (— +) wave

due to the reflection of the (—) wave at z = 0 is (I)(I"E,e~2#), where [we
assume that the reflecting surfaces are identical and hence the reflection ccPef—
ficient for the (—) wave at z = 0 is the same as the reflection coefficient |for
the (+) wave at z = I Since the (— --) wave is propagating towards z 3=/,

its field at any value of z is ['2E,e~2#¢~#>, We can continue in this manneir
obtain an infinite number of (+) and (—) waves in the active medium

to
as

shown in Fig. 6.72. The total field in the medium is the superposition of| the




483 Waves in Plasma; Ionospheric Propagation Sec. 6.15

fields in all these waves. Thus it is given by
E(2) = Eje 7 + TE, e e
+ 1_"2E-0e-27'1e—}72 + fsE'oe—weiz
+ f4EOe—4ile—iz 4+ e
= Eyle(1 4+ T2e 27 4 Teemam ... (6-304)
+ Lerze27(1 4 T2e727 4 .. )]
_ Eo e 7z + ?e—Ziley'z
1 — T2e™2
From (6-304), we note that the conditi_on for oscillation, that is, for a field
to be set up in the medium for zero E,, is

1 —T2e 27 =0
or
Te = 41 (6-305)
Denoting T' = | T"| ¢/ and substituting for % in terms of & and B, we write
(6-305) as
|T'|efevte=i# = letim  p=0,1,2,3,...
or
ITle*=1 and 60— Bl= +n=n
az%lnll_“l and Bl=0+nm,n=01,23,... (6-306)

where we choose only those values of # for which B/ is greater than zero.
While the condition S/ = 6 + nn can be satisfied for several frequencies
for a given /, the condition & = (1//) In |T"| is satisfied by a particular active
medium only for a narrow range of frequencies, so that oscillation occurs
only in that narrow range of frequencies. Note that for I' = —1 as is the
case for perfectly conducting plates, the condition for oscillation is

tx=%ln1=0 and  fl—nmn=1,23,...

which agrees with the result for the parallel-plate resonator.

6.15 Waves in Plasma; lonospheric Propagation

Thus far we have discussed wave propagation in free space and perfect
dielectrics and then in lossy dielectrics and good conductors. In free space
and perfect dielectrics, the conduction current is zero so that the current is
entirely of the displacement type. In lossy dielectrics, we have both conduc-
tion and displacement currents but the conduction current is small compared
to the displacement current. In good conductors, the displacement current
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is negligible compared to the conduction current. In this section we will
discuss wave propagation in plasma. Plasma is a gaseous medium in whick|
the atoms are ionized to produce positive ions and electrons, which are free
to move under the influence of the electric and magnetic fields of a wave
incident upon the medium. The positive ions are, however, heavy comparec{,‘
to electrons so that they are relatively immobile. The electron motion pro-
duces a current which influences the wave propagation. This current is differ-
ent from the conduction current in metallic conductors, which is due to
electron drift with an average velocity owing to the frictional mechanism
provided by their collisions with the atomic lattice. The electrons in the
plasma, on the other hand, are accelerated by the electric field although
losing some of the energy due to their collisions with the heavy particles
and other electrons. We will, however, neglect the effect of these collisions
as well as the influence on the motion of an electron by the neighboring
electrons. In addition, since the magnetic field of the incident wave has
negligible influence on the electron motion, its effect will be ignored.
Thus the equation of motion of an electron is given by

dit(mv) = eE (6-307)

where e and m are the charge and mass of the electron, v is its velocity, and
E is the electric field of the wave. If N is the number density of the electrons
in the plasma, the current density resulting from their motion is given by

J = Nev (6-303)
Combining (6-307) and (6-308), we get
oJ _ . dv__ Ne? :
G =Neql ===FE (6-309)
For sinusoidally time-varying fields of radian frequency e, we have
jof = YEE
m
or
i .Nets .
J = ]%E (6-310)

Equation (6-310) gives the expression for the current density which we heve
to use for J in Maxwell’s equation for V x H to discuss wave propagation
in plasma. Thus we have

VxE=—jouH (6-31la)
VxH=1J+ jowe,E
.Ne?= .=

. NeZ —
= joe (1 - W)E
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Since the free electrons and heavy positive particles are distributed with
statistical uniformity in the ionized region, the net space charge is zero so
that

V.E—-Z -0 (6-312)
e-0
Taking the curl of both sides of (6-311a) and making use of (6-311b) and
(6-312), we obtain
- NeZ —
V2E — —coz,uoeo(l — ’%Z—GO)E - (6319)
Equation (6-313) is the wave equation for a plasma medium. Comparing it
with (6-173), we note that it is similar to the wave equation for a perfect
dielectric medium with the permittivity € replaced by €,(1 — Ne?/mw?€,).
We may therefore call the quantity €,(1 — Ne?/mw?¢,) the effective per-
mittivity of a plasma medium.
We now define a quantity known as the plasma frequency, f, as

1 /[N& e _
In= HV%Q = /80.6N (6-314)

where fy is in hertz and N is in electrons per cubic meter. The plasma fre-
quency is simply another way of specifying the electron density in the plasma.
Substituting (6-314) into (6-313), we have -

VE = —w2ﬂ060(1 — f—’z")l_*: = 72E
where the propagation constant 7 is given by
773y
7= Joog/ o1 — 1) (6:315)

Thus wave propagation in plasma is characterized by the propagation con-
stant given by (6-315). We note that for /> f,, (1 — f%/f?) > 0, 7 is purely
imaginary, and the wave is propagated. For f<f,, (1 — f%/f%) <0, 7 is
purely real, and the fields are attenuated. For the propagating range of fre-
quencies, the phase constant is

B= a’\/ﬂofo(l - %V) | (6-316)

and the phase velocity v, is given by
v = Q _ 1 c
PB T M€= [P ST — fRIf?
where ¢ is the velocity of light in free space. In view of the dependence of
v, on the wave frequency, wave propagation in plasma is characterized by

dispersion. This dispersion is known as parametric dispersion from the
point of view that it is a consequence of the frequency dependence of the

(6-317)
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effective permittivity of the medium. The group velocity is given by

v, EE—C fz

Note that

ExampPLE 6-33. An important example of plasma is the ionosphere, which is a region
of the upper atmosphere extending from about 50 km to more than 1000 km
above the earth. In this region the constituent gases are ionized, mostly due
to ultraviolet radiation from the sun. The electron density in the ionosphere
exists in several layers known as D, E, and F layers in which the ionization
changes with the hour of the day, the season, and the sunspot cycle. For the
purpose of our discussion, we will assume that the electron density increases
continuously from zero at the lower boundary, reaching a peak at some
height, typically lying between 250 and 350 km, and then decreases continu-
ously as shown in Fig. 6.73(a). We will assume that it is uniform geograph--
ically, which is not the case in reality, and that the geometry is plane instead
of spherical. Furthermore, wave propagation in the ionosphere is complicated
by the presence of the earth’s magnetic field. We will here ignore the effect
of the earth’s magnetic field. Let us consider a uniform plane wave of fre-
quency f'incident obliquely at the lower boundary of such a plane 1onosphefe
at an angle 0, with the normal to the boundary, as shown in Fig. 6. 73(@)

Height

A

Free Electrons -

> N
(a) (b) i'

Fig. 6.73. (a) Variation of electron density versus height for a ,
simplified ionosphere. (b) Path of a wave incident obliquely on i

the ionosphere. |

J
|
|
|
|
l
|
|
|
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We wish to investigate the path of the wave as it propagates in the ionized
medium. »

We divide the region into several infinitesimal slabs, in each of which
the electron deusity can be considered to be uniform with height. Let us
consider the boundary between the free space and the first slab, for which
we will denote the plasma frequency as f ;. From (6-317), the phase velocity
along the direction of propagation, that is, normal to the constant phase
surfaces in this slab, is given by

c

bt = T = Jal]?
For the waves in the free space and in the slab to be in step at the boundary,
their apparent phase velocities along the boundary must be equal. This is
the same as saying that the apparent wavelengths along the boundary must
be equal. Since v, ; > c, this is possible only if the direction of travel of the
wave is bent away from the normal to the boundary as shown in Fig. 6.74.

Sn3

fna

$ Saa

Free Space

B

Fig. 6.74. For illustrating the bending of the path of a wave
as it propagates in the ionosphere.

Thus, denoting the angle between the normal to the boundary and direction
of travel in the slab by 8,, we have

c V.1
sinf, ~ sind,

or

c . .
—— sin @, = sin @,
p,1
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Applying the same argument from one slab to the next, we obtain, for the
ith and (i — 1)th slabs,

c

c .
——sinf, =
i p,i-1

sing,_,

The quantity ¢/v, is known as the phase refractive index. It is denoted by the;
symbol g, which is not to be confused with permittivity. Thus we have '

u;sin@, = p, ,sinf, \

which is known as Snell’s law. For the series of slabs, we then have

pisin@, = p, sin@,_, = p,_,sin,_, = ---
= u,sinf, = u,sin@, =sinb,

|

As the number of slabs is increased indefinitely, we approach the limitin,

case in which the path of the wave is no longer a series of straight lines but
a continuous curve. As the wave penetrates into regions of higher and higher
electron density, the phase velocity becomes larger and larger, the phase
refractive index becomes smaller and smaller, the angle 8 becomes largér
and larger, and the path bends gradually away from the normal to the
boundary. Finally, a level may be reached at which the electron density s
such that the phase refractive index is equal to sin 8,, so that sin 8 becomes
equal to unity, § = 90°, and the path is horizontal. Due to the curvature
of the path, it is bent over and the wave is returned to the ground by a sym-
metrical path as shown in Fig. 6.73(b). For the level at which the path
becomes horizontal, we have ‘

i =sinf,
or
J1— L8 —sing
PR (6-318)
Sy =fcosb,

Thus a wave of frequency f which is incident obliquely at an angle 8,
with the normal to the boundary is reflected from a level at which the plasma
frequency is equal to f cos 8,. For the special case of normal incidence on
the ionosphere, 8, = 0 and the condition for reflection is

f N = f ‘
The wave is then reflected from a level at which the plasma frequency is
equal to the wave frequency. Hence vertically incident waves of frequencies
less than the maximum plasma frequency, typically about 10 MHz (but
varying with time of the day, season, sunspot cycle, and geographic location)
are reflected. Vertically incident waves of frequencies greater than |the
maximum plasma frequency are transmitted. The same is, of course, true
if the transmitter is above the ionosphere. As the angle of incidence is made
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oblique, waves of larger frequencies are reflected in accordance with (6-318).

The earth’s curvature, however, sets a limit for the highest frequency which
can be reflected. || '

Radiation of Electromagnetic Waves

Thus far we have assumed that electromagnetic fields exist in a medium and
then discussed their characteristics based on Maxwell’s equations. In this
section we will discuss how these fields are produced and are “radiated”
away from the sources. To do this, we consider Maxwell’s equations including

the source terms and solve them simultaneously. The Maxwell’s equations
are

VeD—)p (6-3192)
V.-B=0 (6-319b)
_ B _
VxE= 8 (6-319¢)
VxH=1J+ %‘7) (6-319d)

where p and J are the source charge and current densities, respectively. To
solve (6-319a)~(6-319d) simultaneously, we recall from Chapters 3 and 4
the following: In view of (6-319b), we can express B as the curl of a vector
potential A; that is,
B=VxA (6-320)
Then, substituting (6-320) into (6-319¢c) and rearranging, we have
. JA\ _
V x (E + W) =0
so that E + dA/d¢ can be expressed as the gradient of a scalar potential.
Thus E + dA/dt = —VV, or
E——vy_ 94 (6-321)

We now substitute (6-320) and (6-321) into (6-319a) and (6-319d) to
obtain a pair of coupled equations in ¥ and A. These are

V.(—VV_%“:_‘)zi

€
J A\
VxVxA—,ueW(——VV—E—)—,uJ
or
L dy.a=_2 -
Vi SV ay= L (6-3222)

VA —V(VA+ ,ue%—lt/) _ ye%} - —ud (6-322b)
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Equations (6-322a) and (6-322b) seem to be very complicated. However,
a vector is uniquely defined only if both its curl and divergence are specified.
While the curl of A is given by (6-320), we have not yet specified the divergence
of A. We now do this by setting

VeA——u” (6-323)

ot

which is known as the Lorentz condition. This uncouples the equations
(6-322a) and (6-322b) to give us

vy — ﬂe‘;t’f - 2L (6-324)
VA — ﬂe‘;fj 3 (6-325)

If we can solve these two equations for given charge and current distributions
of densities p and J, respectively, we can then find the fields by using (6-321?
and (6-320). L

Before we discuss the solution of (6-324) and (6-325), we will show tha
the continuity equation is implied by the Lorentz condition. To do tth
we take the Laplacian of both sides of (6-323). We then have

VAV . A) = —,usZ%V

P
|

or

d
ot

Substituting for V2A and V2V in (6-326) from (6-325) and (6-324), respe‘ -

tively, we get
(A I A
Ve (uelr — wd) = —neg{ueSy — £)

V.V2A = —pelvey (6-326)

€
or

(a0 )
Thus, by assuming the Lorentz condition, we imply V «J + dp/dt =0,
which is the continuity equation. Since the continuity equation must |be
satisfied by physical charge and current distributions, it is appropriate to
use the Lorentz condition to uncouple (6-322a) and (6-322b).

Returning now to Egs. (6-324) and (6-325), we note that their forms are
familiar. They are wave equations with source terms on the right sides. Hence
they are inhomogeneous wave equations. We will discuss the solutions| to

l
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equation reduces to
vy =_2
€

which is Poisson’s equation for the electrostatic potential. Let us consider
a point charge Q, at the origin. The electrostatic potential due to this point
charge is given by

For the time-varying case, we know that electromagnetic effects propagate
with a finite velocity v which for the homogeneous wave equation correspond-
ing to (6-324) is 1/./ue. Hence, if the point charge at the origin is varying
with time (due to current flowing into and/or away from the origin), its
effect is felt at a distance r from the origin after a time delay of r/v. Conversely,
the effect felt at a distance » from the origin at time ¢ is due to the value of
the charge which existed at the origin at an earlier time ¢ — r/v. Thus, if the
point charge at the origin is varying in the manner Q, sin wt, we expect the
time-varying electric potential due to it to be

Ve, i) = oS00 1) o (6-327)

To verify if our reasoning is correct, we note that

_ w2[ Qo sin w(t — r/v)]
\ad vzL : 4ner |

= %’E{[Sin a)(t — -%)]VZ%

+ 2V sin a)(t — -%) . V% + %VZ sin co(t — %)}

_0,0(r)sin wt 20, sin w(t — r/v) (6-328a)

€ 47erv?

where we have used the vector identity
Vidy) = ¢ Vy + 2V « Vy + w V2§
and the relation (see Problem 2-58)
VZ% — —das(r)
We also note that
0*V _  ?*Q, sin w(t — r/v) )
HE Gz = 47erv? (6-328b)

From (6-328a) and (6-328b), we have

Vo — el — Q0@ sin o

which agrees with (6-324) for a point charge Q, sin w¢ at fhe origin.
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’

It follows from (6-327) that, for a time-varying volume charge of density
p(r’, t) in an infinitesimal volume dv’ at a point P(r’), the time-varying electric (
potential at a point Q(r) is given by

_ p | — X)) 4 6-329
dv,t) = TneTr =7 dv ( a){
Similarly, from Eq. (6-325), the time-varying magnetic vector potentiaf[
at a point Q(r) due to a time-varying volume current of density J(r’, ¢
in an infinitesimal volume dv’ at a point P(r’) is given by

dA(r, 1) = LI L = r ;l"l [%) g (6-329b

Equations (6-329a) and (6-329b) tell us that, to find the time-varying eleg-
tromagnetic potentials at a point Q(r) at a time ¢ due to a volume charge
pdv' and a volume current J dv’ at a point P(r'), we can make use of the
expressions for ¥ and A for the static case except that we have to use thoge
values of p and J which existed at P at a time ¢ — |r — r’|/v. For thjs
reason, these potentials are known as the “retarded potentials.” Tlﬁe
retarded potentials for volume charge and current distributions in drn
extended volume V' are given by the integrals of (6-329a) and (6-329b).
These are

| pat—Ir—x|P) ., .
200)) f R (6-330)
Ja',t —|r—1'|v) ,,
A(r, 1) = f I : o 6-331
® 7 - dz|r — 1’| ( )

We will now evaluate the retarded potentials and then the fields for a
simple but a very useful source known as the Hertzian dipole. We will find
that the field expressions we will obtain are quite complicated even for this
simplest case. The Hertzian dipole is an oscillating version of the static
electric dipole. It consists of two equal and opposite time-varying charges
0,)= 0, sinwt and Q0,() = —Q, sin wt separated by an infinitesimal
distance dl. We will place the dipole at the origin and orient it along the
z axis. The dipole moment is then given by dp = Q, dl sin wti,. To satisfy
the continuity equation, we connect the two charges by a filamentary vyire
so that the current flowing in the wire from Q, to Q, is

It = id% = —dTQtz = w0, cos wt = I, cos wt

where I, = wQ,. The Hertzian dipole and the time variations of Q,,/Q,,
and 7 are shown in Fig. 6.75.
With reference to the notation of Fig. 6.75(a), the time-varying eleg" tric
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Fig. 6.75. (a) Hertzian dipole. (b) Time variations of Q;, Q,, and
I for the Hertzian dipole.

potential at point P is given by

V — Q. —rfv) + 0,(t — ry/v)

4rer, 4ner,
_ Qpsina(t —rifv)  Q,sin @ —r,/v)
4mer, 4mer,

We will let dl — 0, keeping the product Q, d/ constant and thereby obtaining
a point dipole. We then have

v~ o sin {t — [r — (d!/2) cos B)/v}  Q, sin wft — [r 4 (dI/2) cos 0]/v}
47ze[r — (dl/2) cos 6] 47elr + (dlf2) cos 0]

= 4%27[(1 + 35, cos 0) sin @ (t % + gf) cos 0)

(1—_coso)sm (r— L — & cosp)]

v
- & fosn(5 ) enofe 1

+ dl c'f)s 0 cos (a) 4 cos 0) sin co(t — %)]
_, Qodl cos B[w cos ot — rfv) I sin c(t — r/v):l
) r

4drer

We note from (6-332) that the time-varying electric potential due to the
dipole is not simply equal to the electrostatic potential (Q, dl cos 8)/4ner?
times the retardation factor sin w(¢ — r/v), but has an additional term. This
arises because of the phase difference between the time-varying potentials
associated with the individual point charges of the dipole.
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To find the time-varying vector potential, we recall from Chapter 3 that
the static vector potential due to a current element I, d/i, at the origin is
(ul, dlf4mr)i,. Hence the time-varying vector potential due to the time-varying (
current element of the Hertzian dipole is given by ‘f

A— uly dlcos w(t — r/v) |
4zr
6-333
_uly dicos (t — rv) ( )
- 4nr

(cos 81, — sin 8 iy)

We will now obtain the electromagnetic fields due to the Hertzian dipole
by using (6-321) and (6-320). From (6-321), we have
J

— Wy %‘t* |
6-334a)
B (_a_g_aA,)i +(_L0_V_%)i ( a)
- o dt )T T ‘
From (6-320), we have
H = % = %V X A 1
e oA (6-334b)
= ﬁ[ﬁ(’fie) 20 |\
Thus the field components are given by
aV  d4 |
E = 3 :
r ar dt |
6-335a
2a) Q, dl cos B7 sin w(t — rfv) + cos (¢ — rfv) (6-3332)
4re wr® or?
19V 94,
Eo = T 98 or
on4a:zl€sm 9[sm wgra— r[v) , cos wgrz— r[v) (6-335b)
_ osino( — r/v)
v2r
Hq«, = 1—!:2-(1'143) — %] i
(6-335¢)

j

Alternatively, E, and E, can be obtained from H, by using Maxwell’s curl

equation for H in which case it is not necessary to determine V. Writing

the field expressions in phasor form, we have

P _ 21, dl cos 0( J
’ 4re wr?

_ Ly dlsin@fcos ot —r/v) _ wsin ot — r/v)}
4z r vr

1 ) ;
L e—}wr/v
+ or?

(6-336)
_ 2ppl,dicos@[ 1 1 7
= (e 8] o+ GE ) |




495  Radiation of Electromagnetic Waves Sec. 6.16

- I-O dl sin 0 j 1 j_w> —Jjeor/v
EB_T(_Q?JF'U_"Z +,UZ'. e

- 6-
B2l disin O 1 n 1 4 1 }e_m (6-337)
4n LGBr)* * (Bry* * Jbr
5 ILdlsin@(1 | jo\
I:[qS — 20 - + S22 ) e Jeorlv
T (r2 vr) (6-338)

_ Bhdisingl 1 17
=~ [Gp jﬁr]e

where g = w/v, n = /ufe = fev, and I, = I, = 0 Q,.

We note from (6-335a)—(6-335¢) or (6-336)-(6-338) that the field expres-
sions contain terms involving 1/r3, 1/r2, and 1/r. Very close to the dipole, the
1/r® and 1/r? terms dominate the 1/r terms. Far from the dipole, the 1/r*
and 1/r? terms are negligible and the fields are determined by the 1/r terms.
To see how far from the dipole, let us first consider the H, component. The
magnitudes of the two terms are equal for » = vjow = 1/ = 1/2n =~ 0.164.
For the E, component the combined magnitude of the 1/ and 1/r? terms
is equal to the 1/r term for

() + Gr) =GB

@ () -

2 2m
Thus, even in a distance of few wavelengths from the dipole, we can neglect
the 1/, and 1/r? terms in comparison with the 1/r terms. The field expressions
then reduce to

or

E =0
Eﬂ — ]CDIoncEif)S’l‘n ee-—j(.f.)r/v — ]ﬂﬂIzZi.Sln ge'f"” (6-339)
H’¢ — ]CDIO (jzi)iln 0e_jw,/v — JBIO d;rsin ee-—jﬁr (6'340)

These fields are known as the “radiation fields” because they are the com-
ponents which contribute to radiation of electromagnetic waves away from
the dipole. In fact, we will learn later that the 1/r? and 1/r? terms do not
contribute to the time-average power flow even near the dipole. We note
that the ratio of E, to H, given by (6-339) and (6-340) is equal to n = / /e
as for the case of the fields associated with a uniform plane wave, although
the constant phase surfaces are r = constant and the constant amplitude
surfaces are (sinf)/r = constant. However, let us consider a spherical surface
of large radius and centered at the dipole and divide it into small regions,
in each of which sin § may be considered to be constant. Then each small
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\
region is approximately a plane surface on which the phase as well as mag-‘!
nitude are constants. Thus, over each small region, the fields are almost|
like uniform plane waves, with the amplitude differing from one region to!
the other. This is what we meant by the statement in Section 6.8 that, far(
from a radiating antenna, the radiated waves are approximately uniform
plane waves.
Returning now to the field expressions given by (6-336)-(6-338), we

obtain the complex Poynting vector as

_—_1_ o
P_7ExH

— (B, — Bty

Sl CEE R Cl
- BEg (o) L)kl

_ P @y?sin? (w0 .1\
_W—(vw jcors)l’

| I, | (d1)* sin 26
——376—*( 7t )

The time-average Poynting vector is given by
(P> = RelP]
_ LD sin® 6 o2 (6-342)
32n%e BEF .

which is exactly the same as the time-average Poynting vector due to the
radiation fields given by (6-339) and (6-340). Thus the near fields, that 1s,
the 1/r® and 1/r? terms, do not contribute to the time-average power flow
even near the dipole. They contribute only to the reactive power, which|is
entirely due to them since the reactive power associated with the radiation

fields is zero. :
By integrating the time-average Poynting vector given by (6-342) over
a surface of radius r centered at the dipole, we obtain the time-average

power radiated by the dipole as
n 2z N .
Cup= [ 7 @ rsindagagi,
$=0

—f f wZII" § (dl) sin® 0 d6 d¢
=0 gm0 S2TEVT (6-343)
_ @ L2 @n?8n _ o?| L2 @)?
T 32r%v3 3 127ev?
_ 0B\, P _ millolzfﬂ)2
127 3 \14
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We now see why the near fields cannot contribute to time-average power
flow. The reason is that, from conservation of energy, the time-average power
flow across a spherical surface of one radius must be equal to the time-
average power flow across a spherical surface of a different radius, that is,
it must be independent of » as indicated by (6-343). Since the surface area
of the sphere varies as #2, only those components of E and H which vary as
1/r can satisfy this condition.
Rewriting (6-343) as

P = -% | I-o |zl:23ﬂ(d71)2]

we note that the power radiated by the dipole is the same as the time-average
power dissipated in a resistance of value [(2z#n/3)(dl/2)?] when a current
I, cos wt is passed through it. This is known as the “radiation resistance”
and is denoted by the symbol R,,;. Thus, for the Hertzian dipole,

2
R4 = gﬁﬂ(ﬂ) ohms

3\1
For n = 5, = 120z, that is, for the dipole in free space, we have
Rup = 8072 (%)2 ohms (6-344)

As a numerical example, for d//A equal to 0.01, R,,4 is equal to 0.08 ohms.
This value is too small to make a Hertzian dipole of dl/A equal to 0.01 an
effective radiator. This is why a practical dipole must be an appreciable
fraction of a wavelength long. But then, Eq. (6-344) is no longer correct for
the radiation resistance since the variation of current along the length of
the dipole must be taken into account in obtaining the radiation fields and
hence the radiated power. This can be done by considering the dipole as a
series of Hertzian dipoles connected end to end and then using superposition.
We will illustrate this by means of an example.

E XAMPLE 6-34. A practical short dipole is a center-fed straight wire antenna, having
a length that is short compared to a wavelength. The current distribution
along the wire can be approximated as shown in Fig. 6.76(a) in which the
magnitude decreases uniformly from a maximum at the center to zero at the
ends. It is desired to find the radiation resistance of the short dipole.

With reference to Fig. 6.76(a), the current distribution along the dipole
can be written as
) f0< ——%) for0<z<%
I(z) = (6-345)
ﬂ,(l+%> for—%<z<0

where I, is a constant. To determine the radiation fields, we can represent
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\{0(1 L)

(a) (b)

Fig. 6.76. (a) Current distribution along a short dipole. (b)
Representation of the short dipole as a series of Hertzian dipoles
for computing the radiation fields and the radiation resistance.

the short dipole as a series of Hertzian dipoles of infinitesimal lengths t““dz
as shown in Fig. 6.76(b). From (6-339) and (6-340) and from superpositioin,
the radiation fields for the short dipole are then given by

L/2 . T, 3 ’
Fo_ JBnl(2)sin @' _jpr .
E, = f,__L/Z 7R e dz (6-34 a)
= [ BEsn0 ipr y, (6-346)
- z=-L/2 47[R

where R and @’ are as shown in Fig. 6.76(b). For R > L, as is the case for
radiation fields, we can set 8’ =~ @ and R = r in the numerators and denomi-
nators of the integrands on the right sides of (6-346a) and (6-346b). For the
R in the exponential factors, however, we substitute (r — z cos #) because,
depending on the value of §, e"/#R can vary appreciably for —L/2 < z < E,/2
Considering (6-346a), we then have

. J‘ jﬂﬂ[(z) sin ge jﬂrejﬁz cos dz
z=—L/2 4ﬂr
(6-347)

L/2 _
jﬁ}] Sln 06 ~jBr f I(Z)ejﬁz cos @ dZ
47Ir z=-L/2
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Substituting (6-345) into (6-347), we obtain

L/2
B = ]ﬂniﬂ:lne -jﬂr[f (1 _ Z_LZ)ejpzcosadz

z=0

+ fo_ N (14 22)ereecone dz}

JBnly sin 6 -ipr 2 22\, ipz cos 0 -J o (6349
— 4”r e~ (1 L)(ej z COS + e 'z cos )dZ

z=0
. T . L2

— ]ﬂﬂé;;ln 9e—mr f (1 — %Li)cos (Bzcos 0) dz
z=0

However, for L K A, fL = 2rL/A < 1, and

cos(ﬁzc039)=1—(’Lc§ﬂ+---zlfor——é—<z<%

so that (6-348) simplfies to
]ﬂﬂl Sin @ - pr fm ( _ 25) dz
27r s=0 L

j,BnLI sin @ - ipr
8nr

Likewise,

i — JBLI, sin @ o iBr
¢ 8nr

The time-average radiated power is then given by
n 2n -
P = f f %(EgH $)r2 sin 0 d9 d¢
8=0 ¢=0

f - /’)Z”L II"I sin® 0 d0 d¢
=0

- L 2
F &P 6(1)]
Thus, for # = #n, = 120z, the radiation resistance of a short dipole of length
L is given by

R, (short dipole) = 20z (%)2 (6-349)

As a numerical example, for L/A = 0.1, R, = 2 ohms. }

We will conclude this section with a brief discussion of the directional
properties of the Hertzian and short dipoles. In this connection, we define
the radiation intensity U of an antenna in a given direction as the power
radiated per unit solid angle in that direction. Since the surface area of a
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sphere of radius r is 4nr> and the solid angle subtended by it at its center is
47z, the surface area per unit solid angle is 2. Thus the radiation intensity is
given by

U = (P) « r?i, watts/steradian
From (6-342) the radiation intensity for the Hertzian dipole is

_ I, > (dD)? @*

sinz 8
32nev?

U

The quantity N
|1, |* (d])* o*
32n%ev?
is a constant for a particular frequency and hence, by dividing U by this
quantity, we obtain the normalized radiation intensity U, as

U,=sin26 (6-350
The same result holds for the short dipole of Example 6-34 since the powet

radiated by it is also proportional to sin? . A plot of U, given by (6-350)
versus @ is shown in Fig. 6.77. This plot illustrates the directional properties

8 =0°

N 45°
N | /

|

|

0§ = 45° /0

6 = 90°— ! —0 = 90°
|
A

Ng = 135°

/

f = 135°7
6 = 180°

Fig. 6.77. Normalized radiation intensity versus 6 for Hertzian
and short dipoles.

of the Hertzian and short dipoles. Their radiation intensities are maximym
for @ = 90°, that is, broadside to the dipole and zero for § = 0 and 180°,
that is, along the dipole. The directivity D of an antenna is defined as the
ratio of the maximum radiation intensity to the average radiation intensity.
Thus

— [Un]max — 4n[Un]maX
(fAm) [U, 4@ [* [* 5, ¢)sin 0 df dg
=0 =0

where Q denotes the solid angle. For the Hertzian and short dipoles,
4n[sin? 0. 4z 3

D = - _3
[* 7 sintgapdp 8z/3 2
=0 ¥ $=0
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PROBLEMS

6.

1.

6.2.

For the following charge distributions, find the electrostatic potential everywhere
using Poisson’s and Laplace’s equations.

(@ p= {z for |z} < a} cartesian coordinates
0 for|z|>a

®) p= {p o forr< a}cylindrical coordinates
0 forr>a
0 forr<a

© p=1<po for a < r < bspherical coordinates
0 forr>b

2
1— ’—) for r <
p 0( a? orr a} spherical coordinates

(d)/7={

0 forr > a

Show that the equation of motion of an electron in the space-charge limited
vacuum diode of Example 6-2 is given by

dx_ ey

dr’  me 0
where e and m are the charge and mass of the electron, respectively, and J, is the
current density. For an electron leaving the cathode at ¢ = 0 and subject to
the conditions stated in Example 6-2, obtain the solution for x(¢) by solving the
equation of motion. Then find the solution for ¥, which should agree with (6-22).

Verify the general solutions for the one-dimensional Laplacg’s equations and the
particular solutions for the particular sets of boundary conditions listed in Table
6.1.

Two conductors occupying the surfaces »r = g and r = b in cylindrical coordinates
are kept at potentials ¥ = ¥, and ¥ = 0, respectively. The region a < r < ¢ (< b)
is a perfect dielectric of permittivity €; and the region ¢ <r < b is a perfect
dielectric of permittivity €,. Find the solutions for the potentials in the two regions
and the potential at the boundary r = c.

Two parallel conducting plates occupying the planes x = 0 and x = d are kept
at potentials ¥ = 0 and V = Vj, respectively. The medium between the two plates
is a perfect dielectric of nonuniform permittivity given by

€ =¢€ +(€2—€1)%

where €, and €, are constants. Find the solutions for the potential and the electric
field intensity between the plates.

The region 0 < x < dis occupied by a medium characterized by the magnetization
vector M = M,(d — x)i,, where M, is a constant. By solving the analogous elec-
trostatic problem, obtain H and B both inside and outside the region 0 < x <d.



6.7.

6.8.

6.9.

6.10.

6.11.
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The region r < a in spherical coordinates is occupied by a medium characterize
by the magnetization vector M = M,i,, where M, is a constant. (a) Set up th
analogous electrostatic problem for obtaining H and B both inside and outsid
the region r < a. (b) Find the electric field intensity for this electrostatic proble:
from the answer to part (d) of Problem 5.11. (¢) Find H and B both inside an
outside the region r < a.

A conductor occupying the surfaces x >0, y =0 and y > 0, x =0 is kept a
zero potential. A second conductor occupying the surface xy = 2 is kept at
potential of 100 volts, making sure that the edges where the two conductors touc
are insulated. The medium between the conductors is charge free. Find the solu-
tions for the potential and the electric field intensity between the conductors.
Find the surface charge densities on the conductors.

The potential distribution at the mouth of the slot of Fig. 6.6 is given by

v="sin 4 stin? forx=a,0<y<b
where V; and V, are constants. Find the solution for the potential distribution in

the slot. Repeat the problem for

V=Vlsin3%y forx =a,0<y<b

Two conductors occupying the planes x = 0 and x = a are kept at zero potentials.
A third conductor occupying the surface y = 0,0 < x < a is kept at a const
potential V,, making sure that the edges are insulated. Find the solutions for the
potential in the region 0 < x < a for both y > 0 and y < 0. Show that the poten-
tial at large values of | y| varies with x approximately as sin (nx/a).

A thin rectangular slab of uniform conductivity o, mhos/m, shown in Fig. 6.78,
has its edges coated with perfectly conducting material, making sure that the

Edge 2
x=a
<
AN SO SSIASANANSIINS Edge3
4 =b
o
Edge 1 7 " g
4
Vxlz $
Y
\Edge4
x=0

Fig. 6.78. For Problem 6.11.
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corners are insulated. For each of the following cases, find the solution for the

potential and hence for the current density in the conductor:

(a) Edges 1 and 3 kept at zero potential; edge 2 kept at potential ¥, and edge
4 kept at potential — V5.

(b) Edges 1 and 3 kept at zero potential; edges 2 and 4 kept at potential V5.

(c) Edges 1 and 4 kept at zero potential; edge 2 kept at potential ¥; and edge
3 kept at potential V.

For the triangular box of Fig. 6.10, assume that the longer side is kept at zero
potential and the shorter sides are kept at a potential of 100 volts. Find the poten-
tials at points a, b, and c.

An infinitely long line charge of uniform density p,, C/m is situated parallel to
and at a distance d from a grounded infinite plane conductor. Obtain the image
charge and show that the induced surface charge on the conductor per unit
length parallel to the line charge is equal to — py,.

~ For each of the arrangements shown in Fig. 6.79, find the image charges required

to determine the electric field on the side of the actual charges. For case (a),
find the electric field intensity everywhere on the conductor surface and show
that the total induced charge is — Q.

b Q ,Point Charge
L]
y =0
x>0
a
Tx
90°
A —
x=20 __L Y
y >0 -
(2

Fig. 6.79. For Problem 6.14.

For the infinitely long line charge of uniform density Pro C/m parallel to an
infinitely long grounded conducting cylinder in Example 6-11, show that the
induced surface charge per unit length of the cylinder is —pro.

A point charge Q is situated at a distance d from the center of a grounded spherical
conductor of radius a (< d). Show that the image charge required for computing
the field outside the spherical conductor is a point charge of value — Qa/d, lying
at a distance a?/d from the center of the conductor along the line joining the

center to the charge Q and on the side of Q. What is the induced charge on the
surface of the conductor?

For the problem of Example 6-4:
(a) Find the electric field intensities in the two regions 0 < x < tand f < x < d.



6.18.

6.19.

6.20.

6.21.

6.22.
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(b) Find the surface charge densities on the plates x = 0 and x = 4.
(¢) Find the capacitance C per unit area of the plates and show that |
11, 1 |
C 76/t €jd—0 [[
For the parallel-plate arrangement of Problem 6.5, find the capacitance per unit
area of the plates in three ways:
(a) From the definition C = Q/V,, where Q is the magnitude of the charge pér
unit area on either plate.
(b) By evaluating the electric stored energy in the dielectric per unit area of the
plates and using (6-81).
(c) By dividing the dielectric into several slabs, each having an infinitesimal thick-
ness and using the result of Problem 6.17.

Derive the expressions for the conductance, capacitance, and inductance per unit
length of the two-conductor configuration of Fig. 6.15(b).

For the two-conductor configuration of Fig. 6.15(d), find the locations of a pair
of equal and opposite, infinitely long, uniform line charges parallel to the c<$n-
ductors such that two of the equipotential surfaces corresponding to the pair i of
line charges are the surfaces occupied by the conductors. Then find the expressions
for conductance, capacitance, and inductance per unit length of the conductor
system. Let d be equal to zero and show that these expressions reduce to thpse
for the configuration of Fig. 6.15(b).

A current [ amp flows with nonuniform volume density given by
r.
J = Jo*;lz

along an infinitely long cylindrical conductor of radius a having the z axis as| its
axis. The current returns with uniform surface density in the opposite directlion
along the surface of an infinitely long perfectly conducting cylinder of radlius
b (> a) and coaxial with the inner conductor. Find the internal inductance |per
unit length of the inner conductor by using the method of flux linkages. Verify yjour
answer by using the energy method.

A filamentary wire carrying a current I amp is closely wound around a torojidal
magnetic core of rectangular cross section as shown in Fig. 6.80. The mean rafiius

b

%4
L e
‘f_

f
t |
Fig. 6.80. For Problem 6.22.
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of the toroidal core is @ and the number of turns per unit length along the mean
circumference of the toroid is N. Find the inductance of the toroid.

An infinitely long, uniformly wound solenoid of radius ¢ and having N turns per
unit length carries a current I amp. Find the inductance per unit length of the
solenoid.

Show that L,; = L.

An infinitely long, uniformly wound solenoid of radius ¢ and having N, turns
per unit length is coaxial with another infinitely long, uniformly wound solenoid
of radius b ( > a) and having N, turns per unit length. Find the mutual inductance
per unit length of the solenoids.

A cylindrical slab of material lying between plane surfaces z = 0 and z = 4 and
having a cross-sectional area 4 = 7a? is characterized by nonuniform conductivity

— %o
T 1+ z/d

permittivity € = 4€,, and permeability u = 2u,, where g, is a constant. The
surfaces z = 0 and z = d are perfectly conducting. A current flows through per-
fectly conducting filamentary wires into the center of the plane surface z = 4 and
out of the center of the plane surface z = 0. Assume that this current is established
by appropriate connection of a battery of voltage ¥, which is far away from the
material so that the magnetic field outside the slab may be considered to be the
same as that due to an infinitely long wire along the axis of the slab (z axis).
Find the following quantities:

(a) The electric field intensity, the conduction current density, and the displace-
ment flux density in the material.

(b) The surface charge densities on the perfectly conducting surfaces z = 0 and
z=d.

(¢) The true charge density in the material.

(d) The polarization vector and the polarization charge distribution in the material.

(e) The magnetic field intensity and the magnetic flux density in the material.

(f) The current drawn from the battery and the magnetic field intensity outside
the material.

(g) The surface current density on the perfectly conducting surfaces z = 0 and
z=d.

(h) The magnetization vector and the magnetization current distribution in the
material.

(i) The power dissipation density and the power dissipated in the material and
the conductance of the configuration.

(j) The electric stored energy density and the electric stored energy in the material
and the capacitance of the configuration.

(k) The magnetic stored energy density and the magnetic stored energy in the
material and the internal inductance of the configuration.

() The power flow into the material evaluated by surface integration of the
Poynting vector.

g




6.27.

6.28.

6.29.

6.30.

6.31.

6.32.

6.33.
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A toroidal magnetic core of circular cross section and with an air gap has the
following dimensions:

area of cross section = 2 cm?
mean circumference = 20 cm
air gap width = 0.1 cm

Find the ampere turns required to establish a magnetic flux of 3 X 10-¢ Wb in
the air gap if the core is made of annealed sheet steel. The effective area of the
air gap is that of a circle whose radius exceeds the actual radius by half the width
of the air gap. \

For the magnetic circuit of Fig. 6.23, assume that there is no air gap. If NI is equa“tl
to 150 amp-turns, find the magnetic flux density in leg 2. ‘

For the structure of Fig. 6.25(a), show that, under quasistatic conditions, the rate
at which energy flows into the volume of the structure as obtained by surface
integration of the Poynting vector over the surface bounding the volume is equal to

df1 )
lzero]
For the structure of Fig. 6.25(b), show that, under quasistatic conditions, the rate

at which energy flows into the volume of the structure as obtained by surfalce
integration of the Poynting vector over the surface bounding the volume is equal to

2320

By proceeding in a manner similar to that in Example 6-16, show that the qua‘lsi-
static approximation holds for the parallel-plate structure of Fig. 6.25(a), that /is,
the structure behaves like a single capacitor, for the condition

1
< 2nin/ ue
Examine the input behavior of the structure for frequencies beyond the value
which the quasistatic approximation holds.

for

A time-varying voltage source drives the structure of Fig. 6.13(a). Assume tjhat
the conductor is a good conductor so that the displacement current can be neglegted
compared to the conduction current. Show that the quasistatic approximatjion
holds, that is, the structure behaves essentially like a single resistor, for the conditjion

1

f< nuGi?

Investigate the approximation quantitatively for copper. Examine the imput
behavior of the structure for frequencies slightly beyond the value for which; the
quasistatic approximation holds and also for frequencies for which f>> 1/nuicl?.

The structure shown in Fig. 6.81 is an arrangement of two parallel perfectly con-
ducting plates connected at one end by a third perfectly conducting plate. A cugrent
source I(t) =1 cos 27 ft amp is connected between the plates at the other enfd so
that it supplies a z-directed current uniformly distributed in the y direction t@ the
structure. The medium between the plates is free space. For the purpose off this
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Ros &g 02 m

Fig. 6.81. For Problem 6.33.

problem, the arrangement can be assumed to be part of a structure infinite in
extent in the y direction. The dimensions of the structure are indicated in the figure.

(a) Find the voltage developed across the current source in the steady state if

f=150Hz.

(b) Repeat part (a) if f = 150 MHz.

Derive the transmission-line equations by considering the special case of two
infinitely long, coaxial cylindrical conductors. Also show that the power flow
along the conductor system is equal to the product of the voltage between the
conductors and current along the conductors.

Show that two alternative representations of the circuit equivalent of the trans-
mission-line equations (6-161) and (6-165) are as shown in Figs. 6.82(a) and (b).

1 1
2 LAz ) LAz
GAz CAz
o— o
Az Az
z 3 z + )
(@)

LAz
O
[%GAZ\
\x \
(Lga/
Y Y
2 )
(b)

Fig. 6.82. For Problem 6.35.

Starting with the curl of both sides of (6-169d), derive the wave equation for H

given by

J:H

V2H = ue ——

d:2
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6.38.

6.39.

6.40.

6.41.

6.42.
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Solve Eq. (6-176) by using the separation of variables technique.

Draw three-dimensional sketches similar to that of Fig. 6.30 for the following
functions:

(a) el

(b) e-lr+2l

© —0%u(z—1) —u(z —t—2)]

A spherical balloon of uniform surface charge density and having its center at th

origin possesses a constant total charge Q. Its radius ¢ is made to vary sinusoidall
between a minimum of (¢ — b) and a maximum of (g + b) in the manner

¢ =a + bcos 2nt.
(a) Describe and sketch how the electric field intensity vector E varies with tim
in three regions
0<r<(a—0>b) (a—b)<r<(a+b @a+b)<r<co
Assume uniform surface charge density for all z.
(b) From your answer to part (a) for the region (a + b) < r < <o, what can yo
infer about wave propagation due to the fluctuating balloon ? Explain.

A uniform plane wave traveling in the negative z direction in free space has ifs
electric field entirely along the x direction. The space variation of the electric field
intensity at time # = 0 is shown in Fig. 6.83. Find and sketch the time variation ¢f
the magnetic field intensity in the z = 200 m plane.

1 [EX]t=0 s V/m

37.7

1 L > Z, m (
—100 0 100 200 300 .

Fig. 6.83. For Problem 6.40. \

The electric field intensity associated with a uniform plane wave traveling in a
perfect dielectric medium is given by
E.(z,t) = 10 cos 2n x 107t — 0.17z) volts/m

(a) Sketch E, versus ¢ for two values of z, z = 0 and z = 5 m. What is the fre-

quency of the wave?
(b) Sketch E, versus z for two values of 7,7 = 0 and z = } x 10-7 sec. What is

the wavelength ?
(c) What is the velocity of propagation ?
(d) Write the expression for the magnetic field intensity associated with the wave
The complex electric field vector of a uniform plane wave propagating in |free
space is given by

E = (—i, — 24/31, + 4/ 3i,)e"i0-042(/3x-2y-30  yolts/m
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(a) What is the direction of propagation of the wave?
(b) Find the wavelength along the direction of propagation.
(c) Find the frequency of the wave.

(d) Find the apparent wavelengths and the apparent phase velocities along the x, y,
and z axes.

(e) Discuss the polarization of the wave.
(f) Obtain the expression for the complex magnetic field vector of the wave.

A complex electric field vector is given by
B = [(—v3 —ip)h + (1 =42 )i, +/0/Fi, oo 02mmersrian voltsym

(a) Perform the necessary tests and determine if the given E represents the electric
field of a uniform plane wave.

(b) If your answer to part (a) is “yes,” repeat Problem 6.42 for the electric field
vector of this problem. :

The complex electric and magnetic field vectors in a perfect dielectric medium are
given by

E = (—ji, — 2i, +/4/31,)e-i0-052/3x+2)  yolts/m
H= Eé?z(i" — J2i, — 4/ 3li)e 0 057W3x+2)  amp/m

(a) Perform the necessary tests and determine if these vectors represent the fields
associated with a uniform plane wave.

(b) If your answer to part (a) is “yes,” find the direction of propagation, the wave-
length along the direction of propagation, the velocity along the direction of
propagation, and the frequency. Also, discuss the polarization of the wave.

Show that the units of 1/4/£C are meters per second and the units of o/ £/C are
ohms.

The plane z = 0 is occupied by a perfect conductor. The medium z < 0 is free
space. The leading edge of a uniform plane wave traveling in the positive z direction

and having E.(z) as shown in Fig. 6.84 is incident on the plane z = —150m at
|
37.7 V/m |
|
[Ex]i=0 |
1 [11,)
Y fal
—~450 m —300 m I
|
o, €0 |
I

z=—-150m 2z=0

Fig. 6.84. For Problem 6.46.
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t = 0. Find and sketch E, and H, versus z for ¢ equal to } usec, 3 usec, 1 usec,
14 usec, and 2 usec. Also sketch E, and H, versus ¢ in the plane z = —150 m.

6.47. For the problem of Example 6-20:
(a) Sketch E, versus z for ¢ = 0.015 usec and 0.035 usec.
(b) Draw the bounce diagram for H, and sketch H, in the planes z = —3 m and
z = 2.5 m as functions of time for ¢ >> 0. Also sketch H, versus z for values of
t equal to 0.015 usec and 0.035 usec.
6.48. In the transmission-line system shown in Fig. 6.85, the switch S is closed at ¢ = 0.
(a) Show that, for 0 < ¢ < /v, a (+) wave of voltage
V(1) = Rg—Z%B—Z—o Vg<t - %)
exists on the.line. What is the current associated with the (+) wave?

Fig. 6.85. For Problem 6.48.

(b) Show that for /v < t < 2l/v, a (—) wave of voltage

21 z)

V_(Z’t)_R _I_ZFR <_7+T WhererR=RL_Z°

-RL + ZO
exists on the line in addition to the (+) wave specified in part (a). What is
the current associated with the (—) wave?

(c) Show that for 21/1) <t < 3lfv, a(—+) wave of voltage

21 z)

I yx

g—l-Z R R, +Z,

exists on the line in addition to the (+) and (—) waves specified in parts (a)
and (b), respectively. What is the current associated with the (—--) wave?

(d) Show that the line voltage and line current at ¢ = oo are given by the expressions

Vastar 1) = 728 L[S @y -2 - )

v
+ T 3 @Lyv( -2+ 2 2]

V-t(z,t) = where I,

v
Iss(z, t) = &—-ll-z—g[n{;o @) Vg(’ - ZTnl - %)
—Te 5, @y (e - 24 £ - 2]

(e) Obtain closed-form expressions for Vyg(z,t) and Igs(z, t) for two cases:
(i) V,(t) = Vo, a constant and (ii) V() = V, cos wt.
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A transmission-line of characteristic impedance Z, is terminated by an inductor
of value L henries. A (--) wave of constant voltage Vj is incident on the termination
at ¢ = 0. Show that the resulting (—) wave voltage at the termination is given by

V_'(t) = T‘Vo + 2Voe_(Z°/L)'

In Fig. 6.86, a transmission-line of characteristic impedance 50 ohms is terminated
by a passive nonlinear element having the volt-ampere characteristic indicated in
the figure. If a () wave of constant voltage 10 volts is incident on the termination,
find the resulting (—) wave voltage.

I,

+

Zy =508 }VL=5011%

Fs

Fig. 6.86. For Problem 6.50.

Draw sketches of ¥ and I given by Egs. (6-231a) and (6-231b), respectively, versus ¢
for values of d equal to 0, /8, 1/4, 31/8, and A/2. Consider 8 = 0 for simplicity.

A transmission-line of length [ is short circuited at one end and open circuited
at the other end. What are the natural frequencies of oscillation? Sketch the

voltage and current standing wave patterns for the first few modes. Repeat for a
line of length / which is open circuited at both ends.

The transmission-line system shown in Fig. 6.87 is in sinusoidal steady state. The
voltage source V,(z) is equal to 10 cos 1000zt + 5 cos 20007¢ volts.

100 © r——~)\/4'at 500 Hz———l

Z =
Vg(t)l 0 =508

d=1 d=0
Fig. 6.87. For Problem 6.53.

(a) What is the impedance seen looking into the input terminals of the line for

f=500Hz? Sketch the voltage and current standing wave patterns for
f =500 Hz.

(b) What is the impedance seen looking into the input terminals of the line for

f=1000 Hz? Sketch the voltage and current standing wave patterns for
f=1000 Hz.

(c) From the standing wave patterns of parts (a) and (b), compute the values of

root-mean-square line voltages and line currents at d = 0, d = /2, and d = L
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Find the two lowest frequencies (zero excluded) for which a transmission-line of
length 7 short circuited at its far end behaves at its input as an inductor of value
equal to its inductance computed from static field considerations. ‘J

Show that the minima in the standing wave patterns of Fig. 6.48 are sharper than “
the maxima. |

1
Show that the line impedance at a voltage maximum is Z,(VSWR) and the line }

impedance at a voltage minimum is Z,/(VSWR). |

Repeat Example 6-23 for frequency of the uniform plane wave equal to 6000 MHz. (

Find the fraction of the incident power transmitted into medium 3. \
|
Repeat Example 6-23 for frequency of the uniform plane wave equal to 1500 MHz. “
Find the fraction of the incident power transmitted into medium 3. Also find the
wave impedance in medium 1 at a distance of 4 cm from the interface between |

media 1 and 2. ‘

Find the thickness and permittivity of a quarter-wave dielectric coating which will
eliminate reflections of uniform plane waves of frequency 1500 MHz incident
normally from free space onto a dielectric of permittivity 16€,. Assume all media
to have 4 = u,.

A transmission line of characteristic impedance 50 ohms is terminated by an

unknown load impedance Z,. Standing wave measurements indicate VSWR equal

to 3.0. Distance between successive voltage minima is 20 cm and distance between

load and first voltage minimum is 15 cm.

(a) Find Zg.

(b) Find the location nearest to the load and the characteristic impedance of a
quarter-wave section required to achieve a match between the line and the load.

A transmission line of characteristic impedance 50 ohms is terminated by a certain
load impedance. It is found that the VSWR on the line is equal to 5.0. The first
voltage minimum is located to be at 0.14 from the load. Determine analytically
the location and the length of a short-circuited stub connected in parallel with
the line so that a match is obtained between the line and the load. Assume the
characteristic impedance of the stub to be 50 ohms. Repeat the problem for
characteristic impedance of stub equal to 100 ohms.

A transmission line of characteristic impedance 50 ohms is terminated by a certain
load impedance. It is found that the VSWR on the line is equal to 3.0. The first
voltage minimum is located at 5.80 cm from the load and the next voltage minimu“m
at 25.80 cm from the load. Find analytically the value of the minimum VSWR

that can be achieved on the line by placing a stub in parallel with the line at the Ioaﬂ.
A transmission line of characteristic impedance 100 ohms is terminated by a loé.d
impedance (80 + 7200) ohms. Using the Smith chart, find the following quantities:
(a) The reflection coefficient at the load. :
(b) YSWR on the line. ;
(c) The distance of the first voltage minimum of the standing wave pattern frdm
the load.
(d) The line impedance at d = 0.14.
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(e) The line admittance at d = 0.14.

(f) The location nearest to the load at which the real part of the line admittance
is equal to the line characteristic admittance.

Solve Problem 6.58 using the Smith chart.
Solve Problem 6.61 using the Smith chart.
Solve Problem 6.62 using the Smith chart.

The dimension a of a parallel-plate waveguide filled with a dielectric of permit-
tivity € = 4€, is 4.0 cm. Determine the propagating TE,, , modes for a wave
frequency of 6000 MHz. For each propagating mode, find (2) the cutoff frequency,
(b) the angle 8, at which the wave bounces obliquely between the conductors,
(©) the guide wavelength 4, (d) the phase velocity v,,, and (e) the guide imped-
ance 1],.

Consider a parallel-plate waveguide extending in the z direction with a dielectric
discontinuity at z = 0. A TE,, , wave is incident on the discontinuity from the
side z < 0. By making use of the boundary conditions at the discontinuity, show
that each section of the guide can be replaced by the corresponding transmission-
line equivalent shown in Fig. 6.59, for the purpose of solving reflection, trans-
mission, and matching problems involving power flow in the z direction.

In Section 6.12 we introduced transverse electric or TE waves by considering
oblique incidence of a linearly polarized uniform plane wave on a perfect conductor
with its electric field entirely parallel to the plane of the conductor. To investigate
transverse magnetic or TM waves, consider a linearly polarized, uniform plane
wave having its magnetic field entirely along the y direction and incident obliquely
upon a perfect conductor occupying the x = 0 plane as shown in Fig. 6.88.

|
T
E; / I \Er

Fig. 6.88. For Problem 6.69.

(a) Obtain the expressions for the total fields:

(b) Show that E, =0 at the surface of the conductor as well as in planes
x=—mA/QcosB), m=1,2,3,....

(c) For a parallel-plate guide of spacing a between the plates, find the expressions
for the cutoff wavelengths, cutoff frequencies, guide wavelengths, and the
phase velocities in the z direction for the TM,,,, modes.

(d) Write expressions for the total fields in the guide independent of 6,.

(e) Define guide impedance and obtain the transmission-line equivalent for power
flow along the guide.
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Using the transmission-line equivalent determined in Problem 6.69, repeat Example
6-29 for TM,,, waves of frequency 6000 MHz. ‘
Show that

Vpz

Yer = T = (@0/vy:) vy, dd)

For the parallel-plate waveguide of Problem 6.67, obtain the group velocities for
|

the propagating modes for a wave of frequency 6000 MHz. ‘

For a tapered transmission line, the inductance and capacitance per unit length

are functions of position z along the line.

(a) Show that the line voltage and line current in the sinusoidal steady state satlsfy
the equations

DT _ 1 (92)(07) | pogep— 0
gg ~ (%f’) (g’ ) + w2gel =

(b) If £(z) and C(z) for a particular tapered transmission line are given by
L@ =Lee=  and € = Cpe

where £,, Gy, and a are constants, find the solutions for ¥ and I and show
that there exists a cutoff frequency below which wave propagation does nojt
occur.

Obtain the expression for the attenuation constant per wavelength in a loss
medium characterized by o, u, and €. Plot the attenuation constant per wave-
length versus g/we.

For uniform plane waves in fresh lake water (0 = 10~2 mho/m, € = 80 €,
U= lg), find o, B, 7, and A for two frequencies: (a) 100 MHz and (b) 10 kH

=

A uniform plane wave of frequency f is incident normally from free space onto
a plane slab of good conductor of infinite depth and conductivity . Obtain the
expression for the fraction of the incident power reflected and the fraction of t:]:e
incident power transmitted into the conductor. Compute numerical values for
incidence from free space to copper at 30 MHz.

(a) Express Egs. (6-281a) and (6-281b) in terms of the distance variable d.
(b) Show that the wave impedance Z(d) is given by

Lt 1+ L@
T

Z(d) =

where T'(d) = T'(0)e~274 = ['(0)e-2+dg-7262,
(c) In Fig. 6.89, a thin slab of good conductor having a thickness ¢ is backed [by
a perfect dielectric of thickness A/4 at the frequency of operation, which|in
turn is backed by a perfect conductor. Show that, for uniform plane wawes
incident normally on the good conductor, reflections are eliminated if o,¢ K 1
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Lossy

Perfect
Conductor Dielectric
Frei Space # \ Perfect
ko, €0 Conductor
E, A
4

el
/

Fig. 6.89. For Problem 6.77. N P

and 0 = 1/#,¢, where &, and g are the attenuation constant and conductivity,
respectively, of the good conductor.

For the semiinfinite plane slab conductor of Fig. 6.66, show that (a) the real part
on the right side of (6-294) is the same as the result that would be obtained by
a volume integration of the time-average power dissipation density o |E,|? and
(b) the imaginary part on the right side of (6-294) divided by 2 is the same as
the result that would be obtained by a volume integration of the time-average
magnetic stored energy density }z | f?,,|2.

For the lossy transmission line of Fig. 6.69,

(a) Write the transmission-line equations.

(b) Find 7 and Z,.

(c) Show that for 2®R,/(2L; + £) = G/C, f = W/ 2L, F £)C. What is the attenu-
ation constant for this condition?

For the parallel-plate resonator of Fig. 6.71, show that the total energy density
in the two fields from d = 0 to d = I computed by considering the energy density
in the electric field at a time at which the magnetic field is zero everywhere between
the plates is the same as that given by (6-299).

The arrangement shown in Fig. 6.90 is that of a parallel-plate resonator made up
of two dielectric slabs of thicknesses zand (/ — #) and backed by perfect conductors.

o, €1 o, €2

L L

l
I
!
|
I
|
|
!
|
[
[

Fig. 6.90. For Problem 6.81.
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(a) Show that the resonant frequencies of the system are given by the roots of the
equation

tan wa/ o€t + €1 tan WA/ o€l — ) =0
u e,

(b) Find the three lowest resonant frequencies if z = 1/2, / = 5.0cm, €, =60,J
and €, = 4¢€,.

For the parallel-plate resonator of Example 6-32, show that, for a particular mode
of operation, Q is inversely proportional to 4/ f.

A resonator is formed by placing perfect conductors in two transverse planes
z = 0 and z = d of a parallel-plate waveguide of spacing a, as shown in Fig. 6.91.

x =0

Fig. 6.91. For Problem 6.83.

(a) Show that the resonant frequencies corresponding to the TE,, ;,, modes are

given by
oo =57 (5) + (2)'

Compute the lowest three resonant frequencies if a = d = 4 cm. Identify the
corresponding mode numbers. Assume free space for the medium between the
plates.

(b) Write the expressions for the fields corresponding to the TE,,,,; mode. Derive
the expression for the @ of the resonator for the TE, ;,; mode, assuming that
the plates are made up of imperfect conductors of conductivity o and havmg
thicknesses of several skin depths for the frequencies of interest. ;

For the parallel-plate resonator of Fig. 6.70, assume that the dielectric is slightly

lossy, having a conductivity o, < we.

(a) Assuming the plates to be perfect conductors, show that the @ of the resonator
is given by Q, = we€/a,.

(b) If, in addition to the slightly lossy dielectric, the plates are made up of slightly
lossy conductors, show that the Q of the resonator is given by

1—— ———
200
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where @, is as given in part (a) and Q, is equal to /2 as derived in Example
6-32.

Show that the units of / Ne2/me, are (seconds)™! and that e2/4n2me, is equal to
80.6.

The maximum plasma frequency of the plane ionosphere considered in Example
6-33 is 10 MHz.

(a) What is the minimum value of 8, at which a signal of frequency 20 MHz can
be incident on the ionosphere in order to get reflected and not to penetrate
the ionosphere? .

(b) What is the maximum frequency of a signal incident on the ionosphere at an
angle 8, = 30° so that it will be reflected ?

In Fig. 6.92, a satellite signal of frequency f = 20 MHz passes through a hypo-
thetical plane slab ionosphere of uniform plasma frequency fy = 12 MHz. The
earth’s magnetic field and the effect of electron collisions with heavy particles are
to be neglected. Find the true elevation angle of the satellite as seen from. the
receiver.

Satellite
h = 1000 km

Free Space

f =20 MHz

500 km ————— — —_————
Slab Ionosphere
fv = 12MHz
1(;0 __lfné) A _F_r—ee—Sche_ -

\
60°
Fig. 6.92. For Problem 6.87.

A technique of locating the position of an aircraft is by measuring its ranges
from a system of satellites of known locations. The apparent range between a
satellite and the aircraft is obtained by measuring the time delay of a pulsed con-
tinuous wave signal and multiplying it by the velocity of light in free space. The
range is an apparent value because the time delay is determined by the group
velocity of the signal in the intervening medium which is not free space. For a
signal of frequency f much larger than the maximum plasma frequency in the
ionosphere and neglecting earth’s magnetic field, show that the apparent range is

greater than the true range by the amount (40.3/f?) Jj N ds, where Jj N ds is the

" integrated electron density in a column of cross section 1 m?2 from the aircraft

(A) to the satellite (S) and f is in hertz. For JS Nds = 1018 electrons/m?2, find the
A
excess range for two frequencies: (a) 140 MHz, (b) 1,600 MHz.
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Two Hertzian dipoles situated at the origin and carrying currents of the same
frequency are oriented along the x and z axes, respectively. The dipoles are of the
same length and their currents are equal in magnitude and in phase. Discuss the
polarization of the radiation field due to the dipole arrangement at (a) a point
along the x axis, (b) a point along the z axis, (c) a point along the y axis, and
(d) a point along the line x = 0, y = z. Repeat for the dipole currents equal in
magnitude but differing in phase by 7/2.

The oscillating version of the static magnetic dipole consists of a circular loop of
wire of radius a carrying current varying sinusoidally with time. For circumference
of the loop small compared to the wavelength, the current can be considered to
be uniform and in phase around the loop so that it is given by I(¢t) = I, cos wt.
Assume the dipole to be centered at the origin and lying in the xy plane with
the current flowing in the ¢ direction.
(a) Find the time-varying magnetic vector potential due to the oscillating magnetic

dipole for r>> a.

(b) Obtain the electromagnetic fields due to the oscillating magnetic dipole.
(c) Show that the radiation fields due to the oscillating magnetic dipole are given by

— ﬂzﬂjonaz . .
= —4nr— sin 08 Jﬂrl¢

_ 2] a2

it = B o g oo,

Fig. 6.93 shows an oscillating electric quadrupole consisting of three time-varyin#;
charges given by
Q:() = 0,(t) = Q, sin wt
03(t) = —2Q, sin wr¢

The charges are connected by filamentary wires.

— 1y

Q.()

<t>\§ /”
dl
p

Y 7 S~
X / '\ Q23() >~ _
L) 020

N

Fig. 6.93. For Problem 6.91.

(a) Write the expressions for the currents 7,(¢t) and Z,(¢) such that the continujity
equation is satisfied. i

(b) Find the time-varying magnetic vector potential due to the oscillating quadru-
pole, in the limit that &/ — 0 keeping Q,(dl)? constant. :
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(c) Find the electromagnetic fields due to the oscillating quadrupole.

(d) Find the radiation fields due to the oscillating quadrupole. Verify by deriving
them directly from the radiation fields due to the oscillating dipole given by
Egs. (6-339) and (6-340).

Find the radiation resistance of a straight copper wire of length 1 cm carrying
current of frequency 100 MHz. Compare the radiation resistance with the ohmic
resistance of the wire (taking into account skin effect) if it has a cylindrical cross
section of radius 1 mm. Repeat for a frequency of 300 MHz.

A half-wave dipole is a center-fed, straight wire antenna having a length equal to
half the wavelength. The current distribution along the half-wave dipole is given by

f(z):focosnfz for —%<z<%

as shown in Fig. 6.94.

Current
+ Distribution

L
Fig. 6.94. For Problem 6.93. 2

(a) Show that the radiation fields of the half-wave dipole are

£, = Mhoe™/1) cos [(/2) cos 6]

2nr sin
H — jloe= 31 cos [(7/2) cos 0]
4 2nr sin 6

“(b) Show that the radiation resistance of the half-wave dipole in free space is
73 ohms, given that

f e [(RT/Z) 05 61 16 — 0.609
sin ’

=0

(c) Sketch the normalized radiation intensity pattern.

(d) Show that the directivity of the half-wave dipole is 1.64.

Two identical short dipoles form an array as shown in Fig. 6.95. Show that the
radiation fields due to the array are given by the radiation fields due to one of
the dipoles multiplied by the factor 2 cos [(fd sin 8 cos ¢)/2]. Plot the normalized
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radiation intensity patterns in three planes: (a) ¢ = 7/2, (b) ¢ = 0, and (¢) 0 =n/2
for d = A/2.

Fig. 6.95. For Problem 6.94.






