MATERIALS AND FIELDS

In this chapter we extend our study of fields in free space of the preceding
three chapters to fields in the presence of materials. Materials contain charged
particles which act as sources of electromagnetic fields. Under the applica-
tion of external fields, these charged particles respond, giving rise tosecond-
ary fields comparable to the applied fields. While the properties of materials
that produce these effects are determined on the atomic or “microscopic”
scale, it is possible to develop a consistent theory based on “macroscoiic”
scale observations, that is, observations averaged over volumes large com-
pared with atomic dimensions. We will learn that these macroscopic scale
phenomena are equivalent to charge and current distributions acting as
though they were situated in free space, so that the secondary fields can be
found by using the knowledge gained in the preceding chapters. In fact, we
have an interesting situation in which the equivalent charge and current
distributions are related to the total fields in the material comprising the.
applied and the secondary fields, whereas the secondary fields are related
to the equivalent charge and current distributions. We are thus faced with the
simultaneous solution of two sets of equations governing these two relation-
ships. Following this logic, we will introduce new vector fields and develop a
new set of Maxwell’s equations with associated constitutive relations which
eliminate the necessity for the simultaneous solution by taking into account
implicitly the equivalent charge and current distributions.
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Conduction and Nonmagnetic Materials

Depending upon their response to an applied electric field, materials may
be classified as conductors, semiconductors, or dielectrics. According to the
classical model, an atom consists of a tightly bound, positively charged
nucleus surrounded by a diffuse electron cloud having an equal and opposite
charge to the nucleus, as shown in Fig. 5.1. While the electrons for the most
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Fig. 5.1. Classical model of an
atom.

part are less tightly bound, the majority of them are associated with the
nucleus and are known as “bound” electrons. These bound electrons can
be displaced but not removed from the influence of the nucleus upon appli-
cation of an electric field. Not taking part in this bonding mechanism are
the “free” or “conduction” electrons. These electrons are constantly under
thermal agitation, being released from the parent atom at one point and
recaptured at another point. In the absence of an applied electric field, their
motion is completely random; that is, the average thermal velocity on a macro-
scopic scale is zero so that there is no net current and the electron cloud
maintains a fixed position. When an electric field is applied, an additional
velocity due to the Coulomb force is superimposed on the random velocities,
thereby causing a “drift” of the average position of the electrons along the
direction opposite to that of the electric field. This process is known as
“conduction.” In certain materials, a large number of electrons may take
part in this process. These materials are known as “conductors.” In certain
other materials, only very few or a negligible number of electrons may par-
ticipate in conduction. These materials are known as “dielectrics” or insu-
lators. We will later learn that a characteristic called polarization is more
important than conduction in dielectrics. A class of materials for which con-
duction occurs not only by electrons but also by another type of carriers
known as “holes”—vacancies created by detachment of electrons due to
breaking of covalent bonds with other atoms—is intermediate to that of
conductors and dielectrics. These materials are called “semiconductors.”
The quantum theory describes the motion of the current carriers in terms
of energy levels. According to this theory, the electrons in an atom can have
associated with them only certain discrete values of energy. When a large
number of atoms are packed together, as in a crystalline solid, each
energy level in the individual atom splits into a number of levels with slightly
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different energies, with the degree of splitting governed by the interatonic
spacing, thereby giving rise to alternate allowed and forbidden bands of eney
levels as shown in Fig. 5.2. Each allowed band can be thought of as in
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Fig. 5.2. Energy band structure for a crystalline solid. |
almost continuous region of allowed energy levels. For example, for a
typical solid having an atomic density of 102° per m3, there will be almost
102° levels in each band. A forbidden band consists of energy levels
which no electron in any atom of the solid can occupy. According to
Pauli’s exclusion principle, each allowed energy level may not be occupied by
more than one electron. Electrons naturally tend to occupy the lowest energy
levels; at a temperature of absolute zero, all the levels below a certain level
known as the Fermi level are occupied and all the levels above the Ferjmi
level are unoccupied. Hence, depending upon the location of the Fe
level, we can have different cases as shown in Fig. 5.3.
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Fig. 5.3. Energy band diagrams for different cases: (a) Con-
ductor. (b) Dielectric. (¢) Semiconductor.
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For case (a), the Fermi level lies within an allowed band. The band is
therefore only partially filled at the temperature of absolute zero. At higher
temperatures, the electron population in the band spreads out somewhat but
only very few electrons reach above the Fermi level. Thus, since there are
many unfilled levels in the same band, it is possible to increase the energy
of the system by moving the electrons to these unoccupied levels very easily
by the application of an electric field, thereby resulting in a drift velocity of
the electrons in the direction opposite to that of the electric field. The mate-
rial is then classified as a conductor. If the Fermi level is between two allowed
bands as in (b) and (c) of Fig. 5.3, the lower band is completely filled whereas
the next higher band is completely empty at the temperature of absolute zero.
If the width of the forbidden band is very large as in (b), the situation at
normal temperatures is essentially the same as at absolute zero and hence
there are no neighboring empty energy levels for the electrons to move.
The only way for conduction to take place is for the electrons in the filled
band to get excited and move to the next higher band. But this is very diffi-
cult to achieve with reasonable electric fields and the material is then classi-
fied as a dielectric. Only by supplying a very large amount of energy can an
electron be excited to move from the lower band to the higher band where
it has available neighboring empty levels for causing conduction. The dielec-
tric is said to break down under such conditions. If, on the other hand, the
width of the forbidden band in which the Fermi level lies is not too large,
as in (c), some of the electrons in the lower band move into the upper band
at normal temperatures so that conduction can take place under the influence
of an electric field, not only in the upper band but also in the lower band
because of the vacancies (holes) left by the electrons which moved into the
upper band. The material is then classified as a semiconductor. A semicon-
ductor crystal in pure form is known as an intrinsic semiconductor. It is
possible to alter the properties of an intrinsic crystal by introducing impurities
into it. The crystal is then said to be an extrinsic semiconductor.

Conduction Current Density, Conductivity, and Ohm’s Law

In Section 5.1 we classified materials on the basis of their ability to permit
conduction of electrons under the application of an external electric field.
For conductors, we are interested in knowing about the relationship between
the “drift velocity” of the electrons and the applied electric field, since the
predominant process is conduction. But for collisions with the atomic lattice,
the electric field continuously accelerates the electrons in the direction oppo-
site to it as they move about at random. Collisions with the atomic lattice,
however, provide the frictional mechanism by means of which the electrons
lose some of the momentum gained between collisions. The net effect is as
though the electrons drift with an average drift velocity v,, under the influence
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of the Coulomb force exerted by the applied electric field and an opposng
force due to the frictional mechanism. This opposing force is proportioial
to the momentum of the electron and inversely proportional to the averige
time 7 between collisions. Thus the equation of motion of an electron is
given by
&Yy _ g _ MY 51

m=d= eE - (51)

where e and m are the charge and mass of an electron.
Rearranging (5-1), we have

mBa L My, = oF &2

For the sudden application of a constant electric field E, at # = 0, the solution
for (5-2) is given by

v, = —E — EE exp( t/7) ' (¢3)

where we have evaluated the arbitrary constant of integration by using the
initial condition that v, = 0 at ¢ = 0. The values of 7 for typical conductors
such as copper are of the order of 10714 sec so that the exponential term on
the right side of (5-3) decays to negligible value in a time much shorter
than that of practical interest. Thus, neglecting this term, we have

Vo= 2K, (5-4)

and the drift velocity is proportional in magnitude and opposite in d1rect10n
to the applied electric field since the value of e is negative.

In fact, since we can represent a time-varying field as a superposition
of step functions starting at appropriate times, the exponential term in (5-3)
may be neglected as long as the electric field varies slowly compared tnt T
For fields varying sinusoidally with time, this means that as long as the period
T of the sinusoidal variation is several times the value of 7, or the radEian
frequency w < 2xt/7, the drift velocity follows the variations in the electric
field. Since 1/7 = 10'%, this condition is satisfied even at frequencies up to
several hundred gigahertz. Thus, for all practical purposes, we can assyme
that

=K (5-5)

Now, we define the “mobility,” u, of the electron as the ratio of the
magnitudes of the drift velocity and the applied electric field. Then we have

o= Lyl _ lel 0

m
and

v, = —ukE for electrons (5-7a)
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For values of 7 typically of the order of 107! sec, we note by substituting for
| e] and m on the right side of (5-6) that the electron mobilities are of the order
of 1073 C-sec/kg. Alternative units for the mobility are square meters per
volt-second. In semiconductors, conduction is due not only to the movement
of electrons but also to the movement of holes. We can define the mobility
1, of a hole similarly to y, as the ratio of the drift velocity of the hole to the
applied electric field. Thus we have

v, = u,E for holes (5-7b)

Note from (5-7b) that conduction of a hole takes place along the direction
of the applied electric field since a hole is a vacancy created by the removal
of an electron and hence a hole movement is equivalent to the movement of
a positive charge of value equal to the magnitude of the charge of an electron.
In general, the mobility of holes is lower than the mobility of electrons for
a particular semiconductor. For example, for silicon, the values of u, and

U, are
I, = 0.125 m?/volt-sec MU, = 0.048 m?/volt-sec

The drift of electrons in a conductor and that of electrons and holes.

in a semiconductor is equivalent to a current flow. This current is known as

the conduction current, in contrast to the convection current produced by

the motion of charges in free space. The conduction current density may be

obtained in the following manner. If there are N, free electrons per cubic

meter of the material, then the amount of charge AQ passing through an
infinitesimal area AS at a point in the material in a time Af is given by

AQ = N, e(AS « v; AY)
= N,e(AS1, - v)) At : (5-8)
where AS = AS i,. The current Al flowing across AS is given by

Al = AA% — N.eASi, - v, (5-9)

The magnitude of the current density at the point is the ratio of Al to AS
for an orientation of AS which maximizes this ratio and as AS tends to zero.
Obviously, the ratio is a maximum for an orientation of AS normal to v,
and is equal to N,|e|v,. Thus the conduction current density J, resulting
from the drift of electrons in the conductor is given by

_ J, = N_ev, (5-10)
Substituting for v, from (5-7a), we have
J, = —uN.E (5-11)
Defining a quantity o as
6= —uN.e=puN,e| (5-12)
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we obtain the simple and important relationship between J, and E
' J,=0E (413)
The quantity o is known as the electrical conductivity of the materialand
Eq. (5-13) is known as Ohm’s law valid at a point. Equation (5-13) indiates
that J, is proportional to E. Materials for which this relationship hdds,
that is, o is independent of the magnitude as well as the direction of Eare
known as linear isotropic conductors. For certain conductors, each om-
ponent of J, can be dependent on all components of E. In such cases, I, is
not parallel to E and the conductors are not isotropic. Such conductorsare
known as anisotropic conductors.
In a semiconductor we have two types of current carriers: electronsand
holes. Accordingly, the current density in a semiconductor is the sum of the
contributions due to the drifts of electrons and holes. If the densities of holes

and electrons are N, and N,, respectively, the conduction current densiy is
given by

3, = (N, e| + uN,|eDE (514)
Thus the conductivity of a semiconducting material is given by ‘
o= mNyle|+ unN.,le| : (5-152)
For an intrinsic semiconductor, N, = N, so that (5-15a) reduces to
o = (4 + u)N |e| (5-15b)

The units of conductivity are (meter?/volt-second)(coulomb/meter3) or
ampere/volt-meter, also commonly known as mhos per meter, where a
mho (“ohm” spelled in reverse and having the symbol O) is an ampere per
volt. The ranges of conductivities for conductors, semiconductors, and
dielectrics are shown in Fig. 5.4. Values of conductivities for a few materials
are listed in Table 5.1. The constant values of conductivities do not imply
that the conduction current density is proportional to the applied electric
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Fig. 5.4. Ranges of conductivities for conductors, semicon-
ductors, and dielectrics.
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TABLE 5.1. Conductivities of Some Materials

Sec. 5.3

Conductivity, Conductivity,
Material mhos/m Material mhos[m
Silver 6.1 x 107 Sea water 4
Copper 5.8 x 107 Intrinsic germanium 2.2
Gold 4.1 x 107 Intrinsic silicon 1.6 x 10-3
Aluminum 3.5 x 107 Fresh water 10-3
Tungsten 1.8 x 107 Distilled water 2 x 104
Brass 1.5 x 107 Dry earth 10-3
Nickel 1.3 x 107 Wood 10-8-10-11
Solder 7.0 x 106 Bakelite 10-°
Lead 4.8 x 106 Glass 10-t0-10-14
Constantin 2.0 x 106 Porcelain 2 x 1013
Mercury 1.0 x 106 Mica 10-11-10-15
Nichrome 8.9 x 105 Fused quartz 0.4.x 10-17

field intensity for all values of current density and field intensity; However,
the range of current densities for which the material is linear, that is, for
which the conductivity is a constant, is very large for conductors.

Conductors in Electric Fields

In Sections 5.1 and 5.2 we learned that the free electrons in a conductor
drift under the influence of an electric field. Let us now consider an arbitrary-
shaped conductor of uniform conductivity o placed in a static electric field
as shown in Fig. 5.5(a). The free electrons in the conductor move opposite
to the direction lines of the electric field. If there is a way by means of which
the flow of electrons can be continued to form a closed circuit, then a con-
tinuous flow of current takes place. In this section we will consider the
conductor to be bounded by free space, in which case the electrons are held

. E

E
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Fig. 5.5. For illustrating the surface charge formation at the
boundary of a conductor placed in an electric field.
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at the boundary from moving further by the atomic forces within the con-
ductor and by the insulating property of free space. Thus a negative surface
charge forms on that part of the boundary through which the electric field
lines enter the conductor originally, as shown in Fig. 5.5(b). Now, since the
conductor as a whole is neutral, an amount of positive charge equal in mag-
nitude to the negative surface charge must exist somewhere in the conductor.
Where in the conductor may this charge or, for that matter, any charge
placed inside the conductor reside? We will answer this question 1n the
following example.

ExAMPLE 5-1. Assume that, at ¢ = 0, a charge distribution of density p, is created

in a portion of a conductor of uniform conductivity ¢. In the remaining
portion of the conductor, the charge density is zero. It is desired to show
that the charge density in the conductor decays exponentially to zero and
appears as a surface charge at the boundary of the conductor.

Denoting the charge density and the electric field intensity at any time
t in the interior of the conductor to be p and E, respectively, we have, from
Maxwell’s divergence equation for the electric field,

V.E=2 (2-82)
€

The time variation of charge density is governed by the continuity equation

dJ 5
V.J, + c}'f (5-16)
where J, is the conduction current density due to the flow of charges i‘j! the
conductor under the influence of E. Equation (5-16) stated in integral form
tells us that the total current leaving a volume of the conducting material
is equal to the time rate of decrease of charge inside that volume. Substituting
J, = oK in (5-16), we have

V. aE—i—?——O (5-17)

Since ¢ is uniform, we can take it outside the divergence operation in (5-17)
to obtain

ap _ S-
3 0 (5-18)

Now, combining (5-18) and (2-82), we obtain a differential equation for p as
given by

oV.E +

92,9 p—0 (5-19)
0 i
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The solution to (5-19) is obtained by rearranging it and integrating as follows:
f Q = —f g dt
P €o

0

where In A4 is the arbitrary constant of integration. Substituting the initial
condition p = p, at ¢ = 0 in (5-20) and rearranging, we obtain finally

(5-20)

P =P, e~ la/e)t — Po e—iT (5_21)
where we define
T = % (5-22)

Thus the charge density inside the conductor decays exponentially with a
time constant equal to €,/o. In particular, if the charge density at any point
is initially zero, it remains at zero. Hence no portion of the charge which
decays in one region within the conductor can reappear in any other region
within the conductor. On the other hand, the charge must be conserved.
Thus the decaying charge can appear only as a surface charge at the boundary
of the conductor. To see how fast the charge density at an interior point
decays and appears simultaneously as a surface charge, let us consider the
example of copper. For copper, ¢ = 5.80 x 107 mhos/m so that

€ 10~° - -19
T=3=szxsgox o 1 X 1077 sec

Thus, in a time equal to 1.5 X 107!° sec, the charge density decays to e™*
times or about 379 of its initial value. We note that this time constant is
extremely short so that we can assume that any charge density in the interior
of a conductor disappears to the surface almost instantaneously. (Further-
more, we can assume that the surface charge formation follows any time
variation in the electric field causing it so long as this time variation is slow
compared to the time constant.) On the other hand, the time constant can
be up to several days for dielectric materials. |

Returning now to the case of Fig. 5.5, we conclude that the positive
charge equal in magnitude to the negative surface charge appears as a surface
charge on that part of the boundary through which the electric field lines
leave the conductor originally, as shown in Fig. 5.5(b). The surface charge
distribution formed in this manner produces a secondary electric field which
opposes the applied field inside the conductor. The secondary field should,
in fact, cancel the applied field inside the conductor completely. If it does
not, there will be further movement of charges to the surface until a distri-
bution is achieved which produces a secondary field inside the conductor
that cancels the applied field completely. All this adjustment should be
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governed by the time constant so that we can assume that a surface charge
distribution which reduces the field inside the conductor to zero is formed
almost instantaneously. The surface charge distribution will, in general,
produce a secondary field outside the conductor which modifies the applied
field.

Let us now investigate the properties of the electric field at the surface
of a conductor. To do this, let us assume that the electric field intensity
E on the free-space side of the boundary has a component E, tangential to
the boundary and a component E, normal to the boundary. The electric
field intensity inside the conductor is, of course, equal to zero. We now
consider a rectangular path abcda of infinitesimal area in the plane normal
to the boundary and with its sides bc and ad parallel to E, and on either
side of the boundary as shown in Fig. 5.6(a). Since the sides of the rectangle
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Fig. 5.6. For investigating the properties of the electric field
intensity vector at the surface of a conductor.

are infinitesimally small, we can assume that E, and E, are constants along
them. Applying § E « dl = 0 to the path abcda, we have

j’;E.lerf:E.d1+f‘:E.d1+f:E.d1=o (5-23)

The second integral in (5-23) is equal to E(bc) and the fourth integral is
zero. Now, if we let ab and cd tend to zero, shrinking the rectangle to the
surface but still enclosing it, the first and third integrals in (5-23) go to zero,
giving us
E(bc)=0
or
E =0 (5-24)
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Thus the tangential component of the electric field intensity at the boundary
of a conductor placed in an electric field is zero. The electric field at the
boundary is entirely normal to the surface. Note that we have not considered
any time-varying magnetic flux enclosed by the rectangular path abcda since
we are using static field laws. However, even if we do consider the time-
varying magnetic flux, it will go to zero as abcda is shrunk to the surface,
yielding the same result as (5-24).

We now suspect that the normal electric field at the boundary is related
to the surface charge density. To investigate this, let us consider a rectangular
box abcdefgh of infinitesimal volume enclosing an infinitesimal area of the
boundary and parallel to it as shown in Fig. 5.6(b). Applying Gauss’ law in
integral form given by

§ E.dS= GL (charge enclosed by S)
N 0

to the surface area of the box, we have

_ 1 (charge enclosed in the
f E.ds + f E.ds+ f E.dS= € (volumeofthebox )
top bottom side
s\;rbt;adce sg}t;’fe surfaces (5_25)

The second integral in (5-25) is zero since E is zero inside the conductor.
Since the area abcd is infinitesimal, we assume E to be constant on it so that
the first integral is equal to E,(abcd). Now, if we let the side surfaces tend
to zero, shrinking the box to the surface but still enclosing it, the third
integral goes to zero and the charge enclosed by the box tends to the surface
charge density p, times the area abced, giving us

E,(abed) = GL p(abed)
0

or

E =& (5-26)

n 60

Thus the electric field intensity at a point on the surface of a conductor
placed in an electric field is entirely normal to the surface and equal to 1/e,
times the surface charge density at that point.

Finally, since the electric field on the conductor surface is entirely normal
to it, we note that no work is required to move an imaginary test charge on
the conductor surface or, for that matter, inside the conductor (since E = 0).
Thus the conductor surface as well as the interior of the conductor are equi-
potentials. We now summarize the properties associated with conductors in
electric fields as follows:

(a) The charge density at any point in the interior of a conductor is
zero. Any charge must reside on the surface only with an appropriate
density to produce a secondary electric field inside the conductor
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which is exactly opposite to the applied electric field so that property
(b) below is satisfied. }

(b) The electric field intensity inside the conductor is zero. |

(c) The electric field intensity at any point on the surface of the con-
ductor is entirely riormal to it and equal to 1/e, times the su1rface
charge density at that point. ‘

(d) The conductor, including its surface, is an equipotential regiorl.
\

ExaMPLE 5-2. An infinite plane conducting slab of thickness d occupies the re;aglon

between z = 0 and z = d as shown in Fig. 5.7(a). A uniform electricfield

E = Ei,, where E, is a constant is applied. It is desired to find the chlarge
dens1t1es mduced on the surfaces of the slab. ‘

Since the applied electric field is uniform and is directed along the z

direction, a negative charge of uniform density forms on the surface z = 0

due to the accumulation of free electrons at that surface. A positive charge
E = Eoi,
Applied
Field
S e T T T T T = p |
[ T I I B Pso :
| |Conductor| | E= s—oolz S§c;)dndary‘
[ T O A N Fie
z=0 iii'iii ------ Ps = —ps)
(@ (b)
TR R+ v+ vy = g0 F,
E=0
——————— ps = —¢gokEy

Fig. 5.7. (a) Infinite plane slab conductor in a uniform applied
field. (b) Induced surface charge at the boundaries of the con-
ductor and the secondary field. (¢) Sum of the applied and the
secondary fields.
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of equal and opposite uniform density forms on the surface z = d due to
a deficiency of electrons at that surface. Let these surface charge densities
be —p,, and p,,, respectively. To satisfy the property that the field in the
interior of the conductor is zero, the secondary field produced by the surface
charges must be equal and opposite to the applied field; that is, it must be
equal to —Ei,. Now, each sheet of uniform charge density produces a field
intensity directed normally away from it and having a magnitude 1/2¢, times
the charge density so that the field due to the two surface charges together
is equal to —(p,./€,)i, inside the conductor and zero outside the conductor
as shown in Fig. 5.7(b). Thus, for zero field inside the conductor,
—Lei, = —Eii,
€o
or
Pso = €E, (5-27)

The field outside the conductor remains the same as the applied field
since the secondary field in that region due to the surface charges is zero.
The induced surface charge distribution and the fields inside and outside the
conductor are shown in Fig. 5.7(c). Note that the property that the field
intensity at a point on the surface of the conductor is normal to it and equal
to 1/e, times the surface charge density at that point is satisfied on both
surfaces z=0and z =d. ||

Polarization in Dielectric Materials

We stated at the beginning of Section 5.1 that the bound electrons in an
atom can be displaced but not removed from the influence of the parent
nucleus upon application of an external electric field. When the centroids of
the electron clouds surrounding the nucleii are displaced from the centroids
of the nucleii, as shown in Fig. 5.8(a), to create a charge separation and
hence form microscopic electric dipoles, the atoms are said to be “polarized.”
The schematic representation of an electric dipole formed in this manner is
shown in Fig. 5.8(b). Such “polarization” may exist in the molecular structure
of certain dielectric materials even under the application of no external electric
field. The molecules are then said to be polar molecules. However, the polar-
ization of individual atoms and molecules is randomly oriented and hence
the material is not polarized on a macroscopic scale. In certain other dielectric
materials, no polarization exists initially in the molecular structure. The
molecules are then said to be nonpolar molecules.

Upon the application of an external electric field, the centroids of the
electron clouds in the nonpolar molecules may become displaced from the
centroids of the nucleii due to the Coulomb forces acting on the charges.
This kind of polarization is known as electronic polarization. In the case of
polar molecules, the electric field has the influence of exerting torques on
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Fig. 5.8. (a) Polarization of bound charge in an atom under the
influence of an electric field. (b) Schematic representation of
electric dipole created due to polarization. (c) Torque acting on
an electric dipole under the influence of an electric field.

the microscopic dipoles as shown in Fig. 5.8(c), to convert the initially randlgnm
polarization into a partially coherent one along the field, on a macrosccpic
scale. This kind of polarization is known as orientational polarization.
Certain materials, called “electrets,” when allowed to solidify in the appied
electric field, become permanently polarized in the direction of the field, jpat
is, retain the polarization even after removal of the field. Certain other
materials, known as “ferroelectric” materials, exhibit spontaneous, perma;i]gnt
polarization. A third kind of polarization, known as ionic polarizag?on,
results from the separation of positive and negative ions in molecules :ield
together by ionic bonds formed by the transfer of electrons from one aiom
to another in the molecule. All three polarizations may occur simultaneously
in a material.

The net dipole moment created due to polarization in a dielectric
material will produce a field which opposes the applied electric field and
changes its distribution both inside and outside the dielectric material, in
general, from the one that existed in the absence of the material. This will
be the topic of discussion in Section 5.5. In the remainder of this section, we
will first derive the relationship between the dipole moments of the individual
microscopic dipoles and the electric field responsible for the polarization by
considering electronic polarization by means of an example. We will then
define a new vector P which represents polarization on a macroscopic scale
and relate it to the average macroscopic electric field.

ExAMPLE 5-3. Assume that the nucleus of an atom is a point charge and that the
electron cloud has originally a spherically symmetric, radially uniform charge
distribution which is retained as it is displaced relative to the nucleus under
the influence of a polarizing electric field. (This assumption is justified if
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the displacement between the centroids of the electron cloud and the nucleus
is negligible compared to the radius of the electron cloud.) It is desired to
find the dipole moment resulting from the polarizing field.

Let the electric field causing the displacement between the two centroids
be E, = Ei,, so that the displacement is along the z axis as shown in Fig.
5.9. Let this displacement be equal to d. The two forces which are acting on
the nucleus are (a) the Coulomb force F, due to the electric field E, and
(b) the restoring force F, due to the electric field produced at the nucleus by
the electron cloud.

Nucleus

X \—/\Centroid of
Electron

Cloud

Fig. 5.9 For obtaining the dipole moment due to electronic
polarization of an atom.

The force F, is given by
F, = OE, = QF,i, (5-28)

where Q is the charge of the nucleus. To find the restoring force F,, we take
advantage of the spherical symmetry of the charge distribution in the electron
cloud about its center and apply Gauss’ law to a sphere of radius d centered
at the origin to obtain the electric field E, at the nucleus due to the electron
cloud as

E, — _1 charge enclosed by spherical surface of radius d, (5-29)
276, area of the spherical surface z

Now, since the total charge in the electron cloud is — Q and since the charge
density is uniform, the charge enclosed by the spherical surface of radius
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d is —Qd?/a®, where a is the radius of the electron cloud. Thus we obtain
_ _Qd3/a3 s Qd . (5_3c,)

i,= i
2 4ne,d? * 4reqa ?

Hence the restoring force on the nucleus is given by |

: |
F, = OE, = —%L (5-31)

For equilibrium displacement d of the nucleus relative to the center of the
electron cloud, the two forces F, and F, must add to zero, giving us

d— 4"3“3 E, (5-3R)

Thus the equilibrium displacement d is proportional to the electric field
intensity E,. The dipole moment p, formed by the charge separation -is
then given by

p. = Qdi, = 0 4"8”3 E,i, = 47€,a°E, (5-33)

Equation (5-33) indicates that the dipole moment p, is proportional|to
the field E, causing it. Defining a proportionality constant «, as

o, = 4neyad (5-34)

we have
P.= aeEp (5-35)

The proportionality constant e, is known as the “electronic polarizability’ of

the atom. JJ
[
It is found that the dipole moments due to orientational and iﬁmic
polarizations are also proportional to the polarizing field E,. The average
dipole moment p per molecule is then given by \

|
p=2qaE, (5!—36)
where o is known as the molecular polarizability. Let us now considf;:r a
small volume Av of the dielectric material. If N denotes the number of

molecules per unit volume of the material, then there are N Av molecules
in the volume Av. We define a vector P, called the “polarization vector,” as

LSy =N 5-37
= 25 2 B=Np ¢-37)
which has the meaning of “dipole moment per unit volume” or the “dipole

moment density” in the material. Substituting (5-36) into (5-37), we hav‘é
P = NoE, (5-38)
\

The units of P are coulombs per square meter. |
The field E , in (5-36) and hence in (5-38) is the average electric field a‘cting
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to polarize the individual molecule and is generally called the polarizing
field or the local field. It is the average field that would exist in an imaginary
cavity created by removing the molecule in question, keeping all the other
molecules polarized in their locations. It is not the same as the average macro-
scopic field E at the molecule with all the molecules including the one in
question remaining polarized in their locations. It is equal to the field E
minus the average field produced by the dipole in the imaginary cavity. We
have to find this average field to express E, in terms of E so that P can be
related to E. To determine this field rigorously, we need detailed information
about the shape and charge distribution of the molecule. However, we will
consider a simple special case of a spherical cavity and obtain the required
field in the following example.

ExAMPLE 5-4. Two equal and opposite point charges Q and —Q are situated at
(0,0, d/2) and (0,0 — dJ2), respectively, in cartesian coordinates as shown
in Fig. 5.10, forming a dipole of moment p= Qdi,. Obtain the average
electric field intensity due to the dipole in a spherical volume of radius
a > df2 and centered at the origin.

Fig. 5.10. For obtaining the aver-
age electric field intensity due to
an electric dipole in a spherical
volume.

Let us consider the fields due to the positive and negative point charges
independently. Considering first the positive charge Q located at (0, 0, d/2),
we note that its electric field at an arbitrary point P(r, 8, @) is given by

-9 1 iy
4ze, (r2 + d2[& — rdcos ) ©

E, (5-39)

where i, is the unit vector along the line from the point charge Q to the point
P. The volume integral of this field evaluated in the spherical volume ¥V of
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radius a is given by

1 .
Jl, E.dv=—0 [fy Ime (2 I+ d*& — rdcos 0) 72 dv (5-40)
where i, = —ipp. The quantity inside the brackets on the right side of
(5-40) can be recognized as the electric field intensity produced at the location
of the point charge by a volume charge distribution of uniform densilty
1 C/m? in the spherical volume V. From Gauss’ law, this electric field intensity
is equal to

1 (charge enclosed within the sphere of radius d/2) .
€, \  surface area of the sphere of radius /2  /

or (df6€,)i,.
Thus we obtain

_ _9d; 5.4
fV E, dv= be. i, (5-4]la)
Similarly, the volume integral of the electric field due to the negative charge
— Q located at (0, 0, —d/2) evaluated in the spherical volume ¥ of radius a
can be obtained as ,

_ _od, y
VE_ dv 6c, i, (5-41b)
The volume integral of the electric field due to the dipole is then given by
J E, +E)dv= —SQd_i, (5!.42)

Vv Eo ‘\

Finally, the average field due to the dipole in the spherical volume is give;il by
|

Fo=7 | @ +E)d |

(5-43)
S (%)
$na’\ 3¢, 1 4re \a®

It is left as an exercise (Problem 5.16) for the student to show that (5-43)
is true for any arbitrary charge distribution of dipole moment p 51tuated

in the spherical volume of radius a. || ‘J

From the result (5-43) of Example 5-4, we now relate the polaljlzmg

field E, with the average macroscopic field E as |
|

—E—E,—-E—(-—P )=E+-—E ;
E,=E—-E.=E <47z60a3) E+ Sgnayne, G4
where we have substituted p = P/N from (5-37). Now, if we assume that
the molecular volume is equal to the volume of the spherical cavity,L then
(4ma®)N is equal to 1 since N is the number of molecules per unit volume.
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Equation (5-44) then reduces to

- P .
E,=E + 7 (5-45)
Although we have obtained (5-45) by making certain simplifying assump-
tions, it is found that the experimentally observed behavior of many dielectric
materials agrees remarkably well with that following from (5-45). Substituting
(5-45) into (5-38), we obtain

_ P
P — No(E+ 3_60) (5-46)
Rearranging (5-46), we obtain the relationship between P and E as
_ 3aN

Defining a dimensionless parameter y,, known as the “electric suscepti-
bility,” as

_ 3aN
Xe =3¢, —aN (5-48)
Eq. (5-47) can be written as
P=¢,xE (5-49)

This simple relationship between the polarization vector P and the average
macroscopic electric field E in the dielectric indicates that P is proportional
to E. Materials for which this relationship holds, that is, y, is independent
of the magnitude as well as the direction of E are known as linear isotropic
dielectric materials. For certain dielectric materials, each component of P
can be dependent on all components of E. In such cases, P is not parallel
to E and the materials are not isotropic. Such materials are known as ani-
sotropic dielectric materials.

Dielectrics in Electric Fields; Polarization Charge and Current

In Section 5.4 we learned that polarization occurs in dielectric materials
under the influence of an applied electric field. We defined polarization by
means of a polarization vector P, which is the electric dipole moment per
unit volume. The polarization vector is related to the electric field responsible
for producing it, through Eq. (5-49). When a dielectric material is placed in
an electric field, the induced polarization produces a secondary electric field,
which reduces the applied field, which in turn causes a change in the polar-
ization vector, and so on. When this adjustment process is complete, that is,
when a steady state is reached, the sum of the originally applied field and
the secondary field must be such that it produces a polarization which results
in the secondary field. The situation is like a feedback loop as shown in
Fig. 5.11. We will assume that the adjustment takes place instantaneously
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Field in the

Applied Field, E, + Dielectric, E. + E
PP . () z L; Dielectric
+
Secondary
Field, E; ¥

Polarization

Fig. 5.11. Feedback loop illustrating the adjustment of polariza-
tion in a dielectric material to correspond to the sum of the
applied field and the secondary field due to the polarization.

with the application of the field and investigate the different effects arising
from the polarization. We do this by first considering some specific examplges.

EXAMPLE 5-5. An infinite plane dielectric slab of uniform electric susceptibility X.o
and of thickness d occupies the region 0 < z < d as shown in Fig. 5.1213)-
A uniform electric field E, = E,ji, is applied. It is desired to investigate the
effect of polarization induced in the dielectric. l
The applied electric field induces dipole moments in the dielectric w{ith
the negative charges separated from the positive charges and pulled away

E, = Eji, |
z=duwxhnuﬂ J
PpsoAS ,{_ 8 8 g 1
Xl =1Xe0 \ j 2 g 8 I
~ o ]2 82 %]
z2=0 o+ { )
[ 1
(a) | /_ppSOAS E, = E,i,
 Prs = Pps0 d/)-_': A}n}ﬁ* m‘
+ - + + -V @ { + + +
= Eo i
.~ - - Tl x| - - -
© \Pps = —0pso 4 4 4
c

Fig. 5.12. For investigating the effects of polarization induced in
a dielectric material of uniform susceptibility for a uniform

applied electric field. ’

|
I

4‘ ()
|
{

|
:
|
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from the direction of the field. Since the electric field and the electric sus-
ceptibility are uniform, the density of the induced dipole moments, that is,
the polarization vector P, is uniform as shown in Fig. 5.12(b). Such a dis-
tribution results in exact neutralization of all the charges except at the
boundaries of the dielectric since, for each positive (or negative) charge not
on the surface, there is the same amount of negative (or positive) charge
associated with the dipole adjacent to it, thereby cancelling its effect. On the
other hand, since the medium changes abruptly from dielectric to free space
at the boundaries, no such neutralization of charges at the boundaries takes
place. Thus the net result is the formation of a positive surface charge at
the boundary z = d and a negative surface charge at the boundary z =0
as shown in Fig. 5.12(c). These surface charges are known as polarization
surface charges since they are due to the polarization in the dielectric. In
view of the uniform density of the dipole moments, the surface charge densities
are uniform. Also, in the absence of a net charge in the interior of the di-
electric, the surface charge densities must be equal in magnitude to preserve
the charge neutrality of the dielectric.
Let us therefore denote the surface charge densities as

pro zZ= d
s = 5-50
Py {_pm 7 =0 (5-50)

where the subscript p in addition to the other subscripts stands for polar-
ization. If we now consider a vertical column of infinitesimal rectangular
cross-sectional area AS cut out from the dielectric as shown in Fig. 5.12(d),
the equal and opposite surface charges make the column appear as a dipole
of moment (p,,, AS) di,. On the other hand, writing

P = P,i, (5-51)

where P, is a constant in view of the uniformity of the induced polarization,
the dipole moment of the column is equal to P times the volume of the
column, or Py(d AS)i,. Equating the dipole moments computed in the two
different ways, we have

ppso = Po (5"52)

Thus we have related the surface charge density to the magnitude of the
polarization vector. Now, the surface charge distribution produces a secon-
dary field E, given by

Py — Loy

for 0 d
E =1 ¢ " g TUSIS (5-53)

0 otherwise

When the secondary field E_ is superimposed on the applied field the net
result is a reduction of the field inside the dielectric. Denoting the total field
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inside the dielectric as E,, we have

E,=E, +F, = Ei —20i, = (£, — &), (5-54)
€o €o
But, from (5-49),
P = ¢€,x.0E; (5-55)
Substituting (5-51) and (5-54) into (5-55), we have ‘f
P |
Py = €X.o (Eo - ?g) |
0
or
— €0XeoEq _5(3
P, = Jeeore (5-56)

Thus the polarization surface charge densities are given by

€0Xe0Eo z=4d

1+Xeo

Pps = (5'5
? _ €oXeoEg z=0
1 + XeO
and the electric field intensity inside the dielectric is
E =L (5-98)

1+X20

Since the secondary field produced outside the dielectric by the surfdce
charge distribution is zero, the total field E, outside the dielectric remains the
same as the applied field. The field distribution both inside and outside
the dielectric is shown in Fig. 5.12(e). Although we have demonstrated only
the formation of a polarization surface charge in this example, it is easy] to
visualize that a nonuniform applied electric field or a nonuniform elect}tric
susceptibility of the material will result in the formation of a polarizatjon
volume charge in the dielectric due to imperfect cancellation of the chalfges
associated with the dipoles. [

ExAMPLE 5-6. An infinite plane dielectric slab of uniform electric susceptibilityj‘ X0
and of thickness d occupies the region 0 < z < d. A spatially uniform but
time-varying electric field E = E, cos wt i, is applied. It is desired to inves-
tigate the effect of polarization induced in the dielectric. Assume that the
induced polarization follows exactly the time variations of the applied field.

Since the applied field and the electric susceptibility of the dielectric are
spatially uniform, the induced polarization is such that only surface charges
of equal and opposite density are formed at the boundaries of the dielectric,
and no volume charge is formed inside the dielectric. At any particular time,
the surface charge densities are given by (5-57), with the value of the applied
field at that time substituted for E,. Thus the time-varying surface charge
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densities are

5-59)
€oXeoEo cos-@t 72=0 (

But if the charge in a volume is varying with time, there must be a current

flow out of or into that volume in accordance with the continuity equation,
given in integral form by

§J-ds+%f pdv =0 (4-103)
S 14

where S is the surface bounding the volume V. Obviously, in the present case
the current flow must be inside the dielectric from one boundary to the other.
This current is known as the polarization current since it is due to the polar-
ization in the dielectric. For this example, the polarization current density
must be entirely z-directed because of the uniformity of the polarization
surface charge distributions and it must be uniform since the polarization
volume charge density inside the dielectric is zero.
Let us therefore denote the polarization current density as

I, =J,, 0<z<d (5-60)

where the subscript p stands for polarization. To find J,, we apply (4-103)
to a rectangular box enclosing an infinitesimal area AS of the surface z = 0
and parallel to it as shown in Fig. 5.13. Noting that the current outside the
dielectric slab and the volume charge inside the slab are zero, we obtain

T AS + L(p, 1.8} = 0

JP = Jpoiz

Fig. 5.13. For the determination of the polarization current
density resulting from the time variation of the polarization
charges induced in a dielectric material.
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Thus
— _i — _£_<_60190E0 ) — _EOXeOan) 1
Jpo = ar [Ppsl:=0 = ar T+ 2., coswt | = T+ 7.0 Sin o ‘
and |
€ XeoEq® . 1
Jp=—i’—)€}_‘l}‘:—osma)t1, O0<:z<d (5-61,{)

It is left as an exercise for the student to verify that the same result is obtainec; :‘1

for J, by applying (4-103) to a rectangular box enclosing an infinitesima'l

area AS of the surface z = d and parallel to it. Note that the polarizatior
“current density is out of phase by 90° with the applied electric field. ||

We now derive general expressions for polarization surface and volum e
charge densities and polarization current density in terms of the polarizatio:n
vector. To do this, let us consider a dielectric material of volume ¥ in which
the polarization vector P is an arbitrary function of position as shown in
Fig. 5.14. We divide the volume ¥’ into a number of infinitesimal volumes dv;,

1
44 iy 44 Y ;‘i
‘ av’
4 * 4 4 4Dielectric
r < 44 4 4P4 Material
0 e

X

Fig. 5.14. For evaluating the electric potential due to induced
polarization in a dielectric material.

i=1,2,3,...,n defined by position vectorsr;, i =1,2,3,...,n, respec-
tively. In each infinitesimal volume, we can consider P to be a constant so
that the dipole moment in the ith volume is P, @v;. From (2-109), the scalar
potential dV, at a point O(r) due to the dipole moment in the ith volume
is given by
_ 1 Pdvi+(@®—r)
v, = dre, [r—r]P
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The total potential at O(r) due to the dipole moments in all the # infinitesimal
volumes is then given by

_ < _ 1 &Pdvi«(xr—1) 5.62
v §1th_47[601'=21 [r—r? (5-62)
Equation (5-62) is good only for |r|>|r;|, where i =1,2,3,...,n since
each dv; has a finite although infinitesimal volume. However, in the limit
that n — oo, all the infinitesimal volumes tend to zero; the right side of
(5-62) becomes an integral and the expression is valid for any r. Thus

V(r)=41 0 f Pdv+.@x—r)

e [r —1r'f
1 volume V’ 1 (5-63)
= ne, f PV =7
volume V*
Substituting the vector identity
’ P r 1 1
V. —PpP. .
r—r| F V|r—r’|+|r—r’|V P

in (5-63), we obtain

J— 1 ’ P ’ 1 1 ’ ’
V(r)_47t60 f v |l‘—l"|dv—47t60 j |1-Tr’—|V Pdv

volume V’/ volume V* (5_64)

Applying the divergence theorem to the first integral on the right side of
(5-64), we get

. 1 P'i; ’ 1 _VI’Pd/ -6
V) = gz f =% + 7, f r=r[®

surface 8" volume V*

where S’ is the surface bounding the volume ¥’ and i, is the unit normal
vector to dS’.

The first integral on the right side of (5-65) represents the potential
at O(r) due to a surface charge of density P « i, on the surface S’ and the
second integral is the potential at Q(r) due to a volume charge of density
(—V'’ « P) in the volume V. Thus the potential at O(r) due to the polarization
in the dielectric is the same as the sum of the potentials at O(r) due to a
polarization surface charge of density

o) =P@) i, on S’ (5-66a)
and due to a polarization volume charge of density
p,) ==V P in V' (5-66b)

We note that the total charge in V'’ is

fﬁs' P, dS’ + jw p,dv = ﬂ (P.i)ds — jw (V' «P)dv' = 0
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|
|

according to the divergence theorem, so that the charge neutrality of the di- |

electric is satisfied. Thus the total polarization volume charge in V" is equal };
to the negative of the total polarization surface charge on S’. Omitting the |
primes in (5-66a) and (5-66b), we have
Pps=Pi, (5-67)
p,=—VP (5-68)

Now, the polarization current density J, in the dielectric due to the time “

variation of the polarization charge density should satisfy the continuity}

equation ‘

Ve, +%:-0
Substituting for p, in (5-69) from (5-68), we have
V.J,— —(V +P)=0
or
P\ _
v-(3,-%)=0
or i

J,— %It_) = constant with time (5-7CP

The constant must, however, be zero since we know that J, is zero when
dP/0¢ is zero. Thus ;
o |
3,=% (5-7% )
Summarizing what we have learned in this section, the induced dipojle
moments due to polarization in a dielectric material placed in an electric field
have the effect of creating in general the following:

(a) polarization surface charges, having densities given by (5-67), at the
boundaries of the dielectric, |

(b) polarization volume charge of density given by (5-68) in the dlelectfnc
and such that the total volume charge is exactly the negative |of
the total surface charge so as to preserve the charge neutrality of

material, and

(c) polarization current of density given by (5-71) resulting from the tifne
variation of the polarization charges.

We have also shown that the polarization charges and currents alter (the
applied electric field in the material. Such a modification of the applied
field occurs outside the material as well in the general case. The magnetic
field associated with the applied electric field is also altered by the addition
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of the secondary magnetic field due to the polarization current and the time-
variation of the secondary electric field.

Displacement Flux Density and Relative Permittivity

In Section 5.5 we learned that the electric field in a dielectric material is the
superposition of an applied field E, and a secondary field E, which results
from the polarization P, which in turn is induced by the total field (E, 4+ E,),
as shown in Fig. 5.11. Thus, from Fig. 5.11 and Eq. (5-49), we have

P = c,7,(E, + E) | (572)
E, = f(P) (5-73)

where f(P) denotes a function of P. Determination of the secondary field
E, and hence the total field (E, + E,) for a given applied field E, requires
a simultaneous solution of (5-72) and (5-73) which, in general, is very incon-
venient. To circumvent this problem, we make use of the results of Section
5.5, in which we found that the induced polarization is equivalent to a polar-
ization surface charge of density p,,, a polarization volume charge of density
P, and a polarization current of density J,, as given by (5-67), (5-68), and
(5-71), respectively. The secondary electric and magnetic fields are the fields
produced by these charges and current as if they were situated in free space,
in the same way as the charges and currents responsible for the applied
electric field and its associated magnetic field.

Thus the secondary electromagnetic field satisfies Maxwell’s equations

V.E =/ (5-74a)
€o
V.B, =0 (5-74b)
0B, :
VxE =-S5 (5-74c)
VxB, = o[ J, + 5 (&E)] (5-74d)

where B, is the secondary magnetic field. On the other hand, if the “true”
charge and current densities responsible for the applied field E, with its
associated magnetic field B, are p and J, respectively, we have

V.E =2 (5-75a)
€
V.B =0 (5-75b)
_ 0B, )
VXE, =0 (5-75¢)

VxB, = pu, [J + gt_ (eoEa)] (5-75d)
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Now, adding (5-74a)-(5-74d) to (5-75a)-(5-75d), .respectively, we obtain |

V.@E +E)=LL2 (5-762)

0 i
V.B,+B)=0 (5-76b)
VX (E +E)=—3(®B,+B) (5-760)

VX B+ B)= 4o (I + T, + S le® + BN} (576

Substituting
E=E, +E, (5-77a)
B =B, + B, (5-77b
p,=—V.P (5-68
3, =% (5-71
in (5-76a)-(5-76d), and rearranging, we obtain
Vel e, E+P)=0p (5- 783[)
V:B=0 (5-78b)
_ _0UB .
VXE= o (5-78¢)
_ J
VxB=p, [J + 3 (eE + P):I (5-78d)

where E and B are the total fields.
We now define a vector D, known as the displacement flux density
vector, and given by

D=¢E-+P (5-79)

Note that the units of D are the same as those of ¢,E and P, that is, coulombs
per square meter, and hence it is a flux density vector. Substituting (5- 79)
into (5-78a)-(5-78d), we obtain

V.D=p (5-80)
V-B=0 (5-81)
B |
VxE= 98 532
VxB=p,(J+ %l:)) (5-83)

Thus the new field D results in a set of equations which does not explicitly
contain the polarization charge and current densities, unlike the equatlons
(5-76a)—(5-76d).
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Substituting for P in (5-79) from (5-49), we have

D =¢E + €,x.E = €,(1 + x)E = €,6,E = €E (5-84)

where we define
e, =144z, (5-85)

and

€ = €,€, (5-86)
The quantity €, is known as the relative permittivity or dielectric constant
of the dielectric and € is the permittivity of the dielectric. Note that e, is
dimensionless and that (5-84) is true only for linear dielectrics if € is to be

treated as a constant for a particular dielectric, whereas (5-79) holds in
general. Substituting (5-84) into (5-80)—(5-83), we obtain

V.E= % (5-87a)
V.B=0 (5-87b)
VXE-— —‘(’9_? (5-87¢)
VxB =g, |:J + d_‘i- (eE)] (5-87d)

Equations (5-87a)-(5-87d) are the same as Maxwell’s equations for free space
except that ¢, is replaced by e. Thus the electric and magnetic fields in the
presence of a dielectric can be computed in exactly the same manner as for
free space except that we have to use € instead of €, for permittivity. In fact,
if =0, ¢ =1 and € =¢, so that free space can be considered as a
dielectric with € = €,, and hence, Eqgs. (5-87a)-(5-87d) can be used for free
space as well. The permittivity € takes into account the effects of polarization
and there is no need to consider them when we use € for €, thereby eliminating
the necessity for the simultaneous solution of (5-72) and (5-73). In the case
of a boundary between two different dielectrics, the appropriate boundary
conditions for D take into account implicitly the polarization surface charge.
We will consider these boundary conditions in Section 5.12. The relative per-
mittivity is an experimentally measurable parameter and its values for several
1 dielectric materials are listed in Table 5.2.

ExAMPLE 5-7. For the dielectric slab of Example 5-5, find and sketch the direction
lines of the displacement flux density and the electric field intensity vectors
both inside and outside the dielectric.

From Example 5-5, the electric field intensity inside the dielectric is
given by

E

E.:—O'
' 1+Xeolz

(5-58)
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TABLE 5.2. Relative Permittivities of Some Materials

Relative Relative

Material Permittivity Material Permittivity
Air 1.0006 Dry earth 5
Paper 2-3 Glass 5-10
Rubber 2-3.5 Mica 6
Teflon 2.1 Porcelain 6
Polyethylene 2.26 Neoprene 6.7
Polystyrene 2.56 Wet earth 10
Plexiglass 2.6-3.5 Ethyl alchohol . 243
Nylon 3.5 Glycerol 42.5
Fused quartz 3.8 Distilled water 81 1
Bakelite 4.9 Titanium dioxide 100 “1

The relative permittivity of the dielectric is 1 + y,,. Thus the displacemerat
flux density inside the dielectric is

1 . .
D; = €(1 + 2.0E; = WEOL = €,E,i,
Outside the dielectric, the electric field intensity is the same as the applid
value so that the displacement flux density is

D, = €.E, = €,E,i,

Thus, for this example, the displacement flux density vectors inside and
outside the dielectric are the same and equal to the displacement flux density
associated with the applied electric field intensity. Both D and E fields insiide
and outside the dielectric are shown in Fig. 5.15. We note that the direction
lines of D do not begin or end on the polarization charges whereas the direc-
tion lines of E begin and end on them. The direction lines of D begin and

D,= g Eoi; 4 MMM M4 M ME= Ej;
{ I : : ‘ ' : —Polarization
_ | Charges
Sk e e I O AT } |
I I | | |
D; = eEoi, || | | |E: = —lz
| | | Iy
P S L i [ NG ‘ —
ORI
| il | I\Polarlzatlon ’ \‘
I T T [ T T Charges ‘

Fig. 5.15. Displacement flux density and electric field intensity
vectors for the dielectric slab of Example 5-5.
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end only on the charges other than the polarization charges whereas the
direction lines of E begin and end on both kinds of charges. |]

ExampPLE 5-8. A point charge Q is situated at the center of a spherical dielectric
shell of uniform permittivity ¢ and having inner and outer radii a and b,
respectively, as shown in Fig. 5.16. The entire arrangement is enclosed by
a grounded conducting shell of inner radius ¢ and concentric with the di-
electric shell. Find and sketch the D and E fields in three different regions:
O<r<aa<r<b,and b < r < c. Also find and sketch the P field and
the polarization charges in the dielectric and the charge induced on the
conductor surface.

Fig. 5.16. Displacement flux density, electric field intensity, and
polarization vectors for the arrangement of a point charge at
the center of a spherical dielectric shell enclosed by a grounded
spherical conductor concentric with the dielectric shell.

We make use of the spherical symmetry associated with the problem
and apply the integral form of (5-87a) given by

j; E.dS= %f pdv= % (true charge enclosed by S)  (5-88)
N v

to three different spherical surfaces centered at the point charge and lying
in the three different regions. Thus we obtain

2
Tne 72 i O0<r<a

g b a<r<b (5-89)

—=__ i b c
| dme " <r<
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The corresponding D field is given by

GOE:%L 0<r<a

D= eE:%i a<r<b

dmr® T
60E=%i, b<r<c |
=2 ; O<r<e (5-90)

drr2 T (

Alternatively and more elegantly, we can use the integral form of (5-80%
given by ‘

\
fﬁsD «dS = f p dv = (true charge enclosed by S) (5-91)
v \

and apply it to a spherical surface centered at the point charge and haviné
any radius », where 0 < r < c. Since the right side of (5-91) does not depend
upon the permittivity of the medium, we then obtain the result given by
(5-90). Having obtained this, we can then find E in the three different reglons
by dividing D by the corresponding permittivity.

Now, from (5-79), the polarization vector P inside the d1e1ectrlc is
given by

P=D-— fo[E]a<r<b
= i e i =2 (1 - )i 592
Zarrtr T S0 dgerz’t T dppa €/ ‘

The polarization volume and surface charge densities are

p,=-V-p=—1 0 p)

- A G- 2=
[Ppslrea = [Plica » (—1i,) »
(-] oo a(iog) O

[Ppsli=s = [Pl « (i) cos
[l ) wmsgl-g) O

The D and E fields in the three regions, the P field in the dielectric, and the
polarization surface charge densities are shown in Fig. 5.16. From (5-26),
the surface charge density induced on the conductor surface r = c is given by

(5-93a)

(Phme = €oEl e (—i) = —€E}oe = — 725 (594)
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so that the total charge induced on the conductor surface is — Q. These
charges are shown in Fig. 5.16. We can obtain this result alternatively by

recalling that E inside the conductor is zero. Then § E . dS for any surface
N

S entirely within the conductor must be zero. For this to be true, an amount
of charge equal and opposite to the sum of all kinds of charges (polarization
or otherwise) enclosed by the conductor must be induced on the conductor
surface. Since the sum of all kinds of charges enclosed by the conductor is

Q + [pps]r=a4na2 + [pps]r=b47r’bz = Q

the induced charge on the conductor surface must be — Q. Alternatively
and more elegantly, we note that D = ¢ E is zero inside the conductor.

Hence § D « dS for any surface S entirely within the conductor must be
S

zero. For this to be true, an amount of charge equal and opposite to all
charges other than polarization charges, enclosed by the conductor must
be induced on the conductor surface. Since the charge, other than polari-
zation charge, enclosed by the conductor is the point charge Q, the induced
charge on the conductor surface must be — Q. This induced charge required
to make the field inside the conductor equal to zero is acquired from the
ground.

From Fig. 5.16, we once again note that the direction lines of E begin
and end on all kinds of charges (polarization or otherwise) whereas the direc-
tion lines of D begin and end only on charges other than polarization charges.
The gaps in the direction lines of E resulting from the polarization charges
are filled by the direction lines of P. The flux of E through a spherical surface
centered at the point charge varies from medium to medium, depending upon
the permittivity of the medium in which the surface lies. On the other hand,
the flux of D through that surface is always equal to only the true charges,
that is, charges other than the polarization charges, enclosed by the surface,
irrespective of the permittivities of the media bounded by the surface. Thus
there is a displacement flux from the true charges which is independent of the
medium as originally discovered by Faraday when he found experimentally
that the induced charge on the conductor surface was independent of the
medium. However, the vector D was introduced later by Maxwell, who
called it the “displacement.” This explains the name “displacement flux
density” for D. In Section 4.4 we introduced the concept of displacement
current as the time derivative of the flux of ¢,E. We now recognize that ¢ E
is simply the displacement flux density in free space and hence the name
displacement current, again attributed to Maxwell, for the time derivative
of the flux of ¢,E. It follows that the generalization of the displacement

current density of Section 4.5 to dielectric media is %) = g—t(eoE + P), which

reduces to gt-(eE) for linear dielectrics. |j
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Magnetization and Magnetic Materials |
|

Thus far in this chapter, we have been concerned with the response of
materials to electric fields. We now turn our attention to materials know
as magnetic materials which, as the name implies, are classified accordin
to their magnetic behavior. According to a simplified atomic model, th
electrons associated with a particular nucleus orbit around the nucleus i
circular paths while spinning about themselves. In addition, the nucleu
itself has a spin motion associated with it. Since the movement of charg
constitutes a current, these orbital and spin motions are equivalent to current
loops of atomic dimensions. We learned in Chapter 3 that a circular current
loop is the magnetic analog of the electric dipole. Thus each atom can be
characterized by a superposition of magnetic dipole moments corresponding
to the electron orbital motions, electron spin motions, and the nuclear spip.
However, owing to the heavy mass of the nucleus, the angular velocity ¢f
the nuclear spin is much smaller than that of an electron spin and hence the
equivalent current associated with the nuclear spin is much smaller than the
equivalent current associated with an electron spin. The dipole moment due
to the nuclear spin can therefore be neglected in comparison with the other
two effects. The schematic representations of a magnetic dipole as seen
from along its axis and from a point in its plane are shown in Figs. 5.17 a)
and 5.17(b), respectively.

In many materials, the net magnetic moment of each atom is zero [in
the absence of an applied magnetic field. An applied magnetic field has the
effect of inducing a net dipole moment or “magnetizing” the material lby
changing the angular velocities of the electron orbits. This induced “mdg-
netization™ is in opposition to the applied field so that there is a net reductjon
in the magnetic flux density in the material from the applied value. Such
materials are said to be “diamagnetic.” In fact, “diamagnetism,” whicl:EV is
analogous to electronic polarization, is prevalent in all materials. We will
illustrate the diamagnetic effect by means of the following example.

IOlll

(a) (b) ‘

Fig. 5.17. Schematic representation of a magnetic dipole: |
(a) as seen from along its axis, and (b) as seen from a point (
in its plane. /‘
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EXAMPLE 5-9. Assume that the nucleus of an atom is a point charge equal to |e|,

‘ where e is the charge of an electron. Consider an electron of mass m, in a
circular orbit of radius a around the nucleus with an angular velocity
o, rad/sec. It is desired to find the change in the dipole moment of the orbiting
electron due to the application of a uniform external magnetic field per-
pendicular to the orbital plane of the electron, assuming that the radius of
the orbit remains equal to a.

Let the nucleus be at the origin and the electronic orbit be in the xy
plane as shown in Fig. 5.18, so that the angular velocity in the absence of
the external field is +w,i,. Let the applied magnetic field be B,, = B,i, and
the resulting angular velocity be 4-wi,. Under equilibrium conditions, the
centripetal force —m, w?ai, acting on the electron is equal to the sum of two
forces: (a) the Coulomb force F, due to the attraction of the electron by the
nucleus and (b) the magnetic force F, due to the applied field acting on the
orbiting electron. These forces are given by

F er .
= ———i
! 4ne,a® "

Fig. 5.18. For obtaining the
change in the dipole moment of
an electronic orbit around the
nucleus due to an applied mag-

netic field.
and
F, = F|e|wai, x Byi, = F|e|waB,i,
Thus
2,8 v e . Bi
—mwiai, = —Wl, T le|waBi,
or
2 e? le|lwB, -
@ 47zmefoa3'i m, (5-99)

In the absence of the external field, B, is zero, w = w, and we have

wi = (5-96)
* 7 dnam€,a’
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Substituting (5-96) into (5-95), we obtain

0 — 0} = (@ + 0@ — 0,) — £ 19128 (5-97)
The perturbation in ey by the external field is, however, so small that 0 + w,
can be approximated by 2w. Equation (5-97) then reduces to

0 — W, ~ i% (5-98)

e

Now, the equivalent current due to an orbiting electron is equal to the
amount of charge passing through any point on the orbit in 1 sec, or e times
the number of times that the electron passes through the point in 1 sec. For
an angular velocity of wi,, the number of times is w/2x so that the equivalent
current is | e|w/2x. This current circulates in the sense opposite to that of the
electron orbit since the electronic charge is negative. Thus the magnetic
dipole moment due to the orbiting electron is given by ‘\

m— ;'767'69 nati, = F 1102 (5-99)

The dipole moment in the absence of the external field is ﬂ
m, = F el (5-100)
|

The change in the dipole moment due to application of B, is

Am=m—m, = :Fl%l"_z (@ — o), (5-101)
Substituting (5-98) into (5-101), we obtain ‘
2 2 42
Am:;lezla (ilg,'f“)iz:—i; B, (5-102)

Thus the change in the dipole moment and hence the magnetic field resulting
from the change is in opposition to the applied magnetic field and indepen-
dent of the sense of the electron orbit. This is consistent with Lenz’ law,
discussed in Section 4.2, which states that the change in magnetic flux
enclosed by a loop induces a current in the loop which opposes the change
in the flux. In the present case, the application of the external magnetic field
causes the change in flux enclosed by the electron orbit and the indlﬂced
current is the current corresponding to the change in the angular velocuy
of the electron. |

The result of Example 5-9 illustrates the principle behind the diamagrﬁetic
property of materials without going into great detail. The change in! the
magnetic moment of each electronic orbit brought about by the apg)lied

magnetic field results in a net magnetization of the material which otherwise

has a zero net moment. !

|

|
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In certain materials, diamagnetism is dominated by other effects known
as paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism.
Paramagnetism is similar to orientational polarization in dielectric materials.
In “paramagnetic” materials, the individual atoms possess net nonzero
magnetic moments even in the absence of an applied magnetic field. How-
ever, these “permanent” magnetic moments of the individual atoms are
randomly oriented so that the net magnetization on a macroscopic scale is
zero. An applied magnetic field has the influence of exerting torques on the
permanent atomic magnetic dipoles as shown in Figure 5.19, to convert
the initially random alignment into a partially coherent one along the field
thereby inducing a net magnetization which results in an enhancement of
the applied field.

/

Fig. 5.19. Torque acting on -a magnetic dipole
under the influence of a magnetic field.

Ferromagnetism is the property by means of which a material can
exhibit spontaneous magnetization, that is, magnetization even in the absence
of an applied field, below a certain critical temperature known as the Curie
temperature. Above the Curie temperature, the spontaneous magnetization
vanishes and the ordinary paramagnetic behavior results. Ferromagnetic
materials possess strong dipole moments owing to the predominance of the
electron spin moments over -the electron orbital moments. The theory of
ferromagnetism is based on the concept of magnetic “domains,” as formulated
by Weiss in 1907. A magnetic domain is a small region in the material in
which the atomic dipole moments are all aligned in one direction, due to
strong interaction fields arising from the neighboring dipoles. In the absence
of an external magnetic field, although each domain is magnetized to satura-
tion, the magnetizations in various domains are randomly oriented as shown
in Fig. 5.20(a) for a single crystal specimen. The random orientation results
from minimization of the associated energy. The net magnetization is there-
fore zero on a macroscopic scale.

With the application of a weak external magnetic field, the volumes
of the domains in which the original magnetizations are favorably oriented
relative to the applied field grow at the expense of the volumes of the other
domains, as shown in Fig. 5.20(b). This feature is known as domain wall
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Domain
Domain Wall

/ B, B,,

Y — —

() (b) (©

Fig. 5.20. For illustrating the different steps in the magnetization
of a ferromagnetic specimen: (a) Unmagnetized state. (b)
Domain wall motion. (c) Domain rotation. |

motion. Upon removal of the applied field, the domain wall motion reverseé,
bringing the material close to its original state of magnetization. With the
application of stronger external fields, the domain wall motion continues
to such an extent that it becomes irreversible; that is, the material does not
return to its original unmagnetized state on a macroscopic scale upon removal
of the field. With the application of still stronger fields, the domain wall
motion is accompanjed by domain rotation, that is, alignment of the magne-
tizations in the individual domains with the applied field as shown in Fig,
5.20(c), thereby magnetizing the material to saturation. The material retains
some magnetization along the direction of the applied field even after removal
of the field. In fact, an external field opposite to the original direction has
to be applied to bring the net magnetization back to zero. Thé phenomenon
by means of which the present state of magnetization of the given material
is dependent on its previous magnetic history is known as “hysteresis.” We
will discuss this topic further in Section 5.9. Unlike in the case of diamagnetic
and paramagnetic materials, the magnetization in ferromagnetic materials
is nonlinearly related to the applied field.

Antiferromagnetism and ferrimagnetism are modifications of ferromag-
netism in materials which contain two interlocking sets of atoms. If the spin
moments associated with these two sets of atoms are aligned parallel to each
other, as shown in Fig. 5.21(a), the material behaves ferromagnetically. On
the other hand, if the spin moments are aligned antiparallel to each other
and are equal in magnitude as shown in Fig. 5.21(b), so that the net magnetic
moment is zero even under the application of an external field, the material
is said to be antiferromagnetic. If the antiparallel moments are unequal in
magnitude as shown in Fig. 5.21(c), the net magnetic moment is not zero
and the material is said to be ferrimagnetic. A subgroup of ferrimagnetic
-materials known as “ferrites” is of considerable importance technicfal]y
because these materials have much lower conductivities than ferromagnetic
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(a) (b) O)

Fig. 5.21. Spin moments associated with interlocking sets of
atoms for (a) ferromagnetic, (b) antiferromagnetic, and (c) ferri-
magnetic materials.

materials while possessing comparable magnetization properties as ferromag-
netic materials.

The net magnetic dipole moment created due to the magnetization of
a material by an applied magnetic field produces a field which adds to the
applied field (except in the case of materials for which the diamagnetic effect
is the only one present) and changes its distribution both inside and outside

" the material in general from the one that exists in the absence of the material.

This will be the topic of discussion in Section 5.8. In the remainder of this
section, we will define a new vector M, which represents the magnetization
on a macroscopic scale, and relate it to the magnetic flux density. To do this
let us consider a small volume Av of a magnetic material. If N denotes the
number of molecules per unit volume of the material, then there are N Av
molecules in the volume Av. We define a vector M, called the “magnetization
vector” as

M=_>m=Nm (5-103)

where m is the average magnetic dipole moment per molecule. The mag-
netization vector M has the meaning of magnetic “dipole moment per unit
volume” analogous to P in the case of dielectric materials. The units of M
are ampere-meter?/meter® or amperes per meter. We may relate the average
dipole moment m to the magnetizing field B,, as given by

m=gq,B, (5-104)
where o, which may be called the magnetic polarizability, is a constant for

linear magnetic materials but may be a function of B,, for nonlinear magnetic
materials. Substituting (5-104) into (5-103), we have

M = Ne, B, (5-105)

The field B,, is the average magnetic field acting to magnetize the indi-
vidual molecule and is generally called the local field, analogous to E,, in the
case of dielectric polarization. It is the average field that would exist in an
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imaginary cavity created by removing the molecule under question while
keeping all the other molecules magnetized in their locations. Thus it is
not the same as the average macroscopic field B at the molecule with all the
molecules including the one in question remaining magnetized in their loca-.
tions. It is equal to the field B minus the average field produced by the dipole;
moment in the imaginary cavity. We have to find this average field to expressj|
B,, in terms of B so that M can be related to B. To do this, we once again
consider a simple special case of a spherical cavity and obtain the requiredit
field in the following example. I

EXAMPLE 5-10. A circular loop of radius @ and centered at the origin lies in the:
xy plane, as shown in Fig. 5.22. It carries a current 7 amp in the ¢ direction,,
thus forming a dipole of moment m = Ina?,. Obtain the average magnetic:
flux density due to the dipole in a spherical volume of radius b > a anqj
centered at the origin. :

Fig. 5.22. For obtaining the average mag-
netic flux density due to a magnetic dipole in
a spherical volume.

Let us consider an infinitesimal current element /a d¢’i, at the poiint
QO(a, /2, ¢') on the current loop. The magnetic flux density dB at a point
P(r,0, ¢) due to this current element is given by

O

where r and 1’ are position vectors corresponding to P and Q, respectively.
The integral of dB evaluated in the spherical volume ¥ of radius b can. be
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written as

f (dB) dv = —M%'iw x < (5-107)
Vv

_J r—r dv)
,TE=TT
since the integration is with respect to the coordinates of the field point P.
Now, the integral on the right side of (5-107) can be recognized as the electric
field intensity at (a, /2, §") due to a volume charge distribution of uniform
density 4me, C/m?® in the spherical volume V. From Gauss’ law, this electric
field intensity is (4ma/3)(x'/|x’|). Substituting this result in (5-107), we have

f (dB) dv — —Mol@d$'iy  4na T

v 4n 3 0] (5-108)

- ﬂ_ogaz g’ i,

The volume integral of B in the volume ¥ due to the entire current loop is

then given by
2
f Bdv= f j (dB) dv
v ¢=0dJ ¥V

_ pola? (** db' i — 2olna® 5.109
_T ¢lz_%lz (-0)

¢'=0

Finally, the average field due to the dipole in the spherical volume is given by

1
B,,,,_VLde

1 (Z,uglnra2 . ) _ 4om
TR 3 z) T 2mb3

It is left as an exercise (Problem 5.28) for the student to show that (5-110)
is true for any arbitrary current distribution of dipole moment m situated
in the spherical volume of radius 5. ||

(5-110)

From the result (5-110) of Example 5-10, we now relate the magnetizing
field B,, with the average macroscopic field B as

_B_B —B_M#m _pg_ _ #M i
B,=B—B,=B-20, =B TN (5-111)

where we have substituted m = M/N frbm (5-103). Now, if we assume that

the molecular volume is equal to the volume of the spherical cavity, then
(47b*)N is equal to 1 so that (5-11) reduces to

B, =B — 3uM (5-112)

Although we have obtained (5-112) by considering a spherical volume for
the molecule, it is found that the general expression for B, is of the form

B, =B+ (@ — DM (5-113)
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However, y may be larger than the value % in (5-112) by several orders of
magnitude for some materials. Substituting (5-105) into (5-113), we obtain

M == —— -
No, = B+ (y — DuM (5-114)
Rearranging (5-114), we obtain the relationship between M and B,, as
No
M= m B 5-115
1 —( — Du,Na, 115

Defining a dimensionless parameter y,, known as the “magnetic suscep-
tibility,” as

— /‘ON“m -
Ln =T yu,Na, (>-116)
Eq. (5-115) can be written as
B
M=_2n_= 5-117
1 + Xm IuO (

We have thus established a simple relationship between the magnetizatio
vector M and the average macroscopic magnetic field B in a magnetic ma-
terial through the parameter y,. The parameter y, is, however, constan]
only for diamagnetic and paramagnetic materials and is dependent on B fof
ferromagnetic materials. Values of y,, for some diamagneticand paramagneti\
materials are listed in Table 5.3. Also, comparing (5-117) with (5-49), we

TABLE 5.3. Magnetic Susceptibilities of Some Diamagnetic and Paramagnetic
|

Materials IL
Diamagnetic Paramagnetic |
Material Xm Material Am [_
Nitrogen —0.50 x 10-8 Air 3.6 x 1077
Hydrogen —0.21 x 108 Oxygen 2.1 x 10-6
Gold —3.,60 x 10-5 Magnesium 1.2 X 10-5
Mercury —3.20 X 10-3 Aluminum 2.3 x 10°5
Silver —2.60 x 10~5 Tungsten 6.8 x 10-3
Copper —098 x 10-5 Platinum 29 x 104
Sodium —0.24 x 10-5 Palladium 8.2 X 10—+
Bismuth —1.66 x 10~4 Liquid oxygen 3.5 x'10°3

observe that whereas M and B are analogous to P and E, respectivel)?l(,,,
is not analogous to y, owing to the manner in which y,, is defined. We will
discover the reason for this in Section 5.9. Equation (5-117) indicates that
M is parallel to B. Materials for which this relationship holds, that is, xm] is
independent of the direction of B are known as isotropic magnetic materials.
For certain magnetic materials, each component of M can be dependent
on all components of B. In such cases, M is not parallel to B and the materials
are not isotropic. Such materials are known as anisotropic magnetic materiz;ﬂs.
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Magnetic Materials in Magnetic Fields; Magnetization Current

In Section 5.7 we learned that magnetization occurs in magnetic materials
under the influence of an applied magnetic field. We defined magnetization
by means of a magnetization vector M, which is the magnetic dipole moment
per unit volume. The magnetization vector is related to the magnetic field
responsible for producing it through Eq. (5-117). When a magnetic material
is placed in a magnetic field, the resulting magnetization produces a secondary
magnetic field, which increases the applied field, which in turn causes a
change in the magnetization vector, and so on. When this adjustment process
is complete, that is, when a steady state is reached, the sum of the originally
applied field and the secondary field must be such that it produces a magne-
tization which results in the secondary field. The situation is like a feedback
loop as shown in Fig. 5.23. We will assume that the adjustment takes place
instantaneously with the application of the field and investigate the different

effects arising from the magnetization. We do this by first considering an
example.

Field in the Magnetic
+ /'\ Material , B, + B; Magnetic
Applied Field, By Material
Secondary
Field, B; /
Magnetization

Fig. 5.23. Feedback loop illustrating the adjustment of mag-
netization in a magnetic material to correspond to the sum of the
applied field and the secondary field due to the magnetization.

EXAMPLE 5-11. An infinite plane slab of magnetic material of uniform magnetic

susceptibility x,, and of thickness d occupies the region 0 < z < d, as shown
in Fig. 5.24(a). A uniform magnetic field B, = B,i, is applied. It is desired
to investigate the effect of magnetization in the material.

The applied magnetic field results in magnetic dipole moments in the
material which are oriented along the field. Since the magnetic field and the
magnetic susceptibility are uniform, the density of the dipole moments, that
is, the magnetization vector M, is uniform as shown in Fig. 5.24(b). Such
a distribution results in exact cancellation of currents everywhere except at
the boundaries of the material since, for each current segment not on the
surface, there is a current segment associated with the dipole adjacent to it



306 Materials and Fields Chap. 5

X x X  XBag= Boi,
z=d
X X X x} [ O O O l
— ) ] OO O]
)
X X X X
z=0 | Ax [ O O O ]
[l
X X X X i (b)
(a) d w X X X X
|ILL_ Bo=BOix
> <Y (@) >
e = TTTTrrY
T = Jmody B =(1+ XmO)BO'TL: XX x x
X X X X
(© (e)

Fig. 5.24. For investigating the effects of magnetization induced
in a magnetic material of uniform susceptibility for a uniform ‘
applied magnetic field. !

and carrying the same amount of current in the opposite direction, thereb“y
cancelling its effect. On the other hand, since the medium changes abruptly
from magnetic material to free space at the boundaries, no such cancellation
of currents at the boundaries takes place. Thus the net result is the formatidn
of a negative y-directed surface current at the boundary z = d and a positive
y-directed surface current at the boundary z = 0 as shown in Fig. 5.24(c).
These surface currents are known as magnetization surface currents since
they are due to the magnetization in the material. In view of the uniform
density of the dipole moments, the surface current densities are uniform. Also,
in the absence of a net current in the interior of the magnetic material, the
surface current densities must be equal in magnitude so that whatever current
flows on one surface returns via the other surface.
Let us therefore denote the surface current densities as

3, = { moly, =0 (5-118)
—J, ms0 iy z=d ‘

where the subscript m in addition to the other subscripts stands for magne-
tization. If we now consider a vertical column of infinitesimal rectangdlar
cross-sectional area AS = (Ax)(Ay) cut out from the magnetic materlal as
shown in Fig. 5-24(d), the rectangular current loop of width Ax makes the
column appear as a dipole of moment (J,,, Ax)(d Ay)i,. On the other hand,
writing f

M = M,i, (5-119)
j
|
r
|
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where M, is a constant in view of the uniformity of the magnetization, the
dipole moment of the column is equal to M times the volume of the column,
or M,(d Ax Ay)i,. Equating the dipole moments computed in the two different
ways, we have

Jnso = My (5-120)
Thus we have related the surface current density to the magnitude of

the magnetization vector. Now, the surface current distribution produces

a secondary field B, given by
B, — Hod nsole = UM i, for 0 <.z <d (5-121)
0 otherwise

When the secondary field B, is superimposed on the applied field, the net
result is an increase in the field inside the material. Denoting the total field
inside the material by B,, we have

Bi=Ba+Bs=BOix+lu0M0ix = (BO +NOMO)ix (5_122)
But, from (5-117),

B,
M = - Xmo i 5-123)
L+ Xmo Ho (
Substituting (5-119) and (5-122) into (5-123), we have
B, + uM
M. = Xmo 0 0o
R I 2P
or
M, = XmoBo (5-124)
Ko
Thus the magnetization surface current densities are given by
XmOBO iy z=20
J = (5-125)
—XnoBs i, z=d
Ko
and the magnetic flux density inside the material is
B,=(1+ Xmo)Boix (5'126)

Since the secondary field produced outside the material by the surface current
distribution is zero, the total field B, outside the material remains the same
as the applied field. The field distribution both inside and outside the magnetic
material is shown in Fig. 5-24(e). Although we have demonstrated only the
formation of a magnetization surface current in this example, it is easy to
visualize that a nonuniform applied magnetic field or a nonuniform magnetic
susceptibility of the material will result in the formation of a magnetization
volume current in the magnetic material due to imperfect cancellation of the
currents associated with the dipoles. [J
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We now derive general expressions for magnetization surface and volume:
current densities in terms of the magnetization vector. To do this, let ug
consider a magnetic material of volume ¥’ in which the magnetization vectox
M is an arbitrary function of position, as shown in Fig. 5.25. We divide the:

z
A
S/
/- "
O dv’ W_ v
O PR Q
Of [j\ ¢
O R r
r O
O Magnetic
Material
o >y

Fig. 5.25. For evaluating the magnetic vector potential due to
induced magnetization in a magnetic material. :

volume ¥’ into a number of infinitesimal volumes dv}, i =1,2,3,....,n

defined by position vectors r;, i=1,2,3,...,n, respectively. In egch

infinitesimal volume, we can consider M to be a constant so that the dipjole

moment in the ith volume is M, dv}. From (3-96), the magnetic vector potenttial

dA, at a point Q(r) due to the dipole moment in the ith volume is givcnl‘ by
UM, dv; x (r —17)

A= =

The total vector potential at Q(r) due to the dipole moments in all the »
infinitesimal volumes is then given by
_v =&"M,dvf-x(r—r:~) X

A= dh =g = (5-127)
Equation (5-127) is good only for |r|>> |r}|, where i =1, 2, 3,...,n since
each dv; has a finite although infinitesimal volume. However, in the limit
that n — oo, all the infinitesimal volumes tend to zero; the right side of
(5-127) becomes an integral and the expression is valid for any r. Thus

Mdvx((@—r)

v [r—TT

— Ko b1 ,
—zﬁfwaV |r—r’|dv

A = 5‘7;
(5-128)
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Substituting the vector identity

V' x M__y 1 xM 1

|r—r’|_v|r——r’| + r—r|
in (5-128), we obtain
_ V' x M ' / :
A® = %JV v f Vo prdy (5129)

Taking the dot product of the second integral on the rlght side of (5-129)
with the unit vector i, and using the divergence theorem, we have

l’f VIXI—M,—d”,=f ix-V'X——I—VI——,d?)'
A P . =7

- ’ ' M ’ -
__fv 1xx-—_r,|>dv (5-130)

=_f§ |T— -ldS’

where S’ is the surface bounding the volume ¥V’ and i, is the unit normal
vector to dS’. Proceeding further, we obtain

VixM

f V' x M T v = —i§ . i ds’
_ . xlﬁ,_ , )
-—f i l_,.r__rldS (5-131a)
_ Mxi o
=k ﬂu——r’r“

Similarly, we can show that

i, f vx M = —i. § Mxh go (5.131h)
,,, [r —r’| 5
and

i f V’x——M—,—dv’z—izoi{; Mxi ger (5-131c)
v [r — 1’| o |r—1|

It then follows from (5-131a)-(5-131c) that

Mxi,
V' x ' = x_dS’ 5-132
IRES =X JTE=TT (>-132)
Substituting (5-132) into (5-129), we get
V X M ﬂ M X l /
Alr) = — 0 L 5-133
O=fa], FErre e d ek (>-133)

The first integral on the right side of (5-133) represents the vector potential
at Q(r) due to a volume current of density V/ x M in the volume 7’ and the
second integral is the vector potential at Q(r) due to a surface current of
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density M X i, on the surface S’. Thus the vector potential at Q(r) due tcd
the magnetization in the magnetic material is the same as the sum of the vecto r
potentials at Q(r) due to a magnetization volume current of density

J. @)=V x M) in V' (5-134)
and due to a magnetization surface current of density
J..() =M{) x i, on S’ (5-13%5)

We note that the total volume current through any cross-sectional area
S,. (of the volume V’) bounded by the contour C’ as shown in Fig. 5.25 iis
given by :

Jm-dSc,=f (V’xM)-dSC,=§lM-a’l’

5 ¢ (5-13(6)

=—§ Mxi).@xdl)=—§ J, «@Gxal) !
c’ c’ "»

where we have used Stokes’ theorem to transform the surface integration

to line integration. The right side of (5-136) is exactly the surface curreint

crossing the contour C’ in the opposite direction to the volume current.

Omitting the primes in (5-134) and (5-136), we have

J,=VxM (5-137)

J..=Mxi, (5-138)

Summarizing what we have learned in this section, the magnetic dipole

moments due to magnetization in a magnetic material placed in a magnetic

field have the effect of creating in general the following:

(a) Magnetization surface currents, having densities given by (5-138),, at
the boundaries of the magnetic material.

(b) Magnetization volume current of density given by (5-137) in fthe
magnetic material and such that the total volume current flowing
through any cross-sectional area of the material is exactly opposite
to the total surface current crossing the contour bounding the area.

We have also shown that the magnetization currents alter the applied mag-
netic field in the material. Such a modification of the applied field occurs
outside the material as well in the general case. In the time-varying case, the
electric field associated with the applied magnetic field is also altered by
the addition of the secondary electric field due to the time variation of the
secondary magnetic field.

Se’

Magnetic Field Intensity, Relative Permeability, and Hysteresis

In Section 5.8 we learned that the magnetic field in a magnetic material is
the superposition of an applied field B, and a secondary field B, which results
from the magnetization M, which in turn is produced by the total ield
(B, + B,), as shown in Fig. 5-23. Thus, from Fig. 5-23 and Eq: (5-117), we
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have
B,+B
M= _4n_ 2T 5 5-139
1 + Xm /‘o ( )
B, =fM) (5-140)

where /(M) denotes a function of M. Determination of the secondary field
B, and hence the total field B, + B, for a given applied field B, requires
a simultaneous solution of (5-139) and (5-140) which, in general, is very
inconvenient. To circumvent this problem, we make use of the results of
Section 5.8, in which we found that the magnetization is equivalent to a
magnetization surface current of density J,, and a magnetization volume
current of density J,, as given by (5-138) and (5-137), respectively. The secon-
dary magnetic and electric fields are the fields produced by these currents as
if they were situated in free space, in the same way as the currents respon-
sible for the applied magnetic field and its associated electric field.

Thus the secondary electromagnetic field satisfies Maxwell’s equations

V.D,—0 (5-141a)
V.B, —0 (5-141b)
VXE, = _%li_: (5-141¢)
VxB, =z, (J,,, + ‘3;_35) (5-141d)

where E, is the secondary electric field intensity and D, is its associated dis-
placement flux density. On the other hand, if the “true” current and charge
densities responsible for the applied field B, with its associated electric field
intensity E, and displacement flux density D, are J and p, respectively, we
have

V.D,—p (5-142a)
V.B, =0 (5-142b)
_ _09B,

VxE,= -9 (4-142c)

— 9D,
VxB,= 4, (J T W) (5-142d)
Now, adding (5-141a)—(5-141d) to (5-142a)—(5-142d), respectively, we obtain
Ve, +D)=p+0=0p (5-143a)
V.(B,+B)=0 (5-143b)
Vx (€, +E)=—J (B,+B) (5-143%)

VX @B, +B)= [T+, + E®,+D)|  (s1430)
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Substituting

B=B,+B, (5-144a)
E=E,+E, (5-144b)
D=D,+D, (5-148)
J,=VxM (5-137)

in (5-143a)-(5-143d) and rearranging, we have ‘
V.D=p (5-1463)
V:B=0 (5-146b)
VxE= -9 (5-146c)
Vx(/%—M):J-}—%I; (5-146¢)

where E, B, and D are the total fields.
We now define a vector H, known as the magnetic field intensity vector
and given by
H=2 _ (5-147)
Ko
Note that the units of H are the same as those of B/u, and M, that is, ampeyes
per meter. Comparing with the units of volts per meter for the electric figld
intensity, we see the reason for referring to H as the magnetic field intensity.
Substituting (5-147) into (5-146a)-(5-146d), we obtain

V.D=p (5-148)
V.B=0 (5-1‘(49)
_ _09B 1
VxE= -3¢ 5 1}50)
_ dD x
VxH=J+5% (5-151)

Thus the new field H results in a set of equations which do not explicitly
contain the magnetization current density, unlike Egs. (5-143a)-(5-143d).
Substituting for M in (5-147) from (5-117), we have

B - B B B B .
H=Fo__l—"x——xmﬂ—0=ﬂo(l+xm)=ﬂoﬂr—7 (>-152)
where we define
u=1+x, (5-153)
and
L= UH, (5-154)

The quantity u, is known as the relative permeability of the magnetic material
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and u is the permeability of the magnetic material. Note that z, is dimension-
less and that (5-152) is true only for linear magnetic materials if g is to be
treated as a constant for a particular magnetic material, whereas (5-147)
holds in general. Substituting (5-152) into (5-148)-(5-151), we obtain

V.D=) (5-155a)
V.B—0 (5-155b)
VXE=— —‘;t_B (5-155¢)
VxB=yu (J + dalt)) (5-155d)

Equations (5-155a)-(5-155d) are the same as Maxwell’s equations for non-
magnetic materials as given by (5-80)-(5-83) except that y, is replaced by
. Thus the electric and magnetic fields in the presence of a magnetic material
can be computed in exactly the same manner as for nonmagnetic materials
except that we have to use g instead of y, for permeability. In fact, if y,, = 0,
4, =1 and pu = u, so that a nonmagnetic material can be considered as
a magnetic material with g = g, and hence Eqgs. (5-155a)-(5-155d) can be
used for nonmagnetic materials as well. The permeability x takes into
account the effects of magnetization and there is no need to consider them
when we use g for u,, thereby eliminating the necessity for the simultaneous
solution of (5-139) and (5-140). In the case of a boundary between two
different magnetic materials, the appropriate boundary conditions for H take
into account implicitly the magnetization surface current. We will consider
these boundary conditions in Section 5.12. Substituting for B in (5-117) in
terms of H by using (5-152), we obtain

Xn B Xm sl + Xw) ;
T T tmte THXn Ko H=r.H (5-156)
Equation (5-156) represents the traditional definition for y,, because of
which we defined y,, in Section 5.7 in a manner which is not analogous to
the definition of y, in Section 5.4.

EXAMPLE 5-12. For the slab of magnetic material in Example 5-11, find and sketch

the magnetic field intensity and the magnetic flux density vectors both inside
and outside the material.

From Example 5-11, the magnetic flux density inside the magnetic
material is given by
B, = 1+ Xmo)Boix (5-126)

The relative permeability of the material is 1 + y,,,. Thus the magnetic
field intensity inside the material is

B, (1 + ¥m0)Bys _ By
H. L m0/_—_Q = =0
(U X)) (1 xmo) R




I

314 Materials and Fields Chap. 5,
|

|

Outside the magnetic material, the magnetic flux density is the same as the
applied value so that the magnetic field intensity is |
|

B, B |

=B B
Ho Ko

Thus, for this example, the magnetic field intensity vectors inside an
outside the magnetic material are the same and equal to the magnetic fiel
intensity associated with the applied magnetic flux density. Both H and
fields inside and outside the material are shown in Fig. 5.26(a). Now, consider-
ing a rectangle abcda in the xz plane and with the sides ab and cd parallel t
the boundary z = 0 as shown in Fig. 5.26(b), we note that H is unifor
along the contour abcda since it has the same value both inside and outsic‘e

the material. Thus

[
$H-dl=H. § d1=0 (5-157)
abcda abcda ’
On the other hand, noting that B is parallel to ab and cd but having unequlal
By, = B ‘
H, = —ix Bo = Boix
o TR Magnetization

X+ X+ X+ X+
/ Current i

Bo;

z e H, =
X X X X x x x 7" "
+ + + +/ .
X x  x x x X X /B i = wBoiy
y +—X X : : |
x X ox o x x x x Magnetization |
+ + + + / i
X x X X X X X, - Current |
é
(a) X+ X+ X+ X+ /\
|
}/
—————————— — ‘
- Magnetization
, _ Current i
g
O O O O O O O ‘
{ - ———=>H
————————— >
> —_— B
X——— X
y P
—_———— — —p— —— :
® ©l® ©]|® © d—|— Magnetization ;
- - Current i
o |
® —————— — |

Fig. 5.26. Magnetic field intensity and magnetic flux density \J
vectors for the magnetic material slab of Example 5-11. "
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magnitudes along them and perpendicular to bc and da, we obtain

$ B-dl=JbB,.-dl+ deO- dl
abeda i ¢
b . . d . 3
= Jﬂ(l + XmO)BOIx * dx lx +J. Bolx ° (—Xmx)
= (1 + Xmo)Bo(ab) — By(cd)
_ _ XmoBo: ). :
= KaBo(at) = o (X222, - [(ab)i)
= p, (magnetization surface current enclosed by abcda)

Comparing (5-157) and (5-158), we observe that the circulation of H is
independent of magnetization currents whereas the circulation of B is not.
The circulation of H depends only on those currents other than the magne-
tization currents, whereas the circulation of B depends on all kinds of cur-
rents. [

(5-158)

Returning now to Eq. (5-153), we note, from the values of y,, for dia-
magnetic and paramagnetic materials listed in Table 5.3, that the relative
permeabilities for these materials differ very little from unity. On the other
hand, for ferromagnetic materials, the relative permeability can assume
values of the order of several thousand. In fact, for these materials the
relationship between B and H is nonlinear and is characterized by hysteresis
so that there is no unique value of u, for a particular ferromagnetic material.
The relationship between B and H is therefore presented in graphical form,
as shown by a typical curve in Fig. 5.27. This curve is known as the hysteresis

B
A
b

3 3 A

y 2
2
1 2
g >~ H

Fig. 5.27. Hysteresis curve for a ferromagnetic
material.
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curve or the B-H curve. To trace the development of the hysteresis effect,;
we start with an unmagnetized sample of ferromagnetic material in which.
both B and H are initially zero, corresponding to point a on the curve.
As H isincreased, the magnetization builds up, thereby increasing B gradualljf/
along the curve ab and finally to saturation at b, according to the following
sequence of events as discussed in Section 5.7: (a) reversible motion of domai
walls, (b) irreversible motion of domain walls, and (c) domain rotation. Thie
regions corresponding to these events along the curve ab as well as other
portions of the hysteresis curve are shown marked 1, 2, and 3, respectivel
in Fig. 5-27. If the value of H is now decreased to zero, the value of B dogs
not retrace the curve ab backwards but instead follows the curve bc, whi
indicates that a certain amount of magnetization remains in the material
even after the magnetizing field is completly removed. In fact, it requirgs
a magnetic field intensity in the opposite direction to bring B back to zero
as shown by the portion cd of the curve. The value of B at the point c |is
known as the “remanence” or “retentivity,” whereas the value of H at|d
is known as the “coercivity” of the material. Further increase in H in this
direction results in the saturation of B in the direction opposite to that
corresponding to b as shown by the portion de of the curve. If H is now
decreased to zero, reversed in direction, and increased, the resulting variatipn
of B occurs in accordance with the curve efgh, thereby completing the hys-
teresis loop. The characteristics of hysteresis curves for a few ferromagnetic
materials are listed in Table 5.4. In view of the hysteresis effect, the incre-

TABLE 5.4. Characteristics of Hysteresis Curves for Some Ferromagnetic

Materials
Saturation
Remanence, Coercivity, Magnetization, Maximum
Material "~ Wbim? amp[m Wb[m?2 Uy

Cast iron 0.53 366 — 600
Permendur 1.4 160 2.4 5,000
Permalloy — 24 1.6 25,000
Hypernik 0.73 . 3.2 1.65 70,000
Mumetal — 4 . 0.65 100,000
Supermalloy — 0.32 0.8 1,050,000

mental relative permeability defined by the slope of the hysteresis curve as
given by

1 AB .
P = 4o RE (5-159)
is a useful parameter in addition to the relative permeability given by
1 B
L= — 5-160
7 7 (5-160)

for ferromagnetic materials.
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Summary of Maxwell’s Equations and Constitutive Relations

In the previous sections we introduced successively conductors, dielectrics,
and magnetic materials. We discussed the various phenomena occurring in
these materials in the presence of electric and magnetic fields. We learned
several new concepts in this process. Important among these are the introduc-
tion of two new field vectors D and H. With the aid of these two new vectors,
we developed a set of Maxwell’s equations which permit us to solve field
problems involving material media without explicitly taking into account
the various phenomena occurring in them. These Maxwell’s equations are
given by

V.D=) (5-161)

V.B—=0 (5-162)
B

VxE=—%? (5-163)

VxH=J+%l (5-164)

where p and J are the volume densities of the true charges and currents
responsible for the fields characterized by the field intensity vectors E and
H and the corresponding flux density vectors D and B. Equations (5-161)—
(5-164) can as well be used for free space since they reduce to those of free
space when the pertinent quantities are allowed to approach their free-space
values.

The true charges are those which are free to move and not bound to
their respective nucleii, as polarization charges are. Conduction charges in
materials and space charges in vacuum tubes are examples of true charges.
The true currents are those constituted by the movement of the free charges,
as compared to polarization and magnetization currents which are due to the
movement of charges bound to their respective nucleii. Conduction currents
in materials and convection currents due to movement of space charge in
vacuum tubes are examples of true currents. Thus J in (5-164) can represent
conduction currents as well as convection currents. The charge and current
densities are related via the continuity equation given by

. dp _ i
V.J+30= (5-165)

The four Maxwell’s equations given by (5-161)-(5-164) are not all indepen-
dent; Eq. (5-162) follows from Eq. (5-163) whereas Eq. (5-161) follows from
Eq. (5-164) with the aid of the continuity equation.

The vectors E and B are the fundamental field vectors which define the
force F acting on a charge g moving with a velocity v in an electromagnetic
field in accordance with the Lorentz force equation given by

F=¢q(E + v x B) (5-166)
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The vectors D and H are mixed vectors which take into account the dielectric
and magnetic properties of materials, respectively. They are related to E and
B, respectively, via the equations

D=eE+P (5-167)
B :
-3 M 5-168),
o (>-168)

where P and M are the polarization and magnetization vectors, which define
the state of polarization and magnetization, respectively, in the material)
However, the relations which are more useful than (5-167) and (5-168) are

D —¢E (5-169
_B (5-170
U |

, \
where € and g are the permittivity and permeability, respectively, of th

material which take into account implicitly the effects of P and M, respec-
tively. Furthermore, for a material medium, the current density J is relateqi
to the electric field intensity E by

J=1J, =0E (5-171l)

where ¢ is the conductivity which takes into account the conductive propertjy
of the material. Equations (5-169), (5-170), and (5-171) are known as the
constitutive relations. Together with the constitutive relations, Maxwell‘[
equations form a sufficient set of equations to determine uniquely the electro
magnetic field for a given p and J and in a medium for which e, u, and ‘0
are specified.

For static fields, the time variations of all quantities are zero so that
Maxwell’s equations (5-161)—(5-164) reduce to

VeD=p (5-172)
V.B=0 (5-173)
VXxE—0 (5-174)
VxH=1J (5-1’{5)
whereas the continuity equation is given by :
V.J=0 (5- 176)

In this case, we note that all four equations (5-172)~(5-175) are 1ndependent
For J=1J,= oE, Eq. (5-175) indicates coupling between electric and
magnetic fields which is not present in the case of static fields in free sp@ce.
We note, however, that this is a one-way coupling unlike the two-way
coupling in the case of time-varying fields since the magnetic field depends
upon the electric field through (5-175) but the electric field is 1ndepen(ﬂent
of the magnetic field.

Returning to Maxwell’s equations for arbitrarily time-varying ﬁélds
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given by (5-161)-(5-164), we obtain Maxwell’s equations _for_ sinusoidally
time-varying fields by substituting the complex vectors E, B, D, and H for
the real vectors E, B, D, and H and by replacing d/d¢ by jw. Thus we have

V.D=p (5-177)
V.B=0 (5-178)
VxE=—joB (5-179)
VxH=1J+ joD (5-180)
Writing (5-180) for a material medium as
V x H = 6E + jweE (5-181)

we observe that for o > we, the magnitude of the conduction current density
term is greater than the magnitude of the displacement current density term
so that V x H ~ oE. The material is then classified as a good conductor.
On the other hand, for ¢ < we, the magnitude of the displacement current
density term is greater than the magnitude of the conduction current density
term so that V x H = jweE. The material is then classified as a good di-
electric. The critical frequency for which the two terms are equal is given by
o = we or » = ofe. Thus, depending upon whether w < a/fe or @ >> d/e,
the material can be regarded as a good conductor or a good dielectric. The
situation, however, is not so simple because both ¢ and € are in general
functions of frequency.

With the understanding that ¢ and € are frequency dependent, we now
classify nonmagnetic materials as follows for the purpose of writing simplified
sets of Maxwell’s equations:

(a) Perfect dielectrics: These are idealizations of good dielectrics. These
contain no true charges and currents. The corresponding Maxwell’s
equations are obtained by setting p = 0 and J = 0.

(b) Good conductors: The magnitude of the conduction current density
oE is much greater than the magnitude of the displacement current
density dD/dt. To obtain the special set of Maxwell’s equations,
we set dD/dt = 0. We also set p = O since, in accordance with the
finding in Section 5.3, any charge density inside the conductor
decays exponentially with a time constant equal to €/o, where we
have replaced €, in Section 5.3 by €. For good conductors, o/e > o
so that any initial charge density decays to a negligible fraction of
its value in a fraction of a period.

(c) Perfect conductors: These are idealizations of good conductors ob-
tained by letting ¢ — oo. The electric field inside a perfect conductor
must be zero since otherwise, J, = o E becomes infinite. Furthermore,
for the time-varying case, the zero electric field results in dB/d¢
equal to zero or B equal to a constant with time. Thus a time-
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varying magnetic field cannot exist inside a perfect conductor. Hence
we conclude that all fields inside a perfect conductor are zero for
the time-varying case and the electric field is zero also for the static
case. There remains only the possibility of a static magnetic field
inside a perfect conductor.

We now list, in Table 5.5, Maxwell’s equations and the continuity equa-.
tion for the general case and for the special cases discussed above for both
time-varying and static fields. Also listed are the corresponding integral
forms of the equations. We note that, in certain cases, although certain
terms on the right sides of the differential equations are set equal to zero,
the corresponding terms on the right sides of the corresponding integral
equations are not set equal to zero. This is because a differential equation
is applicable at a point whereas the corresponding integral equation is appli-

TABLE 5.5. Summary of Maxwell’s Equations and the Continuity Equation
for Various Cases

Description Differential Form Integral Form
Time-varying fields; V.D=) § D-dS=f pdv
general case s v
V.B=0 § B.dS=0
S
- _0B __4
VXE= - §CE.dl——dt.[SB-dS
vxH=J19 §H-d1=fJ-ds+,%fD-dS
c s s
g+ 98— d -
v-3+32_0 §SJ~dS+E'IVpdv—O
Static fields; _ _
general case V:D=yp §SD-dS—'[Vpdv |
V.B=0 §s3-ds=0 |
|
VXE=0 §E-d1=0 C
c i
VxH=1J §H_-dl=fJ-dS
(o} S
V.J=0 §SJ-ds=o
Time-varying fields; _ _
perfect dielectrics v-D=0 ﬁqD'dS_J. 7 dv
p=0J=0 V.B=0 §SB.ds=o
JB d
VXE=—3% §CE-d1=—a7.[SB.ds

- vdl = 4
vxH=2 §CH dl_fsJ-ds+dtjsD.ds
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TABLE 5.5 (Cont’d.)

Description Differential Form Integral Form
Static fields;
; .D= .dS =
perfect dielectrics v 0 §sD as .[ Vpdv
p=0J=0 V-B=0 §S3-ds=0
VXE=0 §CE-dl=0
VXxH=0 §§H-d1=.[.1-ds
c s
Time-varying fields; V.D=0 §; . _
good conductors sD dS—JVpdv
fi))) _ _
[aEl»‘g; V.B=0 §SB-ds_o
uniform ¢ JB __d .
VxE= -5 EECE-dl_ dtJ-sB ds
VXH=J, =oE §§H-d1=f.l-ds+adt-.[n-ds
c s s
V.I=0 §Jc-ds+d%f pdv =0
s v
Static fields; V.-D=0 § D-dS=J pdv
conductors, s v
uniform o V-B=0 §SB-dS=0
VXE=0 ff E.dl=0
c
VxH=J, = oE §H.d1=f.l-ds
c s
V:J.=0 §SJC-dS=0

Perfect conductors

All fields are zero for the time-varying case; electric field is
zero for the static case

cable over a region.

For example, although there is no true charge density

associated with any point in a perfect dielectric medium, it is possible that a
closed surface situated entirely within such a medium of finite extent can
enclose a charge contained in that part of the volume bounded by the surface
but lying outside the medium. Hence, although V « D = 0 in the medium,

we have to write the corresponding integral form as ff D.dS= J p dv.
S 14

Power and Energy Considerations for Material Media

In Section 5.2 we learned that conductors are characterized by conduction
current due to the movement of free charges under the influence of an applied
electric field. In Section 4.8 we showed that the power expended by an electric
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field due to charges moving under its influence in a volume V is given by |

P, = fVE I dv (5-182) f{

where J is the current density resulting from the movement of the charges. |
If the motion of the charges is in free space, they are accelerated by the |
electric field and hence the power expended by the electric field is converted |
into kinetic energy. On the other hand, the free charges in a conductor drift
with an average drift velocity because of:the frictional mechanism provided
by their collisions with the atomic lattice. Hence the power expended by the
electric field is dissipated in the conductor in the form of heat. Replacing
J in (5-182) by oE, we obtain the expression for the power dissipated in a
volume ¥ of a conductor as

P, = LE « oE dv (5-183

It follows that the power dissipation density in a conductor is
ps=E.cE = cE? (5-184

For sinusoidally time-varying fields, the time-average power dissipatio
density is ,
{p) =}oE - E* (5-185)

In Section 5.5 we learned that dielectrics in electric fields afe character-
ized by induced polarization charges. From Section 4.6, the stored energy
density associated with an electric field E in free space is given by

w, =4€,E* = J,E + E (5-186)

This result was obtained by finding the work required to be done by an
external agent to bring together a set of point charges from infinity and then
extending the result to a volume charge distribution. We can do the same for
a dielectric medium provided we take into account the polarization charges
in finding the work required for assembling the charge distribution. The
effect of the polarization charges is to neutralize partially the true charges.
Hence, as we bring together charges from infinity, they are neutralized
“partially by the polarization charges. Thus, for the same electric field intensity
in the dielectric as in free space, we have to actually assemble a true-charze
distribution of greater density than in the free-space case. This requires
more work to be done in the dielectric case so that more energy is stored in tae
dielectric case than in the free-space case for the same electric field intensi'y.
From

VeD=V.eE=p (5-1%7)
the true-charge density which gives the same E in a dielectric medium of

permittivity € as in free space is €/€, times the charge density in the free-sp:ce
case. From (4-118a), the work required to assemble a charge distributior is
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proportional to the charge density for a constant potential ¥ and hence for
a constant electric field intensity E. The energy density associated with the
electric field in the dielectric is therefore given by

W, = fio(%eoEz) —1eEi=LeE.E=LD.E (5189)
For sinusoidally time-varying fields, the time-average energy density is
wy=1eEE*=1D.E* (5-189)
Substituting D = ¢,E + P in (5-188), we have
w,=%1(EE+P).E = 3¢, E+E+ JP.E (5-190)

However,

%P.E=%f:’Ed(P.E)=%f:’E(P.dEJrE.dp)

: (5-191)

=j E . dP
0

where we have used the substitution P « dE = E « dP in view of the linear
relationship between P and E. Substituting (5-191) into (5-190), we get

W, = }€6,EE + _[:E . dP (5-192)

We note that the first term on the right side of (5-192) is the energy density
in the electric field if the medium is free space. The second term on the
right side of (5-192) is the work done per unit volume by the E field in the
dielectric as the polarization is built up gradually from zero to the final
value P. This is known as the polarization energy density.

In Section 5.8 we learned that magnetic materials in magnetic fields
are characterized by magnetization currents. From Section 4.7, the stored
energy density associated with a magnetic field B in free space is given by

_ 1B 1B 1 |
’”_TEZT/TO.B—T'“OH =5
This result was obtained by finding the work required to be done for building
up a volume current distribution. We can do the same for a magnetic material
medium, provided we take into account the magnetization currents in finding
the work required for building up the current distribution. The effect of the
magnetization currents is to aid the true currents (for 4 > u,). Hence, as
the current is built up, it is aided by the magnetization current. Thus, for the
same magnetic flux density in the magnetic material as in free space, it is
sufficient if we actually build up a true current distribution of lesser density
than in the free-space case. This requires less work to be done in the
magnetic material case so that less energy is stored in the magnetic material
case than in the free-space case for the same magnetic flux density. From

.VxH=Vx%=J (5-194)

W pHH  (5-193)
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the true current density which gives the same B in a magnetic material
medium of permeability 4 as in free space is u,/u times the current density
in the free-space case. From (4-130a), the work required to build up a current
distribution is proportional to the current density for a constant vector :
potential A and hence for a constant magnetic flux density B. The -energy :
density associated with the magnetic field in the magnetic material is!

therefore given by Jj

w =_0<LBZ>:%%3=LE.B=lH.B (5-195)

" u\2 u, 2 u 2
For sinusoidally time-varying fields, the time-average energy density is
_1B g« 1lp. e )
<w"‘>_4,u B—4H B (5-196)

Substituting B = y,H + u,M in (5-195), we have
w,=43H+@H+ yM) =3puH -H+IuH - M (5197

However,
M, H M, H )
SucH oM =4 [ d(uH M) = 4 [ (4oH + dM + 1,M - dH)
M
- f soH « dM (5-198)
0

where we have used the substitution H « dM = M « dH in view of the linear
relationship between M and H. Substituting (5-198) into (5-197), we get

W, = JuH « H + f: #oH - dM (5-199)

We note that the first term on the right side of (5-199) is the energy density
in the H field if the medium is free space. The second term on the right side
of (5-199) is the work done by the H field in the magnetic material as the mag-
netization is built up from zero to the final value M. This is known as the
magnetization energy density. Note that for the same magnetic field intensizy
in the magnetic material as in free space, we have to actually build up a trie
current distribution of greater density than in the free-space case.

For nonlinear magnetic materials, we cannot use the result JH «B
given by (5-195) for finding the magnetic energy stored in the material sirce
1 is not constant for a particular material but is dependent on H. To obtén
the correct expression, we write (5-199) as

H M
W= [ dGumH ) + [ pHdM
0 0

= ["H . du ) + [ H - dGuM) (5-20)

noH + oM B
=fo H-d(uoH—}—qu):J.oH-dB
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It follows from (5-200) that the increase in stored energy density correspond-
ing to an infinitesimal increment dB is H « dB, where H is the magnetic field
intensity at which dB is achieved. B
Let us now consider the vector identity given by
V.ExH=H:«(VxXxE)—E.(VxH) (5-201)

Substituting for V x E and V x H on the right side of (5-201) from Max-
well’s equations (5-163) and (5-164) respectively, we obtain

v-(ExH):H-( "B)_E-(J+5_D)

7 ot
=_E.0E_E.%)—H-%¥ (5-202)
. . 0(1lp. 0 (1 4.
— —oE-E—3 (5D E)— 7 (;H-B)
or
Ve EXH) =p,+ 5w, + W) (5-203)

where p;, w,, and w,, are, respectively, the power dissipation density due to
the conductivity of the medium, the electric stored energy density, and the
magnetic stored energy density. Integrating both sides of (5-203) in a volume
V of the material and applying the divergence theorem to the left-side integral,
we get

—§ (ExH)-dS:f pddv—}—o%f (w,+w)do  (5-204)
S Vv Vv

where S is the surface bounding the volume ¥ and dS is directed out of the
volume V. The right side of (5-204) represents the time rate of increase
of energy stored in the electric and magnetic fields in the volume V plus the
time rate of energy dissipated in ¥ due to conduction current flow. Thus

§; (E x H) « dS represents the power flow across S out of the volume V. It
N

follows that the density of power flow or the Poynting vector associated
with the electromagnetic field in a material medium is given by

P=ExH (5-205)

For sinusoidally'time-varying fields, the complex Poynting’s theorem is

$BedS=—[ (pyav—j20[ (wy—<wydv  (5-206)
S v v
where P is the complex Poynting vector given by

P=1E x A* (5-207)

and {p,), (w,», and (w,) are given by (5-185), (5-196), and (5-189), respec-
tively.



326 Materials and Fields Chap. 5

EXAMPLE 5-13. Current flows axially with uniform density J, = J,i, amp/m? along
a cylindrical conductor of radius 2 and length / and having a uniform cor.-
ductivity 6, mhos/m as shown in Fig. 5.28(a), by the application of a poten-.
tial difference between the ends of the conductor. It is desired to verify that:
the total power dissipated in the conductor is correctly given by the surface:
integral of the Poynting vector over the surface of the conductor.

g = 0y //
el ,
Je = Joi, ‘\
A\
N
! i
(a) (b)

Fig. 5.28. For showing that the power dissipated in a conductor
due to conduction current flow is correctly given by the surface
integral of the Poynting vector over the surface of the conductor.

1
The power bdissipation density inside the conductor is given by ,
Ly 98 |
Oy Gy ,
Since p, is uniform over the volume of the conductor, the total power dis-
sipated in the conductor is |
Jina?l

|
|
0 ]
|

R

2
P, = p, (volume of ‘the conductor) = éﬁ(nazl) =
0

Applying §C H.dl= fs J « dSto a circular path of radius rinthe cro;yss-

sectional plane of the conductor and centered at the axis of the conductor
as shown in Fig. 5-28(b), we obtain, from symmetry considerations, |
|

2
H=H¢i¢=‘!§%i¢:{3—ri¢ forr<a
The Poynting vector is then given by
2
P—ExH— J"i,x‘—’—gfi,,,:—gLri, for r < a
Oy Oy

We note that the Poynting vector is directed radially towards the axis of

the conductor. Hence, to find the total power flow into the conductor, fit is

sufficient if we perform the surface integration of the Poynting vector over
|

|
|
|
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the cylindrical surface r = a. Over this surface, we have
Jia.
JE— lr
20,
Since the magnitude of [P),_, is uniform, the surface integral of the Poynting
vector over r = a is

Plo =

_ Jia
20,

Jia _ Jina?l
(surface area) = 7g_—o(Zmzl) =
which is the same as the result obtained by volume integration of the power
dissipation density. This merely shows that the surface integral of the Poynt-
ing vector gives the correct result for the power dissipated and does not mean
that the power is entering through the cylindrical surface. The actual power
must be supplied by the source which maintains the potential difference
between the ends of the conductor.

Boundary Conditions

In Section 5.10 we summarized Maxwell’s equations for the general case of
a medium characterized by arbitrary values of o, €, and u and for different
special cases. For electromagnetic field problems involving several different
media, the fields in each medium must satisfy separately the Maxwell’s
equations in differential form for that medium. On the other hand, the
integral forms of Maxwell’s equations must be satisfied collectively by the
fields in all the media associated with the contours, surfaces, and volumes
over which the integrals are evaluated. Thus the sets of solutions for the
fields in different media obtained by solving the corresponding Maxwell’s
equations in differential form are tied together by a set of conditions deter-
mined by the integral forms of Maxwell’s equations. These conditions are
known as the “boundary conditions™ since they relate the fields on one side
of a boundary between two media to the fields on the other side of that
boundary. The boundary conditions take into account any surface charges
and currents existing on the boundaries, which the differential equations
ignore. v

In fact, we already introduced certain boundary conditions in previous
sections without mentioning the name. An example of this is in Section 5.3,
where we found that the tangential component of the electric field intensity
at the boundary between a conductor placed in an electric field is zero,
whereas the normal component of the electric field intensity at a point on
the boundary is equal to 1/¢, times the surface charge density at that point
in order to satisfy the criterion of zero electric field inside the conductor in
the absence of a mechanism to permit the flow of a current. In this section
we will derive the boundary conditions for the most general case of time-
varying fields in two media characterized by different sets of values of o, €,
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and g by using the integral forms of Maxwell’s equations and the continuity’
equation. From the experience gained in this process, we will then write:

simplified sets of boundary conditions for the different special cases. From
Table 5.5, the integral forms of Maxwell’s equations are

§Deas—| pav (5-208))
S | 4
§B.dS=o ' (5-209)
S

d
§E.d1=—_f B.dS (5-210)
[} dt S
§Hodl=fJ-dS+ifD-dS (5-2101)
C S dt N !

and the integral form of the continuity equation is
jQJ-dSJrif pdv =0 (5-212)
N dt |4

Let us consider two semiinfinite media separated by the plane boundary
z = 0 as shown in Fig. 5.29. Let us denote all quantities pertinent to mediym
1 by subscript 1 and all quantities pertinent to medium 2 by subscript| 2.
Let i, be the unit normal vector to the surface z = 0 directed into mediiim

Medium 1, z > 0
01, €15 M1

Medium 2, z < 0 N
02, €2, 2 Y

Fig. 5.29. For deriving the boundary conditions at the interface
between two arbitrary media.
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1 as shown in Fig. 5.29 and let all normal components of fields at the bound-
ary in both media denoted by an additional subscript » be directed along i,.
Let the surface charge density and the surface current density on z = 0 be
p, and J, respectively. Note that the fields at the boundary in both media
and the surface charge and current densities are, in general, functions of x, y,
and 7 whereas the fields away from the boundary are, in general, functions
of x,y,z, and ¢.

First we consider a rectangular box abcdefgh of infinitesimal volume
enclosing an infinitesimal area of the boundary and parallel to it as shown
in Fig. 5-29. Applying (5-208) to this box in the limit that the side surfaces
(abbreviated ss) tend to zero, thereby shrinking the box to the surface, we
have

lim§ D.dS=lim f pav (5-213)
ss—0 J AS ss—0 J Ay

where AS and Av are the surface area and the volume, respectively, of the
box. In the limit that the box shrinks to the surface, the contribution from
the side surfaces to the integral on the left side of (5-213) approaches zero.
The sum of the contributions from the top and bottom surfaces becomes
[D,,(abcd) — D,,(efgh)] since abcd and efgh are infinitesimal areas. The
quantity on the right side of (5-213) would be zero but for the surface charge
on the boundary, since shrinking the box to the surface reduces only the
volume charge enclosed by it to zero, keeping the surface charge still enclosed
by it. This surface charge is equal to p,(abcd). Thus Eq. (5-213) gives

D, (abed) — D,,(efgh) = p,(abcd)
or
Dnl - Dnz = P (5_214)

since the two areas abcd and efgh are equal. In vector notation, (5-214) is
written as

i,» M, —D,) = p, (5-215)

In words, Egs. (5-214) and (5-215) state that, at any point on the boundary,
the components of D, and D, normal to the boundary are discontinuous by
the amount of the surface charge density at that point.

Similarly, applying (5-209) to the box abcdefgh in the limit that the box
shrinks to the surface, we obtain

lim B.dS=0 (5-216)
ss—0 JAS
Using the same argument as for the left side of (5-213), the quantity on the
left side of (5-216) is equal to [B,,(abcd) — B,,(efgh)]. Thus Eq. (5-216) gives

B, (abcd) — B,,(efgh) = 0
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or .
B,—B,=0 (5-217)

In vector notation, Eq. (5-217) is written as ' _ \‘
i, (B, —B)=0 (5-218‘1)

In words, Eqgs. (5-217) and (5-218) state that, at any point on the boundaryfr,
the components of B, and B, normal to the boundary are equal.

Now, we consider a rectangular contour abcda of infinitesimal area i
the plane normal to the boundary and with its sides ab and cd parallel to the
boundary as shown in Fig. 5-29. Applying (5-210) to this contour in the limjit
that ad and bc — 0, thereby shrinking the rectangle to the surface, we have

lim E.dl = —hm— f B.dS (5-219)
ad—0 ad=0 dt

bc-0 gpeda bc—0 area

abcd

In the limit that the rectangle shrinks to the surface, the contribution from
ad and bc to the integral on the left side of (5-219) approaches zero. Sinjce
ab and cd are infinitesimal, the sum of the contributions from ab and |cd
becomes [E, (ab) + E (cd)], where E,, and E,; aré the components of E,
and E, along ab and cd, respectively. The right side of (5-219) is equalito
zero since the magnetic flux crossing the area abed approaches zero as the
area abcd tends to zero. Thus Eq. (5-219) gives

ab(ab) + Ecd(Cd) = 0
or, since ab and cd are equal,
o (B —E) =0 (5-220)

where i, is the unit vector along ab. Let us now define i,, to be the unit vec%tor
normal to the area abcd and in the direction of advance of a right-hand screw
as it is turned in the sense of the path abcda. Note that i, is tangential to/the

boundary. We then have “

i, =i, xi, (5-221)

Substituting (5-221) into (5-220) and rearranging the order of the scalar
" triple product we obtain v \

iy ¢, X (B, — E)) = 0 B CE 593

" Since we can choose the rectangle abed to be in any plane normal to the

boundary, (5-222) must be true for all orientations-of i,,. It then follows/that

i,x(E —E)=0 » (5+223) -
or, in scalar form,
E,—E,=0 (5:224)

where E,, and E,, are the tangential components of E, and E,, respecti“{vely,

at the boundary. In words, Egs. (5-223) and (5-224) state that, at any point
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on the boundary, the components of E, and E, tangential to the boundary are
equal.

Similarly, applying (5-211) to the contour abcda in the limit that ad and
bec — 0, we have

lim § H.dl=1lim { J+dS + hm— f D.dS (5-225)
ad—0 ad—0 ad—»O d

be=0 gpeda 500 areq area

abed abed

Using the same argument as for the left side of (5-219), the quantity on the
left side of (5-225) is equal to [H_(ab) + H.,cd)], where H,, and H,, are
the components of H, and H, along ab and cd, respectively. The second
integral on the right side of (5-225) is zero since the displacement flux cross-
ing the area abcd approaches zero as the area abed tends to zero. The first
integral on the right side of (5-225) would also be equal to zero but for a con-
tribution from the surface current on the boundary because shrinking the
rectangle to the surface reduces only the volume current enclosed by it to
zero, keeping the surface current still enclosed by it. This contribution is the
surface current flowing normal to the line which abcd approaches when it
shrinks to the surface, that is, the current crossing this line along the direction
of i,,. This quantity is equal to [J, « i ](ab). Thus Eq. (5-225) gives

H(ab) + H f(cd) = (I, + i,)(ab) -
or, since ab and cd are equal,

s H —H)=J, i, (5-226)

Substituting (5-221) into (5-226) and rearranging the ‘order of the scalar
triple product, we obtain

i x |, —H) i, =J, -, (5-227)
Since (5-227) must be true for all orientations of i,, that is, for a rectangle
abcd in any plane normal to the boundary, it follows that

i, x M, —H)=1J, (5-228)
or, in scalar form,

H, — th = Js (5'229)
where H,, and H,, are the tangential components of H, and H,, respectively,
at the boundary. In words, Eqgs. (5-228) and (5-229) state that, at any point
on the boundary, the components of H, and H, tangential to the boundary
are discontinuous by the amount equal to the surface current density at that
point.

Finally, applying (5-212) to the box abcdefgh in the limit that the box
shrinks to the surface, we have

lim$ J.dS+ lim it f pdv=0 (5-230)
Ay .

5520 J As ss=0
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In the limit that the box shrinks to the surface, the contribution to the ﬁrsfﬁ‘;
integral on the left side of (5-230) from the side surfaces of the box woulc
be zero but for the surface current on the boundary, since although the volum

current emanating from the side surfaces reduces to zero, there still remainﬁ

the surface current emanating from them. This current is ‘l

5f; J @ xi)= f (V,+ 3)dS = (V, « J,)(abed)

where the subscript s in V, denotes that the divergence is computed in the
two dimensions tangential to the surface. The sum of the contributions
from the top and bottom surfaces is equal to [J, (abcd) — J,,(efgh)] or

i, » (J;, — J,)](a@bcd). The second integral on the left side of (5 230) is equal
to (dp:/ét)(abcd) Thus Eq. (5-230) gives

[V, +J, +1i,+ (J, — J,)(abed) + %/;s (abed) = 0O

or

in * (Jl - Jz) = —Vs * J.r - %,;: (5_231)

In words, Eq. (5-231) states that, at any point on the boundary, the compo-
nents of J, and J, normal to the boundary are discontinuous by the amount
equal to the negative of the sum of the two-dimensional divergence of the
surface current density and the time derivative of the surface charge den51ty
at that point. ‘

Equations (5-215), (5-218), (5-223), (5-228), and (5-231) form the set of
boundary conditions for the most general case of time-varying fields in two
arbitrary media. Although we have derived these boundary conditions' by
considering a plane surface, it should be obvious that we can consider ?ny
arbitrary-shaped boundary and obtain the same results by letting the box
and the rectangle shrink to points on the boundary. We can now write| the
boundary conditions for various special cases by inspection of the carre-
sponding sets of Maxwell’s equations and continuity equation listed in Table
5.5. These boundary conditions are listed in Table 5.6, together with| the
general boundary conditions. Depending upon the problem, only some of the
boundary conditions need to be used in the determination of the fields,
whereas some or all of the remaining boundary conditions are automatéifally
satisfied and the rest determine the surface. charge and current densities on
the boundary. Before we consider some examples, let us investigatel the
boundary condition for the power flow normal to the boundary. Letting
P, and P, be the Poynting vectors corresponding to the fields in media 1
and 2, respectively, we have

i« (P, —P)=1i,(E xH —E, xH,)

G XE)x G xH) i, — G x E)x G xHy) i 22
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TABLE 5.6. Summary of Boundary Conditions for Various Cases (i, is the unit
vector normal to the boundary and drawn towards medium 1)

Description

Boundary Conditions

Time-varying fields
Medium 1: arbitrary, o1 # oo
Medium 2: arbitrary, o2 7~ o

Static fields
Medium 1: arbitrary, o1 # o
Medium 2: arbitrary, o2 # o

Time-varying fields
Medium 1: perfect dielectric, 6; =0
Medium 2: perfect dielectric, 62 = 0

Static fields
Medium 1: perfect dielectric, 61 = 0
Medium 2: perfect dielectric, 62 = 0

Time-varying fields
Medium 1: perfect dielectric, 6; = 0
Medium 2: perfect conductor, g3 = oo

Static electric field
Medium 1: perfect dielectric, g3 = 0
Medium 2: perfect conductor, g2 = oo

ine (D1 — Dy) = p;

i,e (Bi —B2) =0

i X (E1 —E)=0

inx H —H)) =J;

e =T = = Ve 3, =

in- Dy — D) = p,
ine (B —B2)=0
inX(E1 —E)=0

in x H1 —Hp) =J;
in'(Jl —J2)= -V Js
i, (D; — D) =0
ine(Br —B2)=0
inxE —E)=0
inx(Hl—H2)=0
in-M; —D2)=0
in+(B1 —B2)=0
inx(El—E2)=0
inX(Hl—H2)=0

i,,-D1=p,
i,+B;1 =0

i»XxE; =0
i, xH; =J;
in'D1=ps
in)(El=0

Substituting (5-223) and (5-228) into (5-232), we get
i, @, —P)=(,xE) x[(, x H)+ J]-i,
- (in X Ez) X (in X Hz) * in
=[G, xE;) xJ]-i,
=[G, xE)xJ]-i,
=[(d,+JJ)E, — J, - EDi] - i,
=—J, «E,
since (i, « J,) is equal to zero. Thus, at any point on the boundary, the com-
ponents of the Poynting vector normal to the boundary are discontinuous
by the amount equal to the power density associated with the surface current

density at that point. In the absence of a surface current, the normal compo-
nents of the Poynting vector are continuous.

(5-233)

EnMPLE 5-14. In Fig. 5.30, medium 1 comprises the region z > 0 and medium 2
comprises the region z < 0. All fields are spatially uniform in both media
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Fig. 5.30. For Example 5-14.

and independent of time. The quantities o, and €, are constants. If the current
density in medium 1 is given by

J, = J,@, + 2i, 4 6i)
where J, is a constant, find (a) the electric field intensity vector E, in mediun

2, and (b) the surface charge density p, on the interface z = 0.
The electric field intensity E, in medium 1 is given by

J Jo e . .
E, =a—::a—z(1x—|—2ly—|—6lz)

From (5-223), the tangential component of E, is equal to the tangental
component of E,. Thus E,, = Jy/o, and E,, = 2J,/5,. Since all fields ae
spatially uniform and independent of time, V,«J =0 and dp,/dt =0.
Then, from (5-231) the normal component of J, is equal to the nornal
component of J,. Thus J,, = 6J, and E,, = J, /o, = 6J,/36, = 2J,/r,.
The electric field intensity E, in medium 2 is therefore given by

E, = % (i, + 2, + 2i)

From (5-215), the surface charge density p, on the interface z = 0 is givenby
p::iz.(Dl_DZ) ‘
= D,, — D,, = €,E;, — €,E,,
—e. 8o o 20y _ 5Edo
—600_—0 2¢, 7 =2 o, |

ExampLE 5-15. In Fig. 5.31, a perfect dielectric medium x < 0 is bounded ly a
perfect conductor (x = 0). The electric field intensity for x < 0 is give: by
E(x, v, z, t) = [E, cos (wt — fx cos 8 — Bz sin §)
+ E, cos (et + Bxcos§ — Bzsin )i,

where E,, E,, ®, f, and 8 are constants. Find the relationship betwee E,
and E,. Then find the surface current density on the surface z = 0.
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‘Perfect Conductor

: J
W77/l l‘“"

X

Fig. 5.31. For Example 5-15.

From the boundary conditions listed in Table 5.6, the tangential com-
ponent of the electric field intensity at the surface of a perfect conductor
must be zero. Thus

[E, ;=0 = (E, + E,) cos (wt — Pzsinf) =0
For this to be true for all values of z and ¢, E, + E, must be zero. Hence
E, = —E,
The electric field intensity for x << 0 is then given by
E = [E, cos(wt — fxcos @ — Bzsin )
— E, cos (wt + fx cos @ — Pz sin )i, (5-239)
= 2E, sin (fx cos @) sin (w? — Bz sin )i,

The corresponding magnetic flux density B can be obtained by using
Maxwell’s curl equation for E, given by
B _ _ _9E,. | 9E,, e
—W——VxE——a—th—l— 0;1, (5-235)
Substituting for E, in (5-235) from (5-234) and integrating with respect to
time, we obtain

B=— %’) [sin 6 sin (Bx cés ) sin (et — Bz sin B)i,

—cos 0 cos (fx cos ) cos (wt — Pz 'sin 0)1i,]

The magnetic flux density at the surface of the perfect conductor is given by
[Bl,-o = gi;—ﬂ cos @ cos (wt — Pz sin B)i,

Note that the condition of zero normal component of B at the surface
of the perfect conductor is automatically satisfied by the zero tangential
component of E. This is because the boundary condition for the tangential
component of E is obtained from the integral form of V x E = —dB/d¢
whereas the boundary condition for the normal component of B is obtained
from the integral form of V« B = 0. However, V « B =0 follows from
V x E = —dB/dz. Hence the two boundary conditions are not independent.
Finally, the surface current density at the surface of the perfect conductor
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is given by
J.=—i, x[H].
2E ﬁ cos @ cos (wt — Pzsin)i, [
PROBLEMS
5.1. Consider two electrons moving under thermal agitation with equal and opposite

velocities. A uniform electric field is applied along the direction of motion of one
of the electrons. Show that the gain in kinetic energy by the accelerating electron
is greater than the loss in kinetic energy by the decelerating electron.

5.2. (a) For a sinuosidally time-varying electric field E = E, cos ¢, where E, is a
constant, show that the steady-state solution for Eq. (5-2) is given by

Vy=—oeoo_F t — tan~!
4 /T o o0 cos (@ an” wT)

(b) Based on the assumption of one free electron per atom, the free electron
density N, in silver is 5.86 x 1028 m~3, Using the conductivity for silver given
in Table 5.1, find the frequency at which the drift velocity lags the applie d
field by 7/4 rad. What is the ratio of the mobility at this frequency to the
mobility at zero frequency ?

\
|
Te /‘

5.3. The plane surfaces x =0,y > 0 and y = 0, x > 0, and the curved surface xy = 2
form the boundaries of conductors extending away from the region betwegen
them. If the electrostatic potential in the region between the surfaces is given Toy
V = 50 xy volts, find the surface charge densities on all three surfaces.

54. The region z < —d is occupied by a conductor. An infinitely long line charge of
uniform density pro C/m is situated along the x axis. From the secondary field
required to make the total field inside the conductor equal to zero and from sy
metry considerations as illustrated in Fig. 5.32, show that the induced char‘r‘ge

Charge
N
\ !

Applied Field
————= Secondary Field

Induced ‘
Charge !

Fig. 5.32. For Problems 5.4 and 5.5. Charge is line charge for
Problem 5.4 and point charge for Problem 5.5.
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density on the surface of the conductor is given in cartesian coordinates by
—Prod/n(y? 4+ d?) C/m?. Show that the induced surface charge per unit length
along the x direction is equal to — p,. Show that the field outside the conductor
is the same as the field due to the line charge along the x axis and an image line
charge of uniform density —p,, C/m situated parallel to the actual line charge
and passing through (0, 0, —2d).

The region z < —d is occupied by a conductor. A point charge Q C is situated
at the origin. From the secondary field required to make the total field inside the
conductor equal to zero and from symmetry considerations as illustrated in Fig.
5.32, show that the induced charge density on the surface of the conductor is given
in cylindrical coordinates by —Qd/2m(r? + d2)3/2 C/m2. Show that the total
induced surface charge is —Q C. Show that the field outside the conductor is the
same as the field due to the point charge Q at the origin and an image point
charge — Q situated at (0, 0, —2d).

(a) An infinite plane conducting slab carries uniformly distributed surface charges
on both of its surfaces. If the net surface charge density, that is, the sum of
the surface charge densities on the two surfaces, is p;o C/m?, find the surface
charge densities on the two surfaces,

(b) Two infinite plane parallel conducting slabs carry uniformly distributed sur-
face charges on all four of their surfaces. If the net surface charge densities
are p,; and p,;, C/m2, respectively, for the two slabs, find the surface charge
densities on all four surfaces.

Two infinitely long, coaxial, hollow cylindrical conductors of inner radii a and c,
respectively, and outer radii b (< ¢) and d, respectively, carry uniformly distributed
surface charges on all four of their surfaces. If the net surface charges per unit
length are p;, and p;, C for the inner and outer conductors, respectively, find
the surface charge densities on all four surfaces.

Two concentric, spherical conducting shells of inner radii @ and ¢, respectively,
and - outer radii 6(<< ¢) and d, respectively, carry uniformly distributed surface
charges on all four of their surfaces. If the net surface charges are Q; and Q, C
for the inner and outer conductors, respectively, find the surface charge densities
on all four surfaces.

Figure 5.33 shows the electric field intensities on either side of a point on a surface
charge layer in free space. ‘

(a) Using the integral form of Maxwell’s curl equation for E, show that the tan-
gential components E,; and E,, are equal.

Etl//
-

Fig. 5.33. For Problem 5.9.
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(b) Using the integral form of Maxwell’s divergence equation for E, show that,

the normal components E,, and E,, are related in the manner ]

Enl - n2=&
0

where p; is the surface charge density at the point.

Figure 5.34 shows the magnetic flux densities on either side of a point on a surface
current layer in free space.

(a) Using the integral form of Maxwell’s divergence equation for B, show tha
the normal components B,; and B,, are equal.

(b) Using the integral form of Maxwell’s curl equation for B, show that th
tangential components B;; and B,, are related in the manner

B;y — By, = Uods |

where J is the surface current density at the point. Note that J; is directed
into the paper whereas B,; and B,, are in the plane of the paper.

Fig. 5.34. For Problem 5.10.

The electric field intensity outside a conducting sphere of radius ¢ and centered
at the origin is given by (

E = E0<1 4 )cose i — E0<1 - a—)smelg \/

(a) Show that E satlsﬁes Maxwell’s equations.

(b) Show that the tangential component of E is zero at the conductor surface.

(¢) Find the charge density on the conductor surface.

(d) Find the applied field by letting @ — 0 and then find the secondary field fOth
inside and outside r = a.

(e) Show that the secondary field on either side of the boundary satisfies| the
conditions (a) and (b) stated in Problem 5.9.

The radius of the electron cloud in a helium atom is approximately equal to
10-1° m. Compute the relative displacement between the centroids of the nucleus
and the electron cloud under the influence of an electric field E, = 5 X 106 volts/m.
Compare your result with the radius of the electron cloud.
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In Example 5-3, assume that the charge distribution in the electron cloud is a
function of the radial distance from the centroid. If the relative displacement d
between the centroids of the nucleus and the electron cloud is very small com-

pared to the effective atomic radius, show that the electronic polarizability is
approximately given by

36,0
O, ~ T
| p(0)]
where p(0) is the charge density at the center of the electron cloud and Q is the

magnitude of the total charge in the electron cloud. Verify the result for the uni-
formly charged cloud.

Show that the torque acting on an electric dipole of moment p in a uniform electric

field E, is equal to p « E,. Show that the torque tends to align the dipole moment
with the field.

Two infinitely long line charges of uniform densities p.o and —p,, are situated
parallel to the z axis and pass through the points (d/2,0,0) and (—d/2, 0, 0),
respectively. Show that the average electric field intensity in a cylindrical volume
of radius a > dJ2 and having the z axis as its axis is equal to —(pd/27€oa?)i,.

Show that the average electric field intensity due to an arbitrary volume charge
distribution of dipole moment p in a spherical volume of radius a is given by

=__P
E‘w - 47:60(13

The region a < r < b in spherical coordinates is filled with a dielectric material
of uniform susceptibility x.o. A point charge Q is situated at the origin.

(a) Show that the polarization volume charge density is zero and that the polari-
zation surface charge densities are given by

Xeo Q —
. 1 + Xeo 47“12 r=a
e XeD Q

T4 godner  "=0

(b) Find the electric field intensities in the three different regions r < a,a <r < b,
and r > b.

(c) Discuss your results for the limiting case @ — 0 and b — oo.

The region z < —d is occupied by a dielectric of uniform electric susceptibility ¥.o-

A point charge Q is situated at the origin. Show that the polarization surface
charge density is equal to

. QX eOd
202 + Xeo)(r? + d2)32
and that the polarization volume charge density is zero. Show that the electric
field intensity inside the dielectric is the same as that due to a point charge equal
to 20Q/(2 + x.o) at the origin. Show that the electric field intensity outside the

dielectric is the same as that due to the point charge Q at the origin and an image
point charge — x.0Q/(2 + X.o) at (0,0, —24d).
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A dielectric sphere of radius @ and having uniform electric susceptibility X.o is,
centered at the origin. The electric field intensities outside and inside the sphere,
are given in spherical coordinates by

— 2Xe() _a_? . Xeo 13 . .
E, = (1 +3 % ra)Eo cos 01, —(1 - r3)E° sin@ iy

R S
' 3+Xe0

where E, is a constant,

E (Eycos @i, — E, sin 8 ip)

(a) Show that E, and E; satisfy Maxwell’s equations.

(b) Find the applied field by letting @ — 0 and then find the secondary field bot
inside and outside » = a.

(c) Show that the tangential components of the secondary field on either side of
r = a are equal.

(d) From the normal components of the secondary field on either side of r = q,
obtain the polarization surface charge density at r = a, using condition (b)
stated in Problem 5.9.

(e) Show that the surface charge density found in part (d) is consistent with the
polarization vector corresponding to E;. f

|
An infinite plane dielectric slab of thickness 4 and having a nonuniform electric
susceptibility given by ‘

Xe(z)=4f_ Z

occupies the region 1 <z << 2. A uniform electric field E, = E,i, is applied.
Show that the induced polarization volume and surface charge densities are
given by

Po = —4€6E,s 1l<z<?2
[ %EQEO z=2

Prs = —zl_-ngo z=1

Find the secondary and total electric fields both inside and outside the dielectric.
Obtain the polarization current density in the dielectric if the applied electric field
is time-varying in the manner E, = E, cos ¢ i,.

Two perfectly conducting, infinite plane parallel sheets separated by a distance d
carry uniformly distributed surface charges of equal and opposite densities: p,¢
and — p;,, respectively. For each of the following cases, find the potential difference
between the two plates:

(a) The medium between the two plates is free space.

(b) The medium between the two plates is a dielectric of uniform permittivity
€ = 4¢,.

(¢) The medium between the two plates consists of two dielectric slabs of thick-

nesses ¢t and d — ¢ and having permittivities €; = 2€, and €, = 4¢€,, respec-
tively.
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(d) The medium between the two plates is a dielectric of nonuniform permittivity
which varies linearly from a value of €; near one plate to a value of €, near
the second plate. .

Two perfectly conducting, infinite plane parallel sheets separated by a distance d

carry uniformly distributed surface charges of equal and opposite densities. For

each of the cases listed in Problem 5.21, find the required surface charge densities
if the potential difference between the two plates is to be V.

An infinite plane dielectric slab of thickness d and having a nonuniform permittivity
given by

€ — 4€,

(1 Z/d)>

occupies the region 0 < z < d. A uniform electric field E, = E,i, is applied. Find
the following quantities:
(a) D outside the dielectric.
(b) D inside the dielectric.
(¢) E inside the dielectric.
(d) P inside the dielectric.
(e) pps on the surfaces z=0and z = d.
(f) p, inside the dielectric.
The region a < r < b in spherical coordinates is occupied by a dieleqtric material.
A point charge Q is situated at the origin. It is found that the electric field intensity
inside the dielectric is given by

E a<r<b

__0o
4meb2 "

Find the following quantities:

(a) The permittivity of the dielectric.

(b) p,s on the surfaces r =g and r = b.
(c) p, inside the dielectric.

Show that the result given by (5-98) for the change in the angular velocity of an
electron in a circular orbit of radius @ under the influence of an applied magnetic
field follows from the application of Faraday’s law in integral form to the elec-
tronic orbit.

Show that the torque acting on an arbitrary current loop of dipole moment m in a
uniform magnetic field B,, is equal to m x B,,. Show that the torque tends to
align the dipole moment with the field.

Two infinitely long filamentary wires situated parallel to the z axis and passing
through the points (d/2, 0, 0) and (—d/2, 0, 0) carry currents 7 amp in the positive
and negative z directions, respectively. Show that the average magnetic flux density
in a cylindrical volume of radius @ > /2 and having the z axis as its axis is equal
to —(uold2ma?)i,.
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Show that the average magnetic flux density due to an arbitrary volume current
distribution of dipole moment m in a spherical volume of radius b is given by

Hom

Bav = 2n63

The region a < r < b in cylindrical coordinates is filled with a magnetic materiafl
of uniform susceptibility ¥..o. A filamentary wire situated along the z axis carrigs
current I amp in the z direction.

(a) Show that the magnetization volume current density is zero and that the
magnetization surface current densities are given by

I .
Xmo 51z r=a
Jm: =

I .
—X""’in—b‘z r=»~

(b) Find the magnetic flux densities in the three different regions r < a, a < r <ib,
and r > b.

(c) Discuss your results for the limiting case a — 0 and b — oo,

The region z < —d is occupied by a magnetic material of uniform susceptibilfity
Xmo- An infinitely long filamentary wire carrying current I amp in the x directijon
is situated along the x axis. Show that the magnetization surface current densf'ity

is equal to r
|

X mOdI

Q2 + Ymo)¥2 +d?)
and that the magnetization volume current density is equal to zero. Show that
the magnetic flux density inside the magnetic material is the same as that due to a
filamentary wire along the x axis carrying [(2 + 2Xn0)/(2 + Xmo)l{ amp in th]ie X
direction. Show that the magnetic flux density outside the magnetic material is the
same as that due to the filamentary wire along the x axis carrying I amp in thie x
direction and an image filamentary wire parallel to the x axis and passing through
(0, 0, —2d) and carrying a current ¥,0Z/(2 + Xmo) amp in the x direction. :

i, amp/m

A sphere of magnetic material of radius a and having uniform susceptibility ¥mo
is centered at the origin. The magnetic flux densities outside and inside the splhere
are given in spherical coordinates by :

_ 2Ymo @° i (1 — Xmo_@\p o0
B°—(1+3+Xmor3>B° ;:0591, (1 3+Xm0r3)Bos1n019

31 ' . s .
B, = —gT-I_%'IO—")(BO cos @ i, — By sin 0 ip) ’
where B, is a constant.

(a) Show that B, and B; satisfy Maxwell’s equations.
(b) Find the applied field by letting @ — 0 and then find the secondary field |both
inside and outside r = a.

(c) Show that the normal components of the secondary field on either side of
r = a are equal.
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(d) From the tangential components of the secondary field on either side of » = q,
obtain the magnetization surface current density at r = a, using condition (b)
stated in Problem 5.10.

(e) Show that the surface current density found in part (d) is consistent with the
magnetization vector corresponding to B;.
An infinite plane slab of magnetic material of thickness d and having a nonuniform
magnetic susceptibility given by
z

Xm(z) = 4

occupies the region 1 < z < 2. A uniform magnetic field B, = Byi, is applied.
Show that the induced magnetization volume and surface current densities are
given by

J,,,=4B7°oiy l<z<2

—L z=1
4 id
Jms= go
—Z‘%iy z=2

Find the secondary and total magnetic fields both inside and outside the magnetic
material.

Two perfectly conducting, infinite plane parallel sheets separated by a distance d
carry uniformly distributed surface currents having equal and opposite densities
J,0 and —J;,, respectively. For each of the following cases, find the magnetic flux
between the current sheets per unit length along the direction of flow of the current.

(a) The medium between the two plates is free space.

(b) The medium between the two plates is a magnetic material of uniform per-
meability g4 = 4/,.

(¢) The medium between the two plates consists of two magnetic material slabs
of thicknesses # and 4 — ¢ and having permeabilities u; = 24, and y, = 44,
respectively. .

(d) The medium between the two plates is a magnetic material of nonuniform
permeability which varies linearly from a value of u; near one plate to a value
of u, near the second plate.

Two perfectly conducting, infinite plane parallel sheets separated by a distance d
carry uniformly distributed surface currents having equal and opposite densities.
For each of the cases listed in Problem 5.33, find the required surface current
densities if the magnetic flux between the current sheets per unit length along the
direction of flow of the current is to be .

An infinite plane magnetic material slab of thickness d and having a nonuniform
permeability given by

w=po(1+ %)
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occupies the region 0 < z < d. A uniform magnetic field B, = Byi, is applied.
Find the following quantities:

(a) H outside the magnetic material.
(b) H inside the magnetic material.
(¢) B inside the magnetic material. [
(d) M inside the magnetic material.

(e) J..; on the surfaces z = 0 and z = 4.

(f) J,, inside the magnetic material.

The region a < r < b in ¢ylindrical coordinates is occupied by a magnetic material.

A filamentary wire situated along the z axis carries current J amp in the z directipn.
It is found that the magnetic flux density inside the magnetic material is given |by

_ ML
27za a<r<b

Find the following quantities:

(a) The permeability of the magnetic material.
(b) J,., on the surfaces r = @ and » = b.
(©) J, inside the magnetic material.

A portion of the B-H curve for a ferromagnetic material can be approx1matedt by
the analytical expression

where k is a constant having the units of meters per ampere. Find u,, ,u,,, X
and M.

Show that Eq. (5-162) follows from Eq. (5-163) whereas Eq. (5-161) follows firom
Eqgs. (5-164) and (5-165).

Two infinite plane conducting sheets separated by a distance 4 carry unifo; ,rmly
distributed surface charges of densities p,, and —p,o, respectively. Flndr the
electric stored energy per unit area of the plates if the medium between the plates
is (a) free space, and (b) a dielectric of uniform permittivity € = 4¢€,. ‘

The region between two infinite plane conducting sheets separated by a distarice d
is characterized by a uniform electric field intensity E, directed normal t0 the
plates. Find the electric stored energy per unit area of the plates if the medium
between the plates is (a) free space, and (b) a dielectric of uniform permittivity
€ = 4€,.

Two infinite plane conducting sheets separated by a distance d carry unifgrmly
distributed surface currents of densities J,, and —J,,, respectiveiy. Find the
magnetic stored energy per unit area of the plates if the medium between the
plates is (a) free space, and (b) a magnetic material of uniform permeability
=4,
The region between two infinite plane conducting sheets separated by a distance d
is characterized by a uniform magnetic flux density B, directed tangential to the
plates. Find the magnetic stored energy per unit area of the plates if the medium
between the plates is (a) free space, and (b) a magnetic material of uniform per-
meability 4 = 4u,.
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For the B-H curve of Problem 5.37, find the work done per unit volume in mag-
netizing the material from zero to a certain value By = u kH3.

The region r < a in cylindrical coordinates is occupied by a magnetic material of
uniform permeability 4. The magnetic field intensity is given by

H H, cos wti, r<<a
0 otherwise

where H, is a constant. Show that the time rate of change of energy stored in the
magnetic field per length / of the magnetic material is correctly given by the power
flow into the material obtained by evaluating the surface integral of the Poynting
vector over the surface of the cylindrical volume of length / and bounded by r = a.

The region 0 < z < d is occupied by a dielectric material of uniform permittivity €.
The electric field intensity is given by

E_Eocoscoti, O<z<d
0 otherwise

where E; is a constant. Assume cylindrical symmetry and show that the time rate
of change of energy stored in the cylindrical volume » < a of the dielectric material
is correctly given by the power flow into the material obtained by evaluating the
surface integral of the Poynting vector over the surface of that volume.

Medium 1, comprising the region r < a in spherical coordinates, is a perfect
dielectric of permittivity €; = 2¢, whereas medium 2, comprising the region
r > a, is a perfect dielectric of permittivity €, = 4€,. The electric field intensity
in medium 1 is given by E; = E, i,, where E, is a constant. Find the electric field
intensity at r = g in medium 2.
Medium 1, comprising the region z > 0, is characterized by g, =0, €; = €,
and u; = 4u, whereas medium 2, comprising the region z < 0, is characterized
by 6, =0, €, = €, and u, = 2u,. All fields are spatially uniform in both media
and independent of time. The magnetic flux density vector B, in medium 1 is
given by

B, = B,(2i, -+ 4i, 4 5i,) Wb/m?
where B, is a constant. The boundary z = 0 between the two media carries a sur-
face current of density J; given by

3, =80, — 2i)amp/m
Lo

Determine the magnetic flux density vector B, in medium 2.

Two infinite, perfectly conducting plates occupy the planes x =0 and x = a.
An electric field given by

E=E, sinﬂcosLti,
a an/ Ho€o
where E, is a constant, exists in the medium between the plates, which is free space.

(a) Using one of Maxwell’s curl equations, obtain the magnetic field associated
with the given E.

(b) Determine the surface current densities on the two plates.
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The region z < 0 is free space and the region z > 0 is a perfect dielectric of per-
mittivity € = 4€,. The electric field intensities E; and E, in the two media are
given by

E, = [E;cos w(t — A/ #o€q 2) + E, cos @ (t + A/ po€; 2)]i, forz<O0

E, = E,cos w(t — 24/ Uo€ 2) i, forz>0
where E;, E,, and E; are constants.
(a) Find H; and H; associated with E, and E,, respectively.
(b) Find the relationships between E, and E; and between E, and E;.
Show that, for time-varying fields, the boundary condition for the normal co -
ponent of B follows from the boundary condition for the tangential compone
of E, whereas the boundary condition for the normal component of D follo s

from the boundary conditions for the tangential component of H and the nor al
component of J.





