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THE ELECTROMAGNETIC FIELD

41

In Chapter 2 we studied the static or time-independent electric field in free
space. We introduced Maxwell’s equations for the static electric field grad-
ually from the experimental law of Coulomb concerning the force between
two charges. In Chapter 3 we studied the static or time-independent magnetic
field in free space. We introduced Maxwell’s equations for the static magnetic
field gradually from the experimental law of Ampere concerning the force
between two current loops. In this chapter we will study time-varying electric
and magnetic fields. We will learn that Maxwell’s curl equations for the static
electric and magnetic fields have to be modified for time-varying fields in
accordance with an experimental law of Faraday and a purely mathematical
contribution of Maxwell. When these modifications are made, we will find
that the time-varying electric and magnetic fields are coupled; that is, they
are interdependent and hence the name “electromagnetic field.” As in the
case of Chapters 2 and 3, we will in this chapter be concerned with the elec-
tromagnetic field in free space only.

The Lorentz Force Equation

In Section 2.1 we introduced the electric field concept in terms of a force
field acting upon charges, whereas in Section 3.1 we introduced the
magnetic field concept, also in terms of a force field acting upon charges
but only when they are in motion. If an electric field E as well as a magnetic
field B exist in a region, then the force F experienced by a test charge ¢ moving
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with velocity v is simply the sum of the electric and magnetic forces given ty
(2-2) and (3-1), respectively. Thus

F=qE +qgvx B=gE + vxB) “4-)
Equation (4-1) is known as the Lorentz force equation, and the force given
by it is known as the Lorentz force. For a continuous charge distribution of
density p moving with a velocity v, we can define a force per unit volums,
f. Considering an infinitesimal volume dv, we then have

fdv=pdv(E+ vxB)=(pE + J x B) dv

i

or
f=pE+JxB @)
where J = pv is the volume current density.

ExampPLE 4-1. A test charge ¢ C, moving with a velocity v = (i, + i,) m/sec,
experiences no force in a region of electric and magnetic fields. If the magnefic
flux density B = (i, — 2i,) Wb/m?, find E.
From (4-1), the electric field intensity E must be equal to —v x B ﬁr)r
the charge to experience no force. Thus

E=—(@,+1i,)x @i, —2i)
= (2i, — 2i, +1i,) volts/m |

ExAMPLE 4-2. A region is characterized by crossed electric and magnetic fields,
E = Ei, and B = B, as shown in Fig. 4.1, where E, and B, are constanlts.
A small test charge g having a mass m starts from rest at the origin at ¢ ='0.
We wish to obtain the parametric equations of motion of the test charge.
The force exerted by the crossed electric and magnetic fields on the test
charge is

F=g(E + v x B) =q[Eji, + (v, + v, + v,i) x (Boi,)]  (43)
The equations of motion of the test charge can therefore be written as

E
ﬂk A ﬂl {\
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. ° . . Fig. 4.1. A region of crossed
electric and magnetic fields.
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dv, _ 9B, .
=Y (4-4a)
dv, _  qB, q )
d_ty_ Tvx—kmEo (4-4b)
dv, }
i 0 (4-4c)
Eliminating v, from (4-4a) and (4-4b), we have
d2.vx gﬁg 2 _ q 2 )
Gt () o = (L) 85, (4-3)
The solution for (4-5) is
v, = %9 + C,cosm,t + C, sin .t (4-6)
0

where C, and C, are arbitrary constants and w, = gB,/m. Substituting
(4-6) into (4-4a), we obtain

v, = —C, sinwt + C, cos wt “4-7)
Using initial conditions given by
v,=v,=0 att=0
to evaluate C, and C, in (4-6) and (4-7), we obtain

_E,_E N
v, = B, " B, cos @ ¢ (4-8)
v, = % sin o ¢ (4-9)

o

Integrating (4-8) and (4-9) with respect to ¢, we have

E, E, .. )

x = —Bot ~ @B, sinwt + C, (4-10)
— E, _

y=— cBocoswct+C4 4-11)

Using initial conditions given by
x=y=0 atr=20

to evaluate C, and C, in (4-10) and (4-11), we obtain

E E, E,

— Lo { = _ §] -
x= Bot B, sin w, ¢ 3, (.t — sin w,t) 4-12)

— E, E, _ E, : -
y= B cosw.t + @B, cBO(l cos @,t) 4-13)

Equation (4-4c), together with the initial conditions v, =0 and z= 0 at
t = 0, yields a solution

z=0 (4-14)
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Fig. 4.2. Path of a test charge g in crossed electric and
magnetic fields E = E,i, and B = Bi,.

The equations of motion of the test charge in the crossed electric and magnetic
field region are thus given by (4-12), (4-13), and (4-14). These equatiofps
represent a cycloid in the z = 0 plane, as shown in Fig. 4.2. |}

Faraday’'s Law in Integral Form

We learned in Section 2.2 that Coulomb’s experiments demonstrated that
charges at rest experience forces as given by Coulomb’s law, leading to the
interpretation of an electric field set up by charges at rest. Similarly, we
learned in Section 3.3 that Ampere’s experiments showed that current loops
experience forces as given by Ampere’s law, leading to the interpretation of
a magnetic field being set up by currents, that is, charges in motion. In this
section we present the results of experiments by yet another scientist, Michael
Faraday. Faraday demonstrated that a magnetic field changing with tirne
results in a flow of current in a loop of wire placed in the magnetic fie:ld
region. When the magnetic field does not change with time, there is no current
flow in the wire. This implies that a time-varying magnetic field exeits
electric-type forces on charges. Thus Faraday’s experiments demonstrate
that a time-varying magnetic field produces an electric field.

The electric field produced by the time-varying magnetic field is such
that the work done by it around a closed path C per unit charge in the linait
that the charge tends to zero, that is, its circulation around the closed paith
C, is equal to the negative of the time rate of change of the magnetic flux y
enclosed by the path C. In equation form we have
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circulation of E around C = —%,'g 4-15)

The circulation of E around a closed path C is §. E « dl. The magnetic flux
enclosed by C is given by the surface integral of the magnetic flux density
evaluated over a surface S bounded by the contour C, that is, [¢ B« dS. In
evaluating [ B« dS, we choose the normals to the infinitesimal surfaces
comprising S to be pointing towards the side of advance of a right-hand
screw as it is turned in the sense of C. Equation (4-15) is thus written as

§E-dl=—d—a;fB-dS (4-16)
C S

The statement represented by (4-15) or (4-16) is known as Faraday’s law.
Note that the time derivative on the right side of (4-16) operates on the entire
integral so that the circulation of E can be due to a change in B or a change
in the surface S or both. Classically, the quantity § E « dl on the left side
of (4-16) is known under different names, for example, induced electromotive
force, induced electromotance, induced voltage. Certainly the word force
is not appropriate, since E is force per unit charge and j' E . dl is work per
unit charge. We shall simply refer to E as the induced electric field and to
¢ E « dl as the circulation of E.

The minus sign on the right side of (4-16) needs an explanation. We
know that the normal to a surface at a point on the surface can be directed
towards either side of the surface. In formulating (4-16), we always direct
the normal towards the side of advance of a right-hand screw as it is turned
around C in the sense in which C is defined. For simplicity, let us consider
the plane surface S bounded by a closed path C and let the magnetic flux
density be uniform and directed normal to the surface, as shown in
Fig. 4.3. If the flux density is increasing with time, dy/dt is positive and
—dy/dt is negative so that §. E « dl is negative. Hence the electric field
produced by the increasing magnetic flux acts opposite to the sense of the
contour C. If we place a test charge at a point on C, it will move opposite
to C; if Cis occupied by a wire, a current will flow in the sense opposite to

Fig. 4.3. Uniform magnetic field
B directed normal to a plane
surface S.
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that of C. Such a current will produce a magnetic field directed to the sic:
opposite to that of the normal since, if the wire is grabbed with the righ
hand and with the thumb pointing in the direction of the current, the finge
will be curled opposite to the normal as they penetrate the surface S. Th
the current will produce magnetic flux which opposes the increase in t
original flux. Likewise, if the flux density is decreasing with time, dy/dt
negative and —dy/dt is positive so that §. E « dl is positive. The electric fie
produced by the decreasing magnetic flux acts in the sense of the conto
C so that, if C is occupied by a wire, a current will flow in the same sense 4s
that of C. Such a current will produce a magnetic field directed to the side ¢f
the normal, thereby opposing the decrease in the flux. Thus the minus si
on the right side of (4-16) signifies that the induced electric field is such thit
it opposes the change in the magnetic flux producing it. This fact is knoyn
as Lenz’ law. If the induced electric field is such that it aids the change in tke
magnetic flux instead of opposing it, any small change in the magnetic ﬁl{x
will set up a chain reaction by inducing an electric field, which will aid the
change in the magnetic flux, which will increase the electric field, and so on,
thereby violating the conservation of energy. Hence Lenz’ law must be obeyed
and the minus sign on the right side of (4-16) is very important.

ExaMPLE 4-3. The magnetic flux density is given by
B = B, cos w,ti,

where B, and w, are constants. A rectangular loop of wire of area A4 |is
placed symmetrically with respect to the z axis and rotated about the z axis
at a constant angular velocity w, as shown in Fig. 4.4, such that the angle(¢
which the normal to the plane of the loop makes with the x axis is given by

¢ =¢d, + o,
It is desired to find the circulation of the induced electric field around t}re
contour C of the loop.
The unit vector normal to the plane of the loop is |
i, =cos (¢, + w,0) i, + sin(d, + w,?) i, 4-17)
The magnetic flux enclosed by the loop is

v= | B.as |

plane surface
S bounded
by C

= J (B, cos w,21i,) « [cos (@, + @,2) i, + sin (P, + w,?)i,] dS
s ‘
= '[ B, cos , cos (¢, + w,7) dS = ByA cos , cos (¢, + w,7) (4-18)
s i

This is simply the flux enclosed at any time ¢ by the projection of the looP
at that time on to the yz plane, which is normal to the flux density. Fro

I
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Fig. 4.4. A rectangular loop of wire rotating about the z axis
with a constant angular velocity and situated in a time-varying
magnetic field.

Faraday’s law, we now have

dt

= B,A[w, sin w,t cos (¢, + w,?)
+ w, cos ,z sin (¢, + @,1)]
where the prime in E’ denotes that the electric field is associated with the
contour of the moving loop. Note that the right side of (4-19) reduces to
B,Aw, cos @, sin w, ¢t for w, = 0, that is, for a stationary loop in a time-
varying magnetic field and to B 4w, sin (¢, + ,?) for w, = O, that is, fora

moving loop in a static magnetic field. |J]

§ E «dl= _dy _ —%-[BOA cos m,t cos (¢, + w,1)]
¢ (4-19)

EQ‘(AMPLE 4-4. The magnetic flux density is given in cylindrical coordinates by

B,sinwti, forr<a
o forr>a

where B, and o are constants. It is desired to find the induced electric field
everywhere.

We note that the time-varying magnetic field has circular symmetry
about the z axis and is independent of z. Hence the induced electric field must
also possess circular symmetry about the z axis and must be independent
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of z; that is, E can be a function of » only. Choosing a circular contour ¢
of radius r and centered at the origin, as shown in Fig. 4.5, we note that th
magnetic flux enclosed by the contour C is

w=f B.dS (4-20

where S is the plane surface bounded by the contour C. Substituting for l
and dS in (4-20), we get, for r < q,

= st . dS = J.SBO sinwti, » dSi,

= B, sin cotj dS = nr?B, sin wt
N
Forr > a,
—[ B.ds=[ B.dS+ | B.as @-21)
S S Sz

where S, is the plane surface enclosed by the circular contour of radiusF
and S, is the remainder of the surface S. The magnetic field is zero, howeve:,
on the surface S, and hence the second integral on the right side of (4-2:)

is zero. Hence, for r > a,

v=. B« dS = ma?B, sin wt

-
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Fig. 4.5. For evaluating the induced electric field due a
time-varying magnetic field possessing cylindrical
symmetry.
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Thus
nr?B, sin wt forr<a
w=4"°" (4-22)
na®B, sin wt forr>a
Now,
2
§ E.dl= j E, d$ = 2nrE, (4-23)
c $=0
From Faraday’s law, we then have
23rE, — _dy _ —nriBw cos wt forr<a
dt —na’B,w cos wt forr>a
or
— Bgco cos wt forr<a
E, = N (4-24)
—ﬂ%@coswt forr >a

Any r component of E independent of ¢ and z will have nonzero curl and
hence can be attributed to sources appropriate for a static electric field, that
is, an electric field originating from charges at rest. Any z component will have
to be independent of r since the magnetic field has no ¢ component. This is
because if we consider a rectangular contour bcdeb in a plane containing the z
axis as shown in Fig. 4.5, the magnetic flux enclosed by this contour is zero.

Hence ff E . dlis zero or J.c E,dz + r E, dz is equal to zero, leading to
bedeb b d

the conclusion that E, along bc is the same as E, along ed. Since the curl of
a field which has a z component independent of r and ¢ is zero, it can also be
attributed to sources appropriate for a static field. Thus the induced electric
field due to the time-varying magnetic field has a ¢ component only, thereby
surrounding the magnetic field, and it is given by

—B"Trwcos ot i, forr<a
E= B.a%e (4-25)
—=—=coswtiy;, forr>a

The fact that the induced electric field surrounds the time-varying magnetic
field can also be seen if we recognize that Faraday’s law is similar in form
to Ampere’s circuital law

ff B« dl = py(current I enclosed by C)
c

The magnetic field due to the current 7 surrounds the current. Likewise, the
electric field due to the changing magnetic flux should surround the flux.
The induced electric field is thus solenoidal in character, as compared to the
irrotational nature of the electric field due to charges at rest. |i
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One of the consequences of Faraday’s law is that [ E .« dl evaluat'f
between two points a and b is, in general, dependent on the path followel
from a to b to evaluate the integral, unlike in the case of the static electr]'c
field. To illustrate this, let us consider a region of uniform but time-varyiig
magnetic field. Applying Faraday’s law to two different closed paths achia
and adbea as shown in Fig. 4.6, we obtain two different results for § E « {1

a

Fig. 4.6. Two different clos¢d
) paths acbea and adbea.

since the paths enclose different areas. However, path bea is common to both
the closed paths, and the contributions from the path bea to § E . dl and

acbea

to j; E « dl are the same. It then follows that f E . dlis not equal to
adbea ach
_[ E . dl. Thus the work done per unit charge in carrying a test charge from
adb

a to b in an electromagnetic field, that is, be « dl in an electromagnetic
field, is not uniquely defined. It depends upon the path followed from aI

b
b in evaluating f E . dl. The quantity be « dl is known as the voltage

to

between the points a and b in the case of time-varying fields. The word
“voltage” is interchangeable with “potential difference” for the case of staLfic
electric field only. For time-varying fields, the electric field cannot be expressed
exclusively in terms of a time-varying electric scalar potential as we will learn
in the following section. Hence, the two words are not interchangeable\in
the time-varying case. |
Now, let us consider two different surfaces S, and S, bounded by a
contour C with the normals defining the surfaces directed out of the volurpe
bounded by S; + S, as shown in Fig. 4.7. Then, applying Faraday’s law lto
C, we have '

|
d d A
E-dl=——f B-dS=.—f B.dS 4-26)
§C dt ), dt ) s, (
It follows from (4-26) that

d
%-<J‘S|B.ds+J‘S2B.dS)=0
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Fig. 4.7. Two surfaces S; and S, bounded by a
contour C.

or
51}; B . dS = constant with time 4-27)
S1+S2

The constant on the right side of (4-27) must, however, be equal to zero
since a nonzero value for any surface requires the existence forever of isolated
magnetic charge within the volume bounded by that surface. There is no
experimental evidence of the existence of such magnetic charge. Thus, it
follows from Faraday’s law in integral form that

5}3 B.dS=0 (3-111)
Ny

where S is any closed surface.

Faraday’s Law in Differential Form (Maxwell’s First Curl

Equation for the Electromagnetic Field)

In the previous section we introduced Faraday’s law in integral form, given
by

§E.d1=_if13.ds (4-16)
c dt S

where S is any surface bounded by the contour C. According to Stokes’
theorem, we have

§CE.d1=L(VxE).ds

where S is any surface bounded by the contour C. In particular, choosing
the same surface as for the integral on the right side of (4-16), we obtain

fS(VxE)-dS=—%fsB.dS (4-28)

If the surface S is stationary, that is, independent of time, then

d _ [ JB
desB'dS_fSW.ds (4-29)
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and ;
f (VXE).dS= f _9B s (430
S S 0
Comparing the integrands on the two sides of (4-30), we have )
_ _9B .
VX E= 3 (4 3]'

This is the differential form of Faraday’s law and Maxwell’s first curl equé
tion for the electromagnetic field.

If, in addition to the variation of the magnetic field with time, th
surface S is also changing with time due to a displacement of the cor

tour as shown in Fig. 4.8, then we evaluate %IB « dS by considering tw’

times ¢, and ¢,, where t, = ¢, + At. If S, and S, are the surfaces boundel

Fig. 4.8. Displacement of contot
\ C, with time and the associatd
dS3y = dl) X v|At ‘ surfaces.

by C, and C, at ¢, and ¢,, respectively, we have, from the definition of diffe-
entiation,

4 peas| =vmi Lo ([ meas) [ peas]}

= lex(f . dS, — f B, . dSl) (4-3)
Ar=0 S1

where B, and B, are B(z,) and B(¢,), respectively. Applying the divergen®
theorem at time ¢, to the volume ¥ bounded by the two surfaces S; and .
and the surface S, formed by the movement of the contour C, we ha?

JIVV ’ Bz dv = §s.+s,+s, B,z $dS

—=—[ B,+dS.+ [ B,-ds,+ [ B,.ds,
S Sa Ss

43
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where the minus sign associated with the first of the three integrals on the
right side of (4-33) is due to the direction of dS, pointing into the volume V.
Also, in the third integral, we choose the direction of dS, as pointing out of
the volume V.

Since V « B= 0, we have, from (4-33),

B, - dS, — J B,-dS, = — | B,-dS, (4-34)
Sa S S3

If the velocity with which an element dl, in the contour C, is displaced is
v,, the infinitesimal area dS, swept by the element in the time Az is dl; x v, At
as shown in Fig. 4.8. Hence

[ B,edas,=¢ B,.dl xv Al (4-35)
S3 Cy
Substituting (4-35) into (4-34), we have

B,-dS,— [ B,+dS,=—§ B,-dlxv, At (436)

1 C
Now, expanding B(?) in a Taylor’s series at time ¢,, we have
JdB 2 4 i

B, =B, + || ar+ 352 ] @+ 4-37)

and
— JB
B, . dS, = B, «dS, + At | [_ «dS, + .-+ (4-38)
S St S1 (9t 3]

§ Bz-dllxlet=At§ B, .dl xv,
C C1

JB
4 (At 2§ — | «dl x + ...
( ) cl|:6t:|n ! VI

Substituting (4-38) and (4-39) into (4-36) and rearranging, we get

f Bz.dsz—f Blcdsl=Atf [%lt_*] -dSl—Atff B, . dl, x v,
Se S S1 n C,

+ higher-order terms in A¢ (4-40)
Substituting (4-40) into (4-32), we obtain

d _ B o .
\:‘_l? J;B ) ds]n kgloK‘ {AIJ‘ ,[_OT]n dSl At §C,B1 dll X v,

+ higher-order terms in At}

= B, -dl xv
f 0z " §Cl 1 1 1

[ B

- Ll [Wl .ds, — ffc, [v x B], « dl,

(4-39)

(4-41)
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Since Eq. (4-41) must be true for any time #,, we have, in general,

d -
4fpas—|

where C is the contour and S is the surface bounded by C at any arbitary
time ¢

To an observer moving with a point on the contour, the contour appars
to be stationary and the observer will attribute the force experienced ly a
test charge at that point as due to an electric field alone. Denotingthis

electric field as E’ and applying Faraday’s law for the contour C and uing
(4-42), we have

§E’-dl=—if B . dS
C dt Ry

‘;?.ds_§vx1;.dl (#2)

Cc

(¢43)
_ JB
= — O ds+§cva dl
But, according to Stokes’ theorem, we have
§ Evdl=| VxE .48 (4-¥4a)
o} S
and
ffva-dl:J‘Vx(va)-dS (4-14b)
(o) C

Substituting (4-44a) and (4-44b) into (4-43), we get

foE’-dS=—f 0B-dS+f Vx(vxB).dS (445
S Sdt S

or
VxE=-98 vy B 4-46)
=—3; TVx(xB) (
Equation (4-46) is Faraday’s law in differential form, where E’ is the electric
field as measured by an observer moving with a velocity v, relative tc the
magnetic field B.

On the other hand, a stationary observer views the force experienced
by the test charge moving with the point on the contour as being composed
of two parts, electric-type and magnetic-type, that is, one due to an electric
field acting on the charge and the other due to a magnetic field acting on
the charge. Since the magnetic force acting on the test charge is gv x B, the
observer will attribute a force of F — gv x B only to the electric field where
Fis the total force acting on the charge. The total force acting on the charge
must of course be the same whether viewed by an observer moving with the
contour or by a stationary observer. Hence it is equal to gE’. Thus the force
attributed to the electric field by the stationary observer is gE’ — gv X [B =
q(E' — v x B) or the electric field as viewed by the stationary observPr is
given by i
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E=E —vxB 4-47)
Rearranging (4-46), we have
Vx(E —vxB)=—98 (4-48)
which, with the aid of (4-47), becomes
— _JB .
VxE= -7 4-31)

which is the same as the result obtained in the case of the stationary contour.
Thus Eq. (4-31) holds, in general, where E is the induced electric field
as viewed by an observer stationary relative to the time-varying magnetic
field B.

E::ampLE 4-5. For the test charge of Example 4-2, find the electric field as viewed
by an observer moving with the test charge.
From Example 4-2, the electric and magnetic fields as viewed by a sta-
tionary observer are

E=Ej, and B = B,
The velocity of motion of the test charge is given by
v=o,i, + vi,
_(E, E, ) (E0 ; )
=30 — Z0cosw,t )i, + (32 sin wz? )i
&z g s o)
where we have substituted for v, and v, from (4-8) and (4-9), respectively.

Rearranging (4-47), we note that the electric field E’ as viewed by an
observer moving with a velocity v relative to the magnetic field is given by
E=E+vxB (4-50)
We can also obtain this result directly by noting that, for an observer moving
with the test charge, the test charge appears to be stationary and hence the
observer will attribute the force experienced by it to an electric field alone.
Since the force experienced by the test charge is F = g(E + v x B), the
observer views an electric field of F/g = E + v x B. Substituting for E, v,
and B in (4-50), we obtain
/ . E, E . E, . . .
E' = Eii, + [(Ti — Eﬁ cos coct)lx + (E? sin coct>1y] X Bl

= E;sinwti, + E,cosw,t i,

(4-49)

(4-51)

Thus the electric field as viewed by an observer moving with the test charge

| is (E, sinw,ti, + E,cos .ti,). [

ExaMPLE 4-6. In Example 4-3, we obtained the circulation of the induced electric
\ field around a rectangular loop moving in a time varying magnetic field by
the direct application of Faraday’s law in integral form given by (4-16).

It is here desired to verify the result of Example 4-3 by using (4-43).
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l
With reference to: the notation of Fig. 4.4, the first integral on the ri}ht
side of (4-43) is given by |
B . is— [ Bo sine.ri {1 sindi)ds
— T 9S= 0@ Sinw,ti, « (cosPi, 4 sindi,)
plane surface S o (4""2)

bounded by C
= BAw, cos (§, + w,¢) sin w,¢

To evaluate the second integral on the right side of (4-43), we note that,
along side ef, |

vxB= (—J;i)a)z[i¢]ef X B, cos w,t i,

__(f9

= =5 w,B,cosw,tsingi,

so that

jfvx B . dl = )8 ,B, cos w2 sin ¢

Bader o o

= ~5—2cos ¢ sin ¢ i
Along side fz, v x B « dl = 0 so that

j?xB.m=0 (4-53b)
Along side gh,
| vxB= (J;g)coz[i¢]gh X B, cos w,t1,

= (ng—)cozB0 cos @, tsin@i,

so that

h
f va-dl:ngé@szacosw,tsin¢ ;
¢ B4 (4-53¢)
= —07% cos w,? sin ¢ }

Along side /e, v X B « dl = 0 so that
[vxB.a1=0 (4-53d)
h
From (4-53a)-(4-53d), we have

§Cva.d1=§§“va-d1
oFahe

= ByAw, cos w,?sin ¢

(4-54)
= ByAw, cos w,t sin (¢, + o) ‘
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Thus, from (4-52) and (4-54), we obtain
§ E' «dl= ByAw, cos (¢, + @,?) sin w,?
o}
+ ByAw, cos ot sin (¢, + ,1)
which agrees with (4-19). |
Ex\MPLE 4-7. In Example 4-4 we obtained the expression for the induced electric
field due to a time-varying magnetic field possessing cylindrical symmetry
about the z axis, by using Faraday’s law in integral form. It is desired to verify

the result by using Faraday’s law in differential form given by (4-31).
From Example 4-4, we have the induced electric field given by

—B‘gwcoswti¢ forr<a
E= (4-25)
B,a*w
—02—coscoti¢ forr>a
Hence
L T 7S
ro % r
VxE=|¢ i i = —%[%("Eos)il
dr ¢ 0z (4-55)
0 rE;, O
_ {—Bow cos wt i, forr<a
0 forr >a

From Faraday’s law in differential form, we then have

JB {Bow coswt i, forr<a (4-56)

=-VxE=
ot forr>a
Equation (4-56) is consistent with
B— B, sin wt i, forr<a
0 forr>a

which is the magnetic field specified in Example 4-4. |}

Returning to Eq. (4-31) and taking the divergence of both sides, we have

_ B_  d.g. )

But, since V-V x E = 0, it follows from (4-57) that
dv.-B)=0 (4-58)

or
V « B = constant with time (4-59)
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The constant on the right side of (4-59) must, however, be equal to zero si ce
a nonzero value at any point in space requires the existence forever of isolaed
magnetic charge at that point. There is no experimental evidence of he
existence of such magnetic charge. Thus, we note that Maxwell’s equation

for the divergence of the time-varying magnetic field given by ‘i‘

V.B=0 (4+50)
follows from the Maxwell’s equation for the curl of E given by (4-31). \As
a consequence of (4-60), we have

B=VxA “- 31)
where A is a time-varying vector potential. Substituting (4-61) into (4-‘\1)
we get
__Jd o JA
VX E= B?(VXA)_ an?
or

() o o

Thus (E + dA/or) can be expressed as the gradient of a time-varying sc: lar
potential. In particular, we can write

JA
E + = \44 (4-63)
I
where V is the time-varying scalar potential so that Eq. (4-63) reduces; to
E = —VV for the static case. Rearranging (4-63), we obtain
JA i
E=—-VV S (4-}-64)

We will have an opportunity to study the time-varying scalar and vector
potentials in Section 6.16.

The Dilemma of Ampere’s Circuital Law and the Displacement
Current Concept; Modified Ampere’s Circuital Law
in Integral Form

In Section 3.6 we introduced Ampere’s circuital law in integral form, given by
§ B « dl = p,(current enclosed by C) (3-57)
C

In that connection we discussed the uniqueness of a closed path enclosing
a current by considering the case of a straight filamentary wire of finite
length along which charge flows from one end to the other end (Fig. 3.16)
and the case of an infinitely long filamentary wire. We found that the current
enclosed by a closed path C is not uniquely defined in the case of the finitely
long wire, whereas it is uniquely defined for the case of the infinitely long
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wire. On the other hand, the magnetic field due to a current-carrying wire
is uniquely given at every point through the Biot-Savart law and hence

j; B . dl for a given closed path C has a unique value. Thus it seems to
o}

be meaningless to apply Ampere’s circuital law as given by (3-57) for the
case of the finitely long wire. What then is the fallacy of the situation? Is
there any modification required for (3-57) so that the dilemma is resolved ?
To answer these questions, let us consider a semiinfinitely long, straight
filamentary wire occupying the upper half of the z axis. Let there be a point
source of charge Q C at the origin and let the current flowing along the
wire to infinity be 7 amp as shown in Fig. 4.9 so that the charge Q is decreas-

)
I to Infinity
3

X

Fig. 4.9. For introducing the displacement cur-
rent concept and deriving the modification to
Ampere’s circuital law.

ing at the rate of I C/sec. Let us consider a circular contour C of radius r
in the plane normal to the wire and centered at a point on the wire a distance
z from the origin, as shown in Fig. 4.9. The current enclosed by C is not
uniquely defined since the current penetrating the plane surface S, bounded
by the contour is 7, whereas the current penetrating a bowl-shaped surface

S, as shown in Fig. 4.9 is zero. On the other hand, j; B - dl is unique since
c

B along C is given by the application of the Biot-Savart law to the semi-
infinitely long wire. According to the Biot-Savart law, the magnetic flux
density at a point (r, @, z) on the contour C due to an infinitesimal segment
dz' of the wire at distance z’ from the origin is given by
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i
U dr dZ’ . ¥
B = Gz = 77 F e (4-6)
The magnetic flux density at (r, ¢, z) due to the entire semiinfinitely lcag
wire is given by

I

B= f= N ’55+r]3 TP |
il (4-16)

|

( ,\/zz + 2 ) {!

From (4-66), we have ‘

27 I

. = ﬂ_I —‘—_L—‘_— i L] i

§CB “ L ! +Jz2+r2>'¢ rdpiy i

— ﬂ01<1 + ) :

,\/zz + r2

If we apply Ampere’s circuital law (3-57) to the contour C in conjunct on
with the surface S, without regard to the uniqueness of the current enclos >d
we obtain

3@ B.dl = u,l (4-68)

Comparing (4-67) and (4-68), we note that the discrepancy between the r1ght
sides is by the amount

(s )il en) o

We have to resolve this discrepancy by some means. The only recourse seems
to be the point charge at the origin whose value is decreasing at the rate of
IC/sec. We have not as yet considered the electric field due to the point
charge Q. As Q varies with time, the electric field flux due to it also varies
with time. Let us consider the electric field flux through the surface S,. Since
the electric field intensity due to a point charge is spherically symmetric about
the point charge, the electric field flux through any surface is equal to the
solid angle subtended at the point charge by that surface times the point
charge value divided by 4ze,,.

To find the solid angle subtended by S, at Q, let us consider an infini-
tesimal area dS, = r, dr, d¢, at the point (r, ¢,,z) on S,. The projection
of this area onto the plane normal to the line drawn from the origin to
(1, @4, 2) is (r,z/a/FF T 27) dr, dd,. The projection of dS, onto the surface of
a sphere of radius unity and centered at the origin or the infinitesimal solid
angle subtended at the origin by dS, is given by

dQ, = dr, do,

(r 22)3/2
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The solid angle subtended at the origin by the entire area S, is then given
by

Q, _f aQ, = f Ll N 2)3 Lo dr, A, -27:( ?ZTF‘)
(4-70)

Since the normal to the surface S, drawn towards the direction of
advance of a right-hand screw as it is turned in the sense of C is directed
away from the point charge, the electric field flux passing through the surface
S, towards the side of that normal is given by

E.ds, =2 Q(l__Z_) 471
fs. a8, 4me, Q 260 22+ r? ( )
This electric field flux is changing with time. The rate at which it is changing
with time is given by

E%LIE' =gl ‘Wﬂ

4-72)
_ (1 d0
260 f + r? dt
But, since the charge Q is decreasing at the rate of I C/sec, we have
do _ )
5= —1I 4-73)

Substituting (4-73) into (4-72), we obtain

d _ 1 z _ -

] Erasi= (i ) (*74)
The right side of (4-74) is exactly the same as the right side of (4-69) divided
by p,€,. Suppose we now modify (3-57) to read

§ B.dl = yo(current due to charges flowing through a

c 4-75)

surface S bounded by C + %f €E - dS)
N

and apply it to the surface S,, we obtain

§Bea= w1+ (i 1) =40+ i)

which agrees with (4-67), deduced by using the Biot-Savart law. Thus our
dilemma seems to be resolved!

Before we discuss the meaning of %I €,E « dS, let us apply (4-75)
S
to the bowl-shaped surface .S, bounded by C to see if it gives the correct
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\
result forff B . dl. To do this, we note that the solid angle subtended Py

c
S, at @ is simply 4x minus the solid angle subtended by S, at Q. Thus Fe
required solid angle Q, is given by

Q,=0Ulr—Q) 4-16)
where Q, is given by (4-70). Substituting (4-70) into (4-76), we obtain
Q, = 2(1 t o —) @7

Now, noting that a right-hand screw advances into the bowl as it is turged
in the sense of C from below the bowl whereas the electric field due to (is
directed away from @, the electric field flux passing through the surfacels,
into the bowl is given by ‘

. - Q = — 2( —_— Z_.. . ..‘7
LQE as, = 47e, Q. 2¢, 1+ A/zz—J;,‘z) “ " 8)
The rate at which this flux is changing with time is given by :
d J‘ z |
2 2
“ls ol 77 (4-79)

260(1 N/zzz—k r? )

Substituting this result into (4-75) applied to S,, we obtain [

§ B.dl=y, (current due to charges flowing through S,
c

—}—dtf €,E « dS)

= "°[° +z(1+ mﬂ

(1 T ,\/ 72 —i— r? ) v
which agrees with (4-67), deduced by using the Biot-Savart law. Thus [the
modified law (4-75) gives the correct result for ff;c B « dl irrespective of the
surface bounded by C chosen to apply it. _

We note that the quantity ‘%L €,E « dS has the units of current.
This can be easily seen if we recognize from Gauss’ law that [ E « dS has
the units of Q/e, and hence —'[ €,E » dS has the units of dQ/dt| or

current. Equation (4-75) therefore suggests that there are two kinds| of
current penetrating a surface S bounded by C. The first kind is due to [the
actual flow of charges across the surface S. The second kind is duel to
the flux of €,E penetrating S changing with time; Maxwell attributed to itithe
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name “displacement current.” Physically, the displacement current is not
a current in the sense that there is no flow of a physical quantity, like charge,
across the surface. Although the term “time rate of change of the flux of
€,E” is more apt, we shall follow Maxwell’s terminology and use the term
“displacement current.” The reason behind this terminology will become
evident in Chapter 5.

To summarize the discussion thus far in this section, we have found that
the dilemma of Ampere’s circuital law given by (3-57) is resolved by modifying
it to read

§ B dl = uoflLls + 115} (4-80)

where [1,] is the current due to the actual flow of charges across the surface
S bounded by C in the direction of advance of a right-hand screw as it is

turned in the sense of C, and [I]; = %J. €,E « dS is the displacement
N

current penetrating the surface S in the same direction. We shall refer to
Eq. (4-80) as the modified Ampere’s circuital law in integral form. While
Faraday’s law was a consequence of experimental observations by Faraday,
the modified Ampere’s circuital law was a result of theoretical investigations
by Maxwell.

Although we have here derived the modified Ampere’s circuital law by
considering a particular case, Maxwell provided a general proof based on
Gauss’ law and the law of conservation of charge. Since charge is conserved,
the current due to flow of charge out of a closed surface .S bounding a volume
V must be equal to the time rate of decrease of the charge enclosed by the
surface. This is the law of conservation of charge. If the current flowing out
of the surface is [I ] and the charge enclosed by S is Q, we then have

s = —%2 (4-81)
But, from Gauss’ law, we have ’
i{; E.ds=2
s €o
or
0= § €,E - dS (4-82)
S
Substituting (4-82) into (4-81) and rearranging, we obtain
[7]s + §§ €E-dS=0 (4-83)
¢ S
or
[L)s + [Lls =0 (4-84)

Thus the law of conservation of charge states that the sum of the current
due to the flow of charges and the displacement current across any closed
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surface must be equal to zero. We will now show that (4-80) is consistent bit
(3-57) is not consistent with (4-84). To do this, let us consider a closed pata
Cin an electromagnetic field. Let S, and S, be two different surfaces boundel
by C with their normals defined as shown in Fig. 4.7. The normal to S, s
directed towards the side of advance of a right-hand screw as it is turned in

the sense of C. Hence, from (4-80), we have f“

§ B dl = pftis, + Uds) (-8

The normal to S, is directed opposite to the side of advance of a righ;‘-
hand screw as it is turned in the sense of C. Hence, from (4-80), we have

§ Bedl= —pflLls, + [L]s) “8)

Now, since _(f B « dl is unique, the right sides of (4-85) and (4-86) are equg
(o}
giving us

—

-

[Ic]Sx+Sz + [Id]SH—Sz =0 (4'8{7)

which is consistent with (4-84), since (S, + S,) is a closed surface. On the
other hand, if we use (3-57) we obtain, for the surface S|,

§ Bedl=pl1l, (4-8‘“8)
and for the surface S,, ,
§ Bedl=—plLl, (4-89)
From (4-88) and (4-89), we have
: Ulsi+s. =0 (4-90)

which is inconsistent with (4-84) unless [I,];,.s, is equal to zero, which is
true only in the static case. It is this inconsistency that prompted Maxwell
to modify Ampere’s circuital law by adding the displacement current terh.
A consequence of the displacement current term in the modified Ampen{:’s
circuital law is that the current enclosed by a closed path C in an electro-

magnetic field is generally not equal to (1/x,) § B . dl, unlike in the sta:tic
C
magnetic field case.

ExAMPLE 4-8. The arrangement shown in Fig. 4.10 is that of a V-shaped filamenteiry
wire situated in the yz plane symmetrically about the z axis and with its verftex
at the origin. Current flows along one leg from infinity to the origin at tthe
rate of 7; C/sec and leaves along another leg from the origin to infinity. at
the rate of I, C/sec. It is desired to find the values of § B « dl around two
circular contours C, and C, of radii 1 m and centered at the origin, wh(;re
(a) C, is in the xy plane and (b) C, is in the xz plane.
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Fig. 4.10. For evaluating 5{§B.d1,

around paths C; and C,, due to a
V-shaped filamentary wire with
unequal currents in the two legs. x

Since the current entering the origin is I, C/sec whereas the current
leaving the origin is I, C/sec, there is a charge accumulation at the origin
at the rate of (I, — I,) C/sec.

(a) To evaluate B . dl, let us choose the bowl-shaped surface S,
C

bounded by C,. [1.]s, is equal to zero since neither leg of the wire penetrates
the surface. On the other hand, since half of the electric field flux emanating
from.the point charge penetrates the surfaces S, towards the side of advance
of a right-hand screw as it is turned in the sense of C,, [I,]s, is equal to
4 (I, — I,) C/sec. Thus, according to (4-80),

§ B.dl= %@(11 — 1)
Ci

(b) To evaluate B « dl, let us choose the bowl-shaped surface S,
C:

bounded by C,. [I.]s, is equal to I, since that leg of the wire penetrates the
surface with the current flowing towards the side of advance of a right-hand
screw as it is turned in the sense of C,. On the other hand, the electric field
flux of the point charge penetrates S, in the opposite sense, and since half
of the flux emanating from the point charge penetrates S,, [1]s, is equal to
—3(I, — I,) C/sec. Thus, according to (4-80),

§ B.dl= .uo|:11 - ‘%‘(11 - Iz)] = %9(11 + 1)
C2

Note thatif I, =I,=1,¢ Bedl=0and § B.dl= g, ||
Cy C:
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Modified Ampere’s Circuital Law in Differential Form ‘
(Maxwell’'s Second Curl Equation for the .Electromagnetic Field)
and the Continuity Equation

In the previous section we introduced the modified Ampere’s circuital lav
in integral form, given by

ﬂ B dl= ulL]s + [Lls} (4-80)

where S is any surface bounded by C, [/ ] is the current due to chargs
flowing across S, and [I;]; is the displacement current through S. For a
volume current of density J, we have

[L]s = f J.dS 49)
s
Substituting for [/ ]s and [Z,]; in (4-80), we get
§ B-dl—_—yo(J J.ds+ﬁ.f eoE-dS) (4-9)
c s dt Ky ‘

According to Stokes’ theorem, we have \
§B.d1=f(VxB)-ds f
c )

where S is any surface bounded by the contour C. In particular, choosing
the same surface as for the integrals on the right side of (4-92), we obtain

L(VXB)'dS=,u0(LJ-dS+ g"t—LeoE.ds) (4-93)

|
If the surface S is stationary, that is, independent of time, 3

d . = 0 . - ;‘\
5 SeoE ds = f T (€,E) « dS 4 914)
and (4-93) becomes |
f (VxB)«dS= J Ho |:J + %(EOE):] . dS (4-995)
N N
Comparing the integrands on both sides of (4-95), we have
VxB= I+ Sen] (4-96)

Equation (4-96) is the differential form of the modified Ampere’s circuittal
law and it is Maxwell’s second curl equation for the electromagnetic fielld.
While we have here derived (4-96) for a stationary S, it can be shown that: it
holds also for a time-varying surface S due to a moving C, where E, B, andl J
are the fields and the current density as viewed by a stationary observizr.
Following the terminology “displacement current” for the timerate of chan ge
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of the flux of €,E, the time rate of change of ¢€,E, that is Fat (e,E) is known
as the “displacement current density.”

iXAMPLE 4-9. In the previous section we deduced the magnetic field [Eq. (4-66)]

due to a semiinfinitely long filamentary wire along which current flows to
infinity from a source of point charge at the origin (Fig. 4.7). It is here desired
to verify the result by using (4-96).

From the previous section, the magnetic field due to the wire is given
at a point (r, ¢, z) by

Hence .
VxB= 17’[— —a-(rB¢)] + —l—’-[-g-(’ B¢)]
ol

— il 21+ ) g (1 )]
W(n T zi) (4-97)

Substituting I/ = —dQ/dt in (4-97), we note that

d
V x B = p6, dt[#jt Syt + i )]

JE
= ﬂofoI
thereby satisfying (4-96) since J is zero at (r, ¢, 2). |

(4-98)

Returning to Eq. (4-96) and taking the divergence of both sides, we have

V-VxB=V-,u0[J—|—%(60E):]

P (4-99)
- uo[v R E):]
Since V + V x B = 0, (4-99) gives us
. VeJ4 %(eov “E)=0 (4-100)
But, according to the law of conservation of charge,
[rls = —42 (“-81)

where [I ] is the current due to the flow of charges out of a closed surface
S and Q is the charge enclosed by S. In terms of current density J and
charge density p, [/,]s and Q are given by :
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[L)s=¢$ 3.ds (4-101
S
and
0 =j pdv (4-102)

where V is the volume bounded by S. Substituting (4-101) and (4-102) 1nt\
(4-81), we obtain

§J dS——— po (4-103‘)

Applying the divergence theorem to the left side of (4-103) and interchanginy
the differentiation and integration operations on the right side, we get

f VeJdv— — f "/’dv (4-100)
or |
f (ve3+%)w=0 (4-10%)
v
Since (4-105) must be valid for any volume, it follows that
V.eJ+ f;ﬁ (4-106)

Equation (4-106) is the law of conservation of charge in differential form.
It is also known as the continuity equation. For static fields, dp/d¢t = 0 and
(4-106) reduces to V « J = 0, which agrees with (3-113). Comparing (4-100)
with (4-106), we have

d _dp !
E(GOV «E)= A ‘

or

|
;,"—,(fov E—p=0 (4-107)

or ‘i

(6,N + E — p) = constant with time (4-108)

i
The constant on the right side of (4-108) must, however, be equal to zero
since a nonzero value at any point in space requires the existence forever ‘of
a source of nonsolenoidal electric field flux other than electric charge at that
point. Thus we note that Maxwell’s equation for the divergence of the time-

varying electric field given by |

V-E=2 (4-109)
6-CO

follows from the Maxwell’s equation for the curl of B given by (4-96) with the
aid of the continuity equation (4-106).
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Energy Storage in an Electric Field

In Section 2.8 we introduced the concept of potential difference between two
points in an electric field as equal to the work done per unit charge in moving
a test charge from one point to the other. In Section 2.9 we extended this
to the concept of potential, which is simply the potential difference between
two points, one of which is a reference point having zero potential. If we
transfer a test charge from a point of higher potential to a point of lower
potential, the field does the work and hence there is loss in potential energy
of the system, which is supplied to the test charge. Where in the system does
this energy come from? Alternatively, if we transfer the test charge from a
point of lower potential to a point of higher potential, an external agent
moving the charge has to do work, thus increasing the potential energy of
the system. Where in the system does this energy expended by the external
agent reside? Wherever in the system the energy may reside, a convenient
way is to think of the energy as being stored in the electric field. In the first
case, part of the stored energy in the field is expended in moving the test
charge, whereas in the second case the energy expended by the external agent
increases the stored energy.

Let us then consider a system of two point charges Q, and @, situated
an infinite distance apart so that no forces are exerted on either charge and
hence the charges are in equilibrium. According to the definition of potential
difference, an amount of work equal to Q, times the potential of Q, at Q,
must be expended by an external agent to bring Q, close to Q, as shown in
Fig. 4.11(a). Thus the potential energy of the system is increased by the
amount

W, = 0,V (4-110)

where V} is the potential of Q, at the location of Q,. If we start with a system
of three charges Q,, Q,, Q, situated an infinite distance apart from each
other, then the amount of work required to bring Q, and Q, close to Q,
can be determined in two steps. First we bring @, close to Q,, for which the
work required is given by (4-110). Then we bring Q, close to Q, as shown
in Fig. 4.11(b). But, this time, we have to overcome not only the force exerted
on Q, by Q, but also the force exerted by Q,. Hence the required work is
given by

Wy=0,Vi+ Q,V3 (4-111)

Thus the total work required to bring @, and Q, close to Q, is
W,=W,+W,=0Q,Vi+(Q;Vi+ OV (4-112)
The potential energy of the system is increased by the amount given by

(4-112).
We can proceed in this manner and consider a system of n point charges
0., 0,,Qs, ..., Q, initially located infinitely far apart from each other.
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0> from o0 02 from o
AoV ‘ ' '8y
o1 0 Ry
o ___]
(a) , (b) 0; from T.
‘Fig. 4.11. Bfinging point charges closer from inﬁhity. |

The total work required in bringing the charges close to each other is give ' by
W.=W,+W;+---+W, : li
= QVi+ (Q:Vi+ Q. VD +(QVi+ QVi4 OV + - L

n_ -1 i‘

=2 2OV . (4-113)
i=2 j=1 . |

- where V] is the potential of Q; at the location of Q,. However, we note that
] — Q} —0. Qi — i <1

g Q‘47t60R,-, =0, 4ne,R,; o] (4-114)

“Hence (4-113) may be written as
W.= Q. Vi+ (Q1V:1q + 0, D+ @V + 0,Vi+ V) + .-

= i iil‘. o,V (4-115)

i=2 j=1
Adding (4-113) and (4-115), we have i
W= QWi+ Vi+ Vit ) |
+ Qi+ P+ Vit o)
+ Qi+ Vi + Vi+ o)
R '
= Q,(potential at Q, due to all other charges)
+ Q,(potential at O, due to all other charges)
+ Q,(potential at Q, due to all other charges)
+ ...
=Q1V1+Q2V2+Q3V3+“‘ |

=S o, @“]16)

where V, is the potential at Q; due to all other charges. Dividing both sides
of (4-116) by 2, we have

W.=5 30V, @17)

i=1
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Thus the potential energy stored in the system of # point charges is given by
(4-117).

AMPLE 4-10. Three point charges of values 1, 2, and 3 C are situated at the corners

of an equilateral triangle of sides 1 m. It is desired to find the work required
to move these charges to the corners of an equilateral triangle of shorter
sides 4 m as shown in Fig. 4.12.

Fig. 4.12. Bringing three point
charges from the corners of a
larger equilateral triangle to the
corners of a smaller equilateral
triangle. 2C "3 C

The potential energy stored in the system of three charges at the corners
of the larger equilateral triangle is given by

7800 = 3 g+ 725) + ey + 7)Y + 7))
+8+9 11
2[ 4re, 4nfon

The potential energy stored in the system of three charges at the corners of
the smaller equilateral triangle is equal to twice the above value since all
distances are halved. The increase in potential energy of the system in going
from the larger to the smaller equilateral triangle is equal to 11/4me, N-m
Obviously, this increase in energy must be supplied by an external agent and
hence the work required to move the charges to the corners of the equilateral
triangle of sides 4 m from the corners of the equilateral triangle of sides 1 m
is equal to 11/4me, N-m. ||

If we have a continuous distribution of charge with density p(r, 8, ¢)
instead of an assembly of discrete charges, we can treat it as a continuous
collection of infinitesimal charges of value p(r, 6, §) Av, each of which can
be considered as a point charge, and obtain the potential energy of the
system as

W, =5 lim 5[5, 6, 9) Aol V (7,6, 9)

=—é— j pV dv

volume
containing p

(4-1182)
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l
Similarly, for a surface charge distribution of density p, on a surface S,‘We
have

W=+ f 2V dS (4-113b)
S

Thus far, we have found the potential energy of the charge distributon
by considering the work done in assembling the system. We stated at the
beginning of this section that the potential energy can be thought ofl as
being stored in the electric field set up by the system of charges. If so,|we
should be able to express the energy in terms of the electric field. To do tjis,
we substitute for p in (4-118a) from (2-82) and obtain

W, = f €V -EVa @-119)

volume
containing p

Since V « E = 0 in the region not containing p, the value of the integraj on
the right side of (4-119) is not altered if we change the volume of integration
from the volume containing p to the entire space. Thus

w, =L f €V E)Vdv (4-120)

2

all space

We now use the vector identity
Vc VE= VV'E+E'VV

to replace ¥V« E on the right side of (4-120) by V+ VE — E . VI and
obtain

We=%eo f (V-VE—E-VV)dv
all space R (4-121)
—1e f V.VEdst 1€, f E-Edv

all space all space

where we have replaced V¥ by —E in accordance with (2-138). Using the
divergence theorem, we equate the first integral on the right side of (4-121)
to a surface integral thus: \

V.VEdo = VE - i,dS (44122)
J J

all space surface
bounding
all space

However, as viewed from a surface bounding all space, a charge distriburion
of finite volume appears as a point charge, say Q. Hence, as r — oo, we/can
write

o .
E= fne "

4me ,»

y—s 2 y
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n 2n Q Q
f VE.i"dS=1imf J i, r2sin0 df doi,
o J gog J goo 4TEr ATE QT

surface
bounding
all space

= I f lim = __ ~sin 0dodp =0 (4-123)
6=0J g=0 7" (4

Equation (4-123) holds also for a charge distribution of infinite extent,
provided the electric field due to the charge distribution falls off at least
as (1/r?i, and hence the potential falls off at least as 1/r. Thus (4-121)
reduces to

1 1
W, =56 f E.Edo= f (76052) o (4-124)

all space all space

Equation (4-124) indicates clearly that the idea of energy residing in the
electric field is a valid one provided we integrate J¢,E2 throughout the entire

space. The quantity 1e,E? is evidently the energy density in the electric
field.

ExamPLE4-11. A volume charge is distributed throughout a sphere of radius a

meters, and centered at the origin, with uniform density p, C/m?. We wish
to find the energy stored in the electric field of this charge distribution.

From Example 2-6, the electric field of the uniformly distributed
spherical charge, having its center at the origin, is given by

3
p°a2 i, forr > a
E— 3e,r
b forr<a
3¢,

Hence the energy density in the electric field is given by

Z,6
1’%“—4 forr> a
% €t
€E* = 2,2
Pal
18¢,

The energy stored in the electric field is

n
= f f por r*sin 0 dr dO d¢

T e

_ 4npia’®
EE 8

1
2

forr<a

r2 sin  dr df d
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Energy Storage in a Magnetic Field

In the previous section we derived an expression for the energy density in
an electric field by first finding the work required to be done by an exteraal
agent in assembling a system of point charges and then extending the res{ult
to a continuous distribution of charge. Just as work is required for gather“gng
point charges from infinity, it requires work to gather a set of current lom‘lps
from infinity. Just as we can interpret the energy expended by an exterjal
agent in assembling the charges as being stored in the electric field of i:he
charges, we can think of the energy expended by an external agent in assj"‘m-
bling the current loops as being stored in the magnetic field of the current
loops. Itis possible to derive an expression for the energy density in a magntic
field by starting with a set of current loops at infinity and proceeding in a
similar manner as in the previous section. To simplify the derivation, j‘we
will, however, consider directly the building up of a solenoidal volume currznt
distribution. j

Let us then consider a solenoidal volume current distribution of density
J in a volume ¥V where J increases linearly with time from zero to a value
J, in a time ¢,, that is, J = J,#/t,. The magnetic field B associated with the
current distribution also increases linearly with time, that is, B=B 4/t0
The time varying magnetic field induces an electric field in accordance with
Faraday’s law. The induced electric field exerts forces on charges constitut-
ing the current flow. The work done by these forces must be balanced by an
external agent to maintain the current density at J,¢/¢, and hence is stored
in the magnetic field as the potential energy associated with the current dis-
tribution.

To find this energy, let us divide the cross-sectional area S of the current
distribution into a number of infinitesimal areas AS,. Through each infinites-
imal area, a current loop C, can be defined by the direction line of the current
density vector J, = J, #ft, corresponding to that area as shown in Fig. 4-13.
The current I, flowing around the loop C, is equal to J, « AS,. The amount
of charge dQ, crossing AS, in time dt is equal to I, dt. Denoting the inddced
electric field at the point occupied by AS; to be E,, we obtain the force exerted
by this field on the charge dQ, to be dQ, E, = I, dt E,. The work done| by
this force as the charge d(Q, is displaced by the infinitesimal distance dl, along
J,is I, dt E, « dl.. Hence, the work required to be done against the 1nduced
electric field around the loop C; in time dt is

AW, =—§ LdE,«dl, = —I.dsz E, - dl, (4-i25)

Using Faraday’s law and substltutmg B =V x A and then using Stoi(e s
theorem, we have ‘
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Fig. 4.13. Division of a solenoidal
continuous distribution of current
into a number of solenoidal
current tubes having infinitesimal
cross-sectional areas.

E.d,=—94 | B.ds
C dt St
. ) . (4-126)
—EL‘(V X A)-dS=—G ¢ A-dl

where A is the magnetic vector potential associated with B and S; is any
surface bounded by C,. In view of the linear increase of B with time,
A also increases linearly with time. Thus, denoting A, = A,,¢/t,, we have

d t A
E~dl=——§ Ai—-dl=—§ 0, d] 4-127)
§c. ‘ ' dt Ct 0to ! [ol ¢y ! (

Substituting (4-127) into (4-125), we obtain

aw,, = 1, dt § Au . g (4-128)
Ct to

The total work required to ‘be done by an external agent from ¢ = 0 to
t and for the entire current distribution is then given by

W, _zf 1dz§ T2 d)

“%§. . Gt a8)(t )
=2%§C( ol AS)(—L:— ) (4-129)

=33 f @ as)a )

=S5 @ AXAS, - dl)
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since J, and dl, are parallel. Now, in the limit that all AS, — 0, the sum-
mation on the right side of (4-129) becomes an integral to give us the potent al
energy associated with the volume current distribution as

W, =~ f ff (J » A)(dS - d)) :

1 (4-13Ca)
= —2— f J . A dv
volume |

containing J

|
Similarly, for a surface current distribution of density J, on a surface S, ]gve '
have ’

W, — if 3.+ AdS (4-13Cb)
2 S

To express the energy in terms of the magnetic field, we substitute ig'or
J in (4-130a) from (3-76) [instead of from (4-96)], in view of the solenoidal
nature of J, and obtain !

1 f 1 .
W,=—= —VxBe«Adv 4-131
2 Hy ( | )
cor‘lltoali‘i\‘}“:g J

Since V x B = 0 in the region not containing J [using again (3-76) instead

of (4-96) for the same reason], the value of the integral on the right side of

(4-131) is not altered if we change the volume of integration from the volume

containing J to the entire space. Thus
' 1

- 1 .
W= 4 VX B Ad (4-132)

all space

We now use the vector identity
Ve(AxB)=B«:.VxA—A.VxB

to replace V x B « A on the right side of (4-132) by B: VXA —V . (A x B)
and obtain

W, =~ f [B-VxA—V.(AxB)dv
24, ;
1 all space 1 (4_133)
2p, 24k, f ( )
all space all space

where we have replaced V x A by B in accordance with (3-82). Using the
divergence theorem, we equate the second integral on the right side of (4-133)
to a surface integral thus:

f V.(AxB)dv= j (A x B)+i,dS (4-134)
all space surface
bounding

all space
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However, as viewed from a surface bounding all space, a solenoidal current
distribution of finite volume appears as a dipole moment, say m. Hence,
as r — oo, We can write

B——»”o (2cos 01, + sin 0 i)

Ko
A— Amr?

where the z axis is chosen to be along the direction of m. Thus

1
|A><B|~F

whereas
as ~ r?

so that the integral on the right side of (4-134) is zero. This is true also for
a current distribution of infinite extent, provided the magnetic flux density
due to the current distribution falls off at least as 1/r2? and hence the magnetic
vector potential falls off at least as 1/r. Equation (4-133) then reduces to

i B 1 B ]
W= f B.Bdv— f (Zﬂ)dv (4-135)

all space all space

Equation (4-135) indicates clearly that the idea of energy residing in the
magnetic field is a valid one provided we integrate }B%/u, throughout the
entire space. The quantity 4B?/u, is evidently the energy density in the mag-
netic field.

ExtampLE 4-12. Current I flows in the -z direction with uniform density on the

cylindrical surface * = a and returns in the —z direction with uniform density
on a second cylindrical surface ¥ = b so that the surface current distribution
is given by

Li r = Q
27a *

J, = 7
m] r:b

We wish to find the energy stored in the magnetic field per unit length of the
current distribution.

From application of Ampere’s circuital law in integral form, we obtain
the magnetic flux density due to the given current distribution as

0 r<a
B = /Z‘Tofi¢ a<r<b (4-136)
0 r>b
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Since B is zero for » > b, the integral on the right side of (4-134) is zero so
that we can use (4-135) for computing the energy. If we have a situation in
which current flows on one surface in one direction and does not return pn
another surface, then the magnetic field will not be zero at r = oo. In fast,
it falls off as 1/r and the magnetic vector potential varies as In r so that
|A x B| ~(1/r)Inr. But since dS ~ r, (4-134) does not reduce to zero.
In such a case, we have to include the second term on the right side of (4-133)
to compute W,,. However, in all physical situations, the current does return
in the opposite direction on another surface and hence the magnetic field is
zero at ¥ = oo, Now, returning to the solution of the example under considgr-
ation, we obtain, upon substitution of (4-136) into (4-135),

o b 2n 1 ﬂ I 2
W, = f f si=(80)'r dr dg d
J‘z=—m r=a ¢=02/‘t0 2nr rar ¢ g

- (Enl)e
see \ AT a

Thus the energy stored in the magnetic field per unit length of the curr¢nt
distribution is (u,/%/4x) In(b/a). | !
1

[

(4-137)

Power Flow in an Electromagnetic Field; The Poynting Vector

In Section 4.6 we showed that the potential energy associated with a charge
distribution can be thought of as residing in the electric field E set up iby
the charge distribution, with the energy density equal to $€,E2. Similarly, in
Section 4.7 we showed that the potential energy associated with a current
distribution can be thought of as residing in the magnetic field B set up jby
the current distribution, with the energy density equal to 1B2/u,. Let us nlow
consider a point charge Q moving with a velocity v in a region of electro-
magnetic field characterized by electric and magnetic fields E and B. Accojrd-
ing to the Lorentz force equation, the force experienced by the point chairge
is given by !
F= QOE +vxB) F

The work done by the force in displacing the charge by an infinitesirnal
distance dl is ‘

dW—TF.dl= O +v x B) + dl
— QE.dl+ Q%xB-dl (4-138)
— QE.+dl— QE .« vdt

This amount of work is done by the fields and the time rate at which iw‘t is
done or the power supplied by the fields for the motion of the chargé is

AV _ oo . o
S =0E.v (4-139)
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If we have a volume charge distribution of density p instead of a point
charge Q, we can divide the volume into a number of infinitesimal volumes
dv and consider the charge p dv in each infinitesimal volume as a point
charge. Substituting Q = p dv in (4-139), we then have the power supplied
by the field for the motion of the charge p dv as

”ii—VtV — pdvE v (4-140)
The power supplied by the field to the entire volume charge distribution is
given by the integral of (4-140) over the volume of the charge distribution.
Thus, if a volume charge of density p(r, 8, ¢) is moving with a velocity
v(r, 8, @) in the region ¥ of an electromagnetic field characterized by electric
and magnetic fields E(r, 8, ¢) and B(r, 6, ¢), respectively, thereby constituting
a current of density J(r, 8, ¢), the power expended by the electromagnetic
field is given by

Pd=jypdvE.v=fVE.Jdv (4-141)

where we have substituted J for pv in accordance with (3-10).
We now make use of the vector identity

V.ExB)=B.VXxE—E.VxB

and Maxwell’s curl equations

_ 0B
VxE= 3
_ JE
VxB=— ,uo(J—l— eow)
to obtain
JB
VeExB)=—B+ 00— pE- T e .%];5 (4-142)
Noting that
dJB_ od/(1
B-F=a(z%B)
and
JE_ 4d/1
E- % =375 E)
(4-142) can be written as
d( 1 d/1 _ B )
E-J+$(5-B-B)+ S(56E-E)=—V-(Ex ;70> (4-143)
Defining a vector P given by
P=Ex > (4-144)
Ho

and taking the volume integral on both sides of (4-143) over the volume V,
we obtain
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IE Jdv+f —~—B B v +f ——-EOE-E>dv

(4-145)

=—jV-Pdv ‘
| 4

Interchanging the differentiation operation with time and integration over
volume in the second and third terms on the left side of (4-145) and replacing
the volume integral on the right side of (4-145) by a closed surface integrpl
in accordance with the divergence theorem, we get

IE Jdv—|—gt <\B B)d +g- V(—-GOE E)d

(4-145)
- —§ P.dS

where S is the surface bounding the volume V. i
On the left side of (4-146), the second and third terms represent the time
rate of increase of energy stored in the magnetic and electric fields, respec-
tively, in the volume V. Thus the left side is the sum of the power expended
by the fields due to the motion of the charge and the time rate of increase
of stored energy in the fields. Obviously then, the right side of (4-146) must
represent the power flow into the volume ¥V across the surface S, or

the power flow out of volume V across the surface S = § P.dSsS
S

(4-147)
It then follows that the vector P has the meaning of power density
associated with the electromagnetic field at a point. The statement represented
by (4-146) is known as Poynting’s theorem after J. H. Poynting, who derived
it in 1884, and the vector P is known as the Poynting vector. We note that the
units of P =E x B/y, are J

newtons newton-seconds . newtons

coulomb ~ coulomb-meter = (ampere)?

__newton-amperes _ newtons

" coulomb-meter  second-meter
newton-meters 1 ___Wwatts |

B second (meter)? ~ (meter)?

and do indeed represent units of power density.

Caution must be exercised in the interpretation of the Poynting vecﬁ‘tor
P as representing the power density at a point, since we can add to P 'on
the right side of (4-146) any vector for which the surface integral over S
vanishes, without affecting the equation. On the other hand, the interpretation

of IV vV ePdv= §S P - dS as the power flow out of the volume ¥ bounded

by S should always give the correct answer. For example, let us consider a
region free of charges and currents in which static electric and magne:tic
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fields E and B exist. For such a situation, although E x B can be nonzero,
Ve(ExB =B«:(VXE)—E.(VxB)=0 since VxE=0 for a
static electric field and V x B = O for a static magnetic field in a current-
free region. The fact that V « (E x B) = 0 is consistent with the physical
situation, since there is no change with time in the energy stored in the
static electric and magnetic fields and hence there is no power flow associated
with the fields. Thus the interpretation of the Poynting vector as the power
density vector at a point in an electromagnetic field is strictly valid only in

the sense that § P .« dS gives the correct result for the power flow across
S

the closed surface S.

Exampr4-13. The electric field intensity E in the radiation field of an antenna

located at the origin of a spherical coordinate system is given by

E= M cos (et — Br) iy

where E;, o, and f(=w/ t€,) are constants. It is desired to find the magnetic
field B associated with this electric field and then find the power radiated
by the antenna by integrating the Poynting vector over a spherical surface
of radius r centered at the antenna.

From Maxwell’s equation for the curl of E, we have

B
5= VxE
ir ia i_¢
rZsin @ rsin 0 r
=| 0. d ad
or a0 i)
0 E,sinfcos(wt — fr) 0

[
~ |“Q
o]

, sin @ sin (wt — fr) i,
and

E, . .
B= %sm@cos(wt — Br)i,

The Poynting vector is then given by

P—Ex2
Ko
i i i,
1|0 £, sringcos(wt — Br) 0
= .
. - _
0 0 or Sin 0 cos (wt — fr)

__ PE?%sin26
=200 Y

2 . .
T cos?(wt — fr) i,
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The power radiated by the antenna

= ¢ P.as ‘

sphencal surface i
of radius r |

2n
_ f j BESSIN* 6 o2 (wor — Br)i, « 2 sin 6 dB dd i,
6=0

T urt
_2npE} cos2 (ot — Br) f" sin® 0 40
How 6=0
_ 8nBE} cos® (wt — pr) i
3p,0

The Phasor Concept and the Phasor Representation of ,
Sinusoidally Time-Varying Fields and Maxwell’'s Equations |
for Sinusoidally Time-Varying Fields

In developing the electromagnetic field equations, we have thus far consider¢d
the time variation of the fields and the associated source quantities to be
completely arbitrary. A very important special case of variation with time
of the field and source quantities is the sinusoidal steady-state variatiom.
Among the reasons for this importance are that, in practice, we do encounter
such fields and that any function whose time variation is arbitrary can be
expressed, in general, as an infinite sum of sinusoidal functions having a
discrete or continuous spectrum of frequencies, depending upon whethier
the function is periodic or not. We therefore devote special attention to
sinusoidally time-varying fields. In dealing with sinusoidally time-varying
quantities, the phasor approach is convenient, as the student may have already
learned in circuit analysis. However, we will here review the phasor concept
and illustrate why it is convenient before applying it to electromagnetic
fields.

A phasor is nothing but a complex number. It is represented graphically
by the line drawn from the origin to the point, in the complex plane, corre-
sponding to the complex number as shown in Fig. 4.14. The length of the
line is equal to the magnitude of the complex number and the angle that
the line makes with the positive real axis is the angle of the complex number.
Sinusoidal functions of time are represented by phasors. In particular, when
the sinusoidal function is expressed in cosinusoidal form, that is, in the form
A cos(w? + @), the magnitude of the phasor is equal to the magnitude A
of the cosinusoidal function and the angle of the phasor is equal to the
phase angle ¢ of the cosinusoidal function for # = 0. The real part of the
phasor is equal to A cos ¢, which is the value of the function at ¢t = 0. If
we now imagine the phasor to be rotating about the origin in the counter-
clockwise direction at the rate of w rad/sec as shown in Fig. 4.14, we can
see that the instantaneous angle of the phasor is (w? + ¢) and hence the
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Imaginary
A . w rad/sec
AN

|
|
!
o !

! L I
Imaginary S II

Part o

> |
|
I
|
|

0 ' ™ Real
«——Real Part .

Fig. 4.14. Graphical representation of a phasor.

time variation of its projection on the real axis describes the time variation
of the cosinusoidal function.

To illustrate why the phasor approach is convenient for solving sinu-
soidal steady-state problems, we consider the simple circuit shown in Fig.
4.15 in which a source of voltage V() = V,, cos (wt + @) drives a series
combination of inductance L and resistance R. We will first find the solu-
tion for the current I(¢) in the steady state without using the phasor approach.
Using Kirchhoff’s voltage law, we have

L %‘2 + RI(t) = V,, cos (@t + ¢) (4-148)

We know that the solution for the current in the steady state must also be
a cosine function having the same frequency as that of the source voltage

V(t) = Vi cos (wt + 6) ‘ t
© ©
f R

Fig. 4.15. A series RL circuit driven by a sinusoidally time-
varying voltage source.
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but having different magnitude and different phase angle in general. Thus let
us assume the solution to be I(¢) = I, cos (wt + ). Substituting this solution
in the differential equation, we have

L %[Im cos(wt + 8)] + RI, cos (wt + 0) = V,, cos (wt + ¢)

or
(—wLlI, sin wt cos @ — wLl,, cos wt sin § |
+ RI,, cos wt cos @ — RI,, sin ot sin 0) (4-149)
=V, coswtcosp — V, sin wtsin ¢ :

Since (4-149) must be true for all values of time, the coefficients of sin ¢‘bt

on either side of it must be equal and, similarly, the coefficients of cos w¢
on either side of it must also be equal. Thus we have

—LI,cos@ — RI,sin@ = —V,,sin¢d (4-150g)

--wLlI,sin@ + RI, cos @ =V, cos ¢ (4-150P)

Squaring (4-150a) and (4-150b) and adding, we obtain
Vi = wL3 + R

or
v,
=——n 4-15
In = i @-151)
Multiplying (4-150a) by cos 8 and (4-150b) by sin @ and adding, we get
oLl =V, sin(d — 6) (4-152a)

Similarly, multiplying (4-150a) by —sin 8 and (4-150b) by cos € and addiﬁg,
we get |
RI,=V,cos(@ —0) (4-152;b)

From (4-152a) and (4-152b), we have
_ gy _ oL
tan (¢ — 0) = B
or
9 = ¢ — tan1 2L (4-15%3)
R
Hence the solution for I(¢) in the steady state is given by
Vi - oL L
I = WL cos (cot + ¢ — tan 17) (4-154)

Let us now use the phasor concept to solve the same simple problem.
Noting that ’

Vv, cos(wt + ¢) = Re[lV e/ 9] (4-155a)
and
I, cos (wt + 0) = Re[],,e/ 9] (4-155b)
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where ®Re stands for “the real part of,” we have from (4-148),
L-g—t{(Rse[Imef(“’”‘”]} + R{Re[l,,e/ 9]} = Re[V e/ @+] (4-156)

However, since L and R are constants and also since d/d¢ and R« can be
interchanged, we can simplify (4-156) in accordance with the following steps:

(R.e{% [leef(a:ﬁa)]} + (Re[leej(wt+9)] — (R&@[Vmej(“"*“)]

Qe[ joLl,e’ 0] + Re[RI,e' 9] = Re[V,e/+P]  (4-157)
Re[(R + jwL)I,e’ @] = QRe[V e/ @+9)]
Equation (4-157) states that the real parts of two complex numbers are
equal. Does this mean that the two complex numbers are equal? No, not
in general! For example, consider 4 + j2 and 4 + j5. Their real parts are
equal but the numbers themselves are not equal. However, (4-157) must hold
for all values of time. Let us consider two times ¢, and ¢, corresponding to
(@t + 6) equal to zero and (wt + 6) equal to =/2, respectively. Then, for
time ¢,, we have
Re[(R + joL)I,] = RelV /%] (4-158)
For time ¢,, we have
(Re{[R + ja)L]Imei(n/Z)} = (R,e{Vmei[(n/Z)—0+¢l}
or
®Re{jI(R + joL)L,]} = Qe{j[V,e/¢ "]}
or
Im[(R + joL)I,] = 9m[V,e’¥~9] (4-159)
where 97 stands for “the imaginary part of.” Equations (4-158) and (4-159)
state that thereal parts as well as the imaginary parts of two complex numbers
are equal. Hence the two complex numbers must be equal. Thus we obtain
(R + joL)I,, = V,e/¢=9
or
(R + joL)Ie”® =V, e* (4-160)
Multiplying both sides of (4-160) by e’, we note that the two complex
numbers in (4-157) are equal. Now, defining phasors 7 and V as

I=1." sothat I(f) = Re(ie™) (4-161a)
V=V,e* so that V(t) = Re(Vel~) (4-161b)

Eq. (4-160) can be written as
(R+jol)[ =V (4-162)

Note that an overscore associated with a symbol represents the phasor (or
complex) character of the quantity represented by the symbol. We can easily
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show that (4-162) leads to the same result as (4-154), since

= V
6 — J =
Ine R T joL
Vo e’? Vo ei#—tan~t wL/R)

«/Rz + w22l e @L/R JRE T o?L?
and
I(t) = I, cos (ot + 0) = Re(l,e%e’)

Vm
=8 s
— Vm — —IQL_)
_A/____mcos(wt—i—qS tan 7 |
which is the same as (4-154). |
In the foregoing illustration of the phasor technique, we have incll\gded
several steps merely to understand the basis behind the phasor technique.
It is clear that, hereafter, we can omit all steps up to (4-162) and Writé‘ the
phasor equation (4-162) directly from the differential equation (4-148) by
simply replacing I(z) and V(¢) by their phasors I and V, respectively, and by
replacing d/dt by jw. The phasor equation is then solved for the phasor I
from which the time function /(z) is obtained. Comparing with the trlgono‘met-
ric manipulations involved in the steps from (4-149) to (4-153) which have
to be carried out for each different problem, we can now appreciate, the
simplicity of the phasor technique. As a numerical example, let us cone;ider
V() = 10 cos 1000, L = 1072 henry, and R = 1 ohm for the network of
Fig. 4.15; The differential equation for I(¢) is given by '

10- 3a’I

ej(d:—tan'l mL/R)ejon:|

+ I = 10 cos 1000t

Replacing the current and voltage by their phasors and d/dt by jw, we have
(j0107% + 1)f = 10" |

J
(1 + 1) = 10e7 |
The phasor 7 is then given by :

10e/® 10e® 10
T+ j1 7 /27 /2

or, since = 1000 rad/sec,

]-=

e—j'n/4

Finally,
1() = Relle/1000]

= Re 10 e—in/4ej(10001):|

= 7.07 cos (1000t — 45°)
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The voltage and current phasors and the corresponding time functions are
shown in Figs. 4.16(a) and 4.16(b), respectively.-Note that in Fig. 4.16(a)
we have turned the complex plane around by 90° in the counterclockwise
direction to illustrate that the time variations of the projections of the phasors
as they rotate in the counterclockwise direction describe the curves shown
in Fig. 4.16(b).

Re
T Voltage
Current
7 /
4s° /.
7 /
¢, msec
I L [
T 27
(a) (b)

Fig. 4.16. (a) Voltage and current phasors for numerical values
V =10 volts, w = 1000 rad/sec, L = 10~3 henry, and R =1
ohm for the series RL circuit of Fig. 4.15. (b) Time functions
corresponding to the voltage and current phasors of (a).

Extension of the phasor technique to vector quantities whose magnitudes
vary sinusoidally with time follows from its application to the individual
components of the vector along the coordinate axes. However, some con-
fusion is bound to arise since both vectors and phasors are represented graph-
ically in the same manner except that the vector has an arrowhead associated
with it. A vector represents the magnitude and space direction of a quantity
whereas a phasor represents the magnitude and phase angle of a sinusoidally
varying function of time. Thus the angle which a phasor makes with the real
axis of the complex plane has nothing to do with direction in space, and the
angle which a vector makes with a reference axis in a spatial coordinate system
has nothing to do with the phase angle which is associated with the time varia-
tion of the quantity. Nevertheless, there are certain similarities between vectors
and phasors. These are pertinent to manipulations involving addition, sub-
traction, and multiplication by a constant. They both use the same graphical
rules for carrying out these manipulations. Hence we must be careful, in
performing these manipulations, not to get confused between the space angles
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associated with the vectors and the phase angles associated with the phasors.
We will now consider an example to illustrate these differences and similarities
between vectors and phasors.

ExaMPLE 4-14. In the arrangement shown in Fig. 4.17(a), three line charges, infinitely
long in the direction normal to the plane of the paper and having uniform
densities varying sinusoidally with time, are situated at the corners of an
equilateral triangle. The amplitudes of the sinusoidally time-varying charge

Pri =
° Pr2
’ 120°
a I b —
( ) ( ) 120° L
X 120°
[ ] L )
PrL2 PL3 a
PL3

Fig. 4.17. (a) Geometrical arrangement of infinitely long uniform
and sinusoidally time-varying line charges. (b) Phasor diagram
of the sinusoidally time-varying line charge densities.

densities are such that, considered alone, each line charge produces unit
peak electric field intensity at the geometric center of the triangle. The phasor
diagram of the charge densities is shown in Fig. 4.17(b).

i
(a) Find the phasors representing the x and y components of the electric
field intensity vector at the geometric center of the triangle.

(b) Determine how the magnitude and direction of the electric field
intensity vector at the geometric center of the triangle vary with time,

The phasor diagram indicates that the line charge densities are given by
PrLi = Pr. COS wt
Pr2 = prm cos (ot + 120°) ‘
Prs = Prm cOS (0t -+ 240°) ‘

where p,,, is the peak value of the charge densities.

(a) The electric field intensity vector due to an infinitely long line ch;arge
of uniform density is directed radially away from the line charge. Hence the
field intensities due to the different line charges are directed as shown in
Fig. 4. 18(a), with the complex numbers beside the vectors representing their

phasors. For example, the phasor 1/0° associated with the field intensity
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Im Im
e PLI \ |

\

/[N
1/240° Y 1/120° / | 5\>
602 60° 0.866 y
X 2o leoo
. — y

/
ra >

-1 1/ Re
Hooe \/L 120°

Pr2 PL3 0.866

1/0°

(a) (b) ()

Fig. 4.18. For evaluating the phasors representing the x and y
components of the electric field intensity vector at the geometric
center of the line charge arrangement of Fig. 4.17.

vector due to the line charge of density p,, indicates that the time variation
of the magnitude of the vector is given by 1 cos w¢. Thus, timewise, the
vector oscillates back and forth along the y axis starting with a magnitude
of 1 in the negative y direction, shrinking gradually to zero in a sinusoidal
manner, then reversing its direction and growing in magnitude in the positive
y direction until it reaches a maximum of unity, then shrinking back to
zero, and so on.

Now, the x component of the phasor electric field intensity vector at the
geometric center of the triangle is given by

E, = (1 cos 30°)/120° — (1 cos 30°)/240°
= 0.866/120° — 0.866/240° = 1.5/90°
where we have used the construction shown in Fig. 4.18(b). We note that, in
the above steps, certain manipulations are vector manipulations whereas
certain other manipulations have to do with phasors. For example, in finding
the x component of the phasor vector 1/120° pointing away from the line
charge of density p,,, the phase angle 120° is preserved and the magnitude
1 is multiplied by the cosine of the angle which the vector makes with the
x axis, giving us (1 cos 30°)/120° or 0.866/120°. Similarly, the y component
of the phasor electric field intensity vector at the geometric center of the
triangle is given by
E, = —1/0° + (1 cos 60°)/120° + (1 cos 60°)/240°
= —1/0° 4- 0.5/120° 4 0.5/240°
= 1/180° + 0.5/180° = 1.5/180°
where we have used the construction shown in Fig, 4.18(c). The phasor dia-
gram of the x and y components of the electric field intensity vector at the
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geometric center of the triangle relative to the phasor diagram of the
charge densities is shown in Fig. 4.19(a).
(b) From the results of part (a), we have

E.(t) = ®e(E, &) = 1.5 cos (ot + 90°) = —1.5sin wt

E(t) = Re(E,e’) = 1.5 cos (wt + 180°) = —1.5 cos wt
Now, since E(t) = E, ()i, + E,(?)i,, the magnitude of E(¢) is given by

|E@)| = VEX) + EQ2)
= /(—1.5sinw?t)? + (—1.5cos wr)? = 1.5
The angle which the vector E(f) makes with the x axis is given by
E@) . -1—1l5coswt . _,—1.5sin(wt+ 7/2)
EQ® = wt tan™’ 473 cos (ot + 72)
= tan~![—tan (w? + 7/2)] = — (et + 7/2)

tan™!

line

_ Ey
PL2 w rad/sec - — = — __
e N
15 /7 N\
30° / e \
90° / 1 \
_ 60° _ / ‘
E), . P | - x il
5
120° \ /
\ E /
\ /
AN /
L3 () ® S _y_-7

Fig. 4.19. (a) Phasor diagram of the x and y components of the
electric field intensity vector at the geometric center of the line
charge arrangement of Fig. 4.17, relative to the phasor diagram
of the line charge densities. (b) For describing the time variation
of the electric field intensity vector corresponding to the phasor
diagram of (a).

Thus the magnitude of the electric field intensity vector at the geome
center of the triangle remains constant at 1.5 units and the angle which
vector makes with the x axis varies as —(w? + 7z/2) with time; that is,

tric
the
the

vector rotates with a constant magnitude and at a rate of w rad/sec, with
the direction at ¢ = 0 along the negative y axis and in the sense shown in

Fig. 4.19(b). The field is then said to be circularly polarized. []

We will now discuss briefly polarization of vector fields. Polarization is

the characteristic by means of which we describe how the magnitude and

the

direction of the field vary with time. For an arbitrarily time-varying field

characterized by random time-variations of its components along the

co-
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ordinate axes at a point in space, the magnitude and direction of the field vary
randomly with time. The field is then said to be unpolarized or randomly
polarized. For a sinusoidally time-varying field at a particular frequency w,
the field vector is characterized by a well-defined polarization. In the most
general case, the magnitude and direction of such a field vector at a point
change with time in such a manner that the tip of the vector drawn at that
point describes an ellipse as time progresses, as shown in Fig. 4.20(a). The
field is then said to be elliptically polarized. There are two special cases of
elliptical polarization. These are linear polarization and circular polariza-
tion.

—_ - \ =
~
/ E \ // E \
/ | TE / \
/ // I [ ' |
‘ / | \ /
\ 4 [ \\
~__-7 I ~N— i
(a) (b) (©

Fig. 4.20. For illustrating (a) elliptical polarization, (b) linear
polarization, and (c) circular polarization of a field vector.

If the field vector at a point in space lies along the same straight line
through that point as time progresses, as shown in Fig. 4.20(b), the field is
said to be linearly polarized. Obviously, the components of a field vector
along the coordinate axes are linearly polarized. If all the components of the
field vector along the coordinate axes have the same phase, although pos-
sessing different magnitudes, then the field vector itself is linearly polarized.
If the tip of a field vector drawn at a point in space describes a circle as time
progresses, as shown in Fig. 4.20(c) the field is said to be circularly polarized.
Circular polarization is realized by the superposition of two field compo-
nents oriented perpendicular to each other and having the same magnitude
but differing in phase by #/2 or 90° as in the case of the two components in
Example 4-14. Elliptical polarization is realized by the superposition of two
field components having in general different magnitudes as well as different
phase angles. Since a circle and ellipse can be traversed in one of two senses,
we have to distinguish between the opposite senses of rotation in the cases
of circular and elliptical polarizations. The distinction is made as follows.
Considering the vector to be the electric field intensity vector E, the field is
said to be clockwise or right circularly (or elliptically) polarized if the vector
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rotates in the clockwise sense as seen looking along the direction of the
Poynting vector P = E x B/u, where B is the magnetic field associated wyith
E. The field is said to be counterclockwise or left circularly (or ellipticaflly)
polarized if the vector rotates in the counterclockwise sense as seen lookfmg
along the direction of the Poynting vector.

Having illustrated the application of the phasor technique in dealing
with sinusoidally time-varying vector fields, we now turn to the phgsor
representation of Maxwell’s equations for sinusoidally time-varying fiellds.
Maxwell’s equations for time-varying fields are given by

V-E=2 (4-163)
€o

V:B= (4-]| 64)

|
VXE= —%tf_’ @-163)
VxB=— ,uo[J + g—t(eoE)] (4-11166)

whereas the continuity equation is given by ’
VT4 ‘1’;/;— (4-167)

In (4-163)-(4-167), the quantities E, B, p, and J are also functions of all
three space coordinates in general. Thus we have
E=E(x,y, 2 t) =E.(x,y, 2 i, + E(x,y, z, )i, + E,(x, ¥, z, t)lz|
B=B(x,y,z1t)=B.(x, ),z )i, + B/(x, », z, t)i, + B.(x, y, z, t)l,i
P =px,y,21)
J= J(x3 Vs 2, t) = Jx(xs Vs 2, t)ix + Jy(xa Vs 2, t)iy + Jz(xs Y, z, t)iz
For the particular case of sinusoidal variation with time, we have
E= E(x3 Y, 2, t)
= E,(x, y, 2) cos[ot + §.(x,y, 2)] i,
+ Eyo(x9 ys Z) COs [COt + ¢y(x7 J’, Z)] iy
+ E.o(x, ¥, z) cos[wt + §.(x, ¥, 2],
— RelE,q(x, y, 2)e o deioti, (4-168)
+ Eyo(x’ y’ z)el‘ﬁv(% ” Z)efw‘ iy
+ Eoqlx, 3, 2)elt 0 eior ]
= Qe([E.(x, y, 2)i, + E,(x, 7, DI, + E (%, , 2)i.]e") |
= Re[E(x, y, 2)¢'] :
Similarly, we have |
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B = B(x, y, 7, 1) = Qe[B(x, y, 2)e*] (4-169)
p = p(x,y,2,1) = Re[p(x, y, 2)e™] (4-170)
J=3(x, 3, z,1) = Re[J(x, y, 2)e™] (4-171)

In (4-168)-(4-171), the complex quantities E(x, y, z), B(x, y, 2), p(x, y, 2),
and J(x, y, z) are the phasor representations for the sinusoidally time-vary-
ing quantities E(x, y, z, t), B(x, y; 2, 1), p(x,,z,¢t), and J(x, y, z, t), re-
spectively.

Substituting the respective phasors for the quantities E, B, p, and J
and replacing d/d¢ by jw in (4-163)-(4-167), we obtain the phasor represen-
tations of Maxwell’s equations as

V.E= g (4-172)
V.B=0 (4-173)
VxE=—joB (4-174)
V x B = p,J + joe,E) (4-175)
whereas the corresponding continuity equation is given by
VeJ+ jop=0 (4-176)

In (4-172)-(4-176), we understand that E,B, 5, and J are functions of
X, y, z (but not ¢). Note that (4-173) follows from (4-174) whereas (4-172)
follows from (4-175) with the aid of (4-176).

EXAMPLE 4-15. A sinusoidally time-varying electric field intensity vector is character-
ized by its phasor E, given by
E= (3ejn/2ix + Siy _ 4ej'n/2iz)e—i0.02n(4x+3z) (4_177)
(a) Show that the surfaces of constant phase of E are planes. Find the
equation of the planes.

(b) Show that the electric field is circularly polarized in the planes of
constant phase.

(c) Obtain the magnetic flux density phasor B associated with the given
E and determine if the field is right circularly polarized or left
circularly polarized.

(a) The phase angle associated with_I_E is equal to —0.02z(4x + 32).
Hence the surfaces of constant phase of E are given by

—0.027(4x + 3z) = constant
or
(4x 4 3z) = constant (4-178)
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Equation (4-178) represents planes and hence the surfaces of constant ph\ase
are planes. _ \
(b) Combining the-x and z components of E, we obtain

|
p— (Siy + Sixzejn/Z)e—jO.OZn(4x+32) (4_179)

where i,, = (3i, — 4i,)/5 is the unit vector in the xz plane and making‘an
angle of —tan™! 4 or —53.1° with the positive x axis. Thus the electric field
is made up of two components perpendicular to each other and having equal
magnitudes but differing in phase by #/2. Hence the field is circularly polar-
ized. From (4-179), we observe that the field vector lies in planes defined| by
i, and i,,. The equation of these planes is given by

i e, x@—r)=0 (4-180)
where r is the position vector of an arbitrary point (x, y, z) and r, is the
position vector of a reference point (x,, ¥,, Z,), both pointslyingin a particular
plane. Simplifying (4-180), we obtain

4x + 3z = 4x, + 3z, = constant

which is the same as Eq. (4-178). Thus the field is circularly polarized in the
planes of constant phase. ‘

(c) The magnetic flux density phasor B associated with the given E can be
obtained by using

VXxE=—joB (4-174)
Substituting for E in (4-174) from (4-177) and simplifying, we obtain
B— 0. ln( 3i, + S5e/v2i, 4 4i,)e/0.02n(4x+32) (4-1;81)

Let us now consider,_for simplicity, the field vectors in the plane 4x + 3z = 0.
The phasor vectors E, and B, in this plane are given by ‘

E, = 3e/2i, + 5i, — 4e*2i, (4-182)

B, =% 1”( 3i, -+ Ser2i, & 4i) (4-183)
The corresponding real field vectors are given by

E, = QRe(E e)

4-184

= —3sinwti, + Scoswt iy, + 4sin wt i, ( )
B, = Re(B,e’)

4-185

0 Iz ( } )

> ——(—3coswti, — Ssinwti, + 4coswri,)

Substituting (4-184) and (4-185) into
P=E,x Do

0
and simplifying, we obtain the Poynting vector P as



247 Power and Energy Considerations Sec. 4.10

0.17 1~ .
P= 20i 15i 4-186
o Q00+ 151) (4186

Now, we note from (4-184) that the direction of E, is along 5i, for wt = 0
and along (—3i, + 4i,) for w¢ = z/2. These two directions and the direction
of the Poynting vector are shown in Fig. 4.21. It can be seen that the electric
field vector rotates in the clockwise sense as seen looking along the direction
of the Poynting vector. Hence the field is right circularly polarized. []

ﬁ /4 E for ot = @/2
i
7 |
V |4
5 // Sense of
/ Jy \Rotation
// 73
/P /
—— - - y

5 E forwt = 0

Fig. 4.21. For the determination of the sense of
rotation of the circularly polarized vector of
Example 4-15.

.10 Power and Energy Considerations for Sinusoidally Time-Varying
Electromagnetic Fields

In Section 4.8 we introduced the Poynting vector P given by

P-ExZE (4-144)
Ho
as the power density associated with the electromagnetic field at a point.
The surface integral of the Poynting vector evaluated over a closed surface
S always gives the correct result for the power flow across the surface out of
the volume bounded by it. For a sinusoidally time-varying electromagnetic
field characterized by complex field vectors,

E = E,e’*
B = B

the instantaneous Poynting vector P is given by
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P=Ex£

Ko
= (Re Ee™®) x (—l_ Re Be"‘”')
Ko

= E, cos (ot + ¢) x B, cos (ot + 6) :
s Ho (4-187)
=E, x /TO[COS (wt + @) cos (wt + 6)]
0

B,[ 1 1
—E, x /73[7 cos 20t + ¢ + 6) + - cos (¢ _9)]

=%on%§cos(¢—9)+%Eox]/—iﬁcos(Za)t+¢—9)

The first term on the right side of (4-18 7)is independent of time whereas the
second term varies sinusoidally with time. The time-average value of the
second term obtained by integrating it through one period T and dividiﬁg
by the period is equal to zero since the integral of a cosine or sine function
over one period is equal to zero. Thus the time-average value of tf‘he

Poynting vector P, denoted as (P) is given by

(P)=-;,—J‘:Pdt ‘

<-§—E0 X % cos (¢ — 0)>+ <—%E0 b %5 cos Qwt + ¢ — 0)>
1

E, x B0 cos (¢ — 6) |
Ho (4-188)

I

2
1g «Bo m-m]
Re 5 E, x ﬂoe

— Re (%Eoe""‘ x M f
Ko :

= Re (il_ﬂ X B—*)
2 Ho i
where B* denotes the complex conjugate of B. l
We now define the complex Poynting vector P as y
— 1= B* :
P=+<Ex— 4-189
2 Ho ( )
so that the time-average Poynting vector (P) can be written as
(P) = Re(P) (4-190)
We note that Eq. (4-18 9)is analogous to the expression for the complex povver
in sinusoidal steady-state circuit theory given by
1 -

P= - T* (4-191)
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where ¥ and [ are the complex voltage and complex current, respectively.

By integrating the complex Poynting vector over a closed surface S, we
obtain the complex power flowing across S out of the volume ¥ bounded

by it. Thus
§P ds—§ lg B—-dS

(4-192)
=2—0fVV-(Ex§*)dv

where we have used the divergence theorem to replace the surface integral
by a volume integral. Now, using the vector identity

V.(ExB*)=B*+VxE_—E.VxB* (4-193)

and Maxwell’s curl equations for complex fields given by
VX E=—joB (4-174)
V x B = uyJ + joe,E) (4-175)

we have
V. E x B¥) = B* « (—jwB) — E « u,(J + jowe,E)*
= —jwB* « B — py(E « J* — jwe E « E¥)
However, the time-average stored energy density in the electric field is given by

W) = < 60E2>

(4-194)

760|Eo |* cos? (wt + ¢)>

<711‘50|E0 >+ —‘ll—e(,lE0 2 cos 2(wt + ¢)> (4-195)
1

= S 6ol Bt = kel « Ee~st

= %GOE . E*
Similarly, the time-average stored energy density in the magnetic field is
given by
1 B> 1 B*
w —B.— 4-196
= (g5 =3B 1 (4-196)
The time-average power density expended by the field due to the current
flow is given by

2y = E+ Iy = Qe(5E - I*) (4-197)
so that the complex power density associated with the current flow is given by

o= 3* (4-198)
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Substituting (4-195), (4-196), and (4-198) into (4-194), we get
Vo (E x B*) = —2p,5, — jAop((wn) — W) (4-199)
Finally, substituting (4-199) into (4-192), we obtain
§S P.ds=_ f Pydv — j2w j ((w,y — wD)dv  (4-200)
S v vV

Equation (4-200) is known as the complex Poynting’s theorem. Equating
the real and imaginary parts on both sides of (4-200), we have

Qe [, by ) = ~Gre($ P - as) (4-201)
or
| , Ge(p) dv = —§3S [Re(®)] - dS |
or |
J Py do = —§ (P aS (4-202)
and
Jm(fy Pa dv) + 20 f,, (W) — <w))dv = _gm<3§s P. dS) |
or |

20 | (<> — (v y)dv = —gm(§s P. ds) - srm( [ b dv) (4-263)

Equation (4-202) states that the time-average power expended by the field due
to the current flow in the volume V is equal to the time-average power
flowing into the volume ¥ as given by the surface integral of the time-average

Poynting vector over the surface S bounding V. If fﬁ (P) + dS is zero, it
S

means that there is no time-average power expended by the field in the volume
V; whatever time-average power enters the volume V through part of the
surface S leaves through the rest of that surface. Equation (4-203) proviles
a physical interpretation for the imaginary part of the complex Poyning
vector. It relates the difference between the time-average magnetic and electrric
stored energies in the volume ¥ to the reactive power flowing into the voluime
V as given by the imaginary part of the surface integral of the compilex
Poynting vector over the surface S and to the reactive power associated with
the current flow in the volume V. We note that the complex Poynting theorem
is analogous to a similar relationship in sinusoidal steady-state circuit thec?ry
given by f

1 |

5 VI = (P + 20 ) — W)
where (P,) is the average power dissipated in the resistors, and (/> and
(W) are the time-average stored energies in the inductors and capacitors,
respectively. ‘
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252 The Electromagnetic Field Chap. 4

Summary of Electromagnetic Field Laws and Formulas

We now summarize in Table 4.1 the basic laws governing the electromagnetic
field and the power and energy relations for the electromagnetic field. We
recall that all four Maxwell’s equations for time-varying fields are not inde-
pendent. The divergence equation for the magnetic field follows from the
curl equation for the electric field as shown in Section 4.3, whereas the diver-
gence equation for the electric field follows from the curl equation for the
magnetic field and the continuity equation as shown in Section 4.5.

Comparing Maxwell’s equations for time-varying fields with those for
the static fields discussed in Chapters 2 and 3, we observe a coupling between
the time-varying electric field and the time-varying magnetic field. This is
because the curl of the electric field is dependent on the time derivative of
the magnetic field and the curl of the magnetic field is dependent on the time
derivative of the electric field. Thus the solution for the electric field requires
a knowledge of the magnetic field whereas the solution for the magnetic
field requires a knowledge of the electric field. The two curl equations must
therefore be solved simultaneously to obtain the solution for the electro-
magnetic field. It is precisely this two-way coupling between the time-varying
electric and magnetic fields that gives rise to the phenomenon of electromag-
netic wave propagation, as we will learn in Chapter 6.

PROBLEMS |

4.1.

4.2,

The forces experienced by a test charge ¢ C at a point in a region of electric a‘nd
magnetic fields E and B, respectively, are given as follows for three different veloci-

ties:
Velocity, m|sec Force, N
ix qix
iy q(2ix +iy)
i q(ix + iy)
Find E and B at that point.

The forces experienced by a test charge ¢ C at a point in a region of electric and
magnetic fields E and B, respectively, are given as follows for three different
velocities :

Velocity, m|sec Force, N
ix—1i, 0
ix— iy +1i; 0
i q(iy + i)

Find E and B at that point.
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A region is characterized by crossed electric and magnetic fields E = Eyi, and
B = Byi,, where E, and B, are constants. A test charge ¢ having a mass m starts
from the origin at # = 0 with an initial velocity v, in the y direction. Obtain the
parametric equations of motion of the test charge. Sketch the path of the test charge.

A region is characterized by crossed electric and magnetic fields E = E,i, and
B = B,i,, where E, and B, are constants. A test charge g having a mass m starts
from the origin at £ = 0 with an initial velocity v, in the x direction. Obtain the
parametric equations of motion of the test charge. Sketch the paths of the test
charge for the following cases: (a) vy =0, (b) vy = E0/2Bo, (c) vo = Ey/By,
(d) vo = 2Ey/B,, and (e) vo = 3E,/B,.

A region is characterized by crossed electric and magnetic fields E = E, cos wt1,
and B = Byi,, where E, and B, are constants. A test charge ¢ having a mass m
starts from the origin at 1 = 0 with zero initial velocity. Obtain the parametric
equations of motion of the test charge. Check your result with that of Example 4-2
by letting w — 0. Investigate the limiting case of @ — w,, where . is equal to
qBo/m.

A region is characterized by crossed electric and magnetic ﬁéids given by
E = E,(—sin wt i, + cos ot i,) B = Byi,

where E, and B, are constants. A test charge ¢ having a mass m starts from the
origin at £ = 0 with zero initial velocity. Obtain the parametric equations of
motion of the test charge. Check your result with that of Example 4-2 by letting
@ — 0. Investigate the limiting case of W — w,., where @, is equal to gB,/m.

A magnetic field is given, in cylindrical coordinates, by
= _1 "

where B, is a constant. A rectangular loop is situated in the yz plane and parallel
to the z axis as shown in Fig. 4.22. If the loop is moving in that plane with a
velocity v = woi,, Where v, is a constant, find the circulation of the induced electric
field around the loop.

Fig. 4.22. For Problem 4.7. *
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For the rectangular loop arrangement of Fig. 4.22, find the circulation of the

-.induced electric field around the loop if the loop is stationary but the magnetic
 field is varying with time in the manner

B =&coscoti¢
r

where B, is a constant.

For. the rectangular loop arrangement of Fig. 4.22, find the circulation of ‘the
induced electric field around the loop if the loop is moving with a velocity v = v,i,
and if the magnetic field is varying with time in the manner

B =&’cosa>ti¢
r

where Vo and B, are constants.

. For each of the following magnetic fields, find the induced electric field every- -

where, by using Faraday’s law in integral form: |

(@) B {Bpsina)ti, x| <a }
a) B .
0 [x|>a ‘
0 r<a
(b) B =1{B,sin wti, a<r<b
0 I r>b
r2\ . .
© B_{Bo(l—?)smcotl, r<a .
0 r>a ‘

|
|

In a region characterized by a magnetic field B = Byi,, where B, is a constant,
a test charge g having a mass m is moving along a circular path of radius @ and
in the xy plane. Find the electric field as viewed by an observer moving with the
test charge.

where B, is a constant.

A region is characterized by crossed electric and magnetic fields E = Eji, and
B = Byi,, where E, and B, are constants. A test charge g having a mass m starts
from the origin at ¢ = 0 with an initial velocity v = (E,/Bo)i,. Find the electric

field as viewed by an observer moving with the test charge. ‘

Verify your answer to Problem 4.9 by using (4-43). |

Verify your answers to Problem 4.10 by using Faraday’s law in differential form.

A current I Cfsec flows from a point charge Q; C situated at (0, 0, —d)toa pbint
charge Q, C situated at (0, 0, d) along a straight filamentary wire as shown in

Fig. 4.23. Find § B . dl, where C is a circular path centered at (0, 0, z) and lying

in the plane normal to the z axis, in two ways: (a) by applying the Blot—Savart
law to find the magnetic field due to the current-carrying wire and (b) by applying
the modified Ampere’s circuital law in integral form to the path C.
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A
D
Q2 ¢ (0,0,4)
>y
Yy
014 (00,—d)

Fig. 4.23. For Problem 4.15. x !

Current flows away from a point charge Q C at the origin radially on the xy plane
with density given by

3 =1

= poie amps/m

Find §CB « dl where C is a circular path centered at (0,0, z) and lying in the

plane normal to the z axis in two ways: (a) by applying the Biot-Savart law to find
the magnetic field due to the surface current and (b) by applying the modified
Ampere’s circuital law in integral form to the path C.

Current flows from a point charge Q; C at (0, 0, @) to a point charge Q, coulombs
at (0, 0, —a) along a spherical surface of radius a and centered at the origin with
density given by

ip amp/m

s

~ 2nasin0

Find §CB « dl, where C is a circular path centered at (0,0, z) and lying in the

plane normal to the z axis. Consider both cases: path C outside the sphere and
path C inside the sphere.

A point charge Q C moves along the z axis with a constant velocity v, m/sec.
Assuming that the point charge crosses the origin at 1 = 0, find and sketch the

variation with time of § B dl where C is a circular path of radius a in the xy
C

plane having its center at the origin, and traversed in the ¢ direction. From sym-
metry considerations, find B at points on C.

A point charge Q, C is situated at the origin. Current flows away from the point
charge at the rate of I C/sec along a straight wire from the origin to infinity and

passing through the point (1, 1, 1). Find §B « dl around the closed path formed

by the triangle having the vertices (1,0, 0), (0, 1, 0), and (0, O, 1). Assume that
the closed path is traversed in the clockwise direction as seen from the origin.

Repeat Prob. 4-19 if the straight wire, instead of extending to infinity, terminates
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on another point charge Q, C situated on the plane surface bounded by the
triangular path and inside the closed path.

In the arrangement shown in Fig. 4.24, three point charges Q;, Q,, and Q3 are
situated along a straight line. A current of 2 amp flows from Q; to Q, whereas

a current of 1 amp flows from Q, to Q;. Find § B - dl, where C is a circular path
c

centered at Q, and in the plane normal to the line joining Q; to Qs.

C Im

2 Amps QZ\ 1 Amp R

B A N A P b

Fig. 4.24. For Problem 4.21.
Verify your result for the magnetic field due to the current-carrying wire of P}ob-
lem 4.15, by using (4-96).

Verify your result for the magnetic field due to the moving charge of Problem
4.18, by using (4-96).

|
In a region containing no charges and currents, the magnetic field is given by

B = B, sin fizsin wri,

find two expressions for the associated electric field E and then find the relation-

where By, 8, and @ are constants. Using one of Maxwell’s curl equations at a tJime
ship between f, m, &, and €.

Four point charges having values 1, —2, 3, and 4 C are situated at the come{s of
a square of sides 1 m as shown in Fig. 4.25. Find the work required to move the

point charges to the corners of a smaller square of sides 1/,/2 m.

1C -2C
— ————»e
Im /.
)
%
|
- 4C e<«—wwv—=23C Fig. 4.25. For Problem 4.25.

Find the potential energy associated with the following volume charge distributions

of density p in spherical coordinates using W, = %f . pVdv:
Vo.
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0 O<r<a
(a)p=[po a<r<b
0 b<r<oo
® p = po-%- 0<r<a
0 a<r<o

where p, is a constant.

Verify your results for Problem 4.26 by performing volume integration of the
electric energy densities associated with the charge distributions.

Two spherical charges, each of the same radius ¢ m and the same uniform density

Po C/m3 are situated infinitely apart.

(a) The two spherical charges are now brought together and made into a single
spherical charge having the same uniform density p, C/m? as those of the
original charges. Find the work required.

(b) Instead of as in part (a), the two spherical charges are brought together and
made into a single spherical charge of uniform density and of the same radius
a as those of the original charges. Find the work required.

Show that the total energy stored in an electric field made up of two fields E; and
E, is equal to the sum of the energies stored in the individual fields plus a coupling

term, €, J- (E, + E,) dv, that is,
vol

W, = f (leoE% + Le,E2 + €F, - Ez) dv
vol 2' 2

Find the energy stored in the electric field set up by charges Q and — Q uniformly

distributed on concentric spherical surfaces of radii @ and b, respectively, in three

ways:

(a) By using W, = %I 1pVa'v.

(b) By performing volume integration of the energy density in the electric field
set up by the charge distribution.

(c) By considering the electric field as the superposition of the fields set up inde-

pendently by the two spherical surface charges and using the result of Problem
4.29.

Find the energy associated with the following current distributions, in cylindrical
coordinates, per unit length along the z axis, by using W,, = %f 1J « A dv.
Vo

'%i, 0O<r<a
@ J = 0 a<r<b
. I, .
n(cz——bz)l‘ b<r<c
.0 c<r<oo
Jo%i, O<r<a
) J=

—Jo? 50 — byi
3bé(r bi, a<r<oo

where I, and J, are constants.
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Find the energy associated with the following current distributions, per unit elrea
in the y = 0 plane, by using W, —,Zf J-Adv ‘
|

(@) J =J,[0( + a) — 6(y — a)li,, where J,, is a constant

i <
(b)J={y' ly|<a
0 |y|>a

Verify your results for Problems 4.31 and 4.32 by performing volume integratjon
of the magnetic energy densities associated with the current distributions.

Show that the total energy stored in a magnetic field made up of two fields B,
and B, is equal to the sum of the energies stored in the individual fields pllls a

coupling term, (l/yo)f (B, - B,) dv, that is,

B, - B\ 4,
W fvlzﬂo 2ﬂ0+ Ho )

A surface current distribution is given, in cylindrical coordinates, by

L‘-i, r=a
a
J, = %i, r=b
Il+121 r=c
- c

Find the energy stored in the magnetic field, set up by the current distribution,
per unit length along the z axis in three ways:

(a) By using W, =%J J,+ AdS.

(b) By performing volume integration of the energy density in the magnetic ﬁeld
set up by the current distribution.

(c) By considering the magnetic field as the superposition of the fields sei up
independently by two surface current distributions given by

L r=a

a’”’ :
J, =

Ly o

c

IZ.

2 r==b

bz
J, = I

22 r=c

and using the result of Problem 4.34.
An electric field intensity vector is given by U
E = 100 cos (0t — Bz)i, + 50sin (@t + B2)i, ‘

where @ and B (= wa/Uo€,) are constants. Find the associated magnetic: flux
density vector B. Find the Poynting vector E X B/ u,. :
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Electric and magnetic fields are given in cylindrical coordinates by

Vo O -
Ez{mcosﬁzcoswtl, a<r<b

0 otherwise
{Msinﬁzsinwti¢ a<r<b

B = {2mr i
0 otherwise

where ¥y, Iy, @, and f (= wa/ts€y) are constants. Find the expression for the
power leaving the volume bounded by two constant z planes, one of which is the
z = 0 plane. Draw a graph of the power versus z for w¢ = n/4.

In the region r < a in cylindrical coordinates, charges are in motion under the
combined influence of an electric field E = E,yi, and a frictional mechanism,
thereby constituting a current of density J = Jyi,, where E, and J,, are constants.
Obtain the magnetic field due to the current and show that'E X B points everywhere

towards the z axis, that is, in the —1i, direction. Show that § (E x B/ o) * dS,
) S
where S is the surface of a cylindrical volume of ‘any radius » and length /, and

with the z axis as its axis, gives the correct result for the power expended by the
electric field in that volume.

The electric field intensity in the radiation field of an antenna located at the origin
of a spherical coordinate system is given by

E = 5800 058 o5 cor — g,
where E,, @, and f (= wa/lq€,) are constants. Find the magnetic field associated
with this electric field and then find the power radiated by the antenna by inte-
grating the Poynting vector over a spherical surface of radius r centered at the
origin.

Obtain the steady-state solution for the following differential equation in two ways:
(a) without using the phasor technique, and (b) by using the phasor technique:

L, dV . 11
3 — —_—
2x 10 v + V' = 10sin (500t + 6)

Repeat Problem 4.40 for the following integrodiﬁ'erential equation:
% o0+ Jldt = 10 cos (2: - %)

Two infinitely long, straight parallel wires carry currents I, = I, cos ®¢ and I, =
I cos (¢t + 90°) amp, respectively, as shown in Fig. 4.26. Determine the x and y
components of the magnetic flux density vector at each of the three points A, B,
and C. Describe how the magnitude and direction of the magnetic flux density
vector varies with time at each of the three points A4, B, and C.
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a Y . I 0

Il@ LIA x ®12 ]0 I_l
l._a_.L_a_J : Phasor Diagram

of I— 1 and I- 2
Fig. 4.26. For Problem 4.42.

4.43. In the arrangement shown in Fig. 4.27(a), four line charges, infinitely long in the
direction normal to the plane of the paper and having uniform charge densities
varying sinusoidally with time are situated at the corners of a square. The ampli-
tudes of the sinusoidally time-varying charge densities are such that, considered
alone, each line charge produces unit peak electric field intensity at the center of
the square. The phasor diagram of the charge densities is shown in Fig. 4.27(b).

PL2 o e PLI PL2
Y
90¢, 90°
L> X PL3 < > ﬁ L1 )
90° 90° )
|
— : L
pr3® ®P0r4 BLa
@ ®
Fig. 4.27. For Problem 4.43.
(a) Find and sketch the phasor representing the x and y components of the elec?ric

field intensity vector at the center of the square. ‘
(b) Determine how the magnitude and direction of the electric field intensity vector
at the center of the square vary with time. l

4.44. Repeat Problem 4.43 for the rectangular arrangement of line charges shown) in
Fig. 4.28. i
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ropLz y epPLI
a Lx

o fPL3 e PL4

Fig. 4.28. For Problem 4.44. . V3a |

A sinusgida]ly time-varying electric field intensity vector is characterized by its
phasor E, given by

E = (—i, — 24/ 310, + A/ 31,)e0-04n(vTx=2-32)
(a) Show that the surfaces of constant phase of E are planes. Find the equation
of the planes.

(b) Show that the electric field is linearly polarized in the planes of constant phase.
(c) Find the direction of polarization.

A sinusgidally time-varying electric field intensity vector is characterized by its
phasor E, given by
E = (—jli, — 2i, + ja/3i;)e 005w vTx+2)
(a) Show that the surfaces of constant phase of E are planes. Find the equation
of the planes.
(b) Show that the electric field is circularly polarized in the planes of constant phase.
(c) Obtain the magnetic flux density phasor B associated with the given E and
determine if the field is right circularly polarized or left circularly polarized.

Repeat Problem 4.46 for the following phasor electric field intensity vector:
E — [(_ﬂ '—]'%‘)ix + (1 _j4/23 )iy +j'\/_3'iz:|e—10‘02n(\/?x+3y+22)

Show that a linearly polarized field vector can be expressed as the sum of left
and right circularly polarized field vectors having equal magnitudes, and that
an elliptically polarized field vector can be expressed as the sum of left and right
circularly polarized field vectors having unequal magnitudes.

Find the time-average stored energy density in the electric field characterized by
the phasor specified in Problem 4.47.

The electric field associated with a sinusoidally time-varying electromagnetic field
is given by

E(x, y, z,t) = 10 sin x sin (67 X 108 — /3 ®z) i, volts/m
Find (a) the time-average stored energy density in the electric field, (b) the time-
average stored energy density in the magnetic field, (c) the time-average Poynting

vector associated with the electromagnetic field, and (d) the imaginary part of
the complex Poynting vector.





