3

THE STATIC MAGNETIC FIELD

In Chapter 2 we introduced the electric field as a force field associated with
a region of space in which charges at rest experience forces. In this chapte:r
we introduce a second kind of force field, known as the magnetic field and
associated with a region in which charges in motion experience forces. These
forces experienced by moving charges are in addition to any electric forces
experienced by them by virtue of an electric field in the region. Just as we
were concerned only with the static electric field in free space in Chapter
2, we are in this chapter concerned only with the static magnetic field in free
space. We know that the motion of charges constitutes a current. Currenits
are, however, classified into different categories according to how they
are produced. Currents arising from movement of charges such as space
charges in vacuum tubes and electron beams in cathode-ray tubes are called
convection currents. Two other types of current known as conduction and
polarization currents result from different effects on charges in material
media under the influence of electric fields, as we will learn in Chapter .
Yet another type of current is the magnetization current which results from
magnetic effects in materials, as we will learn also in Chapter 5. For the
purposes of this chapter, it is not necessary to distinguish between them
because they are all basically equivalent to rate of flow of charges with time
in free space. Thus the laws which we will learn in this chapter can be apphed
equally well to all of these currents.
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The Magnetic Field Concept

In Section 2.1 we learned that if, in a region of space, a fixed test charge g
experiences a force F, then the region is characterized by an electric field of
intensity E given by
F
= —_— 2'3
7 (2-3)

Here we introduce the concept of magnetic field by considering a test charge
moving in a region of space. If the test charge ¢ moving with a velocity v
experiences a force F, then the region is said to be characterized by a magnetic
field, which we will represent by the symbol B. This force F is related to
q, v, and B as given by

F=¢gvxB @3-

According to (3-1), the force experienced by the moving charge due to the
magnetic field is directed normal to both v and B, as shown in Fig. 3.1, in

i

Fig. 3.1. Force experienced by a test charge moving
with a velocity v in a magnetic field B.

contrast to the same directions of electric force and electric field intensity.
The magnitude of the force is equal to gvB sin o, where a is the angle between
v and B. Since the force is always normal to v, there is no acceleration along
the direction of motion. Thus, the magnetic field changes only the direction
of motion of the charge and does not alter the kinetic energy associated with
it.
From Eq. (3-1), we note that if the test charge moves in, or opposite
to, the direction of B, it does not experience a force. Also, rewriting Eq. (3-1)
as
F = gqvBi, x i; = qvBsina i, (3-2)

where i,, iz, and i, are unit vectors along v, B, and F, respectively, we observe
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that it is only possible to deduce B sin & by knowing the force for only one
direction of motion of the test charge. On the other hand, if we know two
nonzero forces F; and F, for two velocities v, and v, in different directions,
then we have

F1XF2=(qV1XB)x(qV2XB)

= g*[(v; X B« B)v, — (v; X B+ v,)B] (373)‘

= —q(F, - v,)B ‘

or ;
_ ExF, - ‘

B= qF, +v,) S

Alternatively, we note from (3-1) or (3-2) that the force is maximum for
vnormal to B so that if we find a maximum force F,, by trying several direc-
tions of v, keeping its magnitude constant, then

F,xi,
=Zux (3-5)
where i, is the direction of v for which the force is F,,.

As in the case of defining the electric field, we assume that the movement
of the test charge does not alter the magnetic field in which it is placed.
From a practical point of view, the movement of the charge does influence
the magnetic field irrespective of how small it is and how slowly it is moved‘
However, theoretically, we can define B as the right side of (3-5) in the hmltw
that gv tends to zero; that is,

\‘

B — lim ¥z X ix (3-6)

w0 GV ‘
From (3-5), we observe that the units of B are

newtons per coulomb  newton-seconds _ newton-meter _ seconds

meters per second  coulomb-meter _ coulomb (meter)?

Recalling that newton-meter per coulomb is a volt, we can write these unitsj
as volt-seconds per square meter, commonly known as webers per square
meter, and abbreviated Wb/m?, giving the character of a flux density for B
Accordingly, B is known as the magnetic flux density vector.

ExaMpLE 3-1. An electron moving with a velocity v, = i, m/sec at a point in a mag-

netic field experiences a force F, = e(—i, + i,) N, where e is the charge 01‘
the electron. If the electron is moving with a velocity v, = i, m/sec at the
same point, it experiences a force F, = e(i, — i,) N. Find B at that point.

Using (3-4), we have '
_ B xF _ el — i) x e(—i, + i) |
qF, - v)) ele(—i, +1,) - i)
_e(—i, —i,—1i)
_e2

=@, +1,+i)Wb/m* |
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Force on a Current Element

In Section 3.1 we defined the magnetic field in terms of force experienced
by a moving test charge, involving explicitly the charge and its velocity.
This form of the definition, given by Eq. (3-1) is, however, not convenient
for use with currents. Hence it is necessary to formulate Eq. (3-1) in terms
of current. The current crossing a surface is defined as the rate at which
charge flows across the surface; that is,

_do _
=2 (3-7)

Let us now consider a region in which charges distributed with a density
p are moving with a velocity v, where p and v can, in general, be nonuniform.
At a point P in this region, let us consider an infinitesimal area dS normal
to the direction of flow of charges as shown in Fig. 3.2. In a time d, the

————”————-/’d—S/'

/
ds ~5
._._..P —_—
dl

Fig. 3.2. Volume occupied by \‘

charge crossing a surface dS nor-
mal to it with a velocity v, in time
dt = dlfv. , ‘

distance traveled by the charge crossing this surface is equal to v dt. Let v dt
be equal to dl, as shown in Fig. 3.2, so that the charge dQ crossing the
surface dS in time dt is that contained in the infinitestimal volume (d1 « dS).
The current crossing the surface dS is then given by

-2-% (39)

But the current crossing the surface is also equal to J « dS, where J is the
current density at P. Since J and dS are in the same direction, J « dS = J dS.
Thus

4 __d0 . _
J—ﬁ—mv—pv 3-9)
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and
J=pv (3-10)
Now, the force experienced by the charge dQ moving with the velocity
v is given by
dF=d0vxB
= p(dl)(dS)y x B
= (dl - dS)pv x B
= J x Bd(vol)
where d(vol) is the differential volume (dl « dS). Thus the magnetic force

experienced by the charges in a differential volume in a region of current is
given by (3-11). To obtain the total force experienced in a large volume, we

(3-11)

need to integrate the right side of (3-11) throughout the volume under con-

sideration; that is,

F=| JxBdoD . (312)

For a filamentary wire carrying current I, the current density J is

infinity since dS is zero but the product J « dS is equal to I so that (3-11) .

becomes
=(dl)(dS)Ix B
=(J+dS)l xB (3-13)
=I1dlxB

as illustrated in Fig. 3.3. The total force experienced by the filamentary

wire is obtained by integrating the right side of (3-13) along the length of
the wire. Thus

F=f. (Idle):If‘ (dl x B) (3-14)

Fig. 3.3. Illustrating the force experienced by an
infinitesimal segment of a filamentary wire carrying current
Iin a magnetic field B.
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EXAMPLE 3-2. Show that the total magnetic force experienced by a closed loop of

wire carrying a current [ in a uniform magnetic field B is equal to zero.
Applying (3-14) for the contour C of the wire, we have

F= 1§c (d1 x B) = z(fﬁc dl) x B (3-15)

where, since B is uniform, we have taken it outside the integral on the right
side of (3-15). Now,

§c dl = §C (dxi, + dyi, + dzi)

- (o5 ()i (f o

(3-16)

Hence F=0. |

Ampere’s Law of Force

In Chapter 2 the concept of electric field was introduced in terms of force
experienced by a small test charge placed in the presence of a larger charge
in analogy with the gravitational force associated with two masses. We then
presented an experimental law known as Coulomb’s law and obtained from
it the expression for the electric field intensity of a point charge. Just as
static charges which are influenced by electric fields are themselves sources
of electric fields, moving charges or currents which are influenced by mag-
netic fields are themselves sources of magnetic fields. To demonstrate this, we
will in this section present an experimental law known as Ampere’s law of
force, analogous to Coulomb’s law, and use it in the next section to obtain
the expression for the magnetic field due to a current element.

Ampere’s law of force is concerned with the forces experienced by two
loops of wire carrying currents /, and 7,, as shown in Fig. 3.4. As a result of

I,

I

dl,

Fig. 3.4. Two loops of wire carrying currents 7, and 7,.
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experimental findings by Ampere, the force experienced by current loop 2
is given by

F, — kf{; § I,dl, x (ﬁsdl1 x R,,) (3-17
c1 v c2 21
where C, and C, are the contours of loops 1 and 2, respectively, & is a constant
of proportionality, and R,, is the vector drawn from a differential length
element dl, in loop 1 to a differential Iength element d1, in loop 2. The constany
of proportionality k is equal to u,/4x for free space and in the MKS system
of units. The quanity g, is known as the permeability of free space and i[s
equal to 4z x_1077. Since (3-17) is valid for any orientation of the current
loops, it follows that the differential force dF,, experienced by the differential
current element I, dl, due to the differential current element I, 41, is
_uLdl, x (I, dl; x R

aF,, = 4o ndh X QAL X Rp) (3-18)
where we have substituted u,/4z for k. From (3-18), we note that u, has the
units newtons per ampere squared. These are commonly known as henr}Js
per meter. Recalling that the permittivity of free space, €,, is equal tp
10-%/36z C*/N-m?, we note that

1 1

JHo€s /A7 X 107 X (10-°/36xm)
= 3 x 10% m/sec

—

amp-m/C (3-19)

which is the velocity of light in free space.
Some of the features evident from Eq. (3-18) are as follows:

(a) The magnitude of the force is proportional to the product of the
magnitudes of the currents.

(b) The magnitude of the force is inversely proportional to the square
of the distance between the current elements.

() To determine the direction of the force, we first find the cross
product d1; X R,, and then cross dl, into the resulting vector. The
parenthesis on the right side of (3-18) is very important since, for

i

a triple cross product, A x (B x C) = (A x B) x C. ‘

By interchanging I, dl; and I, dl, and replacing R,, by R,, in (3-182),
we obtain the expression for the force experienced by I, dl, due to I, dl, as

_ ML dl x (I,dl, X Ry,) i

dF,, o x5, (3-20)
It may be noted that dF,, is not necessarily equal to —dF,,. This can be
illustrated by considering a simple case in which dl, and dl, are normal, as
shown in Fig. 3.5. The construction of Fig. 3.5(a) shows that dF,, is nonzero

and directed parallel to dl, whereas the construction of Fig. 3.5(b) shows that




34

141 The Magnetic Field of Filamentary Currents : Sec. 3.4

dly x (dl} X Ryy)

Itl dly T

(2) ——p I, dl;
I Rz
dl; X Ry,
into the paper-
Iy d,y
(b) - —_—p I, dl,
I Rz

Fig. 3.5. For showing that the force experienced by I, dl,
due to I, dl, is not necessarily equal and opposite to the
force experienced by I, dl, due to I, dl,.

- (dl, X R,,) is zero and hence dF,, is zero. The fact that dF,, and dF,, are

not equal and opposite is not a violation of Newton’s third law since isolated
current elements do not exist without sources and sinks of charges at their
ends. On the other hand, Newton’s third law must and does hold for current
loops. It is left as an exercise for the student to prove this (Problem 3.8).

The Magnetic Field of Filamentary Currents

In Section 3.2 we derived Eq. (3-13) for the differential force experienced by
a filamentary current element located in a magnetic field. In Section 3.3 we
introduced Ampere’s law of force, which expresses the forces experienced
by two current-carrying loops of wires, and from it obtained the expression
(3-18). for the differential force experienced by a current element in the
presence of another current element. Now, comparing the forms of the right
sides of (3-13) and (3-18), we observe that the force experienced by I, dl, is
due to the magnetic field of I, dl,. If we denote this magnetic field by dB,,
we can then write

I, d1, x dB, — #o Ldl, x (2%‘1“1 X R,0) (3-21)
where we have introduced the appropriate subscripts on the left side of
(3-21). Similarly, by comparing the right sides of (3-13) and (3-20), we note
that the force experienced by I, dl, is due to the magnetic field of I, dl,. If
we denote this magnetic field by dB,, we can then write

I, dl, x dB, = b 1 dl, x (;2?‘5‘2 xR, (3-22)

where we have introduced the appropriate subscripts on the left side of
(3-22).
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Equations (3-21) and (3-22) yield a general expression for the magnetic
flux density due to a current element 7 dl at any point located at a vector
distance R from it as

Idl xR 1dl
B = 629

\
where i, is the unit vector in the direction of R. Equation (3-23) is known

as the Biot-Savart law and is analogous to the expression for the elect#ic
field intensity of a point charge. The Biot-Savart law tells us that the mag-
netic flux density at a point P due to a current element is directed normal
to the plane containing the current element and the line joining the current
element to the point, as shown in Fig. 3.6. It is therefore directed circular

Fig. 3.6. The magneticfield dB dpe
to a current element Idl, at|a
distance R from the current ele-

ment. ‘

to the straight-line axis along the current element. In particular, the sense
of the normal is that towards which the fingers are curled when the fila-
mentary wire is grabbed with the right hand and with the thumb pointing in
the direction of the current; it is the same as the sense of turning of a right-
hand screw as it advances in the direction of Idl. The magnitude of tpe
magnetic flux density is proportional to the current 7, the element length
dl, and the sine of the angle between the current element and the line from
it to the point P, and inversely proportional to the square of the distanlce
from the current element to the point P. Hence the magnetic field is zero along
the straight line in the direction of the current element. The magnetic flux
density B due to a filamentary wire of any length can now be obtained by
integrating the right side of (3-23) along the contour C of the wire.
Thus

B=to| L%l (3-24)

In evaluating the integral in (3-24), we note that i, and R are functions of the
location of dl. In terms of source point-field point notation, (3-24) is written
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as
M ( 1dl x (@ —T) 25
B(l‘)—— 47Z < |l' — l_I 13 (3 2 )

where C’ is the contour occupied by the wire.

\MPLE 3-3. A straight wire carrying current I amp lies along the z axis as shown

in Fig. 3.7. Find the magnetic flux density vector due to the portion of the
wire lying between z = —a and z = +a and then extend the result to that of

an infinitely long wire.

X

Fig. 3.7. For evaluating the magnetic flux density due to a
straight wire carrying current I amp and lying along the z
axis between z = —a and z = +a.

First we divide the wire into a number of infinitesimal segments, each
of which can be considered as a current element. The magnetic flux density
due to a current element is given by (3-23). For a current element oriented
along the z axis, i, X i is in the i, direction and hence the magnetic field is
in the i, direction. Also, its magnitude is independent of ¢. Since all current
elements making up the wire are along the z axis, the contributions due to
them are all in the i, direction and independent of ¢. Thus the magnetic field
has circular symmetry about the axis of the wire.

Let us now consider a point P(r, ¢, z). The magnetic flux density at P
due to a current element Idz’ i, at distance z’ from the origin is given by

_poldZ i, xiy_ u, IdZsina
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The magnetic flux density at P due to the segment of the wire lying betv‘ veen
z = —a and z = a is then given by

Ho Idz' sine . |
LS T O

Introducing (z — z’) = r cot & in (3-26), we obtain n

B= ,11_;; JM_ sin o dot i, = /‘_0 ~ (cos at; — cos &yl 3 3_27)

where o, and a, are the angles which the lines joining the ends of the ]w1re
segment to the point P make with the z axis. Now, for an infinitely l‘ong
wire, o, = 0 and o, = 7. Hence
— Kol — — &od; -

B i (cos 0 — cos m)i, T iy (3-28)
Thus the magnetic flux density due to an infinitely long straight wire is dejpen-
dent only on the distance away from the wire, analogous to the elegtric
field intensity due to an infinitely long line charge of uniform density. [The
field is sketched in Fig. 3.8. ||

Direction Lines
of B

Fig. 3.8. The direction lines of
magnetic field due to an infinjitely
long straight wire carrying cutirent .
out of the plane of the papeicr.

|

m
lies in the xy plane with its center at the origin. Such an arrangement 1Is)
known as a magnetic dipole. Obtain the expression for the magnetic |flux
density due to the magnetic dipole at distances very large from the origin
compared to the radius a.

With reference to the geometry shown in Fig. 3.9, we note that, at |any
point P, the ¢ component of the magnetic field due to a current element
in the ring is cancelled by the ¢ component of the magnetic field dug¢ to
another current element situated symmetrically about P so that the ¢ com-
ponent due to the entire ring is zero. Thus the magnetic field has only 7 jand
@ components. Furthermore, since the ring is circular about the origin and is
in the xy plane, the magnetic field has circular symmetry about the z axis.
Hence we consider, for simplicity, a point P having the spherical coordinlates
(r, 8, n/2). The magnetic field at P due to the current element 1 situated at
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Fig. 3.9. For evaluating the magnetic field due to a magnetic
dipole at distances very large from it compared to its radius.

¢ = ¢’ is then given by
{Ia d¢’ (—sin¢’i, + cos ¢’ i,)
dB. — & L X [—acosd'i, + (rsin@ — asin ¢")i, + rcos 6 1i,]
' 4m (a® + r? — 2ar sin @ sin ¢")372
_ poladd’ [rcos@cos @' i, + rcos @sing’i, + (a— rsin §sin ¢')i]
- 4n(a® + r?> — 2ar sin 0 sin ¢')3/2

The magnetic field at P due to the symmetrically situated current element

2at¢d =z — ¢’ is given by
{Ia d¢’ (—sin¢’i, — cos ¢’i,)
JB. = Ko X [acos @i, + (rsin @ — asin ¢')i, + rcos 01i,]
2 4n (a® + r* — 2ar sin 0 sin ¢)*/2
_ poladp'[—rcosBcosd’i, + rcos@sing’i, + (a — rsin 6 sin ¢')i,]
B 4n(a? + r* — 2ar sin @ sin ¢")3/>

The contribution to the magnetic field at P due to the pair of current elements
1 and 2 is then given by

dB = dB, + dB,

_ uladd’ [rcos@sin @' i, + (a — rsin 0 sin ¢)i,]
- 2n(a* + r* — 2ar sin @ sin ¢")3/2
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Denoting dB = dB, i, + dB, iy, we have

dB,=dB «i, = dB «(sinfi, + cos 01i,) :
wola? cos 0 dp’ (3-29)
= 2n(a® + r? — 2arsin O sin ¢')°72 j

Proceeding further, we obtain ‘
Uola? cos 6 d¢
’ 27tr3[(a/r)2 + 1 — 2(a/r) sin @ sin ¢']*/2

~ Hola® cos 6 do’
2nr?

(3-30)
for r>a

Integrating the right side of Eq. (3-30) between the limits ¢’ = —n/2 and
¢’ = m/2, we obtain the r component of the magnetic flux density due to the
entire ring as

,uOIa2 cos 0 dp’ _ u,lma*cos 0 |
B, = f¢ P 7R 2mr3 (3-31)

Now, to find the @ component of B, we note that
dBy=dB « iy = dB « (cos § i, — sin01,)

_ Moladd’ (—asinf 1+ rsin ¢) 3-32)
" 27(a® + r? — 2arsin @ sin §')32

Proceeding further, we obtain
dB, = ﬂozl:;r‘f‘l’ ( ) sin @ -+ sin ¢':l[1 — 2(%) sin 0 sin ¢" + (-f—)z]_m
ﬂ°§;:f¢ [ ( ) sin @ 4 sin ¢’:H:1 + 3<-f:--> sin@sing’ + - ]

] (aar s o)y
|

-+ ... terms involving higher powers of (7):]

Ia[ ( ) nf -+ sin ¢+ 3(%) sin 6 sin® ¢I:] d¢’  for r>a

I |
(3-%3)
where we have retained the (a/r) term since the sin ¢’ term yields zero whgn
integrated between ¢’ = —n/2 and ¢’ = =/2. Integrating the right side ‘of

Eq.(3-33) between these limits, we obtain the § component of the magnetlc
flux density due to the entire ring as

B, = Jmlz ”“Ia[— (%) sin @ + sin ¢’ + 3<%) sin 8 sin? ¢'] de’

¢'=—n/2 27012

_ Wolra? 3sm 0 (3-34)
r
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Thus

B— ﬂzggz(z cos 0, - sin 6 i) (3-35)

We can consider Eq. (3-25) as the solution for the magnetic flux density
at very large distances compared to the radius a or as the solution for the
magnetic flux density at any point (r, 8, ¢) in the limit that a — 0, keeping
Izma? constant. It should be noted that to keep Iza? constant as a — 0 requires
that I — oo. The product Iza? is known as the magnetic dipole moment
m. The magnetic dipole moment has also an orientation associated with it
which is normal to the surface of the loop. In particular, the sense of the
normal is that towards which the fingers pierce through the area of the ring
when the loop is grabbed with the right hand and with the thumb pointing
in the direction of the current. It is the same as the direction of advance of
a right-hand screw as it is turned in the sense of the loop current. Substitut-
ing m for Ira? in (3-35), the magnetic flux density due to a magnetic dipole
of moment m oriented along the positive z axis is given by

B= é‘?_ong(z cos 0i, + sin @ i) (3-36)

The magnetic field given by (3-36) is analogous to the electric field due to
an electric dipole of moment p oriented along the z-axis and given by
(2-28). 1

EXAMPLE 3-5. A solenoid consists of continuously wound, circular current loops.

Let us consider an infinitely long, uniformly wound solenoid of radius @ and
n turns per unit length, each carrying the same current 7 and with the z axis
as its axis. It is desired to find the magnetic flux density due to the infinitely
long solenoid.

Since the solenoid is uniformly wound and infinitely long, and since it
possesses cylindrical symmetry about the z axis, the magnetic flux density
must be independent of z and must possess cylindrical symmetry about the
z axis. Hence it is sufficient if we compute the magnetic flux density at a
point P on the y axis. To do this, let us consider two sections of the solenoid
symmetrically placed about the xy plane at distances z’ from it and having
infinitesimal lengths dz’ as shown in Fig. 3.10. Since the lengths are infini-
tesimal, these sections can be considered as current loops carrying currents
nl dz'. .

In each of these current loops, let us consider two differential elements
of lengths a d¢’ symmetrically situated about the yz plane, as shown in
Fig. 3.10. Applying the notation of Fig. 3.10 to (3-29) and (3-32), we obtain
the magnetic field at P due to the pair of current elements 1 and 2 as

. ratcosa dd’ i, + a dd’' [—asin o + (y/sin &) sin ¢]i,
B, = ponl dz 2n(a® + y* + 2’2 — 2ay sin ¢")¥/2
(3-37)
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N

Fig. 3.10. For evaluating the magnetic field due to an infinitely
long, uniformly wound solenoid of radius a and » turns per unit
length.

and the magnetic field at P due to the pair of current elements 3 and 4 as

_ s a*cos 0 dd’ i, + ad’' [—asin o + (p/sin o) sin §'li,
de = 'uon[dz 276(02 + yz + 72 2ay sin ¢r)3/z

(3-38)

where a, i, i,, i;, and i, are defined in Fig. 3.10. Adding (3-37) and (3-38)‘and“
simplifying, we obtain the magnetic field at P due to the four current elements
1,2,3, and 4 as

_ _ ’ (a* — aysin ¢") dop’ . ) ‘.
B = dB, + dB, = penl dz Wa>F >+ 27 — 2aysn )R- G 39)

Performing double integration of the right side of (3-39) between the appro-
priate limits, we obtain the magnetic flux density at P due to the entirq:
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solenoid as

B= i - ponl(a® — aysin¢) dp’ dz’ .
g2 d a0 W%+ Y2+ 22 — 2ay sin §')72

_ ponla =2 (a—ysindHd¢ . :
T om f¢,=_”,2 (a*> + y* — 2aysin ¢) 1 (3-40)
_ {0 for y>a

uonli, for y<a

Thus the magnetic field due to the infinitely long solenoid is zero outside
the solenoid and uniform inside the solenoid, having a value gz ,nI and directed
along the axis of the solenoid. ||

The Magnetic Field of Current Distributions

In the previous section we considered the magnetic field computation for
filamentary wires carrying current. In this section we will extend the com-
putation to current distributions. Current distributions can be of two types:

(a) Surface current for which current is distributed on a surface (planar
or nonplanar).

(b) Volume current for which current is distributed in a volume.

As in the case of continuous charge distributions, introduced in Section 2.4,
we have to work with current densities when a current is distributed on a
surface or in a volume. We have already introduced the current density for
volume currents in Sections 1.7 and 3.2. The magnitude of the volume cur-
rent density J at a point is the current per unit area crossing an infinitesimal
area at that point with the orientation of the area adjusted so as to maximize
the current, in the limit that the area tends to zero. The direction of J at
that point is the direction to which the normal to the area approaches in
the limit. Similarly, the magnitude of the surface current density at a point
is the current per unit width crossing an infinitesimal line segment at that
point with the orientation of the segment adjusted so as to maximize the
current, in the limit that the width of the line segment tends to zero. The
direction of the surface current density at that point is the direction to which
the normal to the line and tangent to the surface approaches in the limit.
We will use the symbol J, for the surface current density, in contrast to J
for the volume current density. In each case, we represent the total current
as a continuous collection of appropriate filamentary currents and evaluate
the magnetic field as the vector superposition of the contributions due to
the individual filamentary currents.

ExAMPLE 3-6. A sheet of current with the surface current density given by

J, = J, i, amp/m
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where J,, is a constant, occupies the entire xz plane. Find the magnetic fluX
density vector due to the portion of the current sheet lying between x == —@&
and x = +a as shown in Fig. 3.11(a) and then extend the result to that of
the infinite sheet.

P

b~ .
/ﬁ\( :
iq

I
I
I
I
l
1

7 =)

XXX XXX,
N
AN

\/
/ Current into the:
Plane of Paper. !

— XXXX
N

(b)

Fig. 3.11. For evaluating the magnetic field due to a sheet of
current flowing in the z direction and lying in the xz plane
between x = —a and x = a.

We divide the current sheet into a number of filaments of infinitesimal
width in the x direction, each of which can be considered as an infinitely
long wire parallel to the z axis. Let us consider a filament of width dx’ located
at x = x’ in the plane of the sheet, as shown in Fig. 3.11(a). From Examptle
3-3, we know that the magnetic flux density due to an infinitely long wire is
dependent only on the distance away from the wire and is oriented circu]zir
to the wire. Hence the magnetic field due to the current sheet will not he
dependent on the z coordinate and also will have only x and y components,
so that it is sufficient if we consider the two-dimensional geometry shown in
Fig. 3.11(b). Since the current density is J,,i,, the current flowing in the
filament of width dx’ is J,, dx’. Applying (3-28) to the geometry associated
with this filament, we obtain the magnetic flux density due to it at any point

P(x? .}’3 z) as

J,o dx’ .

dB = Holso 3-41
S x— XV TP @G-41)
where i, is the unit vector normal to the line drawn from the filament to the
point P as shown in Fig. 3.11(b). Expressing dB in terms of its componenfis
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along the coordinate axes, we have

J,, dx’
dB = HoVs0
2n/(x — x')* + y*

The magnetic flux density at P due to the portion of the infinite current sheet

(—sinai, 4+ cos & i,) (3-42)

between x = —a and x = +a is then given by
B=[ aB
e __ MJgsinadx’ . UoJ, cos o dx’ ] i
P R i n oy i A B

where we have used the transformation (x — x’) = y cot & for evaluating the
integrals in (3-43), and the angles &, and «, are as shown in Fig. 3.11(b).
Now, for the infinite sheet of current, ¢; = 0 and a, = = for y > 0, and
o, =2z and a, =z for y < 0. However, to evaluate In (sin a,/sin «,), we
note that

. osing, . [(x 4+ @) 4 p2 V2
%,l_r.r‘,l‘,sinoc1 _P_.IE (x—a)¥+yy2] 1
and hence
lim In 8292 _ o (3-44)

asoe  SIN 04

Substituting for &, and &, in (3-43), we then obtain the magnetic flux density
due to the infinite sheet of current as

—/‘_Ur"*"ix for y>0

B=
Joos
'““2—“1, for y <O (3-45)
i 0
=&oJ xi, wherei, = { f’ for y >
2 —i, for y <0

The field given by (3-45) is sketched in Fig. 3.12. If the sheet current occupies
the y = y, plane, it follows from (3-45) that

—ﬁgzlﬂ’ix for y > y,
B—=

boloi  for y <y, I

ExampLE 3-7. Current flows in the axial direction in- an infinitely long cylinder of

radius @ with uniform density J, amp/m?. Find the magnetic flux density
both inside and outside the cylinder.
Choosing the z axis as the axis of the infinitely long cylinder as shown
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/Js = Jso iz
Js0
2 . . \ 8

®

|
l

Jso0 ix

s
I XXXXXX XXX K XXKXHXXXXXXXXX X
3

1
—Mo

y 0

Fig. 3.12. The direction lines of magnetic field due to an infinite
sheet of current flowing into the plane of the paper with uniform
density.

x PR RN (a) (b)

Fig. 3.13. For evaluating the magnetic field due to a volume
current flowing along an infinitely long cylinder of radius a
with uniform density.
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in Fig. 3.13(a), we have the volume current density as
J = J,i,

The cylindrical current distribution can be thought of as a superpositon
of filamentary currents parallel to the z axis so that the magnetic field is
independent of z. Hence it is sufficient if we consider the two-dimensional
geometry shown in Fig. 3.13(b). Furthermore, for every filamentary current
and for a given point P, there is another filamentary current so that the
combined magnetic field due to these two filamentary currents is entirely in
the ¢ direction. This is illustrated in Fig. 3.13(b) for a point P on the x axis.
Thus the magnetic field due to the entire current distribution has only a
¢ component and possesses cylindrical symmetry about the z axis. Let
us therefore consider two filamentary currents corresponding to the infinites-
imal areas rdr d¢ at (r, ¢) and (v, —¢) as shown in Fig. 3.13(b). The mag-
netic field at P due to these two filamentary currents is given by

KoJor drdd
27(r? 4+ x* — 2rx cos )2

_ HoJor drdé(x — rcos qS)
7(r? + x* — 2rx cos ¢)

The magnetic field at P due to the entire current distribution is then given by

B=Jj=DJ':=0dB

=ﬂoTJ0fa rdrfn (X—rcos¢)d¢

o t,(rz-l-x2—2rxcos.¢)°’

dB =

2cos o iy \
(3-46)

ud, [ 0 for x <r
— Hado d :
n f,=or d % for x>r)]‘b

”JOJ Z,rdri, forx>a (3-47)

X

r=0

oy (7 7 ;
T f,=oxrd“¢ for x<a

Falo ”§2i¢ for x > a

X

) ,
-”1‘;‘;"—73‘i¢ for x <a

Recalling that B has cylindrical symmetry about the z axis, we substitute r
for x in (3-47) and obtain

po‘b(g;—;/z)iq, for r > a
B= T Ol (3-48)
,u(,"(g—;r/)iqb for r<a
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Noting that zr?/2 is the area of cross section of a wire of radius r, and that
there is no current for # > a, we can combine the two results on the right
side of (3-48) as

B() — current enclosed by th<=é 7;::rcular path of radius r, i, (3-49)

Viewed from any distance r from the axis of the infinitely long cylinder|
carrying current, the current distribution is equivalent to an infinitely long
filamentary current of value equal to the current enclosed by the circular path
of radius r. |

Ampere’s Circuital Law in Integral Form

Tn Section 2.6 we started with the electric field intensity of a point charge
and derived Gauss’ law, which was later found to be very convenient for
computing the electric field due to certain symmetrical charge distributions
Similarly, in this section we will start with the magnetic flux density due ta
an infinitely long wire carrying current and derive Ampere’s circuital law
We will later find Ampere’s circuital law to be very useful compared to the
Biot-Savart law for computing the magnetic field due to certain symmetrica
current distributions. \

Let us consider an infinitely long filamentary wire along the z axis
carrying current / amp. The magnetic flux density due to this wire is directed
everywhere circular to the wire and its magnitude is dependent only on the
distance from the wire. Let us consider a circular path C of radius r in the
plane normal to the wire and centered at the wire as shown in Fig. 3.14. For

an infinitesimal length dl = dli, on this contour C, we have \‘

B.dl= bl . i, = Bl (350)
|

The integral of B « dl along the entire path C is then given by

dl

I into the Paper

Fig. 3.14. For evaluating§ B - dl,
c

where C is a circular path of
ol | radius r in the plane normal to a
2ar straight, infinitely long wire
carrying current I and centere?

at the wire.
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il — & seddl _ pl )
§CB dl c#_ﬁfﬁcdz (3-51)

where we have taken u,I/2znr outside the integral since r is constant for the
contour C. Proceeding further, we have

Ef; B.dl=tl (circumference of C)
c 2nr
7 (3-52)
— & -
=50 Qnr) = pl

Equation (3-52) states that the line integral of B around a circular path in
the plane normal to an infinitely long wire carrying current I and centered
at the wire is equal to y,I. It is independent of the radius r of the circular
path. Whether » = 1 micron or 1000 km, the value of the line integral is the
same (provided, of course, that there is no other magnetic field in the me-
dium). It should be noted that the current I in (3-52) is the current which
flows in the direction of advance of a right-hand screw as it is turned in
the sense in which the line integral around C is evaluated.

Before we proceed further, a few words about the line integral of B are

in order. In Chapter 2 we learned that be « dl has the meaning of work

or change in potential energy per unit charge associated with the movement
of a test charge from point a to point b in the electric field E. This is because
the force experienced by a charge due to an electric field is in the same direc-
tion as the electric field. On the other hand, in a magnetic field B, the force
experienced by a test charge moving in the direction of dl (or by a current
element I dl) is perpendicular to both B and dl. Hence the work associated
with the movement of the test charge is zero. Thus [ B« dl does not have

the meaning of work. Just as f{; E . dS provides us information about
S B
charges enclosed by S, § B . dl tells us about the current enclosed by C.
o}

Therefore, in this respect é; B . dlis analogous to ff E . dS. We will simply
o} S

call it the circulation of B.

Let us now consider an arbitrary path C (not necessarily in a plane)
enclosing the current as shown in Fig. 3.15. For an infinitesimal segment
dl at P along this path,

gl — oL . o _ Wl dlcosa )
B.dl SaRY dl 7 (3-53)
where R is the distance of P from the wire, i, is the unit vector at P directed

circular to the wire, and o is the angle between dl and i,. The circulation of
B around the arbitrary path C is

_ [ moddlcosa _ u,I [ dlcoso
§CB o dl = §c—2nR =5z c_R (3-54)
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Fig. 3.15. For evaluating §CB .dl,

where C is an arbitrary closed
path enclosing a straight, infinitely,
long wire carrying current 7.

In (3-54), dl cos o is the projection of dl onto the circle of radius R centered
at the wire and passing through P. Hence (d/ cos a)/R is the projection of
dl on to the circle of radius unity in the plane normal to the wire and centered

at the wire, and § (dl cos ®)/R is the sum of the projections of all infinitesimal
c

segments comprising the contour C onto the circle of radius unity. Thus it
is equal to the circumference of the circle of unit radius, that is, 2z. Substi-
tuting this result in (3-54), we have

§ B.dl— 5207’(27:) — u,l . (3-55)

contoqr
enclosing I

If the arbitrary contour does not enclose the current, then, in evaluating
f (d! cos a)/R, we start at one point on the circle of unit radius, traverse to
[of

another point on it and return to the starting point along the same path in
the opposite direction, obtaining a result of zero in this process. Hence

§ B.dl=0 (3-56)

contour not
enclosing I

Equations (3-55) and (3-56) may be combined into a single statement which

reads as
|

j; B . dl = py(current enclosed by the contour C) (3-57]
c

This is Ampere’s circuital law. Although we have derived it here for an
infinitely long straight wire, it can be proved for a current loop of arbitrary
shape. Also, if we have a number of current loops or infinitely long wires

|
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carrying currents or continuous current distributions in the form of surface
or volume current, we can invoke superposition and conclude that Ampere’s
circuital law as given by (3-57) holds for any closed path C provided the
current enclosed by C is uniquely defined.

Let us now discuss the uniqueness of a closed path enclosing or not
enclosing a current. To do this, let us consider the case of a straight fila-
mentary wire of finite length in the plane of the paper carrying current I,
as shown in Fig. 3.16. This can be achieved by having a source of point

a
— N T T T — - — —
hY) .. I
/ C Position 1 |
B . '
1 Sink of |
Point Charge |
a’ . |
— — — — — — —
b
Position 2
bl

Fig. 3.16. For illustrating that the current enclosed by closed
path C surrounding a finitely long filamentary wire is not
uniquely defined.

charge at one end of the wire and a sink of point charge at the other end.
Let a closed path C be in the plane normal to the paper, emerging out of
the paper at a and going into it at b. Let us denote this position of the closed
path as position 1. Imagining the closed path to be rigid, we can bring it to
position 2 by sliding it parallel to the wire for some distance, pulling it down,
and then sliding it back parallel to the wire as shown by the dashed lines.
We are able to achieve this without cutting through the wire. We then say
that the current enclosed by the closed path C is not uniquely defined. Alter-
natively, we can define the current enclosed by a path as that which pierces
through (passes from one side to the other side of) a surface whose perimeter
is the closed path. For the closed path C in Fig. 3.16, let us consider two
bowl-shaped surfaces .S, and S,. It can be seen that the wire pierces through
S, but not through S,. This suggests that we cannot uniquely define the
current enclosed by C in Fig. 3.16. It is clear that Ampere’s circuital law

(3-57) cannot be used for the case of Fig. 3.16. In fact, if we evaluate Sﬁ B.dl
C
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around the contour C in Fig. 3.16, we will not obtain y,I for the answer.
On the other hand, if the wire is infinitely long, we cannot bring the closed
path from position 1 to position 2 without cutting through the wire and there
can be no surface whose perimeter is C and through which the wire does not
pierce. The current enclosed by C is then uniquely defined. Similarly, for
surfaces whose perimeter is position 2 of the closed path in Fig. 3.16, the in%-
nitely long wire does not pierce at all or it pierces through an even number
of times, entering from one side and emerging out on the same side so th:lat
the net current enclosed by the path is always zero. Thus we can summari7re
the discussion in this paragraph by stating that the current enclosed by ‘a
path is uniquely defined if the net current which passes through each possible
surface whose perimeter is the closed path is the same.

ExaMPLE 3-8. An infinitely long filamentary wire along the z axis carries current
o

Iamp. Find f B . dl along the straight line joining P to Q, where P awd
P

Q are (1, —1,0) and (1, 1, 0), respectively, in cartesian coordinates.
The geometry of the problem in the xy plane is shown in Fig. 3.177.

x Q0(1,1,0)
AN
\
dy i
(1,)',0)\
\
\
Y
. > X
' i
I |
A / 0
/ Fig. 3.17. For evaluating L B.dl
/- " along the straight line from
(/ P to Q in the field of an infinitely
P(1,—-1,0) long wire carrying current 1. !

First we will solve this problem by actually evaluating JQ B - dl along the
P

given path. To do this, let us consider an infinitesimal segment dl = dy i, :;at

(1, », 0). Since B at this point due to the line current is [1,I/Q2%./T + y2)]i;,

we have ‘
B.dl=_—tl i .ayi

- 27./1 + y?

_ _Holdy — _Mody
w15 = md 19
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Thus

[o] 1 Idy
B.dlzf Ko
L ooy 211+ »%)

=ﬂ_olf"/4 d¢=”T°I

2” ¢=—n/4

(3-58)

This result can, however, be obtained without performing the integration‘
if we note that, according to Ampere’s circuital law,

5;3 B.dl=0 (3-59)
PQAP

where QAP is part of a circle centered at the line current. Equation (3-59)
may be written as

J'QB-dl—}— B.dl=0
P

QAP
which yields
jQB.d|=— B.dl (3-60)
P

Q4P

However, from symmetry considerations, f B . dlis equal to —u,I(QAP)
QAP
divided by the circumference of the circle, or —uI(%/2)/2r = — u,1/4. From
(3-60), we then obtain a value p,1/4 for fg B . dl, which agrees with (3-58). ||
P

Given B and a closed path C, it is always possible to compute the
current enclosed by the path by evaluating ﬂ; B . dl analytically or numer-
[of

ically and then dividing the result by x4, in accordance with Ampere’s circuital
law given by (3-57). The inverse problem of finding B for a given current
distribution by using (3-57) is possible only for certain simple cases involving
a high degree of symmetry, just as in the case of the application of Gauss’
law for finding E for a given charge distribution. First, the symmetry of the
magnetic field must be determined from the Biot-Savart law and second,

we should be able to choose a closed path C such that § B « dlcan be reduced
o}

to an algebraic quantity involving the magnitude of B. Obviously, the closed
path must be chosen such that the magnitude of B is uniform and the
direction of B is tangential to the path along all or part of the path, while
the magnitude of B is zero or the direction of B is normal to the path along
the rest of the path in the latter case. We will illustrate this method of obtain-
ing B by reconsidering Examples 3-6 and 3-7.

ExAMPLE 3-9. A sheet of current with the surface current density given by

Js = Jinz

where J,, is a constant, occupies the entire xz plane as shown in Fig. 3.18.
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|
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d - c
Fig. 3.18. For evaluating the magnetic flux density due to an
infinite plane sheet of current.

The magnetic field due to such a current sheet was found in Example 3-6
by using the Biot-Savart law. It is here desired to find the magnetic flux
density due to this infinite sheet of current using Ampere’s circuital law.

From purely qualitative reasoning based upon the magnetic flux density
due to an infinitely long, straight filamentary wire of current, we can con-
clude that the magnetic flux density due.to the infinite sheet of current of
uniform density is (a) entirely in the 4 x direction for y > 0 and in the —x
direction for y < 0, (b) uniform in planes parallel to the current sheet, and
(c) symmetrical about y = 0. Thus

B = Bj, (3-61)

where i, is the unit téngential vector to the current sheet given by i
i =i, xi, (3-62)

in which i, is the unit normal vector to the current sheet. We can therefore
choose a rectangular path abcda having length / parallel to the current sheet
and width w normal to the current sheet and symmetrical about the current
sheet as shown in Fig. 3.18. Then

§a“aB-d1=jjB-d1+j:B-d1+jjB cdl+ ['Bedl (63)

But JCB «dl and rB « dl are equal to zero since B is normal to the paths
b d

bc and da. For paths ab and cd, B is parallel and directed along these paths.
Furthermore, the magnitudes of B are the same for these paths since they
are equidistant from the current sheet. Thus (3-63) reduces to

b b . .
fﬁamB cdl = 2LB,, cdl = Zf., Bi, « dlj, e
= 2B, j dl = 2B]

But, from Ampere’s circuital law,

§ B .« dl = yu, (current enclosed by abcda) = p,J,,! (3-65)
abeda
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Comparing (3-64) and (3-65), we have

B, = talo (3-66)

B = fodai, x i, =, xi, (3-67)

which agrees with the result obtained in Example 3-6. ||

ExAaMPLE 3-10. Current flows in the axial (z) direction in an infinitely long cylinder
1 of radius a with uniform density J, amp/m? as shown in Fig. 3.19. The mag-
netic field due to such a current distribution was found in Example 3-7 by
using the Biot-Savart law. It is here desired to find the magnetic flux density

both inside and outside the cylinder using Ampere’s circuital law.

X XoXXmX_ XX
xxxf\x\x

/ x X xr < ax \ \
( I
\ /
\ /
\ /

Fig. 3.19. For evaluating the \ /

magnetic flux density due to a

volume current flowing with uni-

form density along an infinitely

long cylinder. is

In Example 3-7 we established from purely qualitative arguments that
B, due to the given current distribution, has only a ¢ component and
possesses cylindrical symmetry so that it is a function only of the distance
from the axis of the cylinder. Thus

B = B,(r)i, (3-68)

Choosing, therefore, a circular path C of radius » =2 a centered at the axis
of the cylinder and in the plane normal to the axis, as shown in Fig. 3.19,
we have

§CB cdl= §03¢i¢ . dli, = B, ffcdz

= B,(circumference of the circle of radius r) (3-69)
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\
But, from Ampere’s circuital law,

§ B « dl = pg(current enclosed by C)
c

|
(3-70)

= u,(current enclosed by circular path of radius r) ‘

Comparing (3-69) and (3-70), we have
B. — . current enclosed by circular path of radius
s — Ho o
_ . current enclosed by circular path of radius r , }

B =4, o i, (1)

which agrees with the result of Example 3-7. |}

Ampere’s Circuital Law in Differential Form (Maxwell’s Curl !
Equation for the Static Magnetic Field)

Let us consider a volume current distribution with the current density vectbr
J as a given function of the coordinates. The current enclosed by an
arbitrary closed path C is given by the surface integral of the current densijy

over any surface S bounded by the closed path C; that is, f J + dS. Accory-
S

ing to Ampere’s circuital law (3-57), we then have |

§CB.d1=#OLJ-ds (3-7&)

where C is traversed in the sense in which a right-hand screw needs to ﬂPe
turned if it is to advance to the side of S towards which the current on the
right side of (3-72) is evaluated. If we now shrink the path C to a very
small size AC so that the surface area bounded by it becomes very small,
AS, we can write (3-72) as

AC

B.dl =y, LSJ . ds (3-73)
J

Since the surface area AS is very small, we can consider the current density

|
to be uniform over the surface so that JedS=~J.i,AS, where i, !is
AS

the normal vector to AS pointed to the side towards which a right-hand
screw advances as it is turned in the sense of the closed path. This relation
becomes exact in the limit AS — 0. Dividing both sides of (3-73) by AS
and letting AS — 0, we have

B-dt  u [ J.ds
: AC — 1 AS
fim ~Sxs— = lim AS R
. J.i AS -
= #o lim =

:ﬂOJ.in
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Now, the curl of B is defined as the vector having the magnitude given
by the maximum value of the quantity on the left side of (3-74) and the direc-
tion given by the normal to the AS for which the quantity is maximized.
Looking at the right side of (3-74), we note that this maximum value occurs
for an orientation of AS for which the direction of i, coincides with the direc-
tion of J and it is equal to g, times the magnitude of J. Thus ‘

B.dl
|V x B| = maximum value of (lim ACAT) = po|J| (3-75a)

AS—-0
direction of V x B = direction of J (3-75b)
so that
VxB=yuJ . (3-76)

Equation (3-76) is Ampere’s circuital law in differential form. It states that
the curl of the magnetic flux density at any point is equal to u, times the
volume current density at that point. This is Maxwell’s curl equation for
the static magnetic field.

The right side of (3-76) represents a volume current density. For problems
involving line and surface currents, we make use of Dirac delta functions
just as in the case of Gauss’ law in differential form for point charges, line
charges, and surface charges. For example, following the method employed
in Example 2-12, we obtain for a surface current of density J, occupying the
y =Y, plane,

VxB=uJd oy —y) (3-77)

Magnetic Vector Potential

Thus far we have discussed the determination of the magnetic field due to
a current distribution directly from the current distribution using initially
the Biot-Savart law and then Ampere’s circuital law. In Chapter 2, we
first discussed the determination of the electric field due to a charge distri-
bution directly from the charge distribution using initially an integral for-
mulation based on the electric field intensity due to a point charge and then
Gauss’ law. Later we introduced the electric potential field from energy con-
siderations and discovered the relationship of the electric field intensity to
the scalar potential through the gradient operation as an alternative approach
to the determination of the electric field. In this section we introduce a similar
alternative method for the computation of the magnetic field due to a given
current distribution.

To do this, we note from (3-25) that, for a filamentary wire carrying
current /, the magnetic flux density is given by

_ o [ IdY Xig(r,x')
B(r) = n jc' —R(nr) (3-78)
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where C’ is the contour of the wire, r’ is the position vector defining the:
infinitesimal length element d1' on C’, r is the position vector of the field
point, i (r, r') is the unit vector along r — r’, and R(r, r’) is equal to |r —r’|.

Substituting
1 1.
V()= s

Y ' [; 791
B(r) = — &of f x| r,)] (379

Using the vector identity
AxVV=VVxA—Vx(VA)

we can write (3-79) as

ol , dr
B = —&! f[R(”)del VxW] (3-80

In (3-80), the integration is with respect to the points on the filamentary wire
whereas the curl operation has to do with differentiation with respect to the
coordinates of the field point. Hence V x dl' = 0 and also, the two opera
tions can be interchanged to give us

_ _OI a o [ IdY
V X RO, T) — V x ol R (3-81a
If, instead of a ﬁlamentary wire, we have a surface current of density J, o1

a surface S’, or a volume current of density J in a volume V’, we obtaln
similar relationships as follows, respectively:

_ o [ I, aS’
B=Vx <47‘;: fs'_—R ) (3-811]

_ o [ Jav
B=Vx <47‘; fw R ) (3-81¢
In (3-81a)-(3-81c), we have expressions which permit us to comput‘é

B by finding the curl of a vector quantity. Denoting this vector quantity as
A, we have ‘

in (3-78), we have

T

(=3

B=VxA (3-82)
where
f“_ f for line current (3-83a)
= g— J R for surface current (3-83b?
J dv’ |
- i‘_ f = for volume current (3-830)
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We note the similarity of the right sides of (3-83a)-(3-83c) with the expres-
sions for the electrostatic potential ¥ due to line, surface, and volume charges
given, respectively, by

1 f podl for line charge
o

~ e, R
_ 1 Ps as’
V= 4n€0 for surface charge
= 4—— p dv’ for volume charge
7€, i

In view of this similarity, and since A is a vector in contrast to the scalar
nature of ¥V, A is called the magnetic vector potential. Unlike ¥, A does not
have a physical significance. It serves as a convenient intermediate step for
the computation of B. This is especially so because of the similarity of the
expressions for ¥ and the expressions for A. The components of A due to
a particular current distribution can be written without actually evaluating
the integrals if the analogous integrals for the electrostatic potential have
already been evaluated in the corresponding electrostatic problem.

ExampLE 3-11. An infinitely long straight wire carrying current 7 amp lies along the
z axis. Obtain the magnetic vector potential due to this wire and then find
the magnetic flux density by performmg the curl operation on the vector

potential.
Applying (3-83a) to the infinitely long wire, we have the vector potential
given by
o _ I dz 1
or
= IdZ\,
A= (f“—;; Lhw = );, (3-84)

where R is the distance of the point P at which A is to be computed from an
infinitesimal current element 7 dz’ i,, as shownin Fig. 3.20. Let us now con-

sider the quantity
1 T ppdz
dne, ) ... R

This is the integral for computing the electrostatic potential due to an infi-
nitely long line charge of uniform density p,, lying along the z axis. This
expression is analogous to the expression inside the parentheses on the
right side of (3-84). Thus, finding the vector potential due to the infinitely
long wire is analogous to determining the electrostatic potential due to the
infinitely long line charge of uniform density. However, we already know the
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X

Fig. 3.20. For evaluating the magnetic vector po-
tential due to an infinitely long, straight wire car-
rying current 1.

solution for this electrostatic potential from Example 2-17. This is given by

Pro1n r -119
27:60 InL v (2-119)

where r is the distance of the point P, at which V is desired, from the line
charge and r, is the distance from the line charge to the point at which the
potential is zero, as explained in Example 2-17. Thus

1 - Pro 4z _ Pro
dre, f . R T 2w, ln (3-85)
We can immediately write down by analogy that ‘
b [ I dz' |
4n =l s (3-86)

Z/=—c0

Substituting this result into (3-84), we obtain the vector potential due to the
infinitely long wire as

A=— ‘;—onf In r’_oi, (3-87)

Using the expression for the curl in cylindrical coordinates, we then have

i
e

. i¢ Zz

r 14
B=VxA=|d 9 d
or d¢ 0z

0 0 A4,
_ 104, 04, _ pl;

r d¢ LT = o
which is the same as the result obtained in Example 3-3. ||
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J3xaMPLE 3-12. A loop of wire carrying current / amp occupies an arbitrary contour
C’ as shown in Fig. 3.21. Find the vector potential due to this current loop
at distances r from the origin large in magnitude compared to the distances
of the points on the loop from the origin.

davr

Fig. 3.21. For evaluating the vector potential due to an arbitrary
loop of current I at large distances from the origin compared
to the distances of the points on the loop from the origin.

Let P be the point at which the vector potential is desired. Then, from
(3-83a), the vector potential at P due to the current loop is given by

1dv
At = 47z§ =]

dr
§ ,(r2 4~ r'* — 2rr’ cos )72

_4__ (3-88)
r: 2t er\T2
g‘—§ 1+ — ) dl

r2

Using the binomial expansion employed in Example 2-15, we have
— ﬂ I r o r L ' o 2 . p2p2
A_;g;ffc{ur + o B 12 — 177
+ ... higher-order terms} dy (3-89)
)7,

! o . 2 __ 2
§; dl’—{—§ r,zrdl"|‘§ 3@’ r% - rer'? dr+ .
c’ c’
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In (3-89), fﬁ dl' = 0 for any C’ so that the second term is the first signiﬁ-ﬂ

cant term. Furthermore, for r << r, it is sufficient if we consider the ﬁrst
significant term. Thus, for » > r’,

(3-90

Now, using the vector identity
AxBxC=A-CB—(A+BC
we have
rx@'xr)y=@r)dl' — (&« dl')yY
or
@en)dll =rx (' xr)+ (.dl'y
=drx (@dl' xr) + 4@ dly 4 1@ «x)dl
We further note that
(@ «dl) + @ +r)dl
=xdd' +ydy +zd2")(x'i, + Vi, + 2'1)
+ ('x + Yy + 2'2)@dx i, + dy'i, + dz' L)
= Qxx'dx' + yy' dx' + zz’' dx’ + yx' dy' + zx’ dz')i,
+ (ex’ dy’ + 2yy' dy' + zz' dy' + xy' dx' + zy' dZ')i,
4+ (xx"dz' + yy' dz' + 2zz' dz" + xz' dx' + yz' dy')i,
=d[(xx' + yy’' + zz'}x'i, 4+ i, + 2'1))]
=d[(r « )] (3-92)
Substituting (3-92) into (3-91), we obtain
@ er)dl' =4rx (dl' xr) + L d[@x - r')’] (3-93)
Substituting (3-93) into (3-90), we have

(3-91

_.I"OI _1_ ’ ’
_‘Waffdzrx(dl x ') +

Mol e )
8mr? f{)‘c, dl(r - 1')r’] ;
: (3-94)
/7Y e v~ |
_4nr3§c,2rx(dlxr) |
since the second integral, being an integral of a total differential around &

closed contour, is equal to zero. Finally, defining
1

m=_¢ rxIdl (393
2 9.

S’

we obtain

I

1
A=t § (@ xIdl)| xr
A | J .2 A

(3-96)

tmxr
o
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Thus, at large distances from the current loop, the vector potential falls off
inversely as 2 in contrast to the inverse distance dependence of the electro-
static potential at large distances from an arbitrary charge distribution,
provided the total charge is not equal to zero. The quantity m is the dipole
moment of the current loop about the origin. ||

“XAMPLE 3-13. Show that, for a plane loop of wire carrying current I, the dipole

moment m given by

m=214 vxrar
2 Jo

has a magnitude equal to the area of the loop and a direction normal to the
plane of the loop drawn towards the direction of advance of a right-hand
screw as it is turned in the sense of the contour C’ of the loop.

First we show that the dipole moment about the origin is the same as
the dipole moment about any other point. Letting the position vector of
this arbitrary point be r,, we have

§ r' x Idl
o
1

@ —r)xIdl' + 50 r,xIdl
o _ 2 Jo

m

o o]

(3-97)
:_I-J; (1-’—r0)><Ia’l’—i—-1—1r0 x§ ar
2 ). 2 o

:iff @' —r,) x Idl
79, \

since if; dl' = 0. Thus the dipole moment of the current loop is indepen-
o

dent of the point about which it is computed. Let us therefore choose this
point to be in the plane of the loop and inside the loop as shown in Fig.
3.22. Then

' —r) xdV =%|x' —r,|dl'sinai, (3-98)

where « is the angle between (t' — r;) and 41’ and i, is the normal vector to
the plane of the loop, drawn towards the direction of advance of a right-
hand screw as it is turned in the sense of C’ as shown in Fig. 3.22. But the
magnitude on the right side of (3-98) is the area of the triangle formed by
(r' — r,) and dV'. Thus, since (t' — r,) x dl’ is along i, for all dI' on C’, we
have

1 / / sum of areas of triangles formed by all\ .,
2 §c, (' —1xo) x dl' = (dl’ with the corresponding ¥ — r, ) i, (39

= (area of the loop)i,

This result is consistent with the dipole moment defined in Example 3-4 for
the plane circular loop of radius a lying in the xy plane. |
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(¢)

‘Fig. 3.22. For evaluating th
dipole moment of a plane loo
of wire carrying current I.

=]

Returning to Eq. (3-82) and taking the curl of both sides, we obtain
VxB=VxVxA=V(V.A)— VA (3-100)

where we have used the vector identity for V x V x A. But, from Amperefs
circuital law in differential form, we have |

V xB=pJ (3-76)
Thus, from (3-100) and (3-76), we get
V(V.A) — VA= pyJd (3-101)
However, considering a current loop, we have

VA V. Ul dl
Vea=v §—4nT

, (3-102)
=&i§ y.dar
4 J.. R

where C’ is the contour of the current loop and dl’ is an infinitesimal length
element on C’. Using the vector identity

V- VA:A.VV—I" VV’A
we write (3-102) as

I 1 1 )
V.-A= /io—(if dl « V= :f —V. dl’) 3-103)
4 \J . R+ « R (

On the right side of (3-103), the second integral is zero since V « dl' = 0.
Using V(1/R) = —V’(1/R) where the prime denotes differentiation with
respect to the primed variables, and then using Stoke’s theorem, the first
integral can be written as

1 1 ’ ’ l1 !
,0 —_—— — ,—0 —_ — _ - 4
§C1dl Ve f&v =+ dl le x Ve dS' (3-104)

where S’ is any surface whose perimeter is C’. But the curl of the gradient
of a scalar is identically equal to zero. Hence, the right side of (3-104) is
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zero. Thus, for a current loop, V « A = 0. If we now consider a region of
volume current in which there is no accumulation of charge, we can represent
the volume current as a superposition of a number of current loops for each
of which V « A = 0 so that, for the entire volume current, V « A = 0. Sub-
stituting this result in (3-101), we obtain

VA= —uJ (3-105)
In analogy with
vy =—L£ (2-140)
€

Equation (3-105) is known as the Poisson’s equation for the vector poten-
tial. It is a differential equation which relates the magnetic vector poten-
tial at a point to the volume current density at that point, just as (2-140)
is a differential equation which relates the electrostatic potential at a point
to the volume charge density at that point. Equation (3-105) is a vector equa-
tion and hence it is equivalent to three scalar equations. For example, in
rectangular coordinates,

V2ZA = (V24))i, + (V24)i, + (V24),
so that we have

Vid, = —u,d, (3-1062)
V24, = —u,l, (3-106b)
Vid, = —p,J, (3-106¢)

If the volume current density is zero in a region, then the right side of (3-105)
is zero for that region so that (3-105) reduces to

V2A =0 forJ =0 (3-107)

which is Laplace’s equation for the magnetic vector potential, in analogy with
Laplace’s equation for the electrostatic potential given by

V=0 forp=0 (2-141)

It states that the Laplacian of the magnetic vector potential in a region
devoid of current is zero, just as (2-141) states that the Laplacian of the elec-
trostatic potential in a region devoid of charges is zero. Again, using the
expansion for V2A in rectangular coordinates, we obtain the three component
equations for (3-107) as

V24, =0 (3-1082)
Vid, =0 (3-108b)
V24, =0 (3-108¢)

For a given current distribution, the solution to Poisson’s equation (3-105)
is obtained by solving the three component equations (3-106a)—(3-106c).
Again, we can take advantage of the similarity of (3-106a)-(3-106c) with
(2-140) and in many cases simply write down the solution from previous



3.9

"~ (3-76), (3-109) completely defines the properties of the static magnetic field.
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knowledge of electrostatics, without the necessity of solving the differentizl
equations.

Maxwell’s Divergence Equation for the Magnetic Field

The divergence of the curl of a vector is identically zero. Since
B=VxA (3-82)

it then follows that
VeB=0 (3-109)

Equation (3-109) is Maxwell’s divergence equation for the magnetic field.
Together with Maxwell’s curl equation for the static magnetic field given b“y
Equation (3-109) determines whether or not a given vector field is realizabje
as a magnetic field, whereas Eq. (3-76) relates the field to the current dis-
tribution responsible for producing the field. When compared with Maxwell’s
divergence equation for the electric field intensity,

V-E=Z (2-8)
€ |

Eq. (3-109) reveals the fact that isolated magnetic charges do not exist. !
Taking the volume integral of both sides of (3-109) in a volume V, we

have
f (VeB)dy=0 (3-110)
14
But, according to the divergence theorem,

§SB.ds=jV(v.B)dv |

!
where S is the surface bounding the volume V. Since (3-110) is true for any
volume, we obtain the result that

§ B.dS=0 (3-111)
S

for any closed surface S. Equation (3-111) is the integral form of the diver-
gence equation (3-109). Since B is the magnetic flux density, {5 B + dS is the
total magnetic flux emanating from the surface S. Thus Eq. (3-111) states
that the total magnetic flux emanating from any closed surface is equal Ito
zero. Whatever flux goes into the volume bounded by the surface must conLe
out of it. The magnetic field lines form closed paths, unlike electric field lines

which begin from positive charges and terminate on negative charges. Since
§ B« dl = p,(current enclosed by C) \ (3-57)
c

the closed paths must form around the current producing the magnetic
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field. Vectors which, in this manner, are characterized by zero net flux over
all possible closed surfaces are said to be solenoidal. The current density vec-
tor J for static fields is another example of a solenoidal vector since, from

V:VxB=0 (3-112)
we have
VeuJdJ=0
or
V.J=0 (3-113)

The solenoidal nature of J follows from the fact that, in the absence of accu-
mulation of charge at a point with time, current must flow in closed paths.
Since we are here considering static phenomena, there cannot be any accu-
mulation of charge and hence V « J = 0. On the other hand, when we con-
sider time-varying or dynamic fields, we can allow for the accumulation of
charge, in which case we will find that (3-113) does not necessarily hold
everywhere.

ExaMpLE 3-14. Determine if the following vector fields are realizable as magnetic

| fields:

(@) F, = (—yi, + xi,) cartesian coordinates

) F, = /;‘;::’f (—sin@i, + cos @ i) cylindrical coordinates

(c) F,=(sin@1i, + cos @ i) spherical coordinates
9 d .y _
@V Fo= () +70=0

Hence F, can be realized as a magnetic field. In fact, if we note that, in
cylindrical coordinates, F, = ri,, the solenoidal nature of F, becomes obvious.

F — 1 0 (_um . ) i0<ﬂom1. )_

®) v F”_Tér( 2nr sing) + < 0P\ 2nr2 cos$) =0

Hence F, can be realized as a magnetic field. It is left as an exercise (Problem
3.21) for the student to show that F, is the magnetic field due to a two-
dimensional magnetic dipole of moment ;.

19 . 1 0,
(© V.F, = ﬁm(ﬂ sin 0) + mm(sm@ cos@) =0

Hence F,cannot be realized as a magnetic field. |j

ExaMmpPLE 3-15. In Example 3-5, the magnetic field due to an infinitely long, uniformly
wound solenold of radius a and » turns per unit length carrying current 7
was found by using the Biot-Savart law. It is here desired to find the magnetic
field due to the solenoid from Ampere’s circuital law and the solenoidal
character of the magnetic field.
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Employing a cylindrical coordinate system with the z axis as the a:xis
of the solenoid, let us assume that the magnetic field due to the solenpid
has all three components B,, B,, and B,. Because of the cylindrical symmeiry
and infinite length of the solenoid, all three components must be independént
of ¢ and z. Thus B,, B, and B, can be functions of r only. Now, applyng
(3-111) to a cylindrical box of radius b, length / and coaxial with the solendid,
as shown in Fig. 3.23(a), we have

$§ B-ds—o0 (3-114)

surface of the
cylindrical box ‘

Rectangular
Paths

— g —» /

'-d /] e _e’

y

/

i

1
g

(C
N\
e

(G

Cylindrical
Box

N

Circular

@ Path

Fig. 3.23. For evaluating the magnetic field due to an infinitely
long, uniformly wound solenoid using Ampere’s circuital law
and the solenoidal character of the magnetic field.

But ‘
B-as= [ B.as+ [ B.as+ | B.as
surface of the cylindrical upper plane lower plane
cylindrical box surface surface surface
(3-115)
On the cylindrical surface,
B.dS =B, + B,i, + Bji],_, - bdp dzi, = [B,],_,b dp dz
[Beas=["" [ (B].,bdpdz — 2mbllB),., (3-116)
z=z ¢=0

since [B,],_, is a constant.
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On the upper plane surface,
B« dS = (B,i, + Byi; + B,i,) « rdrddi, = B,(r)rdrdd (3-117a)

On the lower plane surface
B . dS = (Bi, + B,i, + B,i,) « (—rdrddi,)= —B,(r)rdrdp  (3-117b)

We see from (3-117a) and (3-117b) that [ B « dS on the upper plane
surface cancels exactly with [ B « dS on the lower plane surface since the
integrands are equal and opposite and the limits of integration are the same.
Thus

B . dS = 2nbI[B,], ., (3-118)

surface of the
cylindrical box

Comparing (3-118) and (3-114), we obtain the result that [B,]
the radius b can be chosen to be any value, it follows that

B, =0 forall r

Applying Ampere’s circuital law to a circular path of radius b, as shown
in Fig. 3.23(a) in the plane normal to the axis of the solenoid and centered
at the axis of the solenoid, we have

= 0. Since

r=b

§ B.dl=0 (3-119)

circular
path

since the path does not enclose any current. But, along the circular path,
B.dl = (B, + B, + Bjil., bddi, = [B,),,bd¢

§Bea= [T Bsbd = 2nblB) o

since [B,],., is a constant. Comparing (3-120) with (3-119), we obtain the
result that [B,],_, = 0. Since the radius b can be chosen to be any value, it
follows that

(3-120)

B,=0 forall r

Thus the magnetic field due to the solenoid has only a z component and we
are now left with the task of finding this component.

Applying Ampere’s circuital law for two rectangular paths cdefc and
cde’f'c in the plane containing the solenoid axis, as shown in Fig. 3.23(a),
we have

B.dl= 5{; B« dl = ponl(cd) (3-121)

cdefc cde’f’c

Since the three sides cd, de, and fc are common to the two rectangular paths,
(3-121) gives us

KB-dl=ij-dl (3-122)
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Along paths ef and e’f’,
B.dl=[B,i, + B, + B,i]+dzi,= B, dz
and since B, is independent of z, (3-122) yields
[Bz]ef(ef) = [Bz]e'f'(e’f/)

or

[Bz]ef = ['Bz]e’f’ (3‘123)
Thus B, is independent of # (in addition to ¢ and z) outside the solenoid.
Similarly, by applying Ampere’s circuital law to the two rectangular paths
cdefc and c'd’efc’ in the plane containing the solenoid axis, we can show
that B, is independent of # (in addition to ¢ and z) inside the solenoid. Thus
the values of B, both inside and outside the solenoid are constants. This
requires that B, outside the solenoid be equal to zero since, if it is nonzro,
the amount of magnetic flux outside the solenoid will be infinity and for this
flux to return in the opposite direction inside the solenoid as shown in Fig.
3.23(b), the flux density inside the solenoid must be infinity. But then, if the
flux density inside the solenoid is infinity and that outside the solenoid is
finite, (3-121) cannot be satisfied. On the other hand, for a finite amount
of flux inside the solenoid in one direction to return in the opposite direction
outside the solenoid, it requires zero flux density outside the solenoid since
the area of cross section outside the solenoid is infinity (co X 0 = nonzero).
Thus we conclude that B, is zero outside the solenoid. It remains to evaluate
B, inside the solenoid. To do this, we write (3-121) as

d e f c
j B.d1+j B.d1+j B .d1+f B.dl = pul(cd)  (3-124)
¢ d e r
In (3-124),
| *B.dl=[B].(cd) (3-1252)

r B.dl=0 since B is normal to the path (2-125b)
d
J-IB +dl=0 since B is zero outside the solenoid (3-125¢)

r B.dl=0 since B is normal to the path (3-125d)
s

Substituting (3-125a)~(3-125d) into (3-124), we obtain

[B.l.ucd) = ponl(cd)
or
[B.l.a = wonl (3-126)
The constant value of B, inside the solenoid is equal to g nl. Thus
B— { ponl i, inside the solenoid
0 outside the solenoid
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which agrees with the result obtained in Example 3-5 by using the Biot-
Savart law. However, compared with Example 3-5, we have here obtained
the solution in a conceptual manner, gaining in this process considerable
insight into the properties of the magnetic field. ||

Summary and Further Discussion of Static Electric and
Magnetic Field Laws and Formulas

Now that we have gained familiarity with the static magnetic field as well
as the static electric field, it is worthwhile to list the basic laws governing
the two fields and important formulas derived from them and make a few
further comments. Accordingly, these laws and formulas are summarized
in Table 3.1. Note that we have repeated Maxwell’s equations at the end of the
table. These equations pertain to the divergence and curl of the static electric
and magnetic fields. We note from these equations that static vector fields,
that is, vector fields independent of time, may be classified into four groups,
depending on the values of their divergence and curl in the region of inter-
est. These groups are as follows:

(a) Divergence of the field is not zero but its curl is zero. This represents
a static electric field.

(b) Divergence of the field is zero but its curl is not zero. This represents
a static magnetic field.

(c) Both divergence and curl of the field are zero. This represents either
a static electric field in a charge-free region or a static magnetic
field in a current-free region.

(d) Both divergence and curl of the field are not zero. Obviously, this
represents a combination of the fields belonging to groups (a) and
(b) and hence cannot be realized solely as a static electric field or
solely as a static magnetic field.

In Table 3.2 we list the expressions for the electric and magnetic fields
for two simple analogous pairs of source distributions: infinitely long line
charge of uniform density versus infinitely long filamentary wire of current
along the z axis, and infinite sheet charge of uniform density versus infinite
sheet current of uniform density. For each pair, the analogy between the two
fields is obvious from the expressions: The magnitudes of the fields are
proportional to each other whereas their directions are orthogonal. This
analogy is-actually more general than is indicated by these two cases. To
illustrate this, let us consider a charge distribution of density p(x, y) and a
current distribution of density J = J,(x, y)i, such that

J(x, y) = kp(x, y) (3-127)

where & is a proportionality constant. The electrostatic potential V(x, y)
corresponding to p(x, y) and the magnetic vector potential A = A4 ,(x, y)i,



TABLE 3.1. Summary of Basic Laws and Important Formulas Associated wth
the Static Electric and Magnetic Fields

Static Electric Field

Static Magnetic Field

Definition F =qE
Experimental  Coulomb’s law:
laws — 0.0

F21 = freoRE, N2
Fields due to 90 R
point sources 4zegR3

Fields due to continuous source distributions:

Line E— J L)@ — x) d’
¢ dmeglr —r' 3
Surface E = J Lo — 1) as”
s 4megr — 1’3
Volume E = J [p@))r — 1) dv’
y: dmeq|r — 13
Integral laws Gauss’ law:
involving ff E.ds (charge
sources ~ o \enclosed by S
Diffe{'ential' V-E= 2
laws involving €0
sources

Integral laws Conservative property:

independent of § E.dl—

sources c

Differential VXE=0

laws independent

of sources

Potentials Scalar potential:
E=—-VV

Potentials __0

due to 4meoR

point sources

Potentials due to continuous source distributions:

Line V= J _purdl’
c4meg|r — 1|
Surface V= J —M,—
s 4meg [r — 17|
Volume V= J L) v,
v 47eq |r —r |
Diﬂ'er.ential Viy = _ P
equations for €0
potentials
Maxwell’s equations:
Divergence V.E=2
equation ' €0
Curl equation VXE =0

F=gvxB=IdlxB
Ampere’s law of force:

—_
N~

_£§§12d12x(1,d1, x R,

CiC2

Lo Idlx R
“d=R3

B [ B
.

B= J #od () X (r — 1) dS’
5

B=

uoldl’ X (r —r’)
T dnlr —r [

4njr — 1’3
B = J 2oJ(@®) X (r — ) dv’
v 4rnir—r'[3

Ampere’s circuital law:

) §c B-dl =y, (Current enclosed

by C
VXxB=puyJ

Solenoidal property:
§ B-dS =0

K3
V.-B=0

Vector potential:
B=VxA

— koldl
A 4zR

A=J ol dl’
C'Zﬂ r— r"'[

A= [ wmtras
s dmjr — 1’|

A — J‘ poJ(’) dv’
v

4r|r — 1’|

V2A = —puod

V:-B=0
VxB=udd

)

178
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TABLE 3.2. Electric and Magnetic Fields for Two Pairs of

Analogous Source Distributions

Sec. 3.10

Electric Field Magnetic Field
Infinitely long, straight line Infinitely long, straight
charge of uniform density pro: wire of current I:

E = .PLo ; _ kol

27zsor" B Zar®

Infinite sheet charge of
uniform density pso:

E=%’in B=§Jsoxi,,

€0

Infinite sheet current of
uniform density Jso:

corresponding to J,(x, y)i, satisfy the equations

and

vy =2
6-0

(VzAz)iz = —ﬂOJziz = _Auokpiz
respectively. Comparing (3-128) and (3-129), we have

We then obtain
E

A, = kuse,V

E_ Wl _  _[(9V/ox)* + QGV@’}:FI‘/Z
B |V x 4| [(04./0x)* + (94.[dy)*]'"

1 [(0V/dx)* + (3V/dy)*]'"> 1

T ko€, [(@V]0x)7 + @V~ kpge,

and
E.B:

—VV.(V X A4,

—VV o« (V X kuse,Vi,)

—kuye, VV o« (V X Vi)

—ku,e, VV e (VV X i, + V'V X 1i,)
—ku€[VV « VV %X i,] =0

(3-128)

(3-129)

(3-130)

(3-131)

(3-132)

Thus, for analogous charge and current distributions which vary only in
two dimensions x and y (or r and ¢ in cylindrical coordinates) and with the
current flow along the z direction, the electric and magnetic fields are pro-
portional in magnitude and orthogonal in direction. We will use this impor-

tant result in chapter 6.
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An electron moving with a velocity v, = i, m/sec at a point in a magnetic fied
experiences a force F; = —ei, N, where e is the charge of the electron. If the
electron is moving with a velocity v, = (i, + i,) m/sec at the same point, it expeli-
ences a force F, = ei, N. Find the force the electron would experience if it were
moving with a velocity v; = v; X v, at the same point.

A mass spectrograph is a device for separating charged particles having different
masses. Consider two particles of the same charge g but different masses m, and
m; injected into the region of a uniform magnetic field B with a known velocity v
normal to the magnetic field as shown in Fig. 3.24. Show that the particles are
separated by a distance d = |2(m, — m;)v|/|gB| in the plane normal to the
incident velocity.

Fig. 3.24. For Problem 3.2.

A magnetic field given by
B = Byi,

where B, is a constant exists in the space between two parallel metallic plates: of
length L as shown in Fig. 3.25. A small test charge g having a mass m enters t}he

vy = vOly

|
|
|

—
t~
r
-
[\
R —
a,

Fig. 3.25. For Problem 3.3
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region between the plates at ¢ = 0 with a velocity v = v,i, as shown in the figure.

(a) Show that the path of the test charge between the plates is circular.

(b) Find the position x;, along the x direction and the velocity v, of the test charge
just after it emerges from the field region.

(c) Find the deflection x; undergone by the test charge along the x direction at
a distance d from the plates in the y direction.

In a region of magnetic field B = Byi,, where B, is a constant, an electron starts
out at the origin with an initial velocity vy = vxoix + vy0l, + v,0i;. Obtain the
equations of motion of the electron and show that the path of the electron is
a helix of radius m/vZ, + v2of|€Bo| and pitch 27m|v,o|/|eBo|, Where e and m
are the charge and mass of the electron.

Find the current required to counteract the earth’s gravitational force on a hori-
zontal filamentary wire of length / and mass m and oriented in the east-west
direction in a uniform magnetic field B, directed northward. Compute the value
of this current for a wire of length 1 meter and mass 30 grams situated in the
earth’s magnetic field at the magnetic equator assuming a value of 0.3 x 10-4
Wb/m? for B,.

A rigid loop of wire in the form of a square of sides a m is hung by pivoting one
side along the x axis as shown in Fig. 3.26. The loop is free to swing about the
pivoted side without friction. The mass of the wire is m kg/m. If the wire is situated
in a uniform magnetic field B = Byi, and carries a current I amp, find the angle
by which the loop swings from the vertical.

Fig. 3.26. For Example 3.6 ~—

A rigid rectangular loop of wire carrying current I amp and symmetrically situated
about the z axis is in the yz plane as shown in Fig. 3.27. If the loop is situated
in a uniform magnetic field B and is free to swing about the z axis, show that the
torque acting on the loop is JA(i, - B)i, where A4 is the area of the loop.
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= N
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<

X Fig. 3.27. For Problem 3.7.

Show that the total force experienced by a current loop C, carrying current

due to another current loop C, carrying current I, is equal and opposite to the

total force experienced by the current loop C, due to the current loop C;; that
show that Newton’s third law holds for current loops.

Two circular loops of radii 1 m carrying currents I; and I, amp are situated

the z =0m and z = 1 m planes, respectively, and with their centers on the z axis,
as shown in Fig. 3.28. Find the forces experienced by the current elements I, dl;,

I, dl, and I, dl; due to each other.

I
(0’0’1)" (0,1 1)) dly

dl,
Lon A

(S)) —/> -

dl

Fig. 3.28. For Problem 3.9.

Two square loops of sides @ m are placed parallel to each other and separated
a distance d m as shown in Fig. 3.29. If the currents carried by the loops are

and I, amp, respectively, as shown in Fig. 3.29, find the force acting on one loQP

due to the second loop.

I,

is,

in

by
1

N~
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A circular loop of wire of radius a lying in the xy plane with its center at the origia
carries a current / in the ¢ direction. Find B at the point (0, 0, z). Verify your
answer by letting z — 0.

A loop of wire lying in the xy plane and carrying a current [ is in the shape of a
regular polygon of » sides inscribed in a circle of radius a with its center at the
origin. If the current flow is in the sense of the ¢ direction, find B at the poirt
0, 0, z). Verify your answer by letting » — co and comparing the result with tkhe

answer to Problem 3.14. 1

A V-shaped filamentary wire with semi-infinitely long legs making an angle At
its vertex P and lying in the plane of the paper carries a current I amp as shown
in Fig. 3.31. Find B at a point distance d directly above the vertex P. Verify your
result by letting o0 — 7.

Fig. 3.31. For Problem 3.16.

Two circular loops of filamentary wire each of radius @ and with their centers on
the z axis are situated parallel to and symmetrically about the xy plane with the
separation equal to 25 as shown in Fig. 3.32. The loops carry a current of I amp
each in the ¢ direction. (a) Obtain the expression for B at a point on the z axjs,
(b) Show that if b = a/2, the first three derivatives of B evaluated at the origin ajre
equal to zero.

I Fig. 3.32. For Problem 3.17.

A finitely long, uniformly wound solenoid of radius a, consisting of # turns pler
unit length and carrying a current [ in the ¢ direction, lies between z = —L; and
z = L, with the z axis as its axis. Find B at a point (0, 0, z). Verify your answer
by letting L, and L, — co.
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Fig. 3.29. For Problem 3.10. L— a——l/

An infinitely long straight wire carrying current I, amp is situated in the plane
of and parallel to one side of a rectangular loop of wire carrying current I, amp
as shown in Fig. 3.30. Evaluate independently the force experienced by the infinitely
long wire due to the magnetic field of the rectangular loop of wire and the force
experienced by the rectangular loop of wire due to the magnetic field of the
infinitely long wire.

I,
A —[
I 4 Y j
l—d b
Fig. 3.30. For Problem 3.11.

Four infinitely long, straight filamentary wires occupy the lines x =0, y = 0;
x=1,y=0;x=1, y=1and x =0, y = 1. Each wire carries a current of
value 1 amp in the z direction.

(a) Find the force experienced per unit length of each wire.

(b) Find the magnetic flux density at the point (2, 2, 0).

(c) Find the magnetic flux density at the point (0, 2, 0).

Two identical rigid filamentary wires, each of length ! and weight W, are sus-
pended horizontally from the ceiling by long weightless threads, each of length L.
The wires are arranged to be parallel and separated by a distance d, where d is
very small compared to / and L. A current J amp is passed through both wires
through flexible connections so as to cause the wires to be attracted towards each
other. If the current is gradually increased from zero, the wires will gradually
approach each other. A condition may be reached at which any further increase
of current will cause the wires to swing and touch each other. Determine the
critical current at which this would happen.
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A filamentary wire closely wound in the form of a spiral in the xy plane, starting
at the origin and ending at radius a, carries a current [ in the ¢ direction. Consider
the turn density » to be an arbitrary function of » and show that the magnetic flux
density at a point (0, 0, z) is given by

B=‘u—"1fa __ nridr ;
2 r=0(r2-|—z§imz

Evaluate B for the following turn density distributions:

(@) n=n,
by n="2
© n=Z—_g

where n, is a constant.

A filamentary wire carrying a current I is closely wound on the surface of a sphere
of radius a and centered at the origin. The winding starts at (0, 0, @) and ends at
(0, 0, —a) with the turns in the planes normal to the z axis and carrying current
in the ¢ direction. Consider the turn density to be an arbitrary function of 8 and
show that the magnetic flux density at a point (0, 0, z) is given by

Wola® J"' nsin? 6 df

2 J,.,[a® + 2% — 2azcos P2

Evaluate B both for |z| < a and for |z| > a for the following turn density distri-
butions:

(@) n = nysin 6

(b) n = ny/sin 0

where #, is a constant,

B =

Two infinitely long, straight filamentary wires situated parallel to the z axis and
passing through (d/2, 0, 0) and (—d/2, 0, 0), respectively, carry currents I in the
+z and —zdirections, respectively. The arrangement is known as a two-dimensional
magnetic dipole in contrast to the three-dimensional magnetic dipole consisting
of a circular loop of current. (a) Obtain the magnetic flux density due to the two-
dimensional magnetic dipole in the limit that d -— 0, keeping the dipole moment
Id constant. (b) Find and sketch the direction lines of the magnetic flux density.

Two infinitely long, straight filamentary wires situated parallel to the z axis and
passing through (d/2, 0, 0) and (—d/2, 0, 0) carry currents I, and I,, respectively,
in the z direction. Show that the equation for the direction lines of the magnetic
flux density is

I; In [(x + %)2 + y2:| + I, 1In [(x — %)2 + yz:l = constant

Obtain and sketch the direction lines for the following cases:

@ I =5L=1I

®5L=I,L=—I

Two circular loops of filamentary wire, each of radius a and with their centers
on the z axis, are situated parallel to and symmetrically about the xy plane with
the separation equal to 24. The loops carry currents of I amp each in opposite
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directions. Such an arrangement is known as the magnetic quadrupole. Obtain tle
magnetic flux density due to the magnetic quadrupole at distances from the orign
large compared to a and d, at points along (a) the z-axis and (b) in the xy plan:.

A sheet of surface current flowing in the z direction occupies the portion of tte
y = 0 plane lying between x = —a and x = +-a. Consider the z-directed surfaétt;e
current density J; to be an arbitrary function of x and show that the components
of the magnetic flux density at a point (0, 0,.y) are given in cartesian coordinatesr;;y

B - My [ Jdx
*= T2z (CE)

xX==a

B, = —Ho © Jxdx
YU 2m ) (x2+y?)
B,=0

Evaluate the field components for the following surface current density distribu-
tions:
(a) Js = soiz

() 3, = Zo (1 - Z]);, |

(C) Js = JsO%iz

where J, is a constant.

Current flows on the xy plane radially away from the origin with density given by

! i, amps/m

Jo = bX 72

Show that the magnetic flux density at any point above the xy plane is the sarne
as that which would be produced By a filamentary wire along the negative z akis
carrying current I from the origin to z = —oo. Show also that the magnetic flux
density at any point below the xy plane is the same as that which would be pﬂ;,'o-
duced by a filamentary wire along the positive z axis carrying current I from the
origin to z = oo.

Current flows in the z direction in an infinite slab of thickness 2a symmetrically
placed about the xz plane. Consider the z-directed current density J to be unifoz‘{m
in x but not necessarily in y and show that the magnetic flux density at any poi“int
(x, y, z) has only an x component given by

|
, . !

— %‘3 f J dy y>a ‘f

y=-a ;1

a y w

B, = | %Q<f de—f de) —a<y<a i
y=y y=-a |

%f Jdy y< -—a ‘

\ y=-a i
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Evaluate B, as a function of y for —oo < y < oo for the following current dis-
tributions:

(@) J =Ji, —a<y<a
Joi; —a<y<0
= T
—Jol, o<y<a
@© J=|yli, —a<y<a
@) J =i, —a<y<a

where J, is a constant. Discuss your results from considerations of symmetry.

Current flows in the axial direction in an infinitely long cylinder of radius a having
the z axis as its axis. Consider the z-directed current density J to be uniform in ¢
but an arbitrary function of r and show that the magnetic flux density is given by

B=% |  Jrari,
r =0

r

Evaluate B for the following current density distributions:

@) J = Jyi,, O<r<a
0 O<r<a
(b)J={J0i, a<r<b
0 b<r<oo

@ J =Ju<%>"i,,n2 1 0<r<a
where J; is a constant.

An infinitely long straight filamentary wire occupying the z axis carries current I
amp in the z direction. Evaluate [ B . dl for the following paths:

(a) From (1, 0, 0) to (0, , 0) along the path x -2y =1, z = 0.

(b) From (2,0, 0) to (1, 1, 1) along a straight line path.

Check your answers from considerations of symmetry and Ampere’s circuital law
in integral form.

Using Ampere’s circuital law in integral form, obtain the magnetic flux densities
due to the following volume current distributions in cartesian coordinates:

o1-fpt s
ma-fi, o gesrso
A
@i=for pss
@ Jz{éa—lyl)iz llilliz

where J, is a constant.

Using Ampere’s circuital law in integral form, obtain the magnetic flux densities
due to the following volume current distributions in cylindrical coordinates:

0 0<r<a
(a)J={JDi, a<r<b

0 b<r<oo
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(b) J={Jo<%)"i,,n21 O<r<a s
0 a<r<oo
éi, oO<r<a |
© J= 0 a<r<b ‘\

—miz b<r<e ‘
0 c<r<o |

where J, and I are constants.

Using Ampere’s circuital law in integral form, obtain the magnetic flux densities;
due to the following surface current distributions: |

@ J;, = {J“’l’ . y=a } cartesian coordinates
—Jsol; y=—a

(b) J, = Jyoi, r=a cylindrical coordinates
J. soiz r=a

© J, = T ‘Z‘ L or—b cylindrical coordinates

where J;, is a constant.

A toroid with a circular cross section is formed by rotating about the z axis the
circle of radius a (< b) in the xz plane and centered at (b, 0, 0) as shown in Fig.
3.33. A filamentary wire carrying current I is closely wound around the toroid
uniformly with » turns per unit length along the mean circumference. Using Am-
pere’s circuital law in integral form, find the magnetic field both inside and out-
side the toroid.

|

|
|

Fig. 3.33. For Problem 3.32.

Current I amp flows in a filamentary wire along the z axis from z = oo to z = E

and then to the point z = —a via a spherical surface of radius a centered at th,
origin, continuing on to z = —oo along a filamentary wire from z = —a tg
z = —oo. The surface current density on the spherical surface is given by

s is amp/m

~ 2nasin O
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Using Ampere’s circuital law in integral form, find B both inside and outside the

sphere of radius a.

Current flows axially with uniform density J, amp/m? in the region between two
infinitely long, parallel cylindrical surfaces of radii @ and b (< a) and with their
axes separated by a distance ¢ (< a — b) as shown in Fig. 3.34. Find the magnetic
flux density in the current-free region inside the cylindrical surface of radius b.

—Jo i; Amps/m?

X X X X X X X X MK x X

X X X X X X X X & x. R X x

Fig. 3.34. For Problem 3.34.

Verify your answers to Problem 3.29 by using Ampere’s circuital law in differ-
ential form.
Verify your answers to Problem 3.30 by using Ampere’s circuital law in differ-
ential form.

For each of the following magnetic fields, find the current distribution which
produces the field, using Ampere’s circuital law in differential form:

/“OJ:Oix o<y <0 B
oo cartesian
@ B = == ik 0<y<a coordinates
'—I'lOJsoix a <y <™
LoJor iy O<r<a
B a3, ‘ cylindrical
(b) B= ﬂo-7071¢ a<r<b coordinates
0 b<r<om

HUoJso(cos 0 i, — sin 0 ig) O<r<a ]
© B={pugl,(a\? . oo spherl'cal
2 (7) (2cos i, +sinfi) a<r<oo [ coordinates

where J;, and J, are constants. )
A surface current of density J; amp/m occupies the plane surface y = y,. Show
that

V X B = poJ; 6(y — o)
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A surface current of density J, amp/m occupies the cylindrical surface r =r,.
Show that

V X B = u,J,o0(r — ry)
An infinitely long filamentary wire carrying current 7 amp in the z directio| is

situated parallel to the z axis and passes through the point (ro, @) in the z [= 0
plane. Show that

v x = e =3 — b,

Obtain the magnetic vector potential at an arbltrary point due to a finitely I¢ng,
straight filamentary wire lying along the z axis between z = —qg and z = +a ind
carrying a current  amp in the +z direction. Then evaluate B by performingithe
curl operation on the magnetic vector potential and compare the result with (3-27).

Two infinitely long, straight filamentary wires situated parallel to the z axis and
passing through (d/2, 0, 0) and (—d/2, 0, 0), respectively, carry currents [ in the
+z and —z directions, respectively. (a) Obtain the magnetic vector potential A.
(b) Find A in the limit that d — 0, keeping Id constant. (c) Evaluate the curl of
A found in part (b) and compare with the result of Problem 3.21.

For the magnetic dipole of Fig. 3-9, obtain the vector potential at distances very
large from the dipole compared to the radius a. Find the magnetic flux density
by performing the curl operation on the vector potential.

For the magnetic quadrupole arrangement of Problem 3.23, obtain the magnetic
vector potential at distances from it large compared to the dimensions of the
quadrupole. Then find B by evaluating the curl of the magnetic vector potential
and verify the results for the special cases of Problem 3.23.

For the volume current distributions specified in Problem 3.29, obtain the magnetlc
vector potentials.

For the volume current distributions specified in Problem 3.30, obtain the magx}etic
vector potentials.
Jten-

For the following surface current distributions, obtain the magnetic vector p
tials:

@@ J, = {J“’l’ . y=a }cartesian coordinates
_Jsolz y=—a
Jsol; r=a

) J, = I, % i r—b cylindrical coordinates

where J;, is a constant.

For each of the arrangements of current loops shown in Fig. 3.35, find the magnetic
vector potential at distances very far from the loop.

For the spirally wound filamentary wire of Problem 3.19, show that the magnetic
dipole moment m is given by

m= nI(Ja_o nr? dr)i,

Evaluate m and hence A at large distances from the spiral for each of the three
cases specified in Problem 3.19.
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1 Arcs of

I/Circles\ //
I
J . :741
(9 1 > y =1 l"—’y

I / T 1 I
[
(a) x (b)

Fig. 3.35. For Problem 3.48.

For the filamentary wire wound on the surface of a sphere as specified in Problem
3.20, show that the magnetic dipole moment m is given by

m= 7m3I(J:_O nsin2 6 dG) i,
Evaluate m and hence A at large distances from the sphere for each of the two

cases listed in Problem 3.20.

A spherical volume charge of radius @ m and having uniform density p, C/m3
and centered at the origin spins about the z axis with constant angular velocity
@, in the ¢ direction. Obtain the magnetic vector potential due to the spinning
sphere of charge at distances from the origin large compared to a.

Show that the magnetic flux enclosed by a closed path C in a magnetic field B is
equal to 3€CA - dI, where A is the magnetic vector potential corresponding to B.

Use this result to find the magnetic flux enclosed by the rectangular loop of Fig.
3.30 due to the current flowing in the infinitely long wire. Check your answer by

evaluating J. B - dS, where S is the surface bounded by the rectangular loop.

s
Show that, if A = A,i,, where A, is independent of z, the direction lines of
B =V X A are the cross sections of the constant | A | surfaces in the z = constant

plane. Use this result to find and sketch the direction lines of the magnetic flux den-
sity due to the infinitely long, filamentary wire-pair arrangement of Problem 3.42.

Determine if the following fields are realizable as magnetic fields:

(@ A= yiz(yix — xiy) cartesian coordinates
(b) B = %i,, cylindrical coordinates
© C= (1 + ;1—2> cosgi, — (1 — ;1—2> sin @ iy cylindrical coordinates

(@ D= (1 + %) cos@i, — (1 — r%) sin 0 ig spherical coordinates
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For the following current distributions, start with the assumption that all thre

components of B exist and use Ampere’s circuital law and the solenoidal natue

of the magnetic field to eliminate some components and evaluate the remainiig

components:

(a) Infinite sheet of current with uniform density.

(b) Surface current flowing axially with uniform density along an infinitely lojg
cylinder.

Make use of the solenoidal character of the magnetic field to find the radial deriva-
tive of the magnetic flux density due to a circular loop of current 7 at a poiat
on its axis.

In Sec. 3-10, we classified static vector fields into four groups. Determine to whith
of the four groups does each of the following fields belong:
(a) A= xi, + yiy

(b) B = xyi, + yzi, + zxi,

() C = (x2 — y2)i, — 2xyi, + 4i,

@ D = i, cylindrical coordinates

© E — cosz(ISi n sin .
r T

2 s cylindrical coordinates

From the examples and problems of Chapters 2 and 3, identify and prepare a table
of analogous pairs of charge and current distributions which vary only in two
dimensions x and y (or 7 and @) and with the current flow in the z direction. List
the expressions for the corresponding electric and magnetic fields and demonstrate
that the fields are proportional in magnitude and orthogonal in direction.





