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THE STATIC ELECTRIC FIELD

In Chapter 1 we learned the mathematical language of vector analysis so
that we are now ready to use it for the study of electromagnetic field theory.
Electromagnetic field theory is built upon four equations known as Max-
well’s equations and an associated set of relations known as the constitu-
tive relations. It is our goal to learn how to interpret these equations and
to use them for various applications, important among them being elec-
tromagnetic waves. Maxwell’s equations, in their general form, relate the
time-varying or dynamic electric and magnetic fields with one another and
with the electric charges and currents present in the medium. It is possible
to study electromagnetic theory by starting with Maxwell’s equations and
another equation known as the Lorentz force equation as postulates. The
Lorentz force equation is the defining equation for the electric and magnetic
fields in terms of the forces experienced by the charges. Alternatively, it is
possible to develop Maxwell’s equations gradually from the electric and
magnetic field concepts based on forces experienced by charges and currents
and from a few experimental facts. We will take this latter approach. The
electromagnetic field is one in which the electric and magnetic effects are
coupled. Before we venture to discuss the electromagnetic field, we will study
the electric and magnetic fields separately. This is best done by considering
static or time-independent fields in free space. With this approach in mind,
the present chapter is devoted to the static electric field in free space.

72



2.1

73 The Electric Field Concept Sec. 2.1

The Electric Field Concept

In the study of mechanics, we are familiar with the gravitational field as
a force field associated with the mutual attraction of material bodies in
space. For example, a small test mass #m placed in the gravitational field of
the earth experiences a force equal to mMG/r? directed towards the center
of mass of the earth, where M is the mass of the earth, G is the constant of
universal gravitation, and  is the distance of the test mass from the center
of mass of the earth. We associate with every point in the vicinity of the earth
a vector quantity g, known as the gravitational field intensity, having a mag-
nitude MG/r* and directed towards the center of the earth as shown in Fig.
2.1. In terms of the value of the test mass and the force experienced by the
test mass, the gravitational field intensity is given by

g=1 @1)

m

Fig. 2.1. Gravitational attraction
of a test mass m towards the center
of mass of the earth.

Just as the gravitational field is associated with the physical property
known as “mass,” a force field is associated with the physical property
known as “charge” merely by virtue of its existence. This force field is known
as the electric field. We will learn in the next chapter that a second kind of
force field known as the magnetic field exists when charges are set in motion.
A few words about charge are now in order. Matter can be regarded as
composed of three types of elementary particles, known as protons, neutrons,
and electrons. These particles are charged positive, zero, and negative,
respectively. Table 2.1 gives the charge and mass for each of these particles.

TABLE 2.1. Charges and Masses of Elementary Particles

Particle Charge, C Mass, kg
Proton 1.6021 x 10-19 1.6724 x 1027
Neutron 0 1.6747 x 10-27

Electron —1.6021 x 10~19 9.1083 x 10-31!
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Charges are conserved; that is, they can neither be created nor destroyed.
They can only be transferred from one body to another. A material body
is uncharged if it has no net charge. If the body acquires excess negative
charge by some means, it is said to be negatively charged. On the other hand,
if it loses some negative charge, it is said to be positively charged. The unit
of charge is the coulomb (abbreviated C).

A small test charge g placed in the “electric field” of a larger charge Q
experiences a force F given by

F =gE : (2-2)

as shown in Fig. 2.2, where E is the intensity of the electric field, analogous
to the gravitational field intensity g. Alternatively, we can say that if, in a

F = gE

E__{

I

=

”_\ Fig. 2.2. Force experienced by a
test charge in an electric field.

region of space, a test charge g experiences a force F, then the region is charac-
terized by an electric field of intensity E given by

- ¥ 2-3)

q
Here we are assuming that the test charge g is so small that it does not alter
the electric field in which it is placed. From a practical point of view, the
test charge does influence the electric field irrespective of how small it is.
However, theoretically, we can define E as the ratio of the force experienced
by the test charge divided by the test charge in the limit that the test charge
tends to zero; that is,

E= LimE (2-4)
=0 g

The unit of electric field intensity is newton per coulomb (N/C).

ExaMPLE 2-1. An electron placed at a point in an electric field experiences an

acceleration of 10° m/sec? along the positive x axis. (a) What is the electric
field intensity E at that point? (b) What acceleration does a proton placed
at that point experience ?

The force experienced by the electron is equal to —1.6 X 107! E. This
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is equal to the mass of the electron times the acceleration experienced by the
electron. Hence

—1.6 X 107 E = 9.11 x 1073t x 10°1,

9'li;<61(:;3110>51£05 i, — —5.7 x 107§, N/C

Thus the electric field intensity has a magnitude of about 5.7 % 10~7 N/C and
it is directed along the negative x axis.

Now, if a proton is placed at the same point, the acceleration a exper-
ienced by it is given by

E =

a = charge of proton X E
" " “mass of proton
_ L6 x 107" X (=5.7 X 10"M)i, __
o 1.67 x 10727
Thus the proton experiences an acceleration of about 54.6 m/sec* along the
negative x axis. fJ

—54.6 1, m/sec?

Coulomb’s Law

In the previous section we introduced the concept of the electric field from
an analogy with the gravitational field. It was mentioned that a small test
charge placed in the electric field of a larger charge experiences a force.
Actually, the larger charge also experiences a force just as two masses attract
each other. This fact was proved experimentally by Coulomb. As a result of
his experiments we have Coulomb’s law, which relates the force between
two charged bodies which are very small in size compared to their separation.
Ideally, the charged bodies must be so small that they can be considered as
“point charges.” From Coulomb’s experiments, the following conclusions
were reached:

1. Like charges repel whereas unlike charges attract.

2. The magnitude of the force is proportional to the product of the
magnitudes of the charges.

3. The magnitude of the force is inversely proportional to the square
of thé distance between the charges.

4. The direction of the force is along the line joining the charges.

5. The force depends upon the medium in which the charges are placed.

If we consider two point charges Q, and Q, C situated at points 4 and
B separated by a distance R m, as shown in Fig. 2.3, we can express the
foregoing five statements in equation form as

F, = k9, 2-5)
Fp=k 2 5 2isp (2-6)

R



2.3

76 The Static Electric Field Chap. 2

Fig. 2.3. Forces of repulsion between two charges Q; and Q,
at points 4 and B.

where F, and F, are the forces experienced by Q, and Q,, respectively,
ip, and i,, are unit vectors along the line joining 4 and B (Fig. 2.3), and
k is the constant of proportionality. Statement 1 is included in (2-5) and
(2-6)since Q, and Q, represent the magnitudes as well as signs of the charges.
If 0, and Q, are both positive charges or both negative charges, their product
will be positive and hence positive forces act along iy, and i,;. If one of the
two charges is negative, then the product Q,Q, will be negative; hence
negative forces act along iy, and i,y or positive forces act along directions
opposite to iy, and i, respectively. The constant of proportionality % is
equal to 1/4ze, for free space and in MKS rationalized units. The quantity
€, is known as the permittivity ‘of free space and its value is 8.854 x 10-!2
or approximately equal to 107%/36z. Substituting for £ in (2-5) and (2-6),
we have

_ 9.9, . X
F, =2 @-7)
F,=.2:2: ; (2-8)

Equations (2-7) and (2-8) represent Coulomb’s law. From these equations,
we note that €, has the units (coulombs)? per [(newton)(meter)?]. These are
commonly known as farads per meter (F/m).

The Electric Field of Point Charges

Let one of the two charges considered in the preceding section, say Q,, be
a small test charge ¢q. Then, from a knowledge of the force experienced by
this test charge due to the presence of the charge Q,, we can obtain the ex-
pression for the electric field intensity due to the charge @, using (2-3).
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According to Coulomb’s law, the force experienced by the test charge is
given by

Fy = poein 29)

From (2-3) we then have the electric field intensity E, at point B due to the
charge Q, as

— Fs 9, ;

o= = T, 42
We can generalize this result by making R variable, that is, by moving the
test charge around in the medium, writing the expression for the force
experienced by it, and dividing the force by the test charge. The result is
the same as (2-10) except that R is now a variable since point Bis a variable.
Thus, omitting the subscripts in (2-10), we write the electric field intensity
E of a point charge Q as

(2-10)

E= gl
where R is the distance from the point charge to the point at which the field
intensity is to be computed and i, is the unit vector along the line joining the
two points under consideration and directed away from the point charge.
The electric field intensity of a point charge is thus directed everywhere
radially away from the point charge, and on any spherical surface centered
at the point charge its magnitude is constant. The situation is illustrated in
Fig. 2.4. If the point charge is at the origin of a coordinate system, then we
replace R by r and i, by i,. The field represented by (2-11) is also known as
the Coulomb field of & point charge. '

If we now have several point charges Q,, 0., O;, ..., O, located at
different points as shown in Fig. 2.5, we can invoke superposition and state
that the force F experienced by a test charge situated at a point P is the vector

-11)

point charge.

S— -
Fig. 2.4. The electric field of a . f I /\
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o
0;
Fig. 2.5. Assembly of point charges and unit vectors along the

direction of their electric field intensities at point P, due to the
individual point charges.

sum of the forces experienced by the test charge due to the individual charges;

that is,
—_949 ; 0,9 ; 039 ; ... 0.9 ;
F= 4ne,R? b+ 4me,R3 b, 1 4ne,R3 b, - + 4ne,R? 1z,
From (2-3) the electric field intensity E at the point P is
_E_ 9, ; 9, ; 9
= Tmer T megint 0 T gze rle
=9
j=1 47ZEOR§ R

(2-1zj

(2-13)

The electric field intensity due to the assembly of the point charges is thus
the vector sum of the electric field intensities due to the individual point

charges. Some examples are now in order.

ExampLE 2-2. For a charge Q at an arbitrary point A(x’, y', z'), obtain the x, y,
and z components of the electric field intensity at an arbitrary point B(x, y, z),

as shown in Fig. 2.6.

From Coulomb’s law, the electric field intensity at point B is given by

= _.__Q 1
E = gre Capy \us

where from Fig. 2.6,
AB=/(x —xV+(y— V)P +(E—2)
_ = xDi, + (= )i, + (z — 2)i,
NE =X+ =Y+ (- )

g

(2-14)

(2-15)
(2-16)
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isn

p P B(xyz)

r ® A(x'y'z")

x
Fig. 2.6. Geometry pertinent to the computation of
the electric field of a point charge located at an arbitrary
point.
Substituting (2-15) and (2-16) into (2-14), we have
E—_92 G—x)i4 @ —p)i+(—2)i 2-17
aneo [(x — X' + (y — ¥)* + (z — 2)*P” @1
The x, y, and z components of E are therefore given by

—E.i =29 (x— x") )
E,=E-i= 47e, [(x XY F () —YRF =2 (2-18a)
=E. Q =) ]
E E l 47!60 =X+ —yyY+c— 21)2]3/2 (2-18b)
E=Bei= g e (2-18¢)

e (= ¥7 + 0= VP T G 2)P”

In vector notation, if we denote r’ as the position vector for the source
point 4 and r as the position vector for the point B at which the field is
desired, then AB = |r —r’'|and iz = (r — r')/|r — r’| so that

_ 0 r—r 0 o )
E(r)_4n60|l‘—l"|2|l‘—l"| —4n60|r_r/|3(r l') (2 19)

If a number of charges Q,, Q,, Q,, ..., Q, are located at points defined
by position vectors ¥}, ¥y, 15, . . ., I., respectively, then



80 The Static Electric Field Chap. 2

-y 9 __a_vr 20)
Er) = j; dme,r =TT @x—r) (2-20)
where we have made use of superposition. [j

ExampLE 2-3. Two equal and opposite point charges Q and — Q are situated on the
z axis at df2 and —dJ2, respectively, as shown in Fig. 2.7. Such an arrangement
is known as an electric dipole. It is desired to obtain the expression for the!
electric field intensity due to the electric dipole at distances very large from
the origin compared to the spacing d.

With reference to the geometry shown in Fig. 2.7, we note that the elec-
tric field intensity at any point P has only  and 6 components if we use;
the spherical coordinate system, whereas it has all three components if we
use the cartesian coordinate system. For fixed values of r and @ the field
intensity is independent of ¢; that is, it has circular symmetry about the
z axis. Furthermore, we are interested only in the field at large distances
from the dipole, that is, for » > d. Hence we use the spherical coordinate
system. The electric field intensity E at P is the superposition of the electric
field intensities due to the two charges. Thus, with reference to the notation
in Fig. 2.7 we have

E--2 Q0 ; (2-21)

T Amegt Tt Amegrt

V4 ir_ /

i
iy *

™Ni

[

Fig. 2.7. Geometry pertinent to the computation of the electric
field due to a dipole.
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Now, the r component of E is given by

E =E-.i,
-_ 9 ... __0O
B W"* L= 4rer? i
4730 72 cos o, — 4737 COS 0/ _ (2-22)

From the geometries of the triangles OAP and OBP, we have
r2 + r? — (df2)?

it .
cos o, = TG (2-23)

_ritr - @py _
cos o = T (2 24)

Substituting (2-23) and (2-24) into (2-22), we obtain

B o_ O [Prt— (2 st rt— (df2)]
T 47:60 L 2r3r 2r3r J

¢ —rofrr 42 = () o +rr + )

87!601'+r3 r

(2-25)

~ —87:?0"7 (ro — r )% 4 r2r2 + r2r_ry + rir?)

~ NS ¢
~ e ro—r))= e dcos

where we have used the approximations that, for r > d,

r+kr—%cos9

roxr-+ % cos
The 6 component of E is given by
Eg = E . ig

Qzlr_

0
ke 47z6

47!601‘

_Q smoc++4Q sin o _

2
€2

(2-26)

Thus

4dme  r

Equation (2-27) can be considered as a solution for the electric field
intensity at very large distances compared to a fixed spacing d between the

E=_29 (2cos0i, + sin 0i;) (2-27)
0



24

82 The Static Electric Field ‘ Chap. 2

two point charges, or it can be considered as the solution for the electric
field intensity at any point (r, 6, ¢) in the limit that d — 0, keeping Qd
constant. It should be noted that to keep Qd constant as d — 0 requires that
Q — oo. The product Qd is known as the electric dipole moment p. The
dipole moment also has an orientation associated with it which is from the
negative charge to the positive charge. Substituting p for Qd in (2-27), we
note that the electric field intensity due to an electric dipole moment p oriented
along the positive z axis is given by

E = e (2cosBi, + sin 8 iy) (2-28)

We note that, as compared to the inverse square distance dependence of the
electric field intensity of a point charge, the dipole field drops off inversely
proportional to the cube of the distance. Likewise, by an arrangement of
two dipoles, a “quadrupole” can be created for which the field varies as:
inversely proportional to »*. The process can be extended to “multipoles”|
step by step, with the power of r increasing by one for each step. J }

|

The Electric Field of Continuous Charge Distributions

In the previous section we considered collections of point charges at discrete
points for which the field computation consists of finding the vector sums.
of the field intensities due to the individual point charges. In this section
we will extend the computation to continuous charge distributions. Con-
tinuous charge distributions can be of three types:

(a) Line charge for which charge is distributed along a line (straight
or curved).

(b) Surface charge for which charge is distributed on a surface (planar
or nonplanar).

(c) Volume charge for which charge is distributed in a volume.

When a charge is distributed along a line or on a surface or in a volume,

we have to deal with charge densities. The line charge density is the charge
per unit length, the surface charge density is the charge per unit surface area,
and the volume charge density is the charge per unit volume. We will use the
symbols p,, p,, and p, respectively, for these charge densities. Obviously,
the units of p,, p,, and p are coulombs per meter, coulombs per meter?,
coulombs per meter?, respectively. In each case we can divide the total charge
into several infinitesimal parts, each of which can be considered as a point
charge. We thus represent the total charge as a continuous collection of
point charges and obtain the field intensity at any point due to the total
charge as the vector superposition of the field intensities due to the individual
point charges. However, we now have to evaluate integrals instead of
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summations of a few terms since the distribution of charges is continuous
instead of being discrete. We will illustrate this process by considering three
examples: (a) infinitely long line charge, (b) infinite sheet charge, and (c)
spherical volume charge.

[EXAMPLE 2-4. An infinitely long line charge of uniform density p., C/m is situated
along the z axis as shown in Fig. 2.8. We wish to obtain the electric field
intensity due to this line charge.

f Line
1 Charge

Fig. 2.8. Geometry for computing the electric field of an
infinitely long line charge of uniform density p,;, C/m.

| First, we divide the line into a number of infinitesimal segments each of
; length dz, as shown in Fig. 2.8, such that the charge p,, dz in each segment
can be considered as a point charge. The electric field intensity due to each
point charge is directed radially away from that point charge and varies
inversely as the square of the distance from that charge. Now let us consider
a point P at a distance r from the z axis, with the projection of the point
P onto the z axis being the point O. The electric field intensity vectors at
point P due to the infinitesimal segment immediately above O and the infini-
tesimal segment immediately below O have equal magnitudes and make
‘ equal angles with the line OP as shown in Fig. 2.8. The components of these
| two vectors perpendicular to OP (parallel to the z axis) therefore cancel,
‘ whereas the components along OP add to each other. Thus the resultant
‘ electric field intensity at P due to the two segments, one directly above O and
‘ another directly below O, is entirely directed along OP, that is, normal to
the axis of the line charge. A similar argument can be made for the resultant
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electric field intensity vector at point P due to any other two segments which
are equidistant from O with one above it and the other below it. Now, since
there are as many (semiinfinite) segments above O as there are below it, the
resultant field intensity at point P due to the entire line charge is directed
radially away from it. The situation remains unchanged if we move P up orﬁ
down, keeping # constant, since there are always a semiinfinite number of,
segments above the projection of P onto the line charge as well as below it.
Thus the electric field intensity of an infinite line charge of uniform density
at any arbitrary point is directed radially away from the line charge and is[‘
independent of the position of P parallel to the z axis. It is dependent only
on the distance of P from the z axis. We have thus simplified the problem
to one of finding the magnitude of the field intensity.

To determine the magnitude of E, let us once again refer to Fig. 2.8,
and consider the segment at the point A at a distance z above O. The electric
field intensity at point P due to this segment is equal to r

Pro dz i
4ne,(r* + %) har
The component of this electric field intensity along OP is
_ P d. Prod CoS & — Pror dz |
4TIETT|— zz) 47:677_—1— %) dme (r* + 22)77%

We need not consider the component normal to OP since it gets cancelled
from the contribution due to another segment at the point B at a distance
z below O. The component along OP is, on the other hand, doubled from
the contribution due to this second segment. Thus the magnitude of the‘
resultant electric field intensity at P due to the two segments at 4 and B is
given by

_ _2pLor dz )
9E = Tne3 T 2277 2-29)
The magnitude of the electric field intensity at P due to the entire line charge
is now given by the integral of dE where the integration is to be performed
between the limits z = 0 and z = oo. Thus

_ " 2pror
E - o dE - 47560 (?2—_‘_—22_)37— (2'30}
Introducing z = r tan « in (2-30), we obtaln
7/2
_ _Pro _ Pro .
E= _27TEOI' J\‘z:o cosa do = F{)r . (2 31)
Recalling that E is directed radially away from the line charge, we have
— Pro 3
E e i, (2-32

Equation (2-32) indicates that the electric field intensity of an infinite line
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chafge of uniform density falls off only as the inverse of the distance from the
line charge compared to the inverse square distance dependence in the case
of the point charge. ||

ExAMPLE 2-5. A sheet charge of uniform density p,, C/m? extends over the entire

xy plane as shown in Fig. 2.9. We wish to obtain the electric field intensity
due to this infinite sheet charge.

Let us consider a point P at a distance z from the xy plane, with the
projection of the point P on the xy plane being O, as shown in Fig. 2.9.
The electric field intensities at point P due to two point charges situated at
the diametrically opposite points 4 and B as shown in Fig. 2.9 have equal
magnitudes but their directions are such that the resultant electric field
intensity is directed along the line OP and away from the sheet charge. In
fact, for any point charge on the ring of radius r, there is a diametrically
opposite point charge which results in a resultant -electric field intensity
entirely along OP. Thus the field intensity at point P due to the charge on
the entire ring of radius r and width dr is directed normally away from the
sheet charge. This suggests that we divide the area of the xy plane into several

dr Pso T dr d¢

Sheet of Charge

X

Fig. 2.9. Geometry for computing the electric field of an infinite
sheet charge of uniform density p,o C/m?2. '
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rings, each of width dr, and divide each ring into angular increments of
dd, thus creating infinitesimal areas r dr d¢ having charges p,.r drdp as
shown in Fig. 2.9.

Now, since each ring results in an electric field intensity at point P, only
along OP, the field intensity due to the entire sheet charge will also be along
the same direction. If we move P sideways while keeping z constant, the |
situation remains unchanged so that the field intensity is independent of
the position of P in planes parallel to the sheet charge. Once again, we have
reduced the problem to one of finding the magnitude of E.

To find the magnitude of E, we note that the component along OP of
the field intensity at P, due to the infinitesimal charge p, ,r dr d¢ at point A, |
is given by

r dr d o'z dr d

I = e st = g
The resultant electric field intensity due to the ring of charge passing through
A and B is obtained by adding up all the contributions due to the infinitesimal
areas on the ring, that is, by integrating (2-33) with respect to ¢ between
the limits 0 and 27. We then add up all the contributions due to the several
rings by integrating this result with respect to r between the limits 0 and oo.
We thus obtain a double integral for F as

(2-33) |

I = iEe  poorzdrdd
r=0J ¢=0 r=0J g=0 EEO("Z + 22 372
PsoZ rdr

=% ), Ee 239
Introducing » = z tan & in (2-34), we obtain
/2
— Psa i = Pso -
E= %e. J‘wo sin ot do % (2-35)
Recalling that E is directed normally away from the line charge, we have
= M i -
E % i, (2-36)
where i, = i, above the xy plane and i, = —i, below the xy plane in Fig.

2.9. Equation (2-36) indicates that the electric field intensity due to an
infinite sheet charge of uniform density is independent not only of the posi-
tion of P in planes parallel to the sheet charge, but also of the distance away
from the sheet charge. The field is thus uniform in magnitude and directed
normally away from the sheet. If the sheet charge occupies the z = z, plane, '
it follows from (2-36) that

Psoj, for z> z,
2€,

E= |
—g;;’ i, for z< z,
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EXAMPLE 2-6. A volume charge is distributed throughout a sphere of radius a, and

centered at the origin, with uniform density p, C/m3. We wish to obtain the
electric field intensity due to this volume charge.

With the experience gained in Examples 2-4 and 2-5, we will shorten the
discussion concerning the direction of E by stating that, for every infinitesimal
charge pr? sin @ dr df d¢ in the infinitesimal volume r2 sin 6 dr df d¢ at point
A inside the sphere as shown in Fig. 2.10, there is another infinitesimal charge
such that the resultant electric field intensity at point P due to these two
charges is directed entirely along OP, that is, radially away from the center
of the sphere. Also, moving P on the surface of a sphere of radius z does not
change the situation so that the field intensity is a function only of the distance
from the center of the sphere. Thus it is sufficient if we evaluate the component
of the electric field intensity at P along OP due to the infinitesimal charge
por? sin 8 dr df dp and perform a volume integration to obtdin the electric

Fig. 2.10. Geometry for computing the electric field of a spherical
volume charge of uniform density p, C/m?.
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field intensity due to the entire spherical volume charge of radius a. The
component, along OP, of the electric field intensity at P due to the infinite-
simal charge at 4 is given by

por® sin 6 dr dO d¢
4me(r® + z2 — 2 rzcos 0)

po(z — rcosB)r? sin 0 dr d dp
4me o (r? + z2 — 2 rzcos-0)3%
(2-37)

The electric field intensity due to the entire spherical charge is then given by

N I 2 dE:f“ i J% po(z — rcos @)r? sin 0 dr df do
420 r=0J 6=0J g=0 4ME(r* 4 22 — 2 rzcos 0)%'*
_Pp (z — rcos O)r? sin 0 dr do )
% J jo o (r* + z* — 2 rzcos 6)3/2 (2-38)

dE = cos o =

Introducing s2 = 2 + z2 — 2 z cos 0, for integration with respect to 8, we
have

sin 6 df = srzzis (2-39a)
s2 —_ r2 + 22
z—rcosf = —— (2-39b)
zZ—r for 6=0,z>r
s=<r—z for 0=0,0<z<r (2-39¢)
z4r for ==
Substituting these into (2-38), we obtain, for z > q,
L r_dr z+r Sz _ r2 + zz ds
T 2, ), 22 s2
sEET (2-40)
— Do [* 4rrdr _ (4ma/3)p,
2, ), , 227 4ze z?
For 0 < z < a, we have
=2 ’ﬂf” S—’+zds+”°f ’d’J —’2+zzds'
260 ,—-0222 z—r S r=z
? 4r2 dr 4rz3/3

Equatlons (2-40) and (2-41) give the magnitude of E at any radial dis-
tance z greater than a and less than a, respectively, from the center of the .
charge. Recalling that the direction of E is radially away from the center of
the charge distribution and substituting » for z, we have

(4na’[3)pq; /3)2/701 for r>a
4re ,r

E= (2-42)

(47”3/3)2 2, for r<a
TLE o1
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Noting that 47r3/3 is the volume of a sphere of radius r and that there is no
charge in the region » > a, we can combine the two results on the right
side of (2-42) as

E(r) — charge enclosed by the4jz}2hf§ical surface of radius "y (2-43)
0

Viewed from any distance » from the center of the volume charge, the volume
charge is equivalent to a point charge of value equal to the charge enclosed
by the spherical surface of radius r. |

In the examples we have considered in this section, it was possible to
determine the electric field intensity by evaluating a single scalar integral
in each case because of the symmetries involved. In the general case, it would
be necessary to evaluate three scalar integrals. Furthermore, in order not
to get confused between the field points (i.e., points at which the field is
desired) and the source points (i.e., points in the volume, surface, or contour
occupied by the charge distribution), we must use a notation which distin-
guishes the two sets of points. Usually, the coordinates of the source points
are denoted by primes, whereas the coordinates of the field points are un-
primed. The integration is then to be performed with respect to the primed
coordinates. This notation is known as the source point-field point notation.
Thus, in general, if a line charge of density p,(r") occupies a contour C’,
where r’ is the position vector in the source point coordinate system, then
the electric field intensity E(r) at a field point defined by the position vector
r is given by

_ 1 [ @) da—r) _
E(r) = ane, J‘Cl r—r] (2-44a)
The right side of Eq. (2-44a) is a vector integral and, in general, it requires
the evaluation of three separate scalar integrals. Expressions similar to
(2-44a) can be written for surface and volume charge distributions. Thus,
for a surface charge of density p,(r') occupying a surface S’, we have

_ 1 [p.(x") dS"](x — 1) .
E(r) = Ime, fy T—=r] (2-44b)
For a volume charge of density p(r’) occupying a volume V', we have
1 [p(x") dv'](r — 1) )
Em = Ime, fw T=rT (2-44c)

We will use the source point-field point notation only wherever the same
coordinate or coordinates for the source and field points appear in the
integral. For example, if we wish to evaluate the electric field intensity due
to a finitely long line charge along the z axis at a point (r, @, z), then we will
have to define the points occupied by the line charge using a z’ coordinate
so that no confusion arises with the z coordinate of the field point.
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Direction Lines

In the previous two sections we obtained the expressions for the electric field
intensities due to certain charge distributions both discrete and continuous.

In simple cases, such as for the point charge and for the three examples of |

the previous section, it is easy to visualize, from a glance at the field
expression, the direction of the electric field intensity vector everywhere in
space. However, in a case such as the electric dipole (Example 2-3), it is
not easy to visualize the direction of the electric field intensity vector by
a glance at the field expression [Eq. (2-28)]. If we want to attack the prob-
lem directly in such a case, we can assign numerical values for the coordi-
nates in the field expression and compute the direction of the field
intensity vector at several points in the medium and then draw arrows
along the computed directions. Alternatively and more elegantly, we ask
the question: Suppose we place a test charge at a point in the electric field,
what is the direction along which it experiences acceleration? Obviously,
the test charge experiences acceleration along the direction of the electric

field intensity vector at that point. If we stop the test charge after each |

infinitesimal distance and trace its path in the limit that the infinitesimal
distance tends to zero, we get a line along which the electric field is everywhere
tangential to it. Such lines, called “direction lines,” are of great help in under-
standing the behavior of a given field, as suggested in Chapter 1. They are
also known as “stream lines” and “flux lines.”

To develop the technique of sketching the direction lines for a given
field, let us consider a small test charge placed at a point P(x, y, z) in the
field as shown in Fig. 2.11. At the point P the force on the test charge is

1\
/ )
y| O(x +Ax,y+Ay,z+A4z)

IP(x,y,z) \

0 | '
7 ‘ // >y
—_ W /
/
/

X

Fig. 2.11. Illustrating the proportionality of the electric
field intensity vector E and the infinitesimal vector dis-
placement Al of a charge placed in the field.
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directed along E. The test charge will travel for an infinitesimal distance Al
in the direction of E to point Q(x + Ax,y + Ay, z + Az). The vector
displacement of the test charge is then equal to Axi, + Ayi, + Azi,. But
this infinitesimal vector displacement is proportional to the force experienced
by the charge which in turn is proportional to E = E,i_ 4 Ej, + E.i,. Thus

Axi, + Ayi, + Azi, « E,i, + E,i, + E,i, (2-45)

Two vectors are proportional if and only if their respective components are
proportional by the same amount. Hence we have, from (2-45),

Ax _ Ay Az )
E-FL " E (2-46)

But Eq. (2-46) is approximate since, in general, E varies continuously from
point to point in magnitude and direction. However, it will be exact in the limit
Ax, Ay, and Az all tend to zero. It then reduces to

dx _dy _ dz )

E~E " (2-47a)
Knowing E,, E,, and E, for a particular field, we can substitute in (2-47a)
and solve the resulting differential equations to obtain the algebraic equations
for the direction lines. We can obtain equations similar to (2-47a) for the
cylindrical and spherical coordinate systems following similar arguments.

These equations are

dr _rdp d:z .o

S i S cylindrical 2-47b
E-E " E yhnen (2-470)
ar _ %ﬁ - % spherical (2-47c)

We will now illustrate the use of these equations by considering an example.

ExampLE 2-7. In Example 2-3 we obtained the expression for E for an electric
dipole of moment p oriented along the positive z axis as

— p . . .
E Tne (2cos @i, + sin G ig)

It is desired to obtain the equation for the direction lines for this field.
Noting that

__2pcos @ __ psin€ N
E = 47e o1’ Eo = 4re,r3 E,=0

we have, from (2-47c),

d_______rdd _rsinfdp (2:48)
(2pcosO)Jane,r’ — (p sin Q)dme,r® 0

or
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dr

T=200t0d0 dpg =0
Inr = —2Incosec @ + constant ¢ = constant
r cosec? f = constant ¢ = constant (2-49)

The direction lines are thus intersections of the surfaces » cosec? § = constant
and the planes ¢ = constant. A few direction lines in constant ¢ plane are
sketched in Fig. 2.12. The small arrow at the center indicates the dipole
moment p with the direction of the arrow as the direction of orientation of
the dipole. |] .

Fig. 2.12. Direction lines of E for electric dipole of moment piz.

2.6 Gauss’ Law in Integral Form

Let us consider the surface of a sphere of radius r and centered at a point
charge Q at the origin. The electric field intensity due to the point charge is
directed everywhere radially away from the point charge and hence is normal
to the surface of the sphere as shown in Fig. 2.13. Its magnitude on the
surface of the sphere is a constant equal to Qf4me,r2. If we now consider
an infinitesimal area dS on the surface of the sphere, we have

E.dS= 2 i .dsi,= 2 i .dsi,= 2% (250

4me or? 4me, r 47e,r
The integral of E « dS over the surface S of the sphere is given by
VIS 0 __0 i
§SE dsS = §S e das = pr st (2-51)

since r is constant on the surface of the sphere. Proceeding further, we have
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Fig. 2.13. For evaluating §E - dS on the surface of
sphere centered at a point charge Q.

vas— @
§ SE ds = Tne (surface area of the sphere)

_ 47;2, () = 6% (2-52)
The physical significance of (2-52) is obvious if we compare the electric field
lines emanating from the point charge with the flow of a fluid away from
the location of the point charge. The surface integral of the fluid flow density
vector is the net amount of fluid flowing out of the surface. Similarly, the
surface integral of the electric field intensity vector can be interpreted as the
net flux of electric field emanating from the surface, although the electric
field is not a fluid in the sense that it does not flow like a fluid.

Thus Eq. (2-52) states that the net electric field flux emanating from the
surface of a sphere of radius r centered at a point charge Q is equal to Q/e,.
It is independent of the radius r of the spherical surface. Whether r = 1
micron or 1000 km, the electric field flux is the same (provided, of course,
that there is no other electric field in the medium). This is not surprising if
we once again compare the flux of the electric field with the flow of the
fluid. If the fluid is flowing radially away from a point source of the fluid,
then the amount of fluid crossing a spherical surface of one radius must
be the same as the amount crossing a spherical surface of another radius
or, for that matter, any arbitrary closed surface enclosing the point source
(provided, of course, there is no other source or sink of the fluid). Likewise,
if we choose an arbitrary surface enclosing the point charge, the net electric
field flux emanating from this surface must be equal to Q/e,. To prove this
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Fig. 2.14. For evaluating ffE - dS over an arbitrary surface

S enclosing a point charge Q.

mathematically, we refer to Fig. 2.14. Considering an infinitesimal area dS
on the arbitrary surface, we find that the infinitesimal amount of electric
field flux emanating from this area is given by

QO ;o.4si = 245 :

| e R ige dSi, = dne K2 cos o (2-53)
where o is the angle between the radial vector away from the point charge
and the normal vector to the area dS. The total flux emanating from the
entire closed surface S is then given by

- Qds 0 dS cos

ffSE. dsS = f{;sw cos o = ine,§,” R (2-54)
In (2-54), dS cos o is the projection of the area dS on the arbitrary surface
S onto a spherical surface of radius R and centered at the point charge.
Hence (dS cos &)/R? is the projection of dS onto a spherical surface of radius
unity and centered at the point charge. It is known as the solid angle sub-
tended at the point charge by the area dS. The unit of solid angle is steradian.
The quantity § (dS cos a)/R? is the total solid angle subtended at the point
charge by the closed surface S. It is the sum of the projections of all infini-
tesimal areas comprising the arbitrary surface S onto the spherical surface
of radius unity and centered at the point charge. Thus it is equal to the surface
area of the sphere of unit radius, that is, 47z, Substituting this result in (2-54),

"E.dS=
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fr-

surface
enclosing Q

If an arbitrary surface does not enclose a point source of fluid, then the

we have

(2-55)

- net amount of fluid emanating from the surface must be zero since there -

are equal amounts of fluid flowing in and out of the surface. Likewise, if
the arbitrary surface does not enclose the point charge, the net electric field
flux emanating from the surface must be zero. Thus

45 E.dS=0 (2-56)

surface not
enclosing Q

It will be left as an exercise for the student to provide a mathematical proof
of (2-56).

If, instead of one point charge, we have five point charges Q,, Q,, Q.,
0., O, as shown in Fig. 2.15, then for an arbitrary surface S enclosing point

Fig. 2.15. An arbitrary surface enclosing three point
charges.

charges Q,, Q,, and Q, but not Q, and Q,, we can obtain the net electric

field flux emanating from the surface using superposition. Thus, if E,, E,,
E,, E,, and E; are the electric field intensity vectors due to Q,, Q,, Q,, Q,,
and Q,, respectlvely, we have

§E s = 3€E ds+§j§E-ds+§E.ds+§E.ds
+§E.ds

2-57)
(000 0) =L (2 + 0+ 0.)

D=

(charge enclosed by the surface S)

0
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The discussion can be extended to a continuous charge distribution if we
note that a continuous charge distribution can be represented as a con-
tinuous collection of charges occupying infinitesimal volumes, each of which
can be considered as a point charge. Those charges enclosed by the arbitrary
surface result in a net electric field flux in accordance with (2-55), whereas
those which are not enclosed by the surface result in zero flux in accordance
with (2-56). We can summarize these conclusions in-a single statement that
“the net electric field flux emanating from a closed surface is equal to the
net charge enclosed by the surface divided by €,.” This statement is Gauss’
law—one of the important laws in electromagnetic field theory. In equation
form, Gauss’ law is written as

§ E.dS= ei(charge enclosed by the surface S) - (2-58)
S 0

ExAMPLE 2-8. An infinitely long line charge of uniform density p,, C/m is situated
along the z axis. It is desired to find the electric field flux cutting the portion
of the plane x = 1 m lying between the planes z=0m and z=1m as
shown in Fig. 2.16.

First we will solve this problem by actually evaluating [ E « dS over the
given surface. To do this, we note that E due to the line charge is given by
(prof2me r)i,, where r is the radial distance from the line charge and i, is the
unit vector directed radially away from the line charge. Considering an
infinitesimal area dy dz at the location (1, y, z) on the given plane, the infini-

X

Fig. 2.16. For evaluation of electric field flux emanating from an
infinite line charge and cutting a portion of the x = 1 plane.
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tesimal amount of flux cutting this area is given by

T Pro - . _ prodydz i
E.dS=5 —Crsi . dydsi, Ez;Lo(lTyT) (2-59)

The total flux cutting the portion of the plane x = 1 m lying between the
planes z = Om and z = 1 m is then given by

= ! dy dz
E.dS—= _Proayaz
fy=—oo fz f J; 0 2”60(1 + y_j

— Pro f d Pro
T 27E, b=l b= 2€,

This result can, however, be obtained without performing the integration
if we note that the electric field intensity due to the line charge is independent
of ¢ and hence the electric field flux from the line charge emanates from it
uniformly in @. Thus half of the electric field flux emanating from that por-
tion of the line charge lying between z = 0m and z=1m cuts the given
surface. Since the total flux emanating from this portion of the line charge
is pro(1)/€e, = prof€,y, according to Gauss’ law, the flux cutting the specified
surface is p;o/2€,. |}

(2-60)

Given E and a closed surface S, it is always possible to compute the
charge enclosed by the surface by evaluating § E . 'S analytically or

numerically and then multiplying the result by €, in accordance with Gauss’
law as given by (2-58). The inverse problem of finding E for a given cherge
distribution by using (2-58) is possible only for certain simple cases involving
a high degree of symmetry, since the unknown quantity E appears in the
integrand. As a first step, the symmetry of the electric field must be deter-
mined by making use of the fact that the electric field due to a point charge
is directed radially away from it. We have illustrated this in Examples 2-4,
2-5, and 2-6. Next, we should be able to choose a closed surface S such

that § E « dS can be reduced to an algebraic quantity involving the mag-

nitudesof E. Such a surface is known as a Gaussian surface. Obviously, the
Gaussian surface must be such that the magnitude of E is uniform and the
direction of E is normal to the surface over the whole or part of the surface,
while the magnitude of E is zero or the direction of E is tangential to the
surface over the rest of the surface in the latter case. We will illustrate this
method of obtaining E by reconsidering Examples 2-4, 2-5, and 2-6.

ExampPLE 2-9. An infinitely long line charge of uniform density p,, C/m is situated
along the z axis as shown in Fig 2.17. We wish to obtain the electric field
intensity due to this line charge using Gauss’ law.

In Example 2-4, we established from purely qualitative arguments that
E due to the infinite line charge of uniform density is directed radially away
from the line charge and its magnitude is dependent only on its distance
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™~ das,
N E—

/ |

I

Fig. 2.17. Gaussian surface for computing the electric
field of an infinitely long line charge of uniform
density.

from the line charge. Thus ;
E = E,(r)i, : (2-61)

Choosing the Gaussian surface S as the surface of a cylinder of radius r
with the line charge as its axis and of length /, as shown in Fig. 2.17, we have

§ E.dS= j E.dS+ j E.dS (2-62)
surface of curved plane sur-
cylinder, § surface S1 faces S2,83

The second integral on the right side of (2-62) is zero since E is tangential
to the surfaces; that is, E « dS is zero throughout the surfaces. Noting that
E, is constant on the curved surface S;, we find that the first integral can be
written as

| E-dS:j E,i +dS,i, =E, | ds,
S1 S1
sustace s, (2-63)
= E, (surface area of S,) = E,(2znrl)
Thus |

$ E.as=2mwiE, (2-64)
S
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:But, from Gauss’ law,

‘ ff E.dS : chargé enclosed by S Pl (2-65)
60 o 60
Comparing (2-64) and (2-65), we have
— Pro. ;
Ef 27E ¥ (2-66)
— Pro_; -
E= 2m:_rl (2-67)

which agrees with the result obtained in Example 2-4. |

ExampLE 2-10. A sheet charge of uniform density p,, C/m? extends over the entire
xy plane as shown in Fig. 2.18. We wish to obtain the electric field intensity
due to this infinite sheet charge using Gauss’ law.

Fig. 2.18. Gaussian surface for computing the electrlc field of an
infinite sheet charge of uniform density.

In Example 2-5 we established from purely qualitative arguments that
E due to the infinite sheet charge of uniform density is directed normally
away from the sheet charge and that it is uniform in planes parallel to the
sheet charge. Thus

E=Ej, (2-68)
Choosing the Gaussian surface S as the surface of a rectangular pill box

of sides I, w, and ¢ as shown in Fig. 2.18, such that half of the box is
above the sheet charge and the other half below it, we have

SESE.dS=jE-ds+jE-ds+fE-ds (2-69)

top bottom side
surface surface surfaces

But the last integral on the right side of (2-69) is equal to zero since E is
parallel to the side surfaces and hence E « dS is zero throughout these sur-
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faces. Because E, is constant on both the top and bottom surfaces and E, is
the same on both these surfaces, since they are equidistant from the sheet
charge, Eq. (2-69) then reduces to

§SE.dS=2jE.dS=2jEnin.dSin |

top top
surface surface

= 2E, J dS = 2F, (surface area of top surface) (2-70)
surface
= 2E lw
But, from Gauss’ law,
§ E.dS _ charge enclosed by S _ p,Iw @2-71)
;S' ‘ EO 60
Comparing (2-70) and (2-71), we have
— Fs0 -
E, = (2-712)
s0 3 -
E= ek i, (2-73)

which agrees with the result obtained in Example 2-5. |

ExXAMPLE 2-11. A volume charge is distributed throughout a sphere of radius a
with uniform density p, C/m®. We wish to obtain the electric field intensity
due to this volume charge using Gauss’ law.

In Example 2-6 we established from purely qualitative arguments that
E due to the spherical volume charge of uniform density is directed radially
away from the center of the charge and is a function only of the distance
from the center of the sphere. Thus

E = E()i, (2-74)

Choosing the Gaussian surface S as the surface of a sphere of radius r = a,
concentric with the spherical charge, as shown in Fig. 2.19, we have

§ E-dS=§§ E,i, « dSi, =E,f§ ds
S S N
= E, (surface area of the sphere of radius r)
= E,(4nr?) (2-75).

But, from Gauss’ law,

ff E . ds — charge enclosed by S

_ charge enclosed by spherical surface of radius (2-76)
€o
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Fig. 2.19. Gaussian surfaces for
computing the electric field of a
spherical volume charge of uni-
form density.

Comparing (2-75) and (2-76), we have

h losed by spherical surface of radi :
E — charge enclosed by SIA)I-n:‘I:rC;a -sur ace of radius r 2-77)
E— charge enclosed by s;:ll;eeri:a;ll surface of radius ri, (2-78)

0

which agrees with the result of Example 2-6.

Gauss’ Law in Differential Form (Maxwell’s Divergence Equation
for the Electric Field)

Let us consider a volume charge distribution with the charge density p as
a given function of the coordinate system. The charge enclosed by an arbi-
trary closed surface S is given by the volume integral of the charge density

throughout the volume ¥ enclosed by the surface S; that is, f p dv. Accord-
14
ing to Gauss’ law (2-58), we have

§ E.ds=_1 f»pdv (2-79)
s €olJy

If we now shrink the volume to a very small value AV, so that the surface
area becomes very small AS, we can write (2-79) for this infinitesimal surface
as

f}( E-dS:if pdv (2-80)
AS 6-() Ay

Since the volume is very small, we can consider the charge density p to be
uniform inside that volume so that j p dv =~ p Av. This is exact in the
Ay

limit that Av — 0. Dividing both sides of (2-80) by Av and letting Av — O,
we have
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_ E.dS (1/eo)j p dv
lim £28 = lim Ay

Av-0 Av Av=0 Av (2-81)
1 fimpAr _ 1 |
T 6 B;I—T-lo Av — eop
The left side of (2-81) is the divergence of E so that we have
v.E=1, (2-82) |
60

Equation (2-82) is Gauss’ law in differential form, which states that the
divergence of the electric field intensity at any point is equal to 1/e, times
the volume charge density at that point. This is Maxwell’s divergence equation
for the electric field.

The right side of (2-82) represents a volume charge -density. Suppose
we are considering problems involving point charges, line charges, and sur-
face charges. The question then arises as to how we should represent the right
side of (2-82) since, for such charges, the volume charge density is infinity. |
We can resolve this problem by resorting to the Dirac delta function or
the impulse function. We will illustrate this for the case of a surface charge
in the following example. :

ExAMPLE 2-12. A sheet charge of uniform density p,, C/m? extends over the entire -
xy plane. It is desired to write Gauss’ law in differential form for this sheet
charge.

Let us consider a slab of charge lying between the planes z = —a and :
z= + q and of uniform density p, C/m?3 as shown in Fig. 2.20(a). The volume
charge density as a function of z for such a charge distribution is sketched in

Volume ﬂ\ ps0 8(2)
Charge
it
Density ~ Volume
1 Area = 2apq Charge
Density

% Area = p5o
.

() (b) ©

Fig. 2.20. For deriving the volume charge density corresponding
to a surface charge.




2.8

103 Potential Difference Sec. 2.8

Fig. 2.20(b). The charge per unit surface area of the slab charge is given by
fﬂ Po dz = py2a = area under the curve of Fig. 2.20(b). Let this quantity

be p,,. Suppose we now shrink a to zero, increasing p, such that p,, remains
constant. We then obtain a sheet charge of density p,, C/m2. What happens
to the sketch of Fig. 2.20(b) ? The width of the pulse-shaped sketch decreases
to zero and the height increases to infinity but maintaining the area under
it equal to p,,. The resulting function is sketched in Fig, 2.20(c). This function
is known as the Dirac delta function of strength p,, and is represented as
Pso 0(2), where (z) satisfies the properties

52) — {0 forz#0 0-83)

forz=0

oo 0+ a
f 8(z) dz = f 6(z) dz = lim zl dz =1 (2-84)
had z=0— a

—
z=— a—0

z=—a

| 106 dz = f0) (2:85)

Thus the volume charge density corresponding to the sheet charge of density
P lying in the z = 0 plane is p,, d(z). Gauss’ law in differential form for
the sheet charge is then given by

V.E=L,,60 (2-86)
€

If the sheet éharge lies in the z = z, plane, then the Dirac delta function is
shifted to z = z, and is written as 6(z — z,), having the properties

N
j “w 8z — z)dz = 1 (2-88)
| 1@68e—z)dz=f(z) (2-89)
Gauss’ law in differential form is modified to read
V.E= ?10_ .08(z — 20) (2-90)

It is left to the student to derive equations similar to (2-90) for line and point
charges, involving two-dimensional and three-dimensional Dirac delta func-
tions, respectively (See Problems 2.33 and 2.34). |

Potential Difference

In the study of mechanics, we are familiar with potential energy associated
with the movement of a mass in the gravitational field of the earth. If the
movement of the mass is along the direction of the gravitational field, that
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is, from a higher elevation to a lower elevation, the gravitational field does
the work. If the movement is opposite to the direction of the gravitational
field, that is, from a lower elevation to a higher elevation, certain work has .
to be performed by an external source to overcome the gravitational force. :
Likewise, since the electric field is a force field in so far as charges are con- |
cerned, there is work associated with the movement of charges in an electric
field. If a test charge is moved along the direction of the field, work is done !
by the field since the force exerted by the field on the charge is in the direction
of its movement and hence it accelerates the test charge. If the charge is"
moved against the direction of the field, an external agent has to supply the
energy to overcome the force exerted on the charge by the field, since this
force is opposite to the direction of movement of the charge.

Let us consider the displacement of a test charge g by an infinitesimal
distance dl from A to B at an angle o with the electric field E at the point
A as shown in Fig. 2.21(a). The force exerted on the test charge by the field

()

(b)

Fig. 2.21. Movement of a test charge in an electric field.

has magnitude gF and is directed along E. Its component along the line from
A to B is gE cos . If the charge is moved from A4 to B, the amount of work
dW done by the field is the product of the force and the displacement; that
is,

dW = gEcos 0. dl = gE « dl (2-91)

where dl is the vector from 4 to B. Note that dW is positive if 0 < & < 90°
so that work is done by the field; dW is negative if 90° < & << 180° so that
negative work is done by the field, which amounts to stating that work is
done against the field by an external agent. For & = 90°, dW is zero, which:
is analogous to the movement of a mass on a frictionless surface at right
angles to the gravitational field. Now let us consider two points 4 and B
which are widely separated as shown in Fig. 2.21(b). The work W,, done
by the field in moving a test charge g from A4 to B along a given path can be
obtained by dividing the path into several segments of infinitesimal length
dl, then applying (2-91) to each segment, and adding up all the contributions.
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The result is a line integral expression given by
B
We=q f E.dl (2-92)
4 .

where the integration is performed along the given path from A to B. The
evaluation of line integrals was discussed in Section 1.7.

In the gravitational field, when a mass moves from a higher elevation
to a lower elevation, it loses some potential energy and vice versa. Likewise,
in the electric field, we can state that the test charge has certain potential
energy associated with it by virtue of its location in the electric field. W,
as given by (2-92) is then the loss of potential energy associated with the
movement of the charge from 4 to B. If we divide W ; by g, we obtain the
loss of potential energy per unit charge. This quantity denoted by V; is
known as the potential difference between the points A and B. Thus

B
V= Waz — f E.dl (2-93)
q 4
If V5 is positive, there is a loss in potential energy associated with the move-
ment of the charge from A4 to B, that is, the field does the work. If V,; is
negative, there is a gain in potential energy associated with the movement of
the charge from A4 to B; that is, an external agent has to do the work. The
units of potential difference are newton-meters per coulomb or joules per
coulomb, commonly known as volts. This gives the units of volts per meter

to the electric field intensity.

ExAMPLE 2-13. In cartesian coordinates, the electric field intensity is given by

E = yzi, + zxi, + xyi,

‘ Find the potential difference between the points A(0, 22.7, 99) and B(l, 1, 1).
Is it necessary to specify a path for line integration between the two points?
In cartesian coordinates, dl = dxi, + dyi, + dzi, so that

V= JjE o dl = Jj(yzi,, + zxi, + xyi,) » (dxi, + dyi, + dzi,)
i =Ij(yzdx+zxdy+xydz) ”

| — [" deyz) = Lol

Since E « dl is the total derivative of a function of x, y, z, it is not necessary
i to specify a path for the line integration between the two points. ¥, is depend-
| ent only on the coordinates of the end points 4 and B. We will find in
! Section 2.11 that this is a general characteristic of the static electric field.
Here, we have

Vs = [xyz]f = [x.Vz]tlﬁi’zfm” =1 1
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The Potential Field of Point Charges

Let us now consider two points 4 and B in the electric field of a point charge
O situated at distances 7, and r,, respectively, from the point charge as
shown in Fig. 2.22. Using (2-93), the potential difference between 4 and B
can be computed for any specified path from 4 to B. Noting that E =
(Q/4me )i, for a point charge and that the differential length vector dl is'
given in spherical coordinates as

dl=dri, + rdfi, + rsin0 di, (2-94)

Q

—=1
dregr?

& B Fig. 2.22. Computation of the

potential difference between two,
points in the electric field of a
1 point charge.

we have, from (2-93),
|

B B Q
VAB:I E-dl=j (4 2i,)-(dri,-l—rdﬁig—l—r'sin0c17¢i¢) [
4 4 \dze r 2.95)

=Jm 0 4-_2 _ 9
rer, dmeqr? dregr, 4dmegry

Equation (2-95) indicates that, for a given charge Q, the potential difference
between the two points is dependent only upon their distances from the
point charge and not on the path from A4 to B chosen for its evaluation.’
Furthermore, the potential difference is the difference between two terms,
one of which is dependent on r, only and the other dependent on r, only.
We can call these terms the potentials at », and rp, respectively. If we denote
these potentials as ¥, and V5, respectively, we have, from (2-95),

47 e r, (2-96)
__9 .
Va= 47e i p (2-97)

The right sides of Egs. (2-96) and (2-97) are, however, not unique expres-
sions for ¥, and Vjsince, on the right side of (2-95), we can add and subtract
any arbitrary constant C without altering its value; that is,
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(9 _(_9 -
Ve = <47z60r,‘, + C) (47zf°rB + C) (2-98)
which then leads to
__9 N

Ve = Tner, +C (2-100)

If we let C = Q/4me,ry, where r, is a constant, we have

-0 9 .

V,= dner,  Ime (2-101a)
V,=-2_ __9Q 2.101b
P4 ngy. 4 ng, ( )

Comparing (2-101a) with (2-95), we note that V, is the potential differ-
ence between point 4 and another point situated at a distance r, from the
point charge, which we will call the reference point. Similarly, V; is the
potential difference between the point B and the same reference point.- Thus
the potential at any point is simply the potential difference between that
point and an arbitrary reference point. But then, what is the potential at
the reference point ? The answer to this question is obtained by substituting
r4=r, in (2-101a) or ry = r, in (2-101b), both of which result in zero. The
potential at the reference point is therefore zero. To complete the definition,
we state that the potential at any point is the potential difference between
that point and an arbitrary reference point at which the potential is zero.
In the case of a point charge, a convenient reference point is 7, = co. We
then have

- 9
i) = Tnes N (2-102)
The potential at a distance » from the point charge is thus the work done per
unit charge by the field in the movement of a test charge from that point to
infinity or, it is the work done per unit charge by an external agent in bring-
ing a test charge from infinity to that point; that is,

V(r)=j:°E.d1=—f;E-d1 (2-103)

The right side of (2-102) represents the potential field of a point charge. It
is also known as the Coulomb potential of a point charge. In contrast to the
vector nature of the electric field intensity, the potential field is a scalar field.

Surfaces on which potential is a constant are known as equipotential
surfaces. If a test charge is moved on such a surface from one point to another,
no work is involved since the potential difference between any two points is
zero. For the point charge, the equipotential surfaces are, according to
(2-102), r =constant, that is, surfaces of spheres centered at the point
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charge. The equipotential surfaces are thus orthogonal to the direction lines
of E which are radial, as shown in Fig. 2.23. This result is to be expected not
only for a point charge but for any charge distribution, since if we move a
test charge along a path everywhere normal to the direction lines, there is no
component of force acting on the charge along the direction of the path and
hence the work involved is zero.

Direction
Lines

Equipotentials

Fig. 2.23. Cross sections of equi-
potential surfaces and direction
] lines of E for a point charge.

For several point charges located at different points as shown in Fig.
2.5, the potential at any point P is the work done per unit charge by an exter-,
nal agent in bringing a test charge from infinity to that point in the com-
bined electric field E of all the charges; that is,

vp)=—["E.dl
=—[ @ +E+E+ - +E). (2-104)
=_j:E1.d1_j:E2.d1— —j:En-dl

whereE,E,, E,, ..., E, are the electric field intensities due to the individual
point charges Q,, Q,, O, ..., Q,, respectively. But each term on the.right
side of (2-104) is equal to the potential at the point P due to the corresponding
charge. Thus

__9 Q4 ... 4 O
Vp) 4neqR, + 4rne R, + + 4me,R,
= 3 Q_

,; 47:601R,.

(2-105)

The potential at P due to the collection of point charges is the sum of the:
potentials at P due to the individual charges. In the vector notation defined.

in connection with Eq. (2-20), we write
(2-106)

v o
YO = 2 dmer =1
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ExAMPLE 2-14, For the electric dipole arrangement of Fig. 2.7, it is desired to

find the potential at distances very far from the dipole compared to the spac-
ing d.

With reference to the notation of Fig. 2.7, the electric potential at point
P is given by

Vi) = 2 Y : (2-107)

dney,  Amegr

For r > d, (2-107) can be approximated as

~ 9 )
")~ Zre = @2y cos 0] — Tl + (d]2) cos 0]

- Qd cos 0 . Qdcosf

= dner* — (d*[8) cos2 0] dmer?
Equation (2-108) becomes exact in the limit 4 — 0, keeping the dipole mo-
ment p = Qd constant. We then have the potential field of dipole moment
p = pi, given by

(2-108)

_pcos@ _ pei, p-r }
i) = dne,r? ~ dmeg?  Ameyr? (2-109)

The potential field of a dipole drops off inversely as the square of the distance,
as compared to the inverse distance dependence of the potential field of a
point charge. Likewise, the potential field of a quadrupole can be shown
to vary inversely as r3. The potential fields of successive higher-order mul-

tipoles vary inversely as r*, r*,.... From (2-109), we note that the equipo-
tential surfaces for the dipole field are (cos 8)/r? = constant, or
r? sec @ = constant (2-110)

Cross sections of these surfaces are sketched in Fig. 2.24, in which the direc-
tion lines of E taken from Fig. 2.12 are also shown. It is left as an exercise
for the student to show that the equipotential surfaces given by (2-110) and
the direction lines given by (2-49) are orthogonal. |

) EF(AMPLE 2-15. A point charge Q is situated at a vector distance r’ from the origin

" .

of a coordinate system as shown in Fig. 2.25. It is desired to find the potential
due to this point charge at distances r from the origin large in magnitude
compared to r’ in the form of a power series in 7.

Let P be the point at which the potential is desired. Then, from (2-106),
the potential at P due to Q is given by

V) = 4me,|r — 1’|

(2-111)

= dne (r* T 1’ — 2rr cos )72

) ! e p\-1/2
2

" dze,r rz
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Direction
Lines

Equipotentials

Fig. 2.24. Cross sections of equipotential surfaces and
direction lines of E for an electric dipole.

X

Fig. 2.25. For the computation of potential due to a point
charge at distances large compared to its distance from the origin.

Chap.
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Using the binomial theorem,

Uty =1+n+ 20Dy

we have

051 () =) ()

+ - .- higher-order terms]

= 471%0’ {1 + —— r- r + 2 4[3(r +1)? — #2r'?] 4+ - - - higher-order terms}
(2-112)

For r'/r < 1, the magnitudes of the successive terms on the right side of
(2-112) decrease rapidly as can be seen by writing (2-112) as

(1')—47[60 [1—1—( ‘)cosoc—l—(r) (:”.0052*_1)

-+ -« -higher-order terms]

(2-113)

Hence, for r’' < r, only the first few terms are significant. Furthermore,
writing

V(r)=4Q +Qr’-r+8 0 S[30 e X)?2 — P2 4 -

4ne r 474:f0r3 TE oF , (2-114)
0 +Qr cosoc+ Qr2(3coszoc—1)_}_._-.
T dme,r 4re r? 4re 3 2

we observe that, on the right side of (2-114), the first term is the potential
at P due to a point charge Q at the origin; the second term is the potential
at P due a dipole moment p = Qr’ at the origin; the third term seems like
the potential at P due to a quadrupole at the origin since it varies as 1/r3,
and so on. .

If we have several point charges Q,, Q,, Q,, . . ., Q, situated at r, rj,
r;, ..., I, the potential at r due to this collection of point charges can be
written by applying superposition to (2-114) as

w09 ox,-r 9, ' g2y
0= 5 (s + Pt 2o — 1+ )
(2-115)

EQ ZQﬂw
_I_J

47:60r 47e ,r3

The potential due to the collection of point charges at large distances from
the collection is thus a superposition of the potentials due to a point charge
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of value E Q,, a dipole moment Z Q,r;, and so on, all situated at the

origin. We note that if the sum of the charges is zero, the first significant term
is that of the dipole moment. Likewise, if the sum of the charges as well
as the dipole moment are zero, the first significant term is the quadrupole
term, and so on. Usually, two significant terms will suffice. J§ |
ExampLE 2-16. Point charges are located at the corners of a cube of sides lm’l,
with one corner placed at the origin and three edges coinciding with the
coordinate axes as shown in Fig. 2.26. Values of the point chargesin coulombs
are indicated at the respective corners. Find the first two significant terms
in the potential of this collection of charges at large distances from it. '

-1 4
A
/ /7T
/ s
/ / |
2 —— o
A -
| | 7/ . .
| | //Cub e of Fl:g. 2.26. Point charges l\c,)clated a[;
— __1/ Edges | m the corners of a cube. Values ©

the point charges indicated at the
respective corners are in cou-
lombs.

|
ol

the collection of point charges and substituting the results in (2-115). Thes
quantities are evaluated with the aid of Table 2.2.
The potential for large r correct to the first two significant terms is thein

The solution to this problem consists of evaluating >, Q and Y, Or’ foF'

given by
_ X0  ZOr.r
47I€0i‘ dner®
3 (—=3i, + 6i,) + i, 116
" dueyr + 47Z€ 2 (2-116)
_ 3 +—3sm()cos¢+6sin08in¢
4re & 4me

If, in Table 2.2, 3 Q is zero, then we have to evaluate the third term if th.
result is to be correct to the first two significant terms, and so on. |
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TABLE 2.2. Computation of }; O and Y, Or’ for the Arrangement of Point
Charges in Fig. 2.26

Location

(x,y,2) Charge, O r or’
0,0,0 1 0 0
1,0,0 —1 ix —iy
0,1,0 2 iy 2i,
0,0,1 —1 iz —i
1,1,0 1 ix + iy i +1i,
0,1,1 4 iy + iz 4y + 4i;
1,0,1 —2 ix + i —2i, — 2i,
1,1,1 —1 ix +1iy, +i; —ix — iy — iz

S0=3 S or = —3i, + 6,

2.10 The Potential Field of Continuous Charge Distributions

In the previous section we considered the potential field of collections of
point charges at discrete points. In this section we will extend the discussion
to continuous charge distributions. As in Section 2.4, we divide the contin-
uous charge distribution into several infinitesimal parts, each of which can be
considered as a point charge, and obtain the potential at any point due to the
total charge as the superposition of the potentials due to the individual point
charges. To do this, we again have to evaluate integrals as in Section 2.4.
However, the integrals involve the scalar quantity potential instead of the
vector quantity electric field intensity. Hence, for a particular charge dis-
tribution, the potential at any point is given by a single integral, whereas for
the determination of the electric field intensity as in Section 2.4, it is neces-
sary to evaluate three integrals for the three components in the general case.
We will illustrate the determination of the potential for continuous charge
distributions through some examples.

iXAMPLE 2-17. An infinitely long line charge of uniform density p,, C/m is situated
along the z axis. It is desired to obtain the potential field due to this charge.

First we divide the line into a number of infinitesimal segments each of
length dz as shown in Fig. 2.27, such that the charge p,, dz in each segment
can be considered as a point charge. Let us consider a point P at a distance
r from the z axis, with the projection of P onto the z axis being O. For the
sake of generality, we consider the point P, at a distance r, from O along
OP as the reference point for zero potential and write the potential dV at
P due to the infinitesimal charge p,, dz at 4 as
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pLo dz \J—A

I

LO“ a0 Po - 4 P

ro

Fig. 2.27. Geometry for the computation of the po-
tential field of an infinitely long line charge of uni-
form density p.o C/m.

dv = _Pu dz __Prodz
4dne(AP)  4me,(AP,)
(2-117)
Prodz. . Pro 4z

T dme 1t A 22 dmega/rE + 22
We will, however, find later that we have to choose the reference point for
zero potential at a finite value of r, in contrast to the case of the point charge
for which the reference point can be chosen to be infinity. The potential
V at P due to the entire line charge is now given by the integral of (2-117),
where the integration is to be performed between the limits z = —co and
z = oo, Thus

_[" _ [ Pro dz N Pro dz )
V= L=_w-dV - L:_m <4n60Jr2 + 22 Adme/ri + 22

— Pro < dz . dz )

2ne, ) o\t 22 i+ 22
Introducing z = rtan g and z = ry tan o, in the first and second terms,
respectively, in the integrand on the right side of (2-118), we have

n/2 /2
V= 23@— (f sec o dov — f Sec oty doco)
T€o \J a=0 %0=0

(2-118)

= 2/;% {[In (sec & + tan &)]7% — [In (sec &, + tan a,)].~20}
o (2-119)
- A@{m WP+ 22+ z)ro]“’
2ne L (A 22+ 2)r

= P
2ne,

z=0
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In view of the cylindrical symmetry about the line charge, (2-119) is the
general expression in cylindrical coordinates for the potential field of the
infinitely long line charge of uniform density. It can be seen from (2-119)
that a choice of ry = oo is not a good choice, since then the potential would
be infinity at all points. The difficulty lies in the fact that infinity plus a finite
number is still infinity. We also note from (2-119) that the equipotential
surfaces are In r/r, = constant or r = constant, that is, surfaces of cylinders
with the line charge as their axis. In Ex. 2-4, we found that the electric field
intensity due to the line charge is directed radially away from the line charge.
Thus the direction lines of E and the equipotential surfaces are indeed
orthogonal to each other. J

Generalizing the expression for the computation of potential for a line
charge distribution of density p,(r") occupying a contour C’, we have

— P’ ’
V(r) = J;/ Tze,r — 1] dl (2-120a)

This is the Coulomb potential of line charge distribution p,(r’). Similarly,
for a surface charge distribution of density p(r) occupying a surface .5,
we have

_ pa") ,
V() = f Tt =TT as (2-120b)

and for a volume charge distribution of density p(r") occupying a volume ¥,
we have

— ) ,
V() = f o AT (2-120¢)

ExAMPLE 2-18. A cube charge of sides 1 m? is situated with one corner at the origin

and three edges coinciding with the coordinate axes. The charge density p
within the cube is given by

p=kx+y+2C

Find the potential field of the cube charge at large distances from it correct
to the first two significant terms.

This problem is an extension of Example 2-16 to a continuous charge
distribution. For.a continuous charge distribution, the summations of (2-115)
have to be replaced by integrals so that we have

V=JvoldQ+<fvoler’.r)+... (2_121)

dre o r 47e 3

For the specified charge distribution
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Jpde=] o | i

|

1 1 1 _197
= [ [ +y+nadya (2-122)

x=0v y=0 z=0 i
=3 C

[ o= pine

_ j‘ J‘ OJ‘ (x +y + 2)dredy dz (xi, + yi, 4 zi)
x= y= z=0
= 3(i, + i, + i)Cm (2-123)
Subst1tut1ng (2-122) and (2-123) into (2- 121) we obtain

3 S, + i, +1i,) .
V= 87r60r + 24n€ ri

+ 247ze sr——(sinfcos ¢ 4 sinfsind + cos )  (2-124)

87t6 r

correct to the first two significant terms. |

Maxwell’s Curl Equation for the Static Electric Field

In Section 2.9 we showed that the potential difference between two points
B

A and B, that is, the quantity J E . dl, in the field of a point charge is
A

independent of the path followed from A4 to B to evaluate it. Suppose we now
consider two different paths ACB and ADB in the field of a point charge as
shown in Fig. 2.28. We then have

E.dl= E.dl (2-125)

ACB ADB

Fig. 2.28. Two different paths
, between points 4 and B in the
\J electric field of a point charge.
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where
Q ;

T dmer? T

Equation (2-125) can be rearranged to read

E-dl— [ E.dl=0
ACB ADB
or
E.dl+ | E.dl=0 (2-126)
ACB BDA
or
3§ E.dl=0 (2-127)
ACBDA

where we have introduced a circle in the integral sign to indicate that the
integral is evaluated around a closed path.

If we now have a collection of point charges discrete or continuous,
we can apply superposition in the usual manner and arrive at the result that,
for any static electric field E,

3§E edl=0 (2-128)

Equation (2-128) states that the line integral of the electric field intensity

- vector of any static charge distribution evaluated around a closed path, or

the circulation of the static electric field, is equal to zero. Multiplying both
sides of (2-128) by a test charge ¢, we obtain

§ gE«dl=0 (2-129)

which states that the work involved in moving a test charge around a closed
path in a static electric field is equal to zero. If a certain amount of work
is done by an external agent during a portion of the closed path, the same
amount of work must be done by the field during the remainder of the closed
path. It is now evident that (2-129) is simply a statement of conservation of
energy, which is so familiar in the case of the gravitational field as the work
done in moving a mass around a closed path is zero. Fields which satisfy this
property are known as conservative fields. The static electric field is thus a
conservative field. In Chapter 4 we will learn that a time-varying electric
field does not satisfy this property.
From the definition of the curl of a vector, we have

E.dl
— lim J.AC i 2-130
VXE = lim T @1
where AS is the area bounded by the closed path AC and i, is the normal
vector to the area which should be oriented such that §,. E « dl is a maxi-
mum. However, for the static electric field, § E « dl = 0 for any closed path
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and hence the right side of (2-130) is identically zero, thus giving

VXxE=0 (2-131)
Equation (2-131) is Maxwell’s curl equation for the static electric field. It states
that the curl of the static electric field intensity vector is everywhere equal to
zero. Fields which satisfy the property of zero curl are known as irrotational
fields; that is, such fields cannot rotate the paddle wheel discussed in Section
1.9. Together with Maxwell’s divergence equation for the electric field glven
by (2-82), (2-131) completely defines the properties of the static electric ﬁeld
Equation (2-131) determines whether or not a given vector field is realizable
as a static electric field whereas Eq. (2-82) relates the field to the charge
distribution responsible for producing the field. As an alternative approach
to that which we followed in this chapter, it is possible to accept these two
equations as,a starting point and obtain the electric field mten51ty of a point
charge and other charge distributions.

ExXAMPLE 2-19. Determine if the following fields are realizable as static electric fields.
(@ F,= —yi, 4 xi, cartesian coordinates

(b) F, = (p./2meor*)(cos i, + sin ¢ i) cylindrical coordinates
(©) F,=sinfi, + cosfi, spherical coordinates

@ i, i
_|d d 4
VxF,= ax d 9 #0
—y x 0
Hence F, cannot be realized as a static electric field.
(b) i i,
r ¢ r
| 9 9 | _
VxF,= ar 36 &= 0
pLcos¢ p,sing 0

27 4r? 27eyr

Hence F, is realizable as a static electric field. It is left as an exercise (Problem

2.15) for the student to show that F, is the field of a two-dimensional electrac
dipole of moment p,.

(©) i is iy
r?sinf@ rsin@ r
VxF, = J A d =0
ar 00 op

sin@ rcos@ O

Hence F, can be realized as a static electric field. In fact, if we note thalt,
in cylindrical coordinates, F, = i,, the irrotational nature of F, becomes
obvious. ||
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The Relationship Between Electric Field Intensity and Potential

In Section 1.9, we learned that the curl of any vector which can be expressed
as the gradient of a scalar is zero. Conversely, if the curl of a vector is equal
to zero, the vector can be expressed as the gradient of a scalar. From (2-131),
we can say therefore, that the static electric field vector E can be expressed
as the gradient of a scalar, say, ®. The question that arises now is: What is
this scalar function @ ? For a hint, let us compare the direction of the gradient
of the potential ¥ with the direction of E. The direction of the gradient of
a scalar function at any point is the normal to the surface passing through
that point and on which the scalar function has a constant value. Hence the
direction of VV is normal to the equipotential surfaces. But we found in
Section 2.9 that E is normal to the equipotential surfaces. Thus the directions
of VV and E at a point have to be either the same or opposite.

To determine which of these is correct and to probe the relationship
between E and ¥ further, let us consider two equipotential surfaces in a
static electric field as shown in Fig. 2.29. Let the potentials on these surfaces

Fig. 2.29. For the determination E,4
of the relationship between E
and V.

be V and V + AV, where AV is infinitesimal. Since AV is infinitesimal, the
two surfaces are infinitesimally close so that we can assume that the electric
field intensity between the two surfaces in the neighborhood of point A is
uniform and equal to the electric field intensity E, at point 4. We know
from previous discussion that E, is normal to the equipotential surface V'
at A. To decide whether E, is directed towards the equipotential surface
V 4 AV or away from it, we note that, if a test charge is moved along the
direction of E, the field does the work; that is, the charge accelerates and
hence loses potential energy. This is the same as stating that the charge
moves from a higher potential to a lower potential. Thus E, is directed
away from the equipotential surface ¥+ AV as shown in Fig. 2.29. Now,
the potential difference between point 4 and another point B on the equi-
potential surface ¥ 4 AV can be written, using (2-93), as
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V= [ E+dl=E . Al 2-132)
A
But
=V—WV+AV)=—AV (2-133)‘

Also, if An is the normal vector from the surface V up to the surface V' + AV,‘
we have j

E,- Al= —E,Alcosa = —E, An (2-134)
Substituting (2-133) and (2-134) into (2-132), we obtain :
—AV = —E,An (2-135)

or
AV '
E,=%- (2-136)!i
and
Av, 1’
E, = — A b (2-137)

where i, is the unit vector along An. If we now let An tend to zero, (AV/An)i,
becomes VV. Dropping the subscript 4 in (2-137), since the same arguments
can be applied to any other point in the field, we obtain a relationship between
the static electric field intensity vector and the potential at a point as

E=—-VV (2-138)

Equation (2-138) permits us to compute E from a knowledge of V' using
differentiation.

Substituting (2-138) into Maxwell’s divergence equation for the electric
field, V « E = p/e,, we have

Ve(=VV)=£2 (2-139)
€o

Recalling that V « VV is the Laplacian of V, denoted as V2V, we see that -
Eq. (2-139) becomes

Vi =L (2-140)

€ ‘

This is known as Poisson’s equation. It is a differential equation which
relates the potential at a point to the volume charge density at that point.
If the volume charge density in a region is zero, then the right side of (2- 140)
is zero for that region so that (2-140) reduces to |

V2 =0 (2-141)

This is known as Laplace’s equation. It states that the Laplacian of the
electrostatic potential in a region devoid of charge is equal to zero. We will
discuss the solutions of Poisson’s and Laplace’s equations in Chapter 6.
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PROBLEMS

2.1

2.2

24.

Find the electric field intensity required to counteract the earth’s gravitational

force on a charge of ¢ C having a mass m kg. Compute the value of this electric
field intensity if the charge is an electron.

A radial electric field given by

where E, is a constant exists between two cylindrical surfaces r = a and r = b.
A test charge g having a mass m enters the electric field region at a radius r, with
a velocity v = v, is. Find the value of E, for which the test charge follows a cir-
cular orbit of radius rg. '

An electric field given by
E = E()iy

where E is a constant exists in the space between two parallel metallic plates of
length L as shown in Fig. 2.30. A small test charge ¢ having a mass m enters the
region between the plates at ¢ = 0 with a velocity v = 41, as shown in the figure.

Fig. 2.30. For Problem 2.3.

(a) Show that the path of the test charge between the plates is parabolic.

(b) Find the position y; along the y direction and velocity v, of the test charge
just after it emerges from the field region.

(c) Find the deflection y; undergone by the test charge along the y direction at
a distance d from the plates along the x direction.

Three point charges Q, kQ, and kQ are arranged as shown in Fig. 2.31. Find &
in terms of x if a test charge placed at a point on y = x in the plane of the charges
is to experience no force. Compute k for x = 1 and x = 1.
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T

-f—ikQ y=x

1 m

kQ
oL
L—+l m Fig. 2.31. For Problem 2.4.

Three point charges, each of mass m and charge Q, are suspended by strings of
length L from a common point. It is found that the common point and the points
occupied by the three charges form the corners of a tetrahedron. Find the rela-
tionship between Q, m, L, and the acceleration due to gravity, g.

Eight point charges, each of value 1 C, are situated at the corners of a cube of
edges 2 m with one corner placed at the origin and three edges lying along the
coordinate axes. (a) Find the force experienced by each charge. (b) Find the electric
field intensity at the point (2, 2, 2). (c) Find the electric field intensity at the point
©,0,2).

Point charges Q, —20Q, and Q are located at (0, 0, d), (0, 0,0), and (0,0, —d),
respectively. Such an arrangement is known as a linear quadrupole. (a) Find the
electric field intensity at distances large compared to d along the line joining the
charges. (b) Find the electric field intensity at distances large compared to d
normal to the line joining the charges.

A line charge is situated along the z axis. Consider the charge density p, to be
arbitrary function of z and show that the components of the electric field intensity
at any point in the xy plane are given in cylindrical coordinates by

E__T “ pLdz

E;=0

E, = _ [T puzdz

aneo | _ (24 z2)2

Evaluate the field components for the following charge distributions:
@) pL= Ppro —o<z< ®©
() pr= Ppro —2zy <z <2z
©) p=|z| —2zp <z <z
@ p=1z —2z0 <z < 2o

where p;, is a constant. Discuss your results from considerations of symmetry.
Verify your results by considering limiting cases wherever appropriate.
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A ring charge of radius a is situated in the xy plane with its center at the origin.
Consider the charge density p, to be an arbitrary function of ¢ and show that
the components of the electric field intensity at a point (0, 0, z) are given in car-
tesian coordinates by

—a? 2n

E, =573 P COos ¢ d¢
4n€0(a2 + 22)3/2 sm0

2 In
E =— "9 ;
Y 4meg(at + 22)%2 f¢=o pusin § dg

2
az *

~me@ v |, Pt

E,

Evaluate the field components for the following charge distributions:

@ pL= pro 0<¢ <2z
— [Pro O<p<m
®©) pr {—pm n<$<2m

© pr=procosd O<P<2m
(D pr= prosing 0<¢d<2n

where p., is a constant. Discuss your results from considerations of symmetry.
Verify your results by considering limiting cases wherever appropriate.

A sheet charge is situated in the xy plane. Consider the charge density p, to be an
arbitrary function of r and ¢ and show that the components of the electric field
intensity at a point (0, 0, z) are given by

E — psricosddrdd
x 47560 (rz + 22)3/2
E = psrzsmqﬁdrdqﬁ
v 47:60 T(r2 F 2y

E = _Z_ Ps" dr d¢
*  dnme, 4e o(rz (r? F z2)7%

Evaluate the field components for the following charge distributions:

@ ps = Pso O<r<oo,0<¢<2n
®) p. = {pm 0<r<rn,0<¢<2r
Fo<r<oo,0<¢<2n

(c)p={0 0<r<r,0<¢<2n
g Pso Fo<r<oo,0<¢<2n
(d)pszw 0<r<oo,0<¢<2n
© ps=pLi1Q 0<r<o,0<¢<2n

where p;, is a constant. Discuss your results from considerations of symmetry.
Verify your results by considering limiting cases wherever appropriate.
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A surface charge is distributed over a spherical surface of radius a and centered
at the origin. Consider the charge density p, to be uniform in ¢ but not necessarily
in 0 and show that the electric field intensity at a point (0, 0, z) has only a z-com-
ponent given by

a? (™ pz—acosf)sinfdb

E. = 2€, g0 (@ + 22 — 2azcos 0)*/2

Evaluate E, both for | z| < e and for |z| > a for the following charge distributions:
@) ps = pso 0<f<m
) ps = pocosfd 0<0<=m

where ;o is a constant,

A volume charge is distributed throughout an infinite slab of thickness 2a sym-
metrically placed about the xy plane. Consider the charge density p to be uniform
in x and y but not necessarily in z and show that the electric field intensity at any
point (x, y, z) has only a z component given by

1 a
Ejz=_apdz z>a
1 a a
E,=<2—€°(Jz=_apdz— z=zpdz) —a<z<a
1 a
—TO z=_apdz z<a

Evaluate F, as a function of z for —co < z < oo for the following charge dis-
tributions:

@ p=po —a<z<a

_ [Po 0<z<a
® s {—po —a<z<0
© p=|z| —a<z<a
@ p=:z —a<z<a

where p, is a constant. Discuss your results from considerations of symmetry.

A volume charge is distributed with uniform density p, C/m3 throughout ar
infinitely long cylinder of radius a m. Obtain the electric field intensity at points
both inside and outside the cylinder by dividing the cylindrical charge into sev-
eral infinitesimal parts each of which can be considered as a point charge.

A small hole is drilled through the center of the spherical volume charge o.
Example 2-6., as shown in Fig. 2.32. The size of the hole is negligible comparec
to the size of the sphere. A point charge g(<< 0) is placed at one end of the hols
and released from rest at # = 0. Assume that the magnitude of g is very smal
compared to the total charge Q (> 0) contained in the sphere. (a) Derive th
equation of motion of the point charge. (b) Solve the equation for the positior
and velocity of the point charge as functions of time. (¢) What is the frequenc
of oscillation of the point charge?
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Fig. 2.32. For Problem 2.14.

Two infinitely long line charges of uniform but opposite densities p;o and —py,
are situated parallel to the z axis and passing through (d/2, 0, 0) and (—dJ2, 0, 0),
respectively. The arrangement is known as a two-dimensional electric dipole, in
contrast to the three-dimensional electric dipole made up of two equal but opposite
point charges. (a) Obtain the electric field intensity due to the two-dimensional
electric dipole in the limit that d — 0, keeping the dipole moment p,,d constant.
(b) Find and sketch the direction lines.

Two infinitely long line charges of uniform densities p.; and p;,, respectively,
are situated parallel to each other at a distance d apart. Show that the equation
for the direction lines of E is '

®1pr1 + 02P1, = constant _

in the plane normal to the line charges, where &; and o, are the angles made by
the lines drawn from any point P to the line charges with the line joining the
charges as shown in Fig. 2.33. Obtain and sketch the direction lines for the fol-

lowing cases:

@) pr1 = Pr2 = Pro
(®) pri = Pros» Pr2 = —pro  (two-dimensional dipole)

Fig. 2.33. For Problem 2.16.

Obtain the electric field intensity of a finitely long line charge of uniform density
Pro and length 24 at an arbitrary point. Show that the direction lines are hyper-

bolas with the ends of the line charge as their focii.
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' A point charge Q C is located at the origin. Find the electric field flux cutting th
portion of the plane x + y = 1 m lying in the first octant by evaluating [ E - dS}.

- at the origin.
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Carry out the mathematical proof to show that the net electric field flux emanatin
from an arbitrary surface not enclosing a point charge is zero.

Find the solid angle subtended by

(a) One face of a regular tetrahedron at the center of the tetrahedron
(b) One face of a cube at the center of the cube
(c) One face of a cube at one of the corners of the opposite face

(d) A hemispherical surface at a point on the base of the hemisphere othér than

its center
(e) The first quadrant of the xy plane at a point on the z axis
(f) The portion of any plane in the first octant at the origin.

An infinitely long line charge of uniform density pr, C/m is situated along th
z axis. Find the electric field flux cutting the portion of the plane x +y = 1n
lying in the first octant and bounded by the planes z = 0 and z = 1 m by evaluatin
[ E .+ dS. Check your answer from considerations of symmetry of electric fiel
flux emanating from the line charge.

Check your answer from considerations of symmetry of electric field flux emanatin
from the line charge.

Charges are located, in cartesian coordinates, as follows: (a) point charge, 1 C
at (0.23, 0.73, 0); (b) infinitely long line charge of uniform density 1 C/m parallg
to the z axis and passing through (0.6, 0, 0); and (c) an infinite sheet charge o
uniform density 1 C/m? in the z == 0.5 plane. Determine the total electric fiel
flux cutting the upper half of the spherical surface of radius unity and centere

Using Gauss’ law in integral form, obtain the electric fields due to the followin
volume charge distributions, in cartesian coordinates:

_ [po [zl <a
(a)p—{o" lz| > a

_Ip O<z<a

(b)p——{_"po —a<z<0
_ izl |z| <a
(C)”_{o |z| > a
=z lz| <a
(d)"’_{o |z| > a
© ={a——lzl |zl <a
p 0 lz| > a

where p, is a constant.

Using Gauss’ law in integral form, obtain the electric fields due to the followin
volume charge distributions, in cylindrical coordinates:

_ |po 0<r<a
@ p {0 a<r<o

oJ

2= <)

(4]

B e =~

]

<]
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0 O<r<a
®) p=1po a<r<b
0 b<r<ow

L 0<r<a
(C) p = pO a
a<r<oo
where p, is a constant.

Using Gauss’ law in integral form, obtain the electric fields due to the following
volume charge distributions, in spherical coordinates:

0 O<r<a
@ p=1po a<r<b
0 b<r<ow
(b) pz{p(,% O<r<a
' 0 a<r<oo
2
(c)p’={l’°(1_:?> O<r<a
0 a<r < oo

where p, is a constant.

Using Gauss’ law in integral form, obtain the electric fields due to the following
surface charge distributions: '

@ ps = {p 50 z=a } cartesian coordinates
“P:o z = —a

) ps = pso r=a cylindrical coordinates
p 50 r=a .

© ps = . _Z_ y— b cylindrical coordinates

(d) ps = pso r=a spherical coordinates

pso ¥ =
e) p, = a? spherical coordinates
@© p {“P:o 5= r=b } P
where p,, in a constant.

Volume charge of uniform density p, C/m3 is distributed in the region between
two infinitely long, parallel cylindrical surfaces of radii a and 6 (< a) and with
their axes separated by distance ¢ (<< a — b) as shown in Fig. 2.34. Find the
electric field intensity in the charge-free region inside the cylindrical surface of

radius b.

Verify your answers to Problem 2.23 by using Gauss’ law in differential form.
Verify your answers to Problem 2.24 by using Gauss’ law in differential form.

Verify your answers to Problem 2.25 by using Gauss® law in differential form.
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|

Charge Free
Region

Fig. 2.34. For Problem 2.27.

For each of the following electric fields, find the charge distribution which pro-
duces the field, using Gauss’ law in differential form: i

—%ﬂ i —co<z<0
0
@) E = _3p 6‘0 i, 0<z<a cartesian coordinates
0
? i, a<z<oo
0
(b) E = 1 E—Ve’ i, 0 <r< oo  cylindrical coordinates
0
0 < r<a
() E= %ﬁi, a<r<b spherical coordinates
0 .
0 b<r<oo

where p,, and Q are constants. ‘
A surface charge of density p, C/m? occupies the spherical surface of radius? ¥o
and centered at the origin. Show that '

V'E=6Lpsa(r—ro)
€Eq

An infinitely long line charge of density p;, C/m is situated parallel to the z axis
and passes through the point (¢, ¢¢) in the z = O plane. Show that

V.E=6LOPL05(r_rO)5(¢'—¢O)

Fo . i

where

o o |
[ |7 s pe=td@ =99 rag = 1 o)

r=0 é=0 ‘
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A point charge Q C is located at the point (rq, 8, o). Show that
V.-E= 1 Q5(” —rp) 6(0 — 00)5@ - ¢o)
€o

rsin 6,
where
w 27 0 —ro) 66 — 600)6(p — o) .., ;
fﬂo L=o ¢=0f(r, 8, $) 0 0, o) r2sin @ dr df d¢

= f(ro, 00, ¢o)

The electric field intensity is given in cylindrical coordinates by

cos @ . sin @ .
E=—r2¢l,—|— r2¢l¢

Find the work associated with the movement of a test charge from the point
(1,0, —22.7) to the point (0.5, /2, 43.8). Is this work done by the field or by
an external agent?

The electric field intensity is given, in cartesian coordinates, by

0 —oo <x <0

2xi,, O<x<l1

2.,
2 l<x <o

E =

Obtain and draw a graph of the potential difference between x = 1 and an arbitrary
value of x.

For the three-dimensional electric dipole, show that the equipotential surfaces,
r2 sec @ = constant, are orthogonal to the direction lines of E given by the inter-
sections of r cosec? # = constant and ¢ = constant.

For the linear quadrupole consisting of an arrangement of point charges Q, —20,
and Q at (0,0, d), (0,0, 0), and (0, 0, —d), respectively, obtain the expression for
the potential at distances large compared to d.

For the rectangular quadrupole consisting of an arrangement of four point charges
as shown in Fig. 2.35, obtain the potential at distances large compared to the
dimensions of the quadrupole.

Fig. 2.35. For Problem 2.39. x
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For the arrangement of point ¢harges shown in Fig. 2.36, obtain the expression
for the potential at distances large compared to 4.

Fig. 2.36. For Problem 2.40.

For each of the arrangements of point charges shown in Fig. 2.37, find the first
two significant terms in the potential at large distances from the origin.

Charge in
z z Coulombs

\ Cube of X

(@) (b ©
Fig. 2.37. For Problem 2.41.

For the arrangement of point charges shown in Fig. 2.37(c), >, Q@ = 0. When
>, 0=0and 3 Or =0, > Or is independent of the point about which it is
computed. Show that this is indeed true by computing the dipole moment for
the arrangement of Fig. 2.37(c) about an arbitrary point (x, y, z).

For a line charge of finite length situated along the z axis between z = —z, and
z-== +z,, consider the charge density p;, to be an arbitrary function of z and show
that the potential at any point in the xy plane at a distance r from the origin is
given by
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1 o Pr dz
Tmes N

z==2z0

V=

Evaluate the integral for the following charge distributions:

(@) pL = pro, a constant —zy <z <z
) pr=]z| —2zp <z < 2y
(C) pPL=1z - —zZy <z < 2z

Discuss your results from considerations of symmetry. Verify your results by
considering limiting cases wherever appropriate.

For the ring charge of Problem 2.9, show that the potential at a point (0, 0, z)
is given by

2z
a
=2 prdd
47[60(‘12 + Zz)l/z f¢=o

Evaluate V for the charge distributions specified in Problem 2.9, and discuss the
results from considerations of symmetry. Verify your results by considering limiting
cases wherever appropriate.

For the sheet charge of Problem 2.10, show that the potential at a pomt ,0, z)

is given by
_ L_ oo 2n [ Pt d}"d¢ _ psrdrd(ﬁ ]
~ 4rme, r=0d gm0 ¥ zDH72 " (2 + z3)172

where (0, 0, z,) is the reference point for zero potential. Evaluate ¥ for the charge
distributions specified in Problem 2.10, and discuss the results from considerations
of symmetry. Verify your results by considering limiting cases wherever appropriate.

For the surface charge of Problem 2.11, show that the potential at a point (0, 0, z)
is given by

V=

a? J"‘ p,sin 0 do

2¢, poo (@ + 2% — 2az cos B)1/2

Evaluate V both for | z| < @ and for | z| > a for the charge distributions specified
in Problem 2.11 and discuss your results from considerations of symmetry.

Obtain the potential field of a finitely long line charge of uniform density p,, and
length 2a at an arbitrary point. Show that the equipotential surfaces are ellipsoids
with the ends of the line as their foci. Establish their orthogonality with the
direction lines deduced in Problem 2.17.

For the two-dimensional electric dipole of Problem 2.15, (a) obtain the potential
field and (b) show that the equipotential surfaces are orthogonal to the direction
lines deduced in Problem 2.15.

A volume charge is distributed throughout a sphere of radius g, and centered at
the origin, with uniform density p, C/m3. Find the potential field of the volume
charge distribution:

For the volume charge distributions specxﬁed in Problem 2.23, obtain the potential
fields by evaluating [ E « d1.
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For the volume charge distributions specified in Problem 2.24, obtain the potential
fields by evaluating [ E - dl.

For the volume charge distributions specified in Problem 2.25, obtain the potential
fields by evaluating [ E « dl.

For the following surface charge distributions, obtain the potential fields:

@ p;= {p 50 z=a } cartesian coordinates
_p 50 zZ = —a
pSO r=a
®) p, = o Fa v b cylindrical coordinates
p;o rFr=a
- " . .
© ps —Deo Z_f v —b spherical coordinates

where p,, is a constant.

A volume charge is distributed with uniform density p, C/m? in the portion of
a sphere of radius a centered at the origin and lying in the first octant. Find the
potential field at large distances from the charge distribution correct to the first
two significant terms.

A ring charge of radius g is situated in the xy plane with its center at the origin.
Find the djpolc moments about the origin for the following charge densities,
where p,, is constant: )

@) pr=procosd 0<¢d<2m

(b) PL =.pL0 sin 2¢ 0 < ¢ < 2n

© pr=prodsing O<d<2zm

What are the dipole moments for cases (2), and (b) about any point other than
the origin ? Explain.

Determine if the following fields are realizable as static electric fields:

(@ A= }—}15 (i, — xi) cartesian coordinates

(b) B = —i— iy cylindrical coordinates ‘

() C= (1 + %) cos i, — (1 — rlZ) sin @ iy cylindrical coordinates

@ D= (1 + ;25) cos @i, — (1 — ;15> sin 0 i, spherical coordinates

Check that E = —VV by substituting independently obtained expressions for E
and V for the following charge distributions:

(a) An infinitely long line charge of uniform density.

(b) A finitely long line charge of uniform density.

(c) A three-dimensional dipole.

(d) A two-dimensional dipole.

(e) A spherical surface charge of radius @ and uniform density p,,.
(f) A spherical volume charge of radius a and uniform density p,.
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In shorthand notation, the three-dimensional Dirac delta function s1tuated at the
origin is written as d(r), and is defined as

506 = lim 3¢ = 1) 00 — 0¢) 6(b — 6o)

ro—0 r% sin? 00

J 5(c) dy = 1 if the volume V contains the origin
0 if the volume ¥ does not contain the origin

By performing volume integration of V2 (1/r) =V « V(1/r) throughout a sphere
of radius a and centered at the origin and then letting a — 0, show that

V2 (Lr) = —47 6(r)

Hence, show that the potential field of a point charge Q located at the origin is
Ol4ze,r.





