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THE ST A TIC ELECTRIC FIELD 

In Chapter 1 we learned the mathematical language of vector analysis so 
that we are now ready to use it for the study of electromagnetic field theory. 
Electromagnetic field theory is built upon four equations known as Max
well's equations and an associated set of relations known as the constitu
tive relations. It is our goal to learn how to interpret these equations and 
to use them for various applications, important among them being elec
tromagnetic waves. Maxwell's equations, in their general form, relate the 
time-varying or dynamic electric and magnetic fields with one another and 
with the electric charges and currents present in the medium. It is possible 
to study electromagnetic theory by starting with Maxwell's equations and 
another equation known as the Lorentz force equation as postulates. The 
Lorentz force equation is the defining equation for the electric and magnetic 
fields in terms of the forces experienced by the charges. Alternatively, it is 
possible to develop Maxwell's equations gradually from the electric and 
magnetic field concepts based on forces. experienced by charges and currents 
and from a few experimental facts. We will take this latter approach. The 
electromagnetic field is one in which the electric and magnetic effects are 
coupled. Before we venture to discuss the electromagnetic field, we will study 
the electric and magnetic fields separately. This is best done by considering 
static or time-independent fields in free space. With this approach in mind, 
the present chapter is devoted to the static electric field in free space. 
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73 The Electric Field Concept 

2.1 The Electric Field Concept 

Sec. 2.1 

In the study of mechanics, we are familiar with the gravitational field as 
a force field associated with the mutual attraction of material bodies in 
space. For example, a small test mass m placed in the gravitational field of 
the earth experiences a force equal to mMG/r2 directed towards the center 
of mass of the earth, where Mis the mass of the earth, G is the constant of 
universal gravitation, and r is the distance of the test mass from the center 
of mass of the earth. We associate with every point in the vicinity of the earth 
a vector quantity g, known as the gravitational field intensity, having a mag
nitude MG/r2 and directed towards the center of the earth as shown in Fig. 
2.1. In terms of the value of the test mass and the force experienced by the 
test mass, the gravitational field intensity is given by 

Fig. 2.1. Gravitational. attraction 
of a test mass m towards the center 
of mass of the earth. 

g=m 
(2-1) 

Just as the gravitational field is associated with the physical property 
known as "mass," a force field is associated with the physical property 
known as "charge" merely by virtue of its existence. This force field is known 
as the electric field. We wiU learn in the next chapter that a second kind of 
force field known as the magnetic field exists when charges are set in motion. 
A few words about charge are now in order. Matter can be regarded as 
composed of three types of elementary particles, known as protons, neutrons, 
and electrons. These particles are charged positive, zero, and negative, 
respectively. Table 2.1 gives the charge and mass for each of these particles. 

TABLE 2.1. Charges and Masses of Elementary Particles 

Particle 

Proton 
Neutron 
Electron 

Charge, C 

1.6021 x 10-19 

0 

-1.6021 x 10-19

Mass, kg 

1.6724 x 10-27

1.6747 x 10-27 

9.1083 x 10-31 
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Charges are conserved; that is, they can neither be created nor destroyed. 
They can only be transferred from one body to another. A material body 
is uncharged if it has no net charge. If the body acquires excess negative 
charge by some means, it is said to be negatively charged. On the other hand, 
if it loses some negative charge, it is said to be positively charged. The unit 
of charge is the coulomb (abbreviated C). 

A small test charge q placed in the "electric field" of a larger charge Q 

experiences a force F given by 

F=qE (2-2) 

as shown in Fig. 2.2, where E is the intensity of the electric field, analogous 
to the gravitational field intensity g. Alternatively, we can say that if, in a 

Fig. 2.2. Force experienced by a 
test charge in an electric field. 

region of space, a test charge q experiences a force F, then the region is charac
terized by an electric field of intensity E given by 

F 
E=

q 
(2-3) 

Here we are assuming that the test charge q is so small that it does not alter 
the electric field in which it is placed. From a practical point of view, the 
test charge does influence the electric field irrespective of how small it is. 
However, theoretically, we can define E as the ratio of the force experienced 
by the test charge divided by the test charge in the limit that the test charge 
tends to zero; that is, 

E = Lim_!_ 
q-0 q

(2-4) 

The unit of electric field intensity is newton per coulomb (N/C). 

EXAMPLE 2-1. An electron placed at a point in an electric field experiences an 
acceleration of 105 m/sec2 along the positive x axis. (a) What is the electric 
field intensity E at that point? (b) What acceleration does a proton placed 
at that point experience? 

The force experienced by the electron is equal to -1.6 x 10- 19 E. This 
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is equal to the mass of the electron times the acceleration experienced by the 
electron. Hence 

-1.6 X 10- 19 E = 9.11 X 10- 31 X 105 ix 

E 9. 11 x 10-31 x 10s . -5.7 x 10-1 1·� N/C= -1.6 X 10- 19 
1
" 

� 

Thus the electric field intensity has a magnitude of about 5. 7 x 10-1 N/C and 
it is directed along the negative x axis. 

Now, if a proton is placed at the same point, the acceleration a exper
ienced by it is given by 

charge of proton x Ea mass of proton 
1.6 X 10- 19 X (-5.7 x 10-1)ix = _546. m/sec2 

1.67 X 10 27 
• Ix 

Thus the proton experiences an acceleration of about 54.6 m/sec2 along the 
negative x axis. I

2.2 Coulomb's Law 

In the previous section we introduced the concept of the. electric field from 
an analogy with the gravitational fie�d. It was mentioned that a small test 
charge placed in the electric field of a larger charge experiences a force. 
Actually, the larger charge also experiences a force just as two masses attract 
each other. This fact was proved experimentally by Coulomb. As a result of 
his experiments we have Coulomb's law, which relates the force between 
two charged bodies which are very small in size compared to their separation. 
Ideally, the charged bodies must be so small that they can be considered as 
"point charges." From Coulomb's experiments, the following conclusions 
were reached: 

1. Like charges repel whereas unlike charges attract.
2. The magnitude of the force is proportional to the product of the

magnitudes of the charges. 
3. The magnitude of the force is inversely proportional to the square

of the distance between the charges.
4. The direction of the force is along the line joining the charges.
5. The force depends upon the medium in which the charges are placed.
If we consider two point charges Q

1 
and Q

2 
C situated at points A and

B separated by a distance Rm, as shown in Fig. 2.3, we can express the
foregoing five statements in equation form as

FA= k Q
R�2iBA (2-5) 

(2-6) 
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/Fs 

/
a'"

Q,/
R 

/� 
/jBA 

FA 

Fig. 2.3. Forces of repulsion between two charges Q1 and Q2 

at points A and B. 

Chap .. 2 

where FA and Fs are the forces experienced by Q
1 

and Q
2

, respectively, 
i.sA and iAs are unit vectors along the line joining A and B (Fig. 2.3), and 
k is the constant of proportionality. Statement 1 is included in (2-5) and 
(2-6) since Q1 and Q

2 
represent the magnitudes as well as signs of the charges. 

If Q
I 
and Q 

2 
are both positive charges or both negative charges, their product 

will be positive and hence positive forces act along isA and iAs· If one of the 
two charges is negative, then the product Q 1 Q2 

will be negative; hence 
negative forces act along isA and iAs or positive forces act along directions 
opposite to isA and iAs, respectively. The constant of proportionality k is 
equal to 1/4nf0 for free space and in MKS rationalized units. The quantity 
fo is known as the permittivity 'of free space and its value is 8.854 x 10- 12 

or approximately equal to 10-9/3611:. Substituting fork in (2-5) and (2-6), 
we have 

(2-7) 

F -
Q

1 Q2 i (2-8) 
. s - 41tfoR2 AB 

Equations (2-7) and (2-8) represent Coulomb's law. From these equations, 
we note that f

0 has the units (coulombs)2 per [(newton)(meter)2]. these are 
commonly known as farads per meter (F /m). 

2.3 The Electric Field of Point Charges 

Let one of the two charges considered in the preceding section, say Q
2

, be 
a small test charge q. Then, from a knowledge of the force experienced by 
this test charge due to the presence of the charge Q

1
, we can obtain the ex

pression for the electric field intensity due to the charge Q 1 using (2-3). 
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According to Coulomb's law, the force experienced by the test charge is 
given by 

(2-9) 

From (2-3) we then have the electric field intensity E.a at point B due to the 
charge Q

1 
as 

(2-10) 

We can generalize this result by making R variable, that is, by moving the 
test charge around in the medium, writing the expression for the force 
experienced by it, and dividing the force by the test charge. The result is 
the same as (2-10) except that R is now a variable since point B is a variable. 
Thus, omitting the subscripts in (2-10), we write the electric field intensity 
E of a point charge Q as 

E- Q .
-4-R2 lR 1tfo 

(2-11) 

where R is the distance from the point charge to the point at which the field 
intensity is to be computed and i.R is the unit vector along the line joining the 
two points under consideration and directed away from the point charge. 
The electric field intensity of a point charge is thus directed everywhere 
radially away from the point charge, and on any spherical surface centered 
at the point charge its magnitude is constant. The situation is illustrated in 
Fig. 2.4. If the point charge is at the origin of a coordinate system, then we 
replace R by r and iR by i,. The field represented by (2-11) is also known as 
the Coulomb field of a point charge. 

If we now have several point charges Q 1
, Q

2
, Q3 , • • •  , Q

n 
located at 

different points as shown in Fig. 2.5, we can invoke superposition and state
that the force F experienced by a test charge situated at a point P is the vector

Fig. 2.4. The electric field of a 
point charge. 
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Fig. 2.5. Assembly of point charges and unit vectors along the 
direction of their electric field intensities at point P, due to the 
individual point charges. I 

sum of the forces experienced by the test charge due to the individual charges j
h . 

I t�� 

F = _Qtl__ i + _Q.tl__ i + -2..rl_ i + .. · + Qnq i (2 12) 4nf oRr R, 4n€ oRf R, 4n€ oRi R, 4n€ oR; R
n 

-

From (2-3) the electric field intensity E at the point P is 

E = _!_ - � i + __Qz_ + + Qn i 
q - 4nf oRr R, 4n€ Rf R, 

• • • 

4nf oR;; Rn 

- :t Qj i
- i-1 4n€0R7 R, 

(2-13) 

The electric field intensity due to the assembly of the point charges is thus 
the vector sum of the electric field intensities due to the individual point 
charges. Some examples are now in order. 

EXAMPLE 2-2. For a charge Q at an arbitrary point A(x', y', z'), obtain the x, y,

and z components of the electric field intensity at an arbitrary point B(x, y, z), 
as shown in Fig. 2.6. 

From Coulomb's law, the ,electric field intensity at point B is given by 

E = 4n€}
AB)2 iAB (2-14) 

where from Fig. 2.6, 
AB= ,J(x - x')2 + (y - y')2 + (z - z')2 

• _ (x - x')ix + (y - y')iY + (z - z')i,
IAB - ,J(x - x')2 + (y - y')2 + (z - z')2 

(2-15) 

(2-16) 
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z 

x 

ljAB 

• B(x,y,z) 

y 

Fig. 2.6. Geometry pertinent to the computation of 

the electric field of a point charge located at an arbitrary 

point. 

Substituting (2-15) and (2-16) into (2-14), we have 

E = .JL (x - x')t + (y - y')i
y 
+ (z - z')i, 

4nf
0 [(x - x')2 + (y - y')2 + (z - z')2p12

The x, y, and z components of E are therefore given by 

E - E . - Q (x - x')
x - • •x - 4nf0 

[(x - x')2 + (y - y')2 + (z - z')2]312

E - E • i - Q (y - y') 
Y - Y - 4n€0 [(x - x')2 + (y - y')2 + (z - z')2]312 

_ . _ Q (z - z') 
E, - E • I, - 4nfo [(x - x')2 + (y - y')2 + (z - z')p12

Sec. 2.3 

(2-17) 

(2-18a) 

(2-18b) 

(2-18c) 

In vector notation, if we denote r' as the position vector for the source 
point A and r as the position vector for the point B at which the field is 
desired, then AB = Ir - r' I and iAB = (r - r')/1 r - r' I so that 

Q r - r' Q (r r') E(r) = 
4nf0lr - r'l2 Ir - r'I 4nf0lr - r'l3 

-
(2-19) 

If a number of charges Q
i
, Q

2
, Q

3
, • • •  , Q

n 
are located at points defined 

by position vectors r',, r�, r;, ... , r�, respectively, then 
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E(r) = i: 4 ?J , l3 
(r - r�) 

1=1 7tf0 r - r
1 

where we have made use of superposition. I 

Chap. 2 

(2-20) 

EXAMPLE 2-3. Two equal and opposite point charges Q and-Qare situated on thel 
z axis at d/2 and -d/2, respectively, as shown in Fig. 2.7. Such an arrangement, 
is known as an electric dipole. It is desired to obtain the expression for thel 
electric field intensity due to the electric dipole at distances very large from 
the origin compared to the spacing d.

With reference to the geometry shown in Fig. 2.7, we note that the elec
tric field intensity at any point P has only r and e components if we use

1 

the spherical coordinate system, whereas it has all three components if we 
use the cartesian coordinate system. For fixed values of r and e the field 
intensity is independent of cf>; that is, it has circular symmetry about the 
z axis. Furthermore, we are interested only in the field' at large distances, 
from the dipole, that is, for r � d. Hence we use the spherical coordinate 
system. The electric field intensity E at P is the superposition of the electric 
field intensities due to the two charges. Thus, with reference to the notation 
in Fig. 2.7 we have 

x 

f 
d 

f 

z 

---- --------

Fig. 2.7. Geometry pertinent to the computation of the electric
field due to a dipole. 

(2-21) 

I 
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Now, the r component of Eis given by 
E, = E • i, 

= _Q_j .j - _Q_j .j 411:E 0r! '• ' 411:E 0r: '- ' 

= 4 Q 2 COSIX
+ 

- -4 Q 2 COSIX_
71:€0

r 
+ 71:€0r _ 

From the geometries of the triangles OAP and OBP, we have 
,2 

+ ,2 - (d/2)2 
COS IX = _+�----,ac--��'-

+ 2r+r 
_ r: + r2 

- (d/2)2 

COS IX_ - 2 r_r

Substituting (2-23) and (2-24) into (2-22), we obtain 

E = _Q_ ['! + r2 - (d/2)2 _ r: + r2 - (d/2)2
]' 411:E O 2r! r 2r:r 

= 811:Eo�!r:r 
(r - - r +) {r!r: + [,2 - ( g )

2

] (r: + _r _r + + r!)} 

=-Q-(r - r )(r2r2 
+ r2r2 

+ r2r r + r2r2 ) 8nE0
r1 - + + - - - + + 

= 2 Q 3 (r - - r +) = 2 Q 3 d cos e
71:€0

r 71:€0
r 

where we have used the approximations that, for r � d,

d 
r

+
=r-

2
cose 

dr_=r +
2

cose 

The e component of E is given by 
Ee= E • i8 

Thus 

= _Q_j .j - _Q_j .j411:E 0r! '• 8 411:E 0r: '- 8 

- Q . Q . . - 4-----z; Slll IX+ + 4-----z; Slll IX_ 
71:€0

r + 71:€0r _ 
Q = 

-2 2 
Slll IX+

71:E0
r 

= ___Q_ d sin e4nE0
r3 

E = 4 Qd 3 (2 cos 9 i, + sin 9 i8) 
71:€0r 

Sec. 2.3 

(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

Equation (2-27) can be considered as a solution for the electric field 
intensity at very large distances compared to a fixed spacing d between the 
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summations of a few terms since the distribution of charges is continuous 
instead of being discrete. We will illustrate this process by considering three 
examples: (a) infinitely long line charge, (b) infinite sheet charge, and (c) 
spherical volume charge. 

XAMPLE 2-4. An infinitely long line charge of uniform density ho C/m is situated
along the z axis as shown in Fig. 2.8. We wish to obtain the electric field 
intensity due to this line charge. 

I
A 

PLO dz 

z 

L oE=:=���;�-i, -E

B 

Line 
Charge 

Fig. 2.8. Geometry for computing the electric field of an 
infinitely long line charge of uniform density PLo C/m. 

First, we divide the line into a number of infinitesimal segments each of 
length dz, as shown in Fig. 2.8, such that the charge ho dz in each segment 
can be considered as a point charge. The electric field intensity due to each 
point charge is directed radially away from that point charge and varies 
inversely as the square of the distance from that charge. Now let us consider 
a point P at a distance r from the z axis, with the projection of the point 
P onto the z axis being the point 0. The electric field intensity vectors at 
point P due to the infinitesimal segment immediately above O and the infini
tesimal segment immediately below O · have equal magnitudes and make 
equal angles with the line OP as shown in Fig. 2.8. The components of these 
two vectors perpendicular to OP (parallel to the z axis) therefore cancel, 
whereas the components along OP add to each other. Thus the resultant 
electric field intensity at P due to the two segments, one directly above O and 
another directly below 0, is entirely directed along OP, that is, normal to 
the axis of the line charge. A similar argument can be made for the resultant 
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electric field intensity vector at point P due to any other two segments which 
are equidistant from O with one above it and the other below it. Now, since 
there are as many (semiinfinite) segments above O as there are below it, the 
resultant field intensity at point P due to the entire line charge is directed 
radially away from it. The situation remains unchanged if we move P up or

)down, keeping r constant, since there are always a semiinfinite number of

l 

segments above the projection of P onto the line charge as well as below it. 
Thus the electric field intensity of an infinite line charge of uniform density 
at any arbitrary point is directed radially away from the line charge and isl 
independent of the position of P parallel to the z axis. It is dependent only

l
' 

on the distance of P from the z axis. We have thus simplified the problem 
to one of finding the magnitude of the field intensity. 

To determine the magnitude of E, let us once again refer to Fig. 2.8,I 
and consider the segment at the point A at a distance z above 0. The electric 
field intensity at point P due to this segment is equal to 

PLo dz • 

41tfo(r2 + z2) •AP 

The component of this electric field intensity along OP is 

PLO dz i . i = PLo dz cos (I., = pLOr dz 
41t€o(r2 + z2) AP r 41t€o (r2 + z2 ) 41tfo(r2 + z2 )3/2

We need not consider the component normal to OP since it gets cancelled 
from the contribution due to another segment at the point B at a distance 
z below 0. The component along OP is, on the other hand, doubled from 
the contribution due to this second segment. Thus the magnitude of the 
resultant electric field intensity at P due to the two segments at A and B is 
given by 

dE = 2pLOr dz (2-29) 41tfo(r2 + z2 )3!2

The magnitude of the electric field intensity at P due to the entire line charge 
is now given by the integral of dE where the integration is to be performed 
between the limits z = 0 and z = =· Thus 

f= 2pLoY s= dz E = dE = 41tf (r2 + z2)3;2
z=O O z=O 

Introducing z = r tan rt in (2-30), we obtain 

E = PLO cos rtdrt = PLOfn/2 

2n€ 0r "= 
0 

2n€ 0r 

(2-30) 

(2-31) 

Recalling that E is directed radially away from the line charge, we have 

(2-32� 

Equation (2-32) indicates that the electric field intensity of an infinite line 
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rings, each of width dr, and divide each ring into angular increments of 
def>, thus creating infinitesimal areas r dr d</> having charges Psor dr d</> as 
shown in Fig. 2.9. 

Now, since each ring results in an electric field intensity at point P, only 
along OP, the field intensity due to the entire sheet charge will also be along 
the same direction. If we move P sideways while keeping z constant, the 
situation remains unchanged so that the field intensity is independent of 
the position of P in planes parallel to the sheet charge. Once again, we have 
reduced the problem to one of finding the magnitude of E. 

To find the magnitude of E, we note that the component along OP of 
the field intensity at P, due to the infinitesimal charge Psor dr def> at point A,

is given by 
dE = Psor dr d</> 

COS(!., = Psorz dr d</> (2-33) 4n€o(r
2 + z

2) 4n€o(r
2 + z2)312 

The resultant electric field intensity due to the ring of charge passing through 
A and Bis obtained by adding up all the contributions due to the infinitesimal 
areas on the ring, that is, by integrating (2-33) with respect to </> between 
the limits O and 2n. We then add up all the contributions due to the several 
rings by integrating this result with respect tor between the limits O and oo. 
We thus obtain a double integral for E as 

E - f = f Zn dE - f = f 2n PsoYZ dr d</> - - 4n€ (,2 + z2)Jf2 
r=O <f,=O r=O <f,=O O 

PsoZ s= rdr = 2€ (r
2 + z2)3/2 

O r=O 

Introducing r = z tan rt in (2-34), we obtain 

E = P so sin rt drt = P so 
f

n
/2 

2€o "'=o 2fo 

(2-34) 

(2-35) 

Recalling that E is directed normally away from the line charge, we have 

E= Pso j (2-36) 2€o n 

where i. = iz above the xy plane and i. = -iz below the xy plane in Fig. 
2.9. Equation (2-36) indicates that the electric field intensity due to an 
infinite sheet charge of uniform density is independent not only of the posi
tion of P in planes parallel to the sheet charge, but also of the distance away 
from the sheet charge. The field is thus uniform in magnitude and directed 
normally away from the sheet. If the sheet charge occupies the z = z

0 
plane, 

it follows from (2-36) that 

for z > z
0 

I 
for z < z

0 
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field intensity due to the entire spherical volume charge of radius a. The 
component, along OP, of the electric field intensity at P due to the infinite
simal charge at A is given by 

dE = p0r2 sin(} dr d(} dcp cos IX = p0(z - r cos fJ)r2 sin(} dr d(} dcp 
4n€0(r2 + z2 - 2rz cos(}) 4n€0(r2 + z2 - 2rz cos fJ)312 

(2-37)
The electric field intensity due to the entire spherical charge is then given by 

E = fa f" f 2" dE = f
a 

f" f 
2" Po(z - r COS fJ)r2 sin(} dr d(} dcp 

r=D 8=D ¢,=D r=D 8=o ¢,=o 4n€0(r2 + z2 - 2rz cos fJ)312 

= .&_ f
a f" (z - r cos fJ)r2 sin(} dr d(} 

2€0 r=o 8=0 (r2 
+ z2 - 2rz cos {})312 (2-38) 

Introducing s2 = r2 + z2 - 2r z cos(}, for integration with respect to (}, we
have 

. (}d(} sds sm =-
rz 
82 _ r2 + z2 

z - r cos (} = 
2z 

{
z - r for (} = 0, z > r

s = r
z 
-+ z

r 
for (} = 0, 0 < z < r 
for (} = n 

Substituting these into (2-38), we obtain, for z > a,

Po fa r dr 
f 

z+r s2 - ,2 + z2 E
=-2 -2 2 2 ds fo r=O z s=z-r S 

=.&_fa 4r2 dr _ (4na3/3)p0 

2€o r=D � - 41tfoZ2 

For O < z < a, we have 

(2-39a) 

(2-39b) 

(2-39c) 

(2-40) 

E = -0 
- ds + -0 

- ds p f 
z r dr f z+r s2 - y2 + z2 p fa r dr f 

z+r s2 - ,2 + z2 .
2t:o r=o2z2 s=z-r s2 2€0 r=z 2z2 s=r-z s2 

= .&_ f
z 4r2 dr + O = (4nz3/3)p0 

2€0 r=D 2z2 41tfoz2 (2-41) 

Equations (2-40) and (2-41) give the magnitude of E at any radial dis
tance z greater than a and less than a, respectively, from the center of the 
charge. Recalling that the direction of Eis radially away from the center of i 

the charge distribution and substituting r for z, we have 

1

(4na3/3)po i for r > a4n€ y2 r 
E= 

o 

(4nr 3/3)po. for r < a41t€ y2 I, 
0 

(2-42) 
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Noting that 4nr3 /3 is the volume of a sphere of radius r and that there is no 
charge in the region r > a, we can combine the two results on the right 
side of (2-42) as 

E(r) = charge enclosed by the spherical surface of radius r i (2_43) 4n€or2 r 

Viewed from any distance r from the center of the volume charge, the volume 
charge is equivalent to a point charge of value equal to the charge enclosed 
by the spherical surface of radius r. I

In the examples we have considered in this section, it was possible to 
determine the electric field intensity by evaluating a single scalar integral 
in each case because of the symmetries involved. In the general case, it would 
be necessary to. evaluate three scalar integrals. Furthermore, in order not 
to get confused between the field points (i.e., points at which the field is 
desired) and the source points (i.e., points in the volume, surface, or contour 
occupied by the charge distribution), we must use a notation which distin
guishes the two sets of points. Usually, the coordinates of the source points 
are denoted by primes, whereas the coordinates of the field points are un
primed. The integration is then to be performed with respect to the primed 
coordinates. This notation is known as the source point-field point notation. 
Thus, in general, if a line charge of density pir') occupies a contour C', 
where r' is the position vector in the source point coordinate system, then 
the electric field intensity E(r) at a field point defined by the position vector 
r is given by 

E(r) = _I_ f [pir') dl']\r
3

- r')
4n€ 0 

c' / r - r / (2-44a) 

The right side of Eq. (2-44a) is a vector integral and, in general, it requires 
the evaluation of three separate scalar integrals. Expressions similar to 
(2-44a) can be written for surface and volume charge distributions. Thus, 
for a surface charge of density p,(r') occupying a surface S', we have 

E(r) 
= _I_ f [p.(r') dS']�\- r')

4n€o s' / r - r / (2-44b) 

For a volume charge of density p(r') occupying a volume V', we have 

E(r) = _I_ f [p(r') dv'](� ;-- r')
4n€ 

0 
v' / r - r / (2-44c) 

We will use the source point-field point notation only wherever the same 
coordinate or coordinates for the source and field points appear in the 
integral. For example, if we wish to evaluate the electric field intensity due 
to a finitely long line charge along the z axis at a point (r, if,, z), then we will 
have to define the points occupied by the line charge using a z' coordinate 
so that no confusion arises with the z coordinate of the field point. 
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2.5 Direction Lines 

Chap. 2

In the previous two sections we obtained the expressions for the electric field 

intensities due to certain charge distributions both discrete and continuous. 
In simple cases, such as for the point charge and for the three examples of 

1

, 

the previous section, it is easy to visualize, from a glance at the field 

expression, the direction of the electric field intensity vector everywhere in 
space. However, in a case such as the electric dipole (Example 2-3), it is I 

not easy to visualize the direction of the electric field intensity vector by 
a glance at the field expression [Eq. (2-28)]. If we want to attack the prob
lem directly in such a case, we can assign numerical values for the coordi

nates in the field expression and compute the direction of the field 
intensity vector at several points in the medium and then draw arrows 
along the computed directions. Alternatively and more elegantly, we ask 
the question: Suppose we place a test charge at a point in the electric field, 

what is the direction along which it experiences acceleration? Obviously, 

the test charge experiences acceleration along the direction of the electric 
field intensity vector at that point. If we stop the test charge after each 
infinitesimal distance and trace its path in the limit that the infinitesimal 
distance tends to zero, we get a line along which the electric field is everywhere 
tangential to it. Such lines, called "direction lines," are of great help in under

standing the behavior of a given field, as suggested in Chapter 1. They are 
also known as "stream lines" and "flux lines." 

To develop the technique of sketching the direction lines for a given 
field, let us consider a small test charge placed at a point P(x, y, z) in the 
field as shown in Fig. 2.11. At the point P the force on the test charge is 

x 

z

� E 

.�I Q(x + �x,y + �y,z+ �z) 

I 
P(x,y,z) 

0 
\----,.-- __ ----? __ .,. y 

___
___ // __ _!///

/ 

Fig. 2.11. Illustrating the proportionality of the electric 
field intensity vector E and the infinitesimal vector dis
placement �I of a charge placed in the field. 
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directed along E. The test charge will travel for an infinitesimal distance Al 
in the direction of E to point Q(x + Ax, y + Ay, z + Az). The vector 
displacement of the test charge is then equal to Ax ix + Ay iy + Az i,. But 
this infinitesimal vector displacement is proportional to the force experienced 
by the charge which in turn is proportional to E = E)x + E)y + E,i,. Thus 

(2-45) 

Two vectors are proportional if and only if their respective components are 
proportional by the same amount. Hence we have, from (2-45), 

Ax Ay Az
Ex

= Ey 
= E, (2-46) 

But Eq. (2-46) is approximate since, in general, E varies continuously from 
point to point in magnitude and direction. However, it will be exact in the limit 
Ax, Ay, and Az all tend to zero. It then reduces to 

(2-47a) 

Knowing Ex, Ey, and E, for a particular field, we can substitute in (2-47a) 
and solve the resulting differential equations to obtain the algebraic equations 
for the direction lines. We can obtain equations similar _to (2-47a) for the 
cylindrical and spherical coordinate systems following similar arguments. 
These equations are 

d r r d¢, dz 
E, = E¢, = E, 

d r _ r dO _ r sin e d¢, 
E, - E0 -

E¢, 

cylindrical (2-47b) 

spherical (2-47c) 

We will now illustrate the use of these equations by considering an example. 

EXAMPLE 2-7. In Example 2-3 we obtained the expression for E for an electric 
dipole of moment p oriented along the positive z axis as 

E = -4 
p 

3 
(2 cos O i, + sin O i9)

1t€or 

It is desired to obtain the equation for the direction lines for this field. 
Noting that 

E = 2p cos0
r 4n€or3 E _ psinO

o - 4n€o r3 E¢, = 0 

we have, from (2-47c), 

or 

d r _ r dO _ r sine d¢, 
(2p cos 0)/4n€ 0r3 - (p sin 0)/4n€ 0r3 - 0 
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dr = 2 cot(} dfJ def, = 0 r 
In r = -2 In cosec (} + constant if, = constant 

r cosec2 (} = constant if,= constant (2-49) 

The direction lines are thus intersections of the surfaces r cosec2 (} = constant 
and the planes if, = constant. A few direction lines in constant if, plane are 
sketched in Fig. 2.12. The small arrow at the center indicates the dipole 
moment p with the direction of the arrow as the direction of orientation of 
the dipole. I

Fig. 2.12. Direction lines of E for electric dipole of moment piz. 

2.6 Gauss' Law in Integral Form 

Let us consider the surface of a sphere of radius r and centered at a point 
charge Q at the origin. The electric field intensity due to the point charge is 
directed everywhere radially away from the point charge and hence is normal 
to the surface of the sphere as shown in Fig. 2.13. Its magnitude on the 
surface of the sphere is a constant equal to Q/4nE

0 r2
• If we now consider

an infinitesimal area dS on the surface of the sphere, we have 

E ds Q . dS" Q . dS" QdS • = 4---Z I, • In = -4 2 I, • I, = 4---z 
1t€ or 1t€ or 1t€ or 

The integral of E • dS over the surface S of the sphere is given by 

(2-50) 

(2-51) 

since r is constant on the surface of the sphere. Proceeding further, we have 
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/ 

-----/--
,..... -- / --

/ / '" 
Q" 

r 

Fig. 2.13. For evaluating f E • dS on the surface of 
sphere centered at a point charge Q.

I E • dS = 4 Q 
2 

(surface area of the sphere) 
J s 1t€or 

= � ( 4nr2) = ll_
41t€0 r €0 

Sec. 2.6 

(2-52) 

The physical significance of (2-52) is obvious if we compare the electric field 
lines emanating from the point charge with the flow of a fluid away from 
the location of the point charge. The surface integral of the fluid flow density 
vector is the net amount of fluid flowing out of the surface. Similarly, the 
surface integral of the electric field intensity vector can be interpreted as the 
net flux of electric field emanating from the surface, although the electric 
field is not a fluid in the sense that it does not flow like a fluid. 

Thus Eq. (2-52) states that the net electric field flux emanating from the 
surface of a sphere of radius r centered at a point charge Q is equal to Q/€ 

0
• 

It is independent of the radius r of the spherical surface. Whether r = I 
micron or 1000 km, the electric field flux is the same (provided, of course, 
that there is no other electric field in the medium). This is not surprising if 
we once again compare the flux of the electric field with the flow of the 
fluid. If the fluid is flowing radially away from a point source of the fluid, 
then the amount of fluid crossing a spherical surface of one radius must 
be the same as the amount crossing a spherical surface of another radius 
or, for that matter, any arbitrary closed surface enclosing the point source 
(provided, of course, there is no other source or sink of the fluid). Likewise, 
if we choose an arbitrary surface enclosing the point charge, the net electric 
field flux emanating from this surface must be equal to Q/€0 • To prove this 
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The discussion can be extended to a continuous charge distribution if we 
note that a continuous charge distribution can be represented as a con
tinuous collection of charges occupying infinitesimal volumes, each of which 
can be considered as a point charge. Those charges enclosed by the arbitrary 
surface result in a net electric field flux in accordance with (2-55), whereas 
those which are not enclosed by the surface result in zero flux in accordance 
with (2-56). We can summarize these conclusions in a single statement that 
"the net electric field flux emanating from a closed surface is equal to the 
net charge enclosed by the surface divided by E0 ." This statement is Gauss' 
law-one of the important laws in electromagnetic field theory. In equation 
form, Gauss' law is written as 

,[ E • dS = _!__ ( charge enclosed by the surface S) (2-58) 
J s Ea

EXAMPLE 2-8. An infinitely long line charge of uniform density ho C/m is situated
along the z axis. It is desired to find the electric field flux cutting the portion 
of the plane x = I m lying between the planes z = 0 m and z = 1 m as 
shown in Fig. 2.16. 

First we will solve this problem by actually evaluating f E • dS over the 
given surface. To do this, we note that E due to the line charge is given by 
(P£0/2nE0r)i,, where r is the radial distance from the line charge and i, is the 
unit vector directed radially away from the line charge. Considering an 
infinitesimal area dy dz at the location (1, y, z) on the given plane, the infini-

x 

I 

I 
I 

I 
I 

/ 
I I 

I 

z 

OJ- - - - - - '- ,- - - - - - -1----+- y 
/ '-,�dy dz

I y 1,·'"-

i, 

Fig. 2.16. For evaluation of electric field flux emanating from an 
infinite line charge and cutting a portion of the x = 1 plane. 
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tesimal amount of flux cutting this area is given by 

E ds PLO • d d • PLo dy dz • � = 21l€o,Jf+? I, • y Z 
lx = 21lfo(l + y2)

Sec. 2.6 

(2-59) 

The total flux cutting the portion of the plane x = 1 m lying between the 
planes z = 0 m and z = 1 m is then given by 

E • dS = 
. PLO y z f= 

fl f
= 

fl 
d d 

;>=-= z=O y=-= z=O 21tfo(l + J2) 

= PLo d</> = PLo fn/2 

2nf O ¢= -n/2 2€ 0 

(2-60) 

This result can, however, be obtained without performing the integration 
if we note that the electric field intensity due to the line charge is independent 
of </> and hence the electric field flux from the line charge emanates from it 
uniformly in <f>. Thus half of the electric field flux emanating from that por
tion of the line charge lying between z = 0 m and z = 1 m cuts the given
surface. Since the total flux emanating from this portion of the line charge 
is P£0(1)/f

0 
= PLo/€

0
, according to Gauss' law, the flux cutting the specified 

surface is P£
0
/2f0 , I

Given E and a closed surface S, it is always possible to compute the 
charge enclosed by the surface by evaluating f s E • . -3 analytically or
numerically and then multiplying the result by €0 in accordance with Gauss' 
law as given by (2-58). The inverse problem of finding E for a given ch?rge 
distribution by using (2-58) is possible only for certain simple cases involving 
a high degree of symmetry, since the unknown quantity E appears in the 
integrand. As a first step, the symmetry of the electric field must be deter
mined by making use of the fact that the electric field due to a point charge 
is directed radially away from it. We have illustrated this in Examples 2-4, 
2-5, and 2-6. Next, we should be able to choose a closed surface S such
that f s E • dS can be reduced to an algebraic quantity involving the mag
nitude of E. Such a surface is known as a Gaussian surface. Obviously, the 
Gaussian surface must be such that the magnitude of E is uniform and the 
direction of E is normal to the surface over the whole or part of the surface, 
while the magnitude of E is zero or the direction of E is tangential to the 
surface over the rest of the surface in the latter case. We will illustrate this 
method of obtaining E by reconsidering Examples 2-4, 2-5, and 2-6. 

EXAMPLE 2-9. An infinitely long line charge of uniform density PLo C/m is situated 
along the z axis as shown in Fig 2.17. We wish to obtain the electric field 
intensity due to this line charge using Gauss' law. 

In Example 2-4, we established from purely qualitative arguments that 
E due to the infinite line charge of uniform density is directed radially away 
from the line charge and its magnitude is dependent only on its distance 
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s
,

\-

l 

z 

i, 

S3 

Fig. 2.17. Gaussian surface for computing the electric 

field of an infinitely long line charge of uniform 

density. 

from the line charge. Thus 

E = E,(r)i, 

Chap. 2 

(2-61) 

Choosing the Gaussian surface S as the surface of a cylinder of radius r

with the line charge as its axis and of length /, as shown in Fig. 2.17, we have 

f E • dS = f E • dS + f E • dS

surface of 
cylinder, S 

curved 
surface S1 

plane sur
faces S2,S3 

(2-62) 

The second integral on the right side of (2-62) is zero since E is tangential 
to the surfaces; that is, E • dS is zero throughout the surfaces. Noting that 
E, is constant on the curved surface Si , we find that the first integral can be 
written as 

Thus 

f E • dS = f E, i, • dS
1 

i, = E, f dS1 
S1 S1 

curved 
surface S1 

= E, (surface area of S
1
) = E,(2rcrl) 

f 
8 E • dS = 2rcr!E,

(2-63) 

(2-64) 

I 
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·But, from Gauss' law,
,[ E • dS = charge enclosed by S = PLol
Js � � 

Comparing (2-64) and (2-65), we have 

E = PLo 
' 2n€or 

E = ho 
i2n€or ' 

which agrees with the result obtained in Example 2-4. I 

Sec. 2.6 

(2-65) 

(2-66) 

(2-67) 

EXAMPLE 2-10. A sheet charge of uniform density p,
0 C/m2 extends over the entire 

xy plane as shown in Fig. 2.18. We wish to obtain the electric field intensity 
due to this infinite sheet charge using Gauss' law. 

z 

Fig. 2.18. Gaussian surface for computing the electric field of an. 
infinite sheet charge of uniform density. 

In Example 2-5 we established from purely qualitative arguments that 
E due to the infinite sheet charge of uniform density is directed normally 
away from the sheet charge and that it is uniform in planes parallel to the 
sheet charge. Thus 

(2-68) 
Choosing the Gaussian surface S as the surface of a rectangular pill box 
of sides !, w, and t as shown in Fig. 2.18, such that half of the box is 
above the sheet charge and the other half below it, we have 

t E • dS = J E • dS + J E • dS + J E • dS
top bottom side 

surface Surface surfaces 

(2-69) 

But the last integral on the right side of (2-69) is equal to zero since E is 
parallel to the side surfaces and hence E • dS is zero throughout these sur-
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faces. Because E. is constant on both the top and bottom surfaces and E. is 
the same on both these surfaces, since they are equidistant from the sheet 
charge, Eq. (2-69) then reduces to 

t E • dS = 2 f E • dS = 2 f E. i. · dS i. 
top top 

surface surface 

= 2E. f dS = 2E. (surface area of top surface) 
top 

. surface 

= 2E.[w

But, from Gauss' law, 

J E • dS = charge enclosed by S = p,0 lw

J s Eo Eo 
Comparing (2-70) and (2-71), we have 

E = Pso 
n 2Eo 

E = Pso j 
2Eo n 

which agrees with the result obtained in Example 2-5. I

(2-70) 

(2-71) 

(2-72) 

(2-73) 

EXAMPLE 2-11. A volume charge is distributed throughout a sphere of radius a

with uniform density Po C/m3
• We wish to obtain the electric field intensity 

due to this volume charge using Gauss' law. 
In Example 2-6 we established from purely qualitative arguments that 

E due to the spherical volume charge of uniform density is directed radially 
away from the center of the charge and is a function only of the distance 
from the center of the sphere. Thus 

E = E,(r)i, (2-74) 

Choosing the Gaussian surface S as the surface of a sphere of radius r � a,

concentric with the spherical charge, as shown in Fig. 2.19, we have 

t E • dS = t E, i, • dS i, = E, t dS

= E, (surface area of the sphere of radius r) 
= E,(4nr2) 

But, from Gauss' law, 

,( E • dS = charge enclosed by S

J s Eo 

= charge enclosed by spherical surface of radius r
Eo 

(2-75) 

(2-76) 
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f E • dS (1/€
0

) f p dv

lim t,.S = lim av 
av-o Av av-o Av 

= __!__ lim 
P Av = __!__ p

€0 av-o Av €0 

The left side of (2-81) is the divergence of E so that we have 

V·E=_!_p 
fo 

Chap. 2 

(2-81) 

(2-82) 

Equation (2-82) is Gauss' law in differential form, which states that the 
divergence of the electric field intensity at any point is equal to 1/f 

O 
times 

the volume charge density at that point. This is Maxwell's divergence equation 
for the electric field. 

The right side of (2-82) represents a volume charge density. Suppose 
we are considering problems involving point charges, line charges, and sur
face charges. The question then arises as to how we should represent the right 
side of (2-82) since, for such charges, the volume charge density is infinity. 
We can resolve this problem by resorting to the Dirac delta function or 
the impulse function. We will illustrate this for the case of a surface charge 
in the following example. 

EXAMPLE 2-12. A sheet charge of uniform density Pso 
C/m2 extends over the entire ' 

xy plane. It is desired to write Gauss' law in differential form for this sheet ' 
charge. 

Let us consider a slab of charge lying between the planes z = -a and
z =+a and of uniform density Po 

C/m3 as shown in Fig. 2.20(a). The volume 
charge density as a function of z for such a charge distribution is sketched in 

(a) 

Volume 
Charge 
Density 

-a O a 

(b) 

Area = 2apo 

= PsO 

ro 0(,)

Volume 
Charge 
Density 

Area = Pso 

---�--,...z 

(c) 

Fig. 2.20. For deriving the volume charge density corresponding 
to a surface charge. 
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is, from a higher elevation to a lower elevation, the gravitational field does · 
the work. If the movement is opposite to the direction of the gravitational 
field, that is, from a lower elevation to a higher elevation, certain work has . 
to be performed by an external source to overcome the gravitational force. · 
Likewise, since the electric field is a force field in so far as charges are con-1

· 
cerned, there is work associated with the movement of charges in an electric 
field. If a test charge is moved along the direction of the field, work is done I

by the field since the force exerted by the field on the charge is in the direction 
of its movement and hence it accelerates the test charge. If the charge is 
moved against the direction of the field, an external agent has to supply the 
energy to overcome the force exerted on the charge by the field, since this 
force is opposite to the direction of movement of the charge. 

Let us consider the displacement of a test charge q by an infinitesimal 
distance di from A to B at an angle ('J, with the electric field E at the point 
A as shown in Fig. 2.21(a). The force exerted on the test charge by the field 

(a) 
(b) 

Fig. 2.21. Movement of a test charge in an electric field.

has magnitude qE and is directed along E. Its component along the line from 
A to B is qE cos (X. If the charge is moved from A to B, the amount of work 
dW done by the field is the product of the force and the displacement; that 
is, 

dW = qEcos (X di= qE • dl (2-91) 
where di is the vector from A to B. Note that dW is positive if O < ('/., < 90° 

so that work is done by the field; dW is negative if 90° 
< ('J, < 180° so that 

negative work is done by the field, which amounts to stating that work is 
done against the field by an external agent. For (X = 90°, dW is zero, which 
is analogous to the movement of a mass on a frictionless surface at right/ 
angles to the gravitational field. Now let us consider two points A and B: 
which are widely separated as shown in Fig. 2.21(b). The work WAn done 
by the field in moving a test charge q from A to B along a given path can be 
obtained by dividing the path into several segments of infinitesimal length 
di, then applying (2-91) to each segment, and adding up all the contributions .. 

I 
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The result is a line integral expression given by 

WAB = q s: E • di 

Sec. 2.8 

(2-92) 

where the integration is performed along the given path from A to B. The 
evaluation of line integrals was discussed in Section 1.7. 

In the gravitational field, when a mass moves from a higher elevation 
to a lower elevation, it loses some potential energy and vice versa. Likewise, 
in the electric field, we can state that the test charge has certain potential 
energy associated with it by virtue of its location in the electric field. WAB 

as given by (2-92) is then the loss of potential energy associated with the 
movement of the charge from A to B. If we divide WAB by q, we obtain the 
loss of potential energy per unit charge. This quantity denoted by VAB is 
known as the potential difference between the points A and B. Thus 

VAB =WAB =J
B

E·dl q 
A 

(2-93) 

If VAB is positive, there is a loss in potential energy associated with the move
ment of the charge from A to B; that is, the field does the work. If VAB is 
negative, there is a gain in potential energy associated with the movement of 
the charge from A to B; that is, an external agent has to do the work. The 
units of potential difference are newton-meters per coulomb or joules per 
coulomb, commonly known as volts. This gives the units of volts per meter 
to the electric field intensity. 

EXAMPLE 2-13. In cartesian coordinates, the electric field intensity is given by
, ,  

E = yzi
x 
+ zxi

Y 
+ xyi,

Find the potential difference between the points A(0,22.7, 99) and B(l, 1, 1). 
Is it necessary to specify a path for line integration between the two points? 

In cartesian coordinates, di = dxt + dyi
y 
+ dzi, so that 

VAB = f: E • dl = f: (yzt + zxi
Y 
+ xyi,) • (dx i

x 
+ dy i

y 
+ dz i,)

= J: (yzdx + zxdy + xydz) 

= f: d(xyz) = [xyz]! 

Since E • dl is the total derivative of a function of x, y, z, it is not necessary 
to specify a path for the fine integration between the two points. VAB is depend
ent only on the coordinates of the end points A and B. We will find in 
Section 2.11 that this is a general characteristic of the static electric field. 
Here, we have 

VAB = [xyz]! = [xyzn:h'. 1,99 = l, I 
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2.9 The Potential Field of Point Charges 

Chap. 2 

let us now consider two points A and B in the electric field of a point charge 
Q situated at distances rA and rn, respectively, from the point charge as: 
shown in Fig. 2.22. Using (2-93), the potential difference between A and Bl 
can be computed for any specified path from A to B. Noting that E =I
(Q/4nc

0
r2)i, for a point charge and that the differential length vector di is

given in spherical coordinates as 
dl = dr i, + r d(} i8 + r sin (} d<p i

<.6 

Q ---1, 
4'1TcO r2 

(2-94) 

B Fig. 2.22. Computation of the
potential difference between two,
points in the electric field of a'
point charge. 

we have, from (2-93), 

VAn = I
n 

E • dl = I
n 

(4 Q 2 
i,) • (dr i, + r d(} i8 + r sin(} d<p i

<.6
) 

A A 7lfor 

= J
r B 

__Q_ d r = __Q_ - ____Q__ ,-,A 4n€0r2 4n€0rA 4n€0rn 

I 

I 

(2-95) 

Equation (2-95) indicates that, for a given charge Q, the potential difference 
between the two points is dependent only upon their distances from the 
point charge and not on the path from A to B chosen for its evaluation.· 
Furthermore, the potential difference is the difference between two terms, 
one of which is dependent on r A only and the other dependent on rn only. 
We can call these terms the potentials at rA and rn, respectively. If we denote 
these potentials as VA and Vn, respectively, we have, from (2-95), 

VA =_Q_ 4n€0
rA

Vn = _Q_ 4n€0rn 

(2-96) 

(2-97) 

The right sides of Eqs. (2-96) and (2-97) are, however, not unique expres
sions for VA and Vn since, on the right side of (2-95), we can add and subtract 
any arbitrary constant C without altering its value; that is, 
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which then leads to 

VB=-
4 
Q +c1r€orB 

If we let C = Q/4n€ 0r 0, where r O is a constant, we have 

VA=_Q_ _ _Q_ 4n€ 0r A 4n€ 0r O 

Sec. 2.9 

(2-98) 

(2-99) 

(2-100) 

(2-lOla) 

VB= _Q_ - _Q_ (2-lOlb) 
41t€orB 41t€oro 

Comparing (2-lOla) with (2-95), we note that VA is the potential differ
ence b�tween point A and another point situated at a distance r0 from the 
point charge, which we will call the reference point. Similarly, VB is the 
potential difference between the point B and the same reference point.· Thus 
the potential at any point is simply the potential difference between that 
point and an arbitrary reference point. But then, what is the potential at 
the reference point? The answer to this question is obtained by substituting 
rA = r0 

in (2-lOla) or rB = r0 
in (2-lOlb), both of which result in zero. The 

potential at the reference point is therefore zero. To complete the definition, 
we state that the potential at any point is the potential difference between 
that point and an arbitrary reference point at which the potential is zero. 
In the case of a point charge, a convenient reference point is r

0 
= oo. We 

then have 
V(r) = __Q_

4n€0
r (2-102) 

The potential at a distance r from the point charge is thus the work done per 
unit charge by the field in the movement of a test charge from that point to 
infinity or, it is the work done per unit charge by an external agent in bring
ing a test charge from infinity to that point; that is, 

(2-103) 

The right side of (2-102) represents the potential field of a point charge. It 
is also known as the Coulomb potential of a point charge. In contrast to the 
vector nature of the electric field intensity, the potential field is a scalar field. 

Surfaces on which potential is a constant are known as equipotential 
surfaces. If a test charge is moved on such a surface from one point to another, 
no work is involved since the potential difference between any two points is 
zero. For the point charge, the equipotential surfaces are, according to 
(2-102), r = constant, that is, surfaces of spheres centered at the point 
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charge. The equipotential surfaces are thus orthogonal to the direction lines 
of E which are radial, as shown in Fig. 2.23. This result is to be expected not 
only for a point charge but for any charge distribution, since if we move a 
test charge along a path everywhere normal to the direction lines, there is no 
component of force acting on the charge along the direction of the path and 
hence the work involved is zero. 

Fig. 2.23. Cross sections of equi
potential surfaces and direction 
lines of E for a point charge. 

For several point charges located at different points as shown in Fig. 
2.5, the potential at any point Pis the work done per unit charge by an exter- i 

nal agent in bringing a test charge from infinity to that point in the com-· 
bined electric field E of all the charges; that is, 

V(P) = -s: E • di

= -s: (E 1 + E2 + E3 + · · · + En ) • di (2-104) 

= -s: E 1 • di - s: E2 • di - · · · - s: En • di

where E
1

, E
2

, E
3

, • • •  , E. are the electric field intensities due to the individual 
point charges Q i , Q2 , Q3 , • • •  , Q., respectively. But each term on the.right 
side of (2-104) is equal to the potential at the point P due to the corresponding 
charge. Thus 

V(P)=�+�+···+�4nf 0R 1 4nf 0R2 4n€ 0R.

=t� 
i=I 4n€0Ri 

(2-105) 

The potential at P due to the collection of point charges is the sum of the, 
potentials at P due to the individual charges. In the vector notation defined. 
in connection with Eq. (2-20), we write 

(2-106) 
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I 

EXAMPLE 2-14. For the electric dipole arrangement of Fig. 2.7, it is desired to 
find the potential at distances very far from the dipole compared to the spac
ing d.

With reference to the notation of Fig. 2.7, the electric potential at point 
Pis given by 

V(r) = _Q_ - __Q_4n€ 0r + 4n€ 0r _ 
For r � d, (2-107) can be approximated as 

��- Q Q 
- 4n€0[r -(d/2)cos()] 4n€0[r + (d/2)cos0]

Qd cos() ---- Qd cos()
4n€0[r2 

- (d2/4) cos2 ()] - 4n€0r2 

(2-107) 

(2-108) 

Equation (2-108) becomes exact in the limit d--> 0, keeping the dipole mo
ment p = Qd constant. We then have the potential field of dipole moment 
p = pi, given by 

V(r) = p cos() - p • i, - � (2-109) 4n€ 0 
r2 

- 4n€ 0r2 - 4n€ 
0
r3 

The potential field of a dipole drops off inversely as the square of the distance, 
as compared to the inverse distance dependence of the potential field of a 
point charge. Likewise, the potential fiel4 of a quadrupole can be shown 
to vary inversely as r 3

• The potential fields of successive higher-order mul-
tipoles vary inversely as r4, r5 , .. .. From (2-109), we note that the equipo
tential surfaces for the dipole field are ( cos 0)/ r2 = constant, or

r2 sec () = constant (2-110) 
Cross sections of these surfaces are sketched in Fig. 2.24, in which the direc
tion lines of E taken from Fig. 2.12 are also shown. It is left as an exercise 
for the student to show that the equipotential surfaces given by (2-110) and 
the direction lines given by (2-49) are orthogonal. I

. EfAMPLE 2-15. A point charge Q is situated at a vector distance r' from the origin 
of a coordinate system as shown in Fig. 2.25. It is desired to find the potential 
due to this point charge at distances r from the origiri large in magnitude 
compared to r' in the form of a power series in r.

Let P be the point at which the potential is desired. Then, from (2-106), 
the potential at P due to Q is given by 

Vi(r) - Q- 4n€ 
0 I r - r' I 

- Q
- 4n€

0
(r2 + r'2 

- 2rr' cos ix)ll_Z

Q ( ' r'2 2. r' • r)- 1
1
2 

=- 1+----
. 4n€ 0r r2 r2 

(2-111) 
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Fig. 2.24. Cross sections of equipotential surfaces and 

direction lines of E for an electric dipole. 

z 

Fig. 2.25. For the computation of potential due to a point 

charge at distances large compared to its distance from the origin. 

Chap. 2 
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of value :E Q
1
, a dipole moment i: Q

1
r�, and so on, all situated at the 

}=I J=I 

origin. We note that if the sum of the charges is zero, the first significant term 
is that of the dipole moment. Likewise, if the sum of the charges as weU 
as the dipole moment are zero, the first significant term is the quadrupol� 
term, and so on. Usually, two significant terms will suffice. I 

EXAMPLE 2-16. Point charges are located at the corners of a cube of sides 1 mt 
with one corner placed at the origin and three edges coinciding with the 
coordinate axes as shown in Fig. 2.26. Values of the point charges in coulombs 
are indicated at the respective corners. Find the first two significant term:S 
in the potential of this collection of charges at large distances from it. 

x 

z 

-I ___ ,'14

/
/ 

/
/ I

/ / I 
-2f---{-1 I 

I
1 

1---,.-----y / 2 
I I / I I / Cube of

-I ___ -}'1 Edges 1 m
Fig. 2.26. Point charges located at 
the corners of a cube. Values dr 
the poi�t charges indicate� at t

hi1e respective corners are m co -
lombs. 

,\ 

The solution to this problem consists of evaluating � Q and � Qr' fo� 
the collection of point charges and substituting the results in (2-115). Thes

1quantities are evaluated with the aid of Table 2.2. 
The potential for large r correct to the first two significant terms is theil 

given by 

V
- � Q �Qr'• r
- 4n€0

r + 4n€0r
3 

= _3_ + 
(-3t + 6iy) • i, (2-116,)4n€ 0r 4n€ 0r2 

= _3_ 
+ 

-3sin0cos¢ + 6 sin0sin¢
I4n€ 0r 4n€ 0r

2 

If, in Table 2.2, � Q is zero, then we have to evaluate the third term if thle 
result is to be correct to the first two significant terms, and so on. I 
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TABLE 2.2. Computation of I: Q and I: Qr' for the Arrangement of Point 
Charges in Fig. 2.26 

Location 

(x,y, z) Charge, Q r' Qr' 

0,0,0 1 0 0 

1, 0, 0 -1 ix -ix
0, 1,0 2 iy 2iy
0, 0, 1 -1 iz -iz
1, 1, 0 1 ix + iy ix + iy 

0, 1, 1 4 iy + iz 4iy + 4iz 
1, 0, 1 -2 ix+ iz -2ix - 2iz 

1, 1, 1 -1 ix+ iy + iz -ix - iy - iz 

I: Q = 3 I: Qr'= -3ix + 6iy 

2.1 O The Potential Field of Continuous Charge Distributions 

In the previous section we considered the potential field of collections of 
point charges at discrete points. In this section we will extend the discussion 
to continuous charge distributions. As in Section 2.4, we divide the contin
uous charge distribution into several infinitesimal parts, each of which can be 
considered as a point charge, and obtain the potential at any point due to the 
total charge as the superposition of the potentials due to the individual point 
charges. To do this, we again have to evaluate integrals as in Section 2.4. 
However, the integrals involve the scalar quantity potential instead of the 
vector quantity electric field intensity. Hence, for a particular charge dis
tribution, the potential at any point is given by a single integral, whereas for 
the determination of the electric field intensity as in Section 2.4, it is neces
sary to evaluate three integrals for the three components in the general case. 
We will illustrate the determination of the potential for continuo1,1s charge 
distributions through some examples. 

XAMPLE 2-17. An infinitely long line charge of uniform density PLo C/m is situated 
along the z axis. It is desired to obtain the potential field due to this charge. 

First we divide the line into a number of infinitesimal segments each of 
length dz as shown in Fig. 2.27, such that the charge PLo dz in each segment 
can be considered as a point charge. Let us consider a point P at a distance 
r from the z axis, with the projection of P onto the z axis being 0. For the 
sake of generality, we consider the point P

0 
at a distance r

0 
from O along 

OP as the reference point for zero potential and write the potential dV at 
P due to the infinitesimal charge PLo dz at A as 
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and hence the right side of (2-130) is identically zero, thus giving 
VxE=O (2-13b 

Equation (2-131) is Maxwell's curl equation for the static electric field. It states 
that the curl of the static electric field intensity vector is everywhere equal to 
zero. Fields which satisfy the property of zero curl are known as irrotational 
fields; that is, such fields cannot rotate the paddle wheel discussed in Section 
1.9. Together with Maxwell's divergence equation for the electric field given 
by (2-82), (2-131) completely defines the properties of the static electric fiel�. 
Equation (2-131) determines whether or not a given vector field is realizable 
as a static electric field whereas Eq. (2-82) relates the field to the charge 
distribution responsible for producing the field. As an alternative approach 
to that which we followed in this chapter, it is possible to accept these two 
equations as ,a starting point and obtain the electric field intensity of a poiht 
charge and other charge distributions. . 

I 
EXAMPLE 2-19. Determine if the following fields are realizable as static electric fields. 

(a) F. = -yix + xi
y cartesian coordinates 

(b) Fb = (PL/2nf
0
r2)(cos <pi, + sin <p i

91
) cylindrical coordinates 

(c) Fe = sin() i, +cos() i8 spherical coordinates 
(a) jx i

y jz 

V x F. = 
a a a =,t:O 
ax ay az 

-y x 0 
Hence F. cannot be realized as a static electric field. 

(b) 

V x Fb = 

1- i
¢ 

jz 
r r 

a a a 
ar a<1> az 

PL cos </> PL sin </> 0 2n€
0
r2 2nf

0
r 

=0 

Hence Fb is realizable as a static electric field. It is left as an exercise (Proble:m 
2.15) for the student to show that F b is the field of a two-dimensional electriic
dipole of moment p L· 

(c) 

V x Fe
= 

sin () r cos () 0 
Hence Fe can be realized as a static electric field. In fact, if we note thatt 
in cylindrical coordinates, Fe = i,, the irrotational nature of Fe becom�� 
obvious. I 
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2.12 The Relationship Between Electric Field Intensity and Potential 

Sec. 2.12 

In Section 1.9, we learned that the curl of any vector which can be expressed 
as the gradient of a scalar is zero. Conversely, if the curl of a vector is equal 

to zero, the vector can be expressed as the gradient of a scalar. From (2-131), 
we can say therefore, that the static electric field vector E can be expressed 

as the gradient of a scalar, say, Cl>. The question that arises now is: What is 
this scalar function Cl>? For a hint, let us compare the direction of the gradient 

of the potential V with the direction of E. The direction of the gradient of 

a scalar function at any point is the normal to the surface passing through 

that point and on which the scalar function has a constant value. Hence the 
direction of VV is normal to the equipotential surfaces. But we found in 
Section 2.9 that E is normal to the equipotential surfaces. Thus the directions 

of VV and E at a point have to be either the same or opposite. 

To determine which of these is correct and to probe the relationship 
between E and V further, let us consider two equipotential surfaces in a 

static electric field as shown in Fig. 2.29. Let the potentials on these surfaces 

Fig. 2.29. For the determination EA 
of the relationship between E 
and V. 

be V and V + fl V, where fl V is infinitesimal. Since fl V is infinitesimal, the 
two surfaces are infinitesimally close so that we can assume that the electric 

field intensity between the two surfaces in the neighborhood of point A is 
uniform and equal to the electric field intensity E

A at point A. We know 

from previous discussion that EA is normal to the equipotential surface V 

at A. To decide whether EA is directed towards the equipotential surface 

V + fl V or away from it, we note that, if a test charge is moved along the 

direction of E, the field does the work; that is, the charge accelerates and 

hence loses potential energy. This is the same as stating that the charge 
moves from a higher potential to a lower potential. Thus E

A is directed 

away from the equipotential surface V + flV as shown in Fig. 2.29. Now, 

the potential difference between point A and another point B on the equi

potential surface V + fl V can be written, using (2-93), as 



120 The Static Electric Field 

But 
VAB

= V-(V+AV)= -AV 

Chap. 2 

(2-132) 

(2-133) 
i 

Also, if An is the normal vector from the surface V up to the surface V + A v,
1 

we have 
EA • AI= -EA Al cos rx = -EA An (2-134)1 

Substituting (2-133) and (2-134) into (2-132), we obtain i 
(2-135) -AV= -EA An 

or 

(2-136)1 

and 

(2-137)1

where i. is the unit vector along An. If we now let An tend to zero, (AV/ An) iJ 
becomes VV. Dropping the subscript A in (2-137), since the same arguments!
can be applied to any other point in the field, we obtain a relationship between 
the static electric field intensity vector and the potential at a point as 

E= -VV (2-138) 
Equation (2-138) permits us to compute E from a knowledge of V using 
differentiation. · I 

Substituting (2-138) into Maxwell's divergence equation for the electric 
field, V • E = p/€

0
, we have 

V • (-VV) = .f!_ 
fo 

(2-139) 

Recalling that V • V V is the Laplacian of V, denoted as V2 V, we see that · 
Eq. (2-139) becomes 

(2-140) 

This is known as Poisson's equation. It is a differential equation which 
relates the potential at a point to the volume charge density at that point. 
If the volume charge density in a region is zero, then the right side of (2-140) 
is zero for that region so that (2-140) reduces to 

(2-141) 
This is known as Laplace's equation. It states that the Laplacian of the 
electrostatic potential in a region devoid of charge is equal to zero. We will 
discuss the solutions of Poisson's and Laplace's equations in Chapter 6. 
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x 

Fig. 2.31. For Problem 2.4. 

2.5. Three point charges, each of mass m and charge Q, are suspended by strings of 
length L from a common point. It is found that the common point and the points 
occupied by the three charges form the corners of a tetrahedron. Find the rela
tionship between Q, m, L, and the acceleration due to gravity, g.

2.6. Eight point charges, each of value 1 C, are situated at the corners of a cube of 
edges 2 m with one corner placed at the origin and three edges lying along the 
coordinate axes. (a) Find the force experienced by each charge. (b) Find the electric 
field intensity at the point (2, 2, 2). (c) Find the electric field intensity at the point 
(0, 0, 2). 

2.7. Point charges Q, -2Q, and Q are located at (0, 0, d), (0, 0, 0), and (0, 0, -d), 
respectively. Such an arrangement is known as a linear quadrupole. (a) Find the 
electric field intensity at distances large compared to d along the line joining the 
charges. (b) Find the electric field intensity at distances large compared to d 
normal to the line joining the charges. 

2.8. A line charge is situated along the z axis. Consider the charge density PL to be 
arbitrary function of z and show that the components of the electric field intensity 
at any point in the xy plane are given in cylindrical coordinates by 

- r s= PL dz 

E, - 41tfo z=-= (r2 + z2)3/2

E,t, =0 

_ 1 s= pLzdz 

E. - -41tfo z=-= (r2 + z2)3f2

Evaluate the field components for the following charge distributions : 

(a) PL
= PLo

(b) PL = PLO
(c) PL

= \ z \
(d) PL = z 

-oo<z<oo
- zo < z < Zo
-z0 < z <z0 

- zo < Z < Zo

where PLO is a constant. Discuss your results from considerations of symmetry. 
Verify your results by considering limiting cases wherever appropriate. 
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2.11. A surface charge is distributed over a spherical surface of radius a and centered
at the origin. Consider the charge density Ps to be uniform in if> but not necessarily
in (} and show that the electric field intensity at a point (0, 0, z) has only a z-com
ponent given by

E _ .E:._ f" ph - a cos 8) sin(} d8
z - 2f o e=o (a2 + z2 - 2az cos 8)312 

Evaluate E
z both for I z I < a and for I z I > a for the following charge distributions:

(a) Ps = Pso O < (} < n
(b) Ps = Pso cos(} O < (} < n
where Pso is a constant.

2.12. A volume charge is distributed throughout an infinite slab of thickness 2a sym
metrically placed about the xy plane. Consider the charge density p to be uniform
in x and y but not necessarily in z and show that the electric field intensity at any
point (x, y, z) has only a z component given by

1 5· -- pdz 2fo 
Z=-a 

z>a

-a<z<a

z<a 

Evaluate Ez as a function of z for - oo < z < oo for the following charge dis
tributions:
(a) P = Po
(b) p = {Po

-Po
(c) p=lzl
(d) p = z 

-a< z < a

O<z<a
-a< z < 0
-a< z < a 

-a <z < a 

where p0 is a constant. Discuss your results from considerations of symmetry.
2.13. A volume charge is distributed with uniform density p0 Cfm 3 throughout ar

infinitely long cylinder of radius a m. Obtain the electric field intensity at pointi
both inside and outside the cylinder by dividing the cylindrical charge into sev
eral infinitesimal parts each of which can be considered as a point charge.

2.14. A small hole is drilled through the center of the spherical volume charge o.
Example 2-6., as shown in Fig. 2.32. The size of the hole is negligible comparec
to the size of the sphere. A point charge q( < 0) is placed at one end of the hol<
and released from rest at t = 0. Assume that the magnitude of q is very smal
compared to the total charge Q (> O) contained in the sphere. (a) Derive the
equation of motion of the point charge. (b) Solve the equatiop. for the positiot
and velocity of the point charge as functions of time. (c) What is the frequenc:
of oscillation of the point charge?
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Fig. 2.32. For Problem 2.14 . 

-
;:

le 

-
/

a 
- --

I �f q 

. 15. Two infinitely long line charges of uniform but opposite densities PLo and -
pLo

are situated parallel to the z axis and passing through (d/2, 0, O) and '(-d/2, 0, 0), 
respectively. The arrangement is known as a two-dimensional electric dipole, in 
contrast to the three�dimensional electric dipole made up of two equal but opposite 
point charges. (a) Obtain the electric field intensity due to the two-dimensional 
electric dipole in the limit that d -> 0, keeping the dipole moment p LOd constant.
(b) Find and sketch the direction lines .

. 16. Two infinitely long line charges of uniform densities PL I and PL2, respectively, 
are situated paraUel to each other at a distance d apart. Show that the equation 
for the direction lines of E is 

!J.,1PL1 + {J.,zPL2 = constant 
in the plane normal to the line charges, where !J.,1 and !J.,2 are the angles made by 
the lines drawn from any point P to the line charges with. the line joining the 
charges as shown in Fig. 2.33. Obtain and sketch the direction lines for the fol
lowing cases: 
(a) PL1 = PL2 = PLo
(b) PL1 = PLo, PL2 = -PLO

Fig. 2.33. For Problem 2.16 . 

(two-dimensional dipole) 

PLlfF--'-�������•-�

,___j, -d--

p 

. 17. Obtain the electric field intensity of a finitely long line charge of uniform density 
PLo and length 2a at an arbitrary point. Show that the direction lines are hyper
bolas with the ends of the line charge as their focii. 
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2. 5s. In shorthand notation, the three-dimensional Dirac delta function situated at the 
origin is written as O(r), and is defined as 

�( ) = 
1
. o(r - ro) o(O - Oo) o(</) - </)0) 

ur Im 2 , e ro-o r O sin 2 
o

80-+0 

¢0-+0 

if the volume V contains the origin 
if the volume V does not contain the origin 

By performing volume integration of V2 (1/r) = V · V(l/r) throughout a sphere 
of radius a and centered at the origin and then letting a --> 0, show that 

v2 (+) = -4n o(r)

Hence, show that the potential field of a point charge Q located at the origin is 
Q/4n€0r. 




