

Illinois Center for Transportation University of Illinois at Urbana Champaign

HMA Field Cracking and Performance Test

David L. Lippert, PE Sustainability Implementation Engineer

December 12, 2017

Acknowledgements

Imad L. Al-Qadi, David L. Lippert, Shenghua Wu, Hasan Ozer, Greg Renshaw, Izak M. Said, Arturo F. Espinoza Luque, and Fazal R. Safi University of Illinois at Urbana-Champaign

> **Timothy R. Murphy** Murphy Pavement Technology, Inc.

> ividi priv Pavement Technology, Inc.

Abbas Butt and Satish Gundapuneni

Engineering & Research International, Inc.

James S. Trepanier and Joseph W. Vespa Bureau of Materials and Physical Research Illinois Department of Transportation

Disclaimer

This presentation is partly based upon work in progress under project:

ICT-R27-161- CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES

Project Chair: James S. Trepanier

This work is sponsored by the Illinois Department of Transportation through funding by the Federal Highway Administration. The contents of this presentation reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The content does not necessarily reflect the official views or policies of the Illinois Department of Transportation. This presentation does not constitute a standard, specification or regulation.

161 Study Reports

2015 Interim Report

https://apps.ict.illinois.edu/projects/getfile.asp?id=5149

2016 Interim Report

https://apps.ict.illinois.edu/projects/getfile.asp?id=5149

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 16-009 UILU-ENG-2016-2009 ISSN: 0197-9191

CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES IN ILLINOIS: 2015 INTERIM REPORT

Prepared By David L. Lippert Hasan Ozer Imad L. Al-Qadi James F. Meister Greg Renshaw ASM Tamim Uddin Khan Illinois Center for Transportation University of Illinois at Urbana-Champaign

Timothy R. Murphy Murphy Pavement Technology, Inc.

James S. Trepanier Joseph W. Vespa Bureau of Materials and Physical Research Illinois Department of Transportation

Research Report No. FHWA-ICT-16-009

A report of the findings of ICT-R27-161 CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES

Illinois Center for Transportation

February 2016

TRANSPORTATION

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. 17-005 UILU-ENG-2017-2005 ISSN: 0197-9191

CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES IN ILLINOIS: 2016 INTERIM REPORT

Prepared By David L. Lippert, Shenghua Wu, Hasan Ozer, Imad L. Al-Qadi, James F. Meister, Greg Renshaw, Maxwell K. Barry, Izak M. Said, Arturo F. Espinoza Luque, and Fazal R. Safi Illinois Center for Transportation University of Illinois at Urbana-Champaign

> Timothy R. Murphy Murphy Pavement Technology, Inc.

James S. Trepanier and Joseph W. Vespa Bureau of Materials and Physical Research Illinois Department of Transportation

Research Report No. FHWA-ICT-17-003

A report of the findings of ICT PROJECT R27-161 Construction and Performance Monitoring of Various Asphalt Mixes

Illinois Center for Transportation

February 2017

Final Report Coming Soon..

http://ict.illinois.edu/

CIVIL ENGINEERING STUDIES Illinois Center for Transportation Series No. xx-xxx UILU-ENG-20xx-xxxx ISSN: 0197-9191

UTILIZING LAB TESTS TO PREDICT ASPHALT CONCRETE OVERLAY PERFORMANCE

Prepared By Imad L. Al-Qadi, David L. Lippert, Shenghua Wu, Hasan Ozer, Greg Renshaw, Izak M. Said, Arturo F. Espinoza Luque, and Fazal R. Safi University of Illinois at Urbana-Champaign Timothy R. Murphy Murphy Pavement Technology, Inc. Abbas Butt and Satish Gundapuneni Engineering & Research International, Inc. James S. Trepanier and Joseph W. Vespa Bureau of Materials and Physical Research

Illinois Department of Transportation

Research Report No. FHWA-ICT-xx-xxx

A report of the findings of

ICT PROJECT R27-161 CONSTRUCTION AND PERFORMANCE MONITORING OF VARIOUS ASPHALT MIXES

Focus on Cracking

Block Cracking (All HMA)

Reflective Cracking (Composite)

"Where Excellence and Transportation Meet"

Thermal Cracking (Full Depth HMA)

Outline

- Construction Project Review
- Crack Performance
- Pavement Profile
- Analysis
- Findings
- Conclusions
- Recommendations

Construction Project Review

Region 1/ District 1 Projects

2013 Let TRA Projects

April 26, 2013 Letting Projects										
Map ID/	Project	Net Length (mi.)	Surface Mix Details							
Construction Year			Dir.	Mix	ABR %	RAS ³ %	RAP ³ %	Virgin PG	Surface Tons	
A /2013	26th Street (Chicago Heights) from Western Ave to East End Ave 137 L62	2.0	Both	N50 TRA ² 60L62-137M	60	4.6	51	52-28	3,060	
B /2013	Harrison Street (Hillside) from IL 38/Roosevelt Rd. to Wolf Rd. 338 N67	1.1	Both	N50 TRA ² 60N67-338K	56	5.0	53	52-28	2,131	
C /2013	Richards Street (Joliet) from 5th Ave to Manhattan Road 138 P70	0.9	Both	N50 TRA 60P70-138Z	37	None	27	58-28	2,223	
D /2013	Wolf Road (Hillside) from IL 38/Roosevelt Rd. to Harrison St. 306 M30	0.5	Both	N70 Mix D 60M30-306K	20	None	30	58-28	1,382	

 ¹ Total recycle asphalt (100% recycled aggregate with high ABR)
 ² Percent of mixture that contributes to the indicated ABR% Note: Maximum 5% RAS allowed in total mix by specification

2014/2015 Monitoring Projects

June 13, 2014 Letting Projects										
Map ID/	Project	Net	Surface Mix Details							
Construction Year		Length (mi.)	Dir.	Mix	ABR %	RAS² %	RAP ² %	Virgin PG	Surface Tons	
1 /2014	Crawford Ave/Pulaski Rd from 172nd to US Rt. 6 157 Y03/ 156 Y03	1.5	S	N70-30% ABR 60Y03-157M	29	5.0	9.9	58-28	2,150	
			Ν	N70-15% ABR 60Y03-156M	15	2.5	4.9	64-22	2,150	
2 /2014	US 52 From Chicago St. (IL 53) to Laraway Road 140 Y02/ 159 Y02	3.3	Е	N70-30% ABR 60Y02-140M	30	3.1	20	58-28	2,320	
			W	N70-30% ABR 60Y02-159M	29	None	34	58-28	2,320	
3 /2015	US 52 from Laraway Road to Gouger Road 185 N08	3.3	Both	N70 TRA ¹ 60N08-185M	48	5.0	39	52-34	5,236	
4 /2015	US 52 from Gouger Road to Second Street 185 N07	1.5	Both	N70 TRA ¹ 60N07-185M	48	5.0	39	52-28	3,014	
5 /2015	Washington Street from Briggs Street to US 30) 177 Y04/ 159 Y04	1.9	W	N70-30% ABR 60Y04-177M	30	3.1	20	58-34	1,580	
			E	N70-30% ABR 60Y04-159M	29	None	34	58-34	1,580	

¹ Total recycle asphalt (100% recycled aggregate with high ABR)

² Percent of mixture that contributes to the indicated ABR% Note: Maximum 5% RAS allowed in total mix by specification

Urban Bare PCC Detail

Rural Detail (Thick)

Urban Mill and Fill

6-8" HMA

Plant Mix and Core Sample Testing

Testing

Binder PG Grading

Asphalt Content/Mix Verification

Moisture Damage (TSR)

Marshall Stability

Cantabro Loss

Testing

Complex Modulus Test

Hamburg Wheel Track

Flow Number

Summary of Testing

	Specification		Field Core		t Mix	
Test			2014 Let	2013 Let	2014 Let	Laboratory
Asphalt binder content	AASHTO T 164-13 (Illinois Modified 01/01/15)			Х	х	BMPR
Aggregate gradation	AASHTO T-27 (Illinois Modified 3/1/2013)			Х	х	BMPR
G _{mm}	AASHTO T 209-12 (Illinois Modified 01/01/15)			Х	Х	BMPR
Marshall stability and flow	ASTM D 1559 (Illinois Modified w/150 mm fixture)				Х	BMPR
Cantabro loss	TxDOT Test: Tex-245-F				Х	BMPR
TSR	AASHTO T 283-07 (2011) (Illinois Modified 01/01/15)				х	BMPR
Texas overlay	TxDOT Test: Tex-248-F				х	BMPR
Complex modulus	AASHTO T 342-11			Х	х	ICT
Flow number	AASHTO TP 79-13			Х	х	ICT
Beam fatigue	AASHTO T-321-14				х	ICT
Creep compliance/IDT strength	AASHTO T-322-07 (2011)B	х	Х		х	ICT
Hamburg wheel tracking	AASHTO T 324-11 (Illinois Modified 01/01/15)	Х	Х	Х	Х	ICT
I-FIT	AASHTO TP 105-13	Х	Х	Х	Х	ICT
Performance-graded asphalt binder	rformance-graded asphalt binder AASHTO M 320 Binder sample from I				Plant	BMPR

Crack Performance

Crack Surveys

Conducted by BMPR – Lead Joe Vespa

Survey sheets provided to ICT

- Translated into spreadsheets
- Summary/analysis/graphs

2013 Let Projects

Distress Summary

26th Street - 137 L62

Harrison Street – 338 N67

Richards Street – 138 P70

Wolf Road – 306 M30

Cracking Progression

Harrison St, Richards St, 26th St & Wolf Rd Transverse Joints and Cracking Linear Feet/1000 Lane Feet

Centerline Cracking

Harrison St, Richards St, 26th St & Wolf Rd

Centerline Cracking

Linear Feet/1000 Centerline Feet

Main Observations (2013 Projects)

- Richards (non-RAS) and Wolf Road
 - Transverse cracking at lower severity
 - Wolf Road average slab length ~11'
 - Many slabs little movement less severity
- 26th Street severe centerline problems
- Harrison and Richards Alligator Cracking
- Harrison: extensive early transverse cracking and higher severity sooner than other projects (Mix 338 N67, FI = 1)

2014 Let Projects

2014 Construction

Crawford/ Pulaski - 157 Y03/ 156 Y03

Crawford/ Pulaski - 157 Y03/ 156 Y03

US 52 (IL 53 to Laraway Rd) - 140 Y02/ 159 Y02

US 52 (IL 53 to Laraway Rd) - 140 Y02/ 159 Y02

2014 Let Projects

2015 Construction

Washington St. - 177 Y04/ 159 Y04

Washington St. - 177 Y04/ 159 Y04

Washington St. Leveling Binder

"Where Excellence and Transportation Meet"

I

US 52 (Laraway to Gougar) - 185 N08

US 52 (Laraway to Gougar) - 185 N08

US 52 (Gougar to 2nd St.) - 185 N07

US 52 (Gougar to 2nd St.) - 185 N07

- 2014 milling operations could be improved upon (deep grooves from new teeth in worn head). – enforce existing specifications or adopt finer mill texture?
- 2015 milling operation adequate
- Tack coat adequate with limited zebra stripes.
- Plan patching and cracking filling quantities were adequate.

2014 Let Projects

2014 Construction Distress Summary

Crawford/ Pulaski - 157 Y03 & 156 Y03

Linerar Feet/1000 Lane Feet

Transverse Joints and Cracking

Crawford Ave./Pulaski Rd. Transverse Joints and Cracking Linear Feet/1000 Lane Feet

Centerline Cracking

Crawford Ave./Pulaski Rd. Centerline Cracking

Linear Feet/1000 Lane Feet

2014 Let Projects

2015 Construction Distress Summary

US 52 (IL 53 to Laraway Y02) 140 Y02; 159 Y02

Transverse Joints and Cracking

Centerline Cracking

US 52 (IL 53 to Laraway)

Centerline Cracking

Linear Feet/1000 Lane Feet

Main Observations (2014 Let & Constructed Projects)

- Transverse cracking similar by project more than segment or different mixes on a project.
- Higher amount of transverse cracking on Crawford/Pulaski "thin" project.
 - 157 (SB) ABR 30% w/PG58-28, RAS 5%
 - 156 (NB) ABR 15% w/PG64-22, RAS 2.5%
- Lower amount of transverse cracking on US 52 (Y02) project "thick" and "thin" segments.
 - 140 (EB) ABR 30% w/PG58-28, RAS 3.1%
 - 159 (WB) ABR 29% w/PG58-28, No RAS
- Raveling/Weathering/Segregation on nearly all project measured in 1st spring after construction on US 52.
- Fewer distresses at lower severity than 2013 projects.

2014 Let Projects

2015 Construction Distress Summary

US 52 (Laraway to Gougar N08)

US 52 (Gougar to 2nd N07)

Washington St.

• Sec 1 (Thin)

• Sec 2 (Thick)

Transverse Joints and Cracking

US 52 (Laraway to Gougar, Gougar to 2nd St) & Washington St

Transverse Joints and Cracking

Linear Feet/1000 Lane Feet

Centerline Cracking

US 52 (Laraway to Gougar, Gougar to 2nd St) & Washington St Centerline Cracking Linear Feet/1000 Lane Feet

Main Distress Observations (2014 Let Projects)

- "Thin" overlays reflecting cracks/joints quickly
 - West end Washington
 - Crawford/ Pulaski
- "Thick" overlays (not removed by milling) reduces transverse cracking
 - US 52 sections
 - Washington St. Segment 2

• 2015 TRA mixes performing much better than 2013 TRA mixes (thus far)

Pavement Profile

"Where Excellence and Transportation Meet"

High Speed Inertial Profiler

- IDOT tested pre-overlay
- ERI tested post-overlay
 - After Construction
 - 1st Winter Frozen
 - Annually thereafter
 - 2016 Spring and Fall
 - Spring 2017 Final run

Data collected:

Roughness: International Roughness Index, in/mi Rutting: Five point (each wheel path), in

IRI/Rutting

IRI before and after Overlay

Profile Trend Observations

- IRI in the right wheel path higher than left wheel path.
- Annual increase in IRI higher in right wheel
 path
- Little difference by mix for both IRI and rutting - rutting low thus far
- Initial IRI could be smoother Requires spec changes

Analysis

"Where Excellence and Transportation Meet"

Flexibility Index

Typical I-FIT Test Result

"Where Excellence and Transportation Meet"

3D-BMD for PMLC

(Balanced Mix Design)

CRS Analysis

"Where Excellence and Transportation Meet"

CRS after 2nd Winter

CRS

Main CRS Observations

- 2013 (N50) TRA projects performed worse at any given time.
 - After 4 years nearly same CRS as pre-construction on Harrison – Mix 338 N67 (FI = 1.6)
- Wolf Road (2013 let- No RAS and N70) performed similar to 2014 let projects
- "Thin"/"Thick" CRS trends are different, but not as strong as transverse cracking trends

Findings

"Where Excellence and Transportation Meet"

Overall Study Findings

- Projects that left an AC layer of 3.5 in or more in place after milling resulted in less cracking in the new overlay.
- The highest FI in the study, over 10, was the result soft -binder (PG 58-34) and moderate ABR rate (30%)
 Washington Street project.
- Increase FI values correlated to higher Condition Rating Survey (CRS) values as the pavement aged and therefore longer pavement life.
- The Texas overlay test did not correlate to transversecracking development in the first four years.
- Pavement rutting is well within values that would be expected for the pavements under study.

Findings (Continued)

- For the 2013 let TRA projects, pavement distress, (types, extent, and severity) is developing sooner than for the comparison project on Wolf Road.
 - TRA with 37 to 60% ABR, while Wolf Road project has 20% ABR with no RAS.
- The TRA projects on US 52 (60N07 and 60N08) are performing much better than the TRA projects constructed in 2013, which correlates to FI of the AC mixture and pavement families.
- Alternatives to the "mill and fill" approach of pavement rehabilitation such as hot or cold in-place recycling should be considered where appropriate in order to obtain the benefits of reduced cracking of the "thick" pavement family.

Conclusions

"Where Excellence and Transportation Meet"

CONCLUSIONS

- The Illinois Flexibility Index Test (I-FIT) and resulting flexibility index (FI) can be used on plant sampled laboratory compacted AC mixtures to characterize the potential of transverse cracking in pavements.
- Transverse cracking initiation and propagation are influenced by both the AC mixture characteristics and pavement family.
- The regression analysis of FI and transverse cracking indicates that transverse cracking can be reduced in both thin- and thick-pavement families by using AC with a minimum FI of 8.
- Low FI values and thin-AC overlays of PCC pavement, may result in high amounts of reflective cracking early in the overlay life. i.e. Harrison Street mix 338.

CONCLUSIONS (cont.)

 The use of polymer asphalt-binder (PG 70-28) in the 4.75 level binder with approximately 30% ABR (RAP/RAS) resulted in FI values similar to the surface AC mixes in this study. Limited use for controlling reflective cracking.

Recommendations

"Where Excellence and Transportation Meet"

Recommendations

- I-FIT should be adopted for use as a specification requirement in AC mixture design and/or production.
- The proposed Flexibility Index (FI) value of 8.0 by IDOT should be adopted
- Balance mix design should be used and explore the 3D balance mix design.
- Use of virgin aggregates rather than all recycled aggregates, would result in better production control of the AC mix and less absorption which would reduce cost of TRA mixes.

Thank You