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VECTOR ANALYSIS 

Vector analysis is a shorthand notation by means of which we perform 
mathematical manipulations with quantities which have associated with them 
not only magnitude but also direction in space. Such quantities are known 
as vectors, in contrast to scalars which have only magnitude associated with 
them. Force and velocity are examples of vectors.· Mass and length are 
examples of scalars. The electric and magnetic fields are examples of vectors. 
Voltage and current are examples of scalars. Since this book is concerned 
with electric and magnetic fields, it is necessary that we first learn the nota­
tion and certain rules of vector analysis. To distinguish vector quantities 
from scalar quantities, we use boldface type: A. Graphically, the vector A 
is represented by a line whose length is equal to the magnitude of A, denoted 
I A I or simply A, and with an arrowhead at the end of the line pointing 
toward the direction of A. If the top of the page is taken to be pointing toward 
the north, then Figs. l.l(a), (b), and (c) represent vectors A, B, and C directed 
north, northeast, and west-northwest, respectively. 

1.1 Some Simple Rules 

a. Equality of Vectors.

Two vectors A and B are equal if and only if their magnitudes as well
as directions are the same. 
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Fig. 1.11. Components of a vector 
along mutually perpendicular unit 
vectors. 

Likewise, if we have three mutually perpendicular unit vectors iA, iB, and ic 
drawn from a point, then the component vectors of a vector D along the 
unit vectors are (D • iA)iA, (D • iB)iB, and (D • ic)ic, respectively, so that 

D = (D • iA)iA + (D • iB)iB + (D • ic)ic 
Furthermore, 

1.2 Coordinate Systems 

In the previous section we discussed some simple rules of vector analysis 
without involving any coordinate system. In physical problems, we cannot 
simply go on describing vectors by symbols A, B, C, and so on, if we wish 
to simplify the geometry associated with the mathematical operations using 

these vectors. We need to describe a vector in terms of component vectors 
along a set of reference directions such as east, north, and upward. Although 
several different coordinate systems are in existence, we will be interested 
only in three: (a) the cartesian, (b) the circular cylindrical or simply cylin­
drical, and (c) the spherical coordinate systems. Each coordinate system 
involves three surfaces which are mutually orthogonal. At any particular 
point, unit vectors can be drawn tangential to the curves of intersection of 
pairs of the three orthogonal surfaces. The three unit vectors drawn in this 
manner will be mutually perpendicular and will define the reference direc­
tions at that point. Once such reference directions are defined everywhere 
in space, we can represent vectors in terms of their component vectors along 

the reference directions and use them for performing vector operations. We 
will discuss each coordinate system separately and then summarize the 
details in the form of a table. 

a. Cartesian Coordinate System.

For the cartesian coordinate system, the three mutually orthogonal 
surfaces are three planes. Let us consider three orthogonal planes which 



































































43 Volume, Surface, and Line Integrals 

Along path ef, y = 1/x, dy = -(l/x2) dx, F •di= (2/x)dx. 

ff 

J
I 2 F • di = -dx = 2 ln 2

e x= 1/2 X 

Along path/g, x = l, dx = 0, F •di= -dy. 

Jg 
f 112 1 

F •di= - dy =2
f y=I 

Along path ga, x = 2y, dx = 2 dy, F • di = 0. 

fF·dl=O 
g 

Sec. 1.7 

Finally, adding the values of f F • di for the seven paths, we obtain 
the total work done to be f + ,,/2' + 0 + 1 + 2 In 2 + -! + 0 � 4.634. 
The fact that the integrals along the paths cd and ga are zero is obvious if 
we note that F = yi

x 
- xi

y 
= -ri

<.l
. Thus the force vector is everywhere 

tangential to the circle with the center at the origin and, since cd and ga are 
radial to the origin, F • di = 0 for these paths. Hence f F • di is zero for the 
paths cd and ga. I

Integration of vectors is performed by expressing the integrand in terms 
of its components in cartesian coordinates, t�ereby reducing the problem to 
one of evaluating three scalar integrals. Thus, for example, 

f Adm= f (A)x + A
y
i
y 
+ A,i,) dm 

(1-84) 

where dm stands for dv, dS, or di, depending upon whether the integration 
is over a volume, surface, or along a line, respectively. Similar expressions 
using the components in cylindrical and spherical coordinate systems are 
not correct since some or all of the unit vectors in these coordinate systems 
are functions of the coordinates. For example, the magnitude of the sum 
of two component vectors along the unit vector i, at two different points is 
not, in general, the sum of the magnitudes of the two vectors since the two 
components are directed in different directions. For that matter, the direction 
of the sum of the two component vectors is not the direction of either of 
the component vectors. Thus 

f Adm =ft (f A, dm )i, + (f A<.l 
dm )i

<.l + (f A, dm )i, 

f Adm =ft (f A, dm )i, + (f A8 dm )i8 + (f A
\! 

dm )i
<.l 

(1-85a) 

(1-85b) 

The integrand must, in general, be expressed as the sum of its component 
vectors along t, i

y
, and i, for correct results. 
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1.8 Divergence and the Divergence Theorem 

Chap. I 

In Section 1.7 we introduced the concept of the surface integral. Let us 
consider a closed surface S enclosing a volume V in a region in which the 
current density vector J is specified. Then the amount of current emanating 
from this volume is given by 

I= Ts J • dS (1-86) 

where the integration is performed over the closed surface S. If we let this 
volume shrink to an infinitesimal value !iv, we obtain an infinitesimal amount 
of current flowing out of the surface AS bounding !iv. In the limit that 
we let the volume shrink to a point, the current emanating from the point 
may tend to zero. On the other hand, since the volume occupied by the 
point is zero, the ratio of the current emanating from the point to the 
volume occupied by the point can be nonzero; that is, although the quantity 
! J • dS may tend to zero in the limit !iv ---> 0, the quantity
:r.<\s

! J • dS
j as 

!iv 

can approach a nonzero value in the limit !iv ---> 0. The quantity 

!iv 

is the amount of current, or the flux of the quantity whose density vector is 
represented by J, per unit volume emanating from the infinitesimal volume 
!iv. The value that this quantity approaches as !iv tends to zero (i.e., shrinks 
to a point) is known as the divergence of the vector J. The divergence of J 
is represented as the dot product of the vector operator V and the vector 
J, that is, as V • J. Thus 

p J • dS
V • J = lim -="S::..._,.--

liv-o !iv 
(1-87) 

Since the surface integral results in a scalar, the divergence of a vector is 
a scalar. It is the flux emanating per unit volume as the volume shrinks to 
a point. Hence the concept of divergence is valid at a point. 

To make use of the concept of divergence of a vector, we need to derive 
expressions for it in terms of the components of the vector in different coor­
dinate systems. Let us choose the cylindrical coordinate system for this 
purpose. The method of deriving the required expressions consists of follow­
ing exactly the steps involved in the definition of divergence. First we choose 
an infinitesimal volume at an arbitrary point P(r 

0, <p0 , z0), as shown in Fig. 
1.26. The infinitesimal volume is formed by the surfaces r = r 0, r = r O + dr,
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cf, = cp0 , cf,= <p0 + def,, z = z
0

, and z = z
0 + dz. The resulting differential 

surfaces I, 2, 3, 4, 5, and 6 are given by -r 
O 

def, dz i,, (r 
O + dr) def, dz i,, 

-dr dz i
1
, dr dz i

1
, -r 

O 
def, dr iz, and r 

O 
def, dr i z• respectively. Expressing J

in terms of its components in cylindrical coordinates, we have

J = J,i, + J\bj\b + Jzjz (1-88) 

The next step is to evaluate the integral of J • dS over the surface bound­
ing the differential volume. We do this by evaluating the surface inte­
grals over the six surfaces separately and then adding them up. Over 

z 

----y 

x 

Fig. 1.26. For obtaining the expression for the divergence 
of a vector in cylindrical coordinates. 

each surface, we can assume that J is constant since the surface area is 
infinitesimal. Only one of the three components of J will contribute to the 
flux crossing a particular surface since the other two components are tangen­
tial. Thus the flux leaving the volume from any surface is simply the 
product of the surface area and the normal component of the J vector 
evaluated on that surface or its negative, depending upon whether that com­
ponent is directed out of or into the volume. In this manner we obtain 

and 
flux leaving the volume from surface 1 = -[J,],=,, r 

O 
def, dz (1-89) 

flux leaving the volume from surface 2 = [J,],=,,+a,(r
0 
+ dr) def, dz

(1-90) 
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From (1-89) and (1-90) we have 

Similarly, 

and 

net flux out of the volume due to surfaces 1 and 2 
= [J,],=,0+a,(r O + dr) d<f> dz - [J,],=ro r O d<f> dz
={[rJ,],=ro+dr - [rJ,],=,.} d<f> dz 

net flux out of the volume due to surfaces 3 and 4 
= {ViJ¢=¢o+d¢ - []¢]¢=¢.} dr dz 

net flux out of the volume due to surfaces 5 and 6 
= {[Jzlz=zo+dz - [Jzlz=z.l Yo dr d<f> 

(1-91a) 

(l-91b) 

(l-9lc) 
The total flux emanating from the differential volume is the sum of the 
expressions on the right sides of (1-91a), (1-91b), and (1-91c). Adding these 
three expressions and dividing by the differential volume, 

we obtain 
!1v = r

0 
dr d<f> dz (1-92) 

,C. J • dS j 68 _ [r J,]r= ro+dr - [r J,] r=ro
!1v - r

0 dr 

+ [J¢]¢=¢o+d,P - [J,p],t,=,Po (1-93) 
r

0 
dq> 

+ [Jzl z= zo+dz - [Jz]z=z,
dz 

By taking the limit of (1-93) as !1v---->O, we obtain V • J at P(r
0

, <f>o , z
0

) as 

f J • dS

[V • J]c,0,¢0,zol = lim t,.S 11 <!.v-o v 

= lim [rJ,],= ro+dr - [rJ,],=ro + lim [J¢J¢=¢,o+d,t, - [Jq1]¢=¢0 

a,-o r
0 dr d¢-o r

0 
d<f> 

+ lim [Jz]z= zo+dz - [Jz]z=zo 
dz-o dz 

= 1-[IcrJ )] + ..!_[a1,1,] + [a1z] Yo ar r r=ro Yo aq> ¢=¢0 az z= zo 

= [1- a 
(r J ) + ..!_ a_]_.. + aJz] Y err T Y a<f> az (ro, ¢0, zo) 

(1-94) 

Now, since (1-94) is valid for any (r
0

, <f>
0

, z0), we can generalize (1-94) by 
stating that at any point (r, <f>, z), 

V • J = ..!_ I(rJ) + ..!_ aJ,t, + aJZ (1-95; 
r ar r r a¢> az 

Similar expressions for the divergence can be derived in the cartesian and 
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1.13. Let A and B be vectors in the xy plane making angles ct and p with the x axis. 
With the aid of dot and cross products, prove the following trigonometric identi­
ties: 

(a) cos(rt - P) = cos ct cos p + sin ct sin p.

(b) sin(rt - P) = sin ct cos p - cos ct sin p.

(c) cos(r:t + P) = cos ct cos P - sin ct sin p.

(d) sin(rt + P) = sin ct cos P + cos ct sin p.

1.14. Write an expression for the component of a vector A along the direction of another 
vector B without the use of a coordinate system. Then find the component of 
A = 2ix - 3iy + i, along the direction of B = 3ix - iy - 2i,. 

1.15. Using two vectors in the plane x + 2y + 3z = 3, find the unit vector normal to 
that plane. 

1.16. Show that the equation of the plane passing through the point (x0 , Yo, z0) and 
normal to the vector aix + bi

y 
+ ci, is 

a(x - Xo) + b(y - Yo) + c(z - z0) = 0 

1.17. For the following scalar functions, describe the shapes of the constant-magnitude 
surfaces: 

(a) T(x, y, z) = x2 + 4y2 + 9z2.

(b) U(r, if>, z) = (cos q>)/r.

(c) V(r, 0, q>) = (sin 0)/r.

1.18. Using a spherical coordinate system with the origin at the center of the earth, 
write a vector function for the linear velocity of points inside the earth due to its 
spin motion. Describe the constant-magnitude surfaces and direction lines. 

1.19. Using a spherical coordinate system with the origin at the center of the earth, 
write a vector function for the force experienced by a mass m in the gravitational 
field of the earth. Describe the constant-magnitude surfaces and direction lines. 

1.20. Discuss the following vector fields with the aid of sketches: 

(a) A(x, y, z) = (x - 2)ix.

(b) B(r, if>, z) = r(r - l)i
\l>.

(c) C(r, e, q>) = (1/r)ie,

(d) D(r, 0, q>) = ri,.

1.21. Derive the expressions listed in Table 1.6 for the partial derivatives of unit vectors 
with respect to the coordinates. 

1.22. Let r = xix + yiy + zi, = rci,c + zi, = rsi,s be the position vector of a point P 
moving in three dimensions. Obtain the expressions for the velocity v and accelera­
tion a of the point in all three coordinate systems. 

1.23. (a) A point P moves along a curve in two dimensions such that its coordinates
are given by r = at and if> = bt, where a and b are constants. Find the velocity
and acceleration of the point.

(b) A point P moves along a curve in three dimensions such that its coordinates
are given by x = a cos rot, y = b sin rot, and z = ct, where a, b, c, and OJ 

are constants. Find the velocity and acceleration of the point.
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1.24. Verify Eqs. (1-63) and (1-64) by expansion in cartesian coordinates. 

Chap. I 

1.25. Find a unit vector normal to the surface r 2 cos 2¢ = 1 at the point (,/2, n/6, 0)
in the cylindrical coordinate system in two ways: (a) by using two vectors which 
are tangential to the surface at that point; and (b) by using the concept of the 
gradient of a scalar function. 

1.26. Find the scalar functions whose gradients are given by the following vector func­
tions: 
(a) VT(x, y, z) = yzix + zxiy + xyi,. 

(b) VU(x, y, z) = 3x 2yz2ix + x3z2j
Y + 2x3yzi,. 

(c) VV(r, ¢, z) = (1/r2)(cos ¢ i, +sin ¢ i"'). 
(d) VW(r, (), ¢) = �nr/r n+ 2, where r is the position vector.

1.27. Make up a table of gradients of the scalar functions defining the orthogonal sur­
faces in the three different coordinate systems. 

1.28. Find the component of the unit vector normal to the surface x2 - y2 = 3 at the 
point (2, 1, 1) in the direction of the vector joining the point (1, -2, 0) to the 
point (0, 0, 2). 

1.29. Find the rate of change of V = x2y + yz2 + zy2 in the direction normal to the 
surface x2y - yz + xz2 = 5 at the point (1, 2, 3). 

1.30. Find the equation of the plane tangential to the surface xyz = 1 at the point (-hi, 8). 

1.31. Evaluate the following volume integrals: 

(a) f
v 

xyz dv, where Vis the volume enclosed by the planes x = 0, y = 0, z = 0, 
and x + y + z = 1. 

(b) f v ! dv, where Vis the volume of a cylinder of radius a with the z axis as

its axis and of length l.

(c) f 
v 

x dv, where Vis that part of the volume of a sphere of radius unity lying 
in the first octant. 

1.32. Given A= x2yzix + y2zxi
y 

+ z2xyi,, evaluate §A· dS over the following closed 
· surfaces:

(a) The surface of the cubical box bounded by the planes
x = 0, x = 1 
y = 0, y = 1 
z = 0, z = 1 

(b) The surface of the box bounded by the planes
x = 0, y = 0, z = 0 

x + 2y + 3z = 3 
1.33. Given A = r cos ¢ i, - r sin ¢ i"' in cylindrical coordinates, evaluate § A • dS 

over the following surfaces: 
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(a) The surface of the box bounded by the planes z = 0, z = !, and the cylinder
r = a.

(b) The surface of the box bounded by the planes x = 0, y = o; z = 0, z = !,

and the cylinder r = a.

1.34. Given · A = r2i, + r sin (J i9 in spherical coordinates, evaluate §A · dS over the 
following: 
(a) The surface of that part of the spherical volume of radius unity lying in the

first octant.
(b) The surface of a solid spherical shell lying between r = a and r = b, where

b > a (note that this surface consists of two disconnected surfaces; the normal
vectors to the surfaces must both be chosen to be away from or into the volume
bounded by the surfaces).

1.35. For the force vector F = yix + xiy, find the work done by the force vector from 
the origin to the point (n/2, 1, 0) along the following paths: 
(a) y = sin2 x, z = 0.
(b) y = (4/n2)x2, z = 0.
(c) x = (n/2)y2, z = 0.
(d) Any other path of your choice not necessarily in the z = 0 plane.

1.36. A certain vector field is given by
A = a2yix - b2xiy 

where a and b are constants. Evaluable f A · di from the origin to the point 
(1, 1, 1) along the following paths: 
(a) y = x = z2 .
(b) The path given by y = 0, z = 0, then x = 1, z = 0, and then x = y = 1. 
(c) The path given by y = x, z = 0, and then x = y = 1. 
(d) The path given by x = 0, z = 0, then y = 1, z = 0, and then x = y = 1. 
(e) x = y = z.

1.37. Given A = xyix + yziy + zxi,, evaluate the circulation § A · di around the con­
tour abcda shown in Fig. 1.34. 

z 

' y 

Fig. 1.34. For Problem 1.37. 
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1.38 Given A= 2r cos <pi, + ri.p 
in cylindrical coordinates, find: 

(a) f c A • di, where C is the contour shown in Fig. l.35(a).

Chap. 1 

(b) ! A· di + ! A· di, where C1 and C2 are the contours shown in Fig. l.35(b).
1c1 1c2 

y y 

,l 
OD x x a b 

(a) (b) 

Fig. 1.35. For Problem 1.38. 

1.39.     Given A = (e-'/r)i8 in spherical coordinates, evaluate f A • di around the contour
abca shown in Fig. 1.36. 

x 

1.40. Evaluate the following vector integrals: 

Fig. 1.36. For Problem 1.39. 

(a) f c di, where C is any closed path of your choice.
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(c) C = 2r cos¢ i, + r i91, cylindrical coordinates.

(d) D ( l /r)iq1, cylindrical coordinates.

(e) E = (e-r/r)ie.

Chap. J 

1.54. Discuss the curls of the following vector fields by using the "paddle-wheel" device 
and also by expansion in the appropriate coordinate system: 

(a) The velocity vector field associated with points inside the earth due to its spin
motion.

(b) The position vector field associated with points in three-dimensional space.

(c) The velocity vector field associated with the flow of water in the stream of
Fig. 1-30(a) such that the velocity varies uniformly from zero at the bottom
of the stream to a maximum at the top surface.

( d) the vector field F = i91•

1.55. By expansion in cartesian coordinates, verify

V·VXF=O 

V x VV= o 

1.56. Determine which of the following vectors can be expressed as the curl of another 
vector and which of them can be expressed as the gradient of a scalar: 

(a) A = yzix + zxi.v + xyiz,

(b) B xyix + yziy + zxiz.

(c) C = (x2 
-

y2)ix - 2xyiy + 4i,.
(d) D = (e-'/r)iq1, cylindrical coordinates.

(e) E (1/r2) (cos ¢ i, + sin ¢ iq1), cylindrical coordinates.
(f) F = (1/r3) (2 cos O i, + sin 8 i9), spherical coordinates.

1.57. Verify your answer to Problem 1.37 by evaluating the appropriate surface integral 
and using Stokes' theorem. 

1.58. Verify your answers to Problem 1.38 by evaluating the appropriate surface integrals 
and using Stokes' theorem. 

1.59. Verify your answer to Problem 1.39 by evaluating the appropriate surface integral 
and using Stoke's theorem. 

1.60. For the vector A yzix + zxiy + xyi,, use Stokes' theorem to show that 

f c 
A • di is zero, where C is any closed path. Then evaluate J A • dl along the

following paths : 

(a) From the origin to the point (1, n/2, 0) along the curve r = t, ¢ = (n/2)t,

z = sin n t, in cylindrical coordinates.
(b) From the origin to the point (1, 1, 1) along the curve x ../2 sin t, 

y ../2 sin t, z (4/11:)t.

(c) From the origin to the point (22.34, 5.68, -6.93) in cartesian coordinates along
any path of your choice.

1.61. Use Stokes' theorem and the divergence theorem to prove that V · V x A 0, 
without the implication of a coordinate system. 
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1.62. From the definition of V V, show that j 
c 
V V , di = 0, where C is any closed path.

Then use this result and Stoke's theorem to prove that V X VV = 0, without the 
implication of a coordinate system. 

1.63. Find the Laplacians of the following scalar and vector functions: 

(a) T(x, y, z) = x3
yz2.

(b) U(r, <p, z) = (cos <p)/r.
(c) V(r, 0, <p) = e-'/r.

(d) A(x, Y, z) = x2yzix + xy2ziy + xyz2i,.

1.64. Derive the expansion for the Laplacian of a vector in cartesian coordinates given 
by (1-139). 

1.65. Derive the expansion for the Laplacian of a vector in cylindrical coordinates given 
by (1-140). 

1.66. Derive the expansion for the Laplacian of a vector in spherical coordinates given 
by (1-141). 

1.67. Verify the general expressions for V V, V , J, V x F and V2 V given by (1-144), 
(1-145), (1-146), and (1-147), respectively. 

1.68. By expansion in cartesian coordinates, show that 

(a) V · UA =A· VU+ UV, A.

(b) V x UA = VU x A+ UV x A.

(c) V · (A x B) = B , V x A - A , V x B.

(d) V X (Ax B) =AV· B - B V ·A+ (B · V)A - (A· V)B.




