VECTOR ANALYSIS

1.1

" Vector analysis is a shorthand notation by means of which we perform

mathematical manipulations with quantities which have associated with them
not only magnitude but also direction in space. Such quantities are known
as vectors, in contrast to scalars which have only magnitude associated with
them. Force and velocity are examples of vectors. Mass and length are
examples of scalars. The electric and magnetic fields are examples of vectors.
Voltage and current are examples of scalars. Since this book is concerned
with electric and magnetic fields, it is necessary that we first learn the nota-
tion and certain rules of vector analysis. To distinguish vector quantities
from scalar quantities, we use boldface type: A. Graphically, the vector A
is represented by a line whose length is equal to the magnitude of A, denoted
|A| or simply 4, and with an arrowhead at the end of the line pointing
toward the direction of A. If the top of the page is taken to be pointing toward
the north, then Figs. 1.1(a), (b), and (c) represent vectors A, B, and C directed
north, northeast, and west-northwest, respectively.

Some Simple Rules

a. Equality of Vectors.

Two vectors A and B are equal if and only if their magnitudes as well
as directions are the same.
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Fig. 1.1, Graphical representation of vectors.

b. Addition and Subtraction of Vectors.

Two vectors A and B are added by placing the beginning of one vector
at the tip of the other as shown in Figs. 1.2(a) and (b). The sum vector is
then obtained by joining the beginning of the first vector to the tip of the
second vector. This rule is also known as the parallelogram law since, if we
consider the two vectors as the adjacent sides of a parallelogram with their
beginnings at a common point O as shown in Fig. 1.2(c), the sum vector is
then given by the diagonal of the parallelogram drawn from the corner O
to the opposite corner. From Figs. 1.2(a) and (b), it is clear that vector addi-
tion is commutative, that is,

A+B=B+A (1-1)

Subtraction is a special case of addition. If we want to subtract a vector
B from a vector A, we first construct the vector (—B), which has the same
magnitude as that of B but opposite direction, and then add it to A, that is,

A—B=A+(—-B) (1-2)
The graphical construction pertinent to (1-2) is shown in Fig. 1.3(a). If we
decide to obtain A — B from the construction of a parallelogram with A

and B as the adjacent sides emanating from the common point O similar
to that in Fig. 1.2(c), then the construction of Fig. 1.3(b) indicates that

B
A B+ A A
A+ B
B
(a) (b) ()

Fig. 1.2. Addition of two vectors.
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(a) (b)
Fig. 1.3. Vector subtraction.

A — B is given by the diagonal of the parallelogram drawn from the tip of
B to the tip of A. Finally, the constructions of F1g 1.4 illustrate that vector
addition is associative, that is,

A+B+O=@A+B)+C 1-3)

¢. Multiplication and Division by a Scalar.

When a vector A is multiplied by a scalar m, it is equivalent to adding
A or (—A) a total of m times, depending upon whether m is positive or nega-
tive. Hence the direction of m(A) is the same as or opposite to that of A,
depending upon whether m is positive or negative, whereas the magnitude
of m(A) is |m| times the magnitude of A. Thus

|m(A)| = |m[|A| = |m| A4 (1-4)

direction of A ifm>0 (1-5)

Direction of m(4) = {direction of (—A) ifm<0

(@) (b)

Fig. 1.4. Illustrating the associative property of vector addi- .
tion.



4 Vector Analysis ‘ Chap. 1

Division by a scalar is, of course, a special case of multiplication, that is,
to divide a vector by m we multiply it by 1/m.

d. Unit Vector.

If we divide a vector A by its magnitude 4, we obtain a vector whose
magnitude is unity and whose direction is the same as the direction of A.
The resulting vector is called the “unit vector” in the direction of A and is
denoted i,. Thus
. A

=2 _ 4 1-6
lA A I A ( )
Unit vectors play a very important role in vector analysis, as we will find
throughout this book.

e. Scalar or Dot Product of Two Vectors.

The scalar or dot product of two vectors A and B is a scalar quantity
of value equal to the product of the magnitudes of A and B and the cosine
of the angle between A and B. It is represented by a dot between A and B.
Thus

A+B=|A||B|cosa = ABcosa (-7
where « is the angle between A and B. Noting that
A +B= ABcosa = A(Bcosa) = B(4 cos a) (1-8)

we see from the constructions of Fig. 1.5 that the dot-product operation
consists of multiplying the magnitude of one vector by the scalar obtained
by projecting the second vector onto the first vector. This suggests that the
dot product is useful for problems such as finding the work done in displac-
ing a mass. The dot-product operation is commutative since

— — ———

a —
e dcosas P
A cos «

() ‘ (b)

Fig. 1.5. Showing that the dot product of A and Bis the product
of the magnitude of one vector and the projection of the second
vector onto the first vector.
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B.A=|B||A[coso=|A||B]cosa =A.B (1-9)

Furthermore, the distributive property also holds, that is,
A:B+C=A+B+A.C (1-10)

To prove the distributive property, we note from the construction shown
in Fig. 1.6 that the projection of (B + C) onto A is equal to the sum of the
projections of B and C onto A. It follows from this that (1-10) is correct.

[
L

A

Fig. 1.6. For proving the distributive property of
the dot-product operation.

Jf. Vector or Cross Product of Two Vectors.

In contrast to the dot product, the vector or cross product of two
vectors A and B is another vector whose magnitude is the product of the
magnitudes of A and B and the sine of the angle & between A and B and
whose direction is the direction of advance of a right-hand screw as it is
turned from A towards B through the angle &, as shown in Fig. 1.7(a). Thus

A X B=|A||B|sinaiy= ABsinaiy, (1-11)

where iy is the unit vector in the direction of advance of a right-hand screw
as it is turned from A towards B through a. For example, if vector A is a
unit vector directed eastward and vector B is a unit vector directed north-
ward, then a right-hand screw advances upward as it is turned from east
towards north through the 90° angle so that A x B has a magnitude
(D(1)(sin 90°) or unity and is directed upward. Alternatively, if we decide to
turn the right-hand screw from east toward north through the 270° angle,
we note that the screw advances downward. There is no inconsistency, how-
ever, since the product |A||B]sin & is then equal to (1)(1)(sin 270°) or —1.
When the minus sign is associated with the direction of advance of the
screw, the direction of A x B becomes upward.
From the constructions of Figs. 1.7(a) and (b) it follows that

BxA=—AxB (1-12)

so that the commutative law does not hold for the cross product. Similarly,
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A X B B

— A (b)

(a) ‘BXA

Fig. 1.7. Cross-product operations for two vectors A and B.

the associative law does not hold for the cross product, that is,

AxB)xC#Ax(BxCQC (1-13)
This can be demonstrated very easily by considering a particular case in
which the three vectors A, B, and C are unit vectors directed eastward,
northward, and southward, respectively, as shown in Fig. 1.8. Then (A x B)
is the unit vector directed upward. (A x B) x C is the unit vector directed
eastward, that is, A. On the other hand, (B x C) is equal to zero and hence
A x (B x C) is equal to zero. Thus the associative lJaw does not hold. That
the distributive law,

AxB+O=AxB+AxC (1-14)

holds will be proved in an example after we discuss the scalar triple product.

North
A
B
A BLAXBXC e
A

C
Fig. 1.8. For demonstrating that
Y the associative law does not hold

South for the cross-product operation.
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The cross-product operation is very convenient to define unit vectors.
Thus a unit vector perpendicular to both A and B is, according to (1-11),
given by

AxB

b TATTBIsima -

g. Scalar Triple Product.

Another useful operation but of less importance is the scalar triple
product A « (B x C). Using the definitions of dot and cross products we
have :

A+(BxC)=|A||B x C|cos (angle between A and B x C)

= |A]|B}|C]| sin (angle between B and C) (1-16)
% cos (angle between A and B x C)
From the construction of Fig. 1.9, we note that
A . (B x C)="ABC sin f cos & = (4 cos &)(BC sin ) (1-17)
= volume of the parallelepiped formed by A, B, and C

Thus the scalar triple product has the geometric meaning that it represents
the volume of the parallelepiped formed by the three vectors. From con-

AB x C

Fig. 1.9. Parallelepiped formed by A, B, and C.

structions similar to Fig. 1.9, it can be shown that (A x B)s Cor (C x A) « B
represent the same volume so that

A BxC)=B:.(CxA)=C.(AxB (1-18)
Also, the parentheses in the scalar triple product are unnecessary since, for
example, A « B x C can mean only A « (B x C) and not (A « B) x C. This
is so because A « B is a scalar and for a vector product, we need two vectors.
Hence (A « B) x C is meaningless. It is therefore customary to omit the
parentheses when writing a scalar triple product.
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ExAMPLE 1-1. Vector A has a magnitude of 4 units and is directed towards the
east. Vector B has a magnitude of 4 units and is oriented in a direction
making an angle of 120° toward north from east. Vector C has a magnitude
of 3 units and is directed 30° south of east. Find

(@ A+ B

(b) 3A — 4C
© A+-B—-C
@ A-B

(e) BxC

) A-BxC
(8 Ax (B xC)

—~4C
(a)
3A — 4C 2
75¢° 30°
_C 30° 12 3A
3
12
A+B-c| / A+B
g0° 4C
30°
3 (b)
© c

Fig. 1.10. For Example 1-1.

(a) From the construction of Fig. 1.10(a), (A + B) has a magnitude of
4 units and is directed 60° north of east.

(b) 3A = 12 units towards the east; 4C == 12 units directed 30° south
of east. From the construction of Fig. 1.10(b), 3A — 4C has a magnitude
of 24 cos 75° or 6-21 units and is directed 75° north of east.
~ (c) From the construction of Fig. 1.10(c), A + B — C has a magnitude
of 5 units and is directed (60° + tan™! 3) or 96°52" north of east.

(d) A-B=|A]||B|cos (angle between A and B) = (4)(4)(cos 120°) =
—8.
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(e) |B x C|=|B||C]||sin (angle between B and C)| = (4)(3)(sin 150°) =
6. The direction of B x C is the direction in which a right-hand screw
advances when it is turned from B toward C through the angle 150°. This
direction is downward. Thus, B x C has a magnitude of 6 units and is
directed downward.

) A«BxC=|A||Bx C| cos(angle between A and B x C) =
4)(6)(cos 90°) = 0. This is consistent with the reasoning that, since all three
vectors are in a plane, the area of the parallelogram formed by them is zero.

(g) [Ax (Bx C)|=]|A}|lB x C||sin (angle between A and B x C)| =
(4)(6)(sin 90°) = 24. The direction of A x (B x C) is the direction in which
a right-hand screw advances if it is turned from A toward B x C through
the angle 90°, that is, from east to downward through the angle 90°. The
screw advances towards the north. Thus A x (B x C) has a magnitude of
24 units and is directed northward. [J

ExamprE 1-2. Showthat AXx (B+ C)=AxB4+ AxC.
We will prove this equality by showing that
D=AxB+C)—AxB—-—AxXxC=0
Taking the dot product of an arbitrary vector E and the vector D and
using (1-10) and (1-18), we have ‘
E:D=E:-[Ax(B+C) —AxB—AxC(]
=E:-AXxB+C)—E-AxB—E-AxC
=B+C+ExA—B:ExA—C.ExA
=B+ExA4+C:-EXA—-B+ExA—-C-ExA=0
This result implies that D is either zero or perpendicular to E. However,
since E is an arbitrary vector, it can be chosen such that it is not perpendi-
cular to D, in which case D has to be zero for E « D to be zero. Thus D

is equal to zero and hence the equality Ax B+ C)=AxB+AxC
is correct. |}

ExampLE 1-3. Two unit vectors i, and i, drawn at a point are perpendicular to each
other. A vector C is also drawn from the same point. Express C in terms
of its component vectors along i, and ij.

From Fig. 1.11, the projection of C onto the line along i, is equal to
C cos ¢ = C i, Hence the component vector of C along i, is (C » ii,.
Similarly, the component vector of C along i, is (C « ipi,. Since the compo-
nent vectors form two adjacent sides of a rectangle whose diagonal is C,
as in Fig. 1.11, we have

C=(C- iA)iA + (C - ipip
It also follows from Fig. 1.11 that '
(C+i)* +(Crig =C2
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Fig. 1.11. Components of a vector
along mutually perpendicular unit
7 ' Vvectors.

Likewise, if we have three mutually perpendicular unit vectors i, i,z and i
drawn from a point, then the component vectors of a vector D along the
unit vectors are (D « )i, (D «ip)i, and (D . iy)i., respectively, so that
D=D:ii,+ D-«ipi + D i
Furthermore,
Dei2+Dsiy)?2+D-i)>= D> |

1.2 Coordinate Systems

In the previous section we discussed some simple rules of vector analysis
without involving any coordinate system. In physical problems, we cannot
simply go on describing vectors by symbols A, B, C, and so on, if we wish
to simplify the geometry associated with the mathematical operations using
these vectors. We need to describe a vector in terms of component vectors
along a set of reference directions such as east, north, and upward. Although
several different coordinate systems are in existence, we will be interested
only in three: (a) the cartesian, (b) the circular cylindrical or simply cylin-
drical, and (c) the spherical coordinate systems. Each coordinate system
involves three surfaces which are mutually orthogonal. At any particular
point, unit vectors can be drawn tangential to the curves of intersection of
pairs of the three orthogonal surfaces. The three unit vectors drawn in this
manner will be mutually perpendicular and will define the reference direc-
tions at that point. Once such reference directions are defined everywhere
in space, we can represent vectors in terms of their component vectors along
the reference directions and use them for performing vector operations. We
will discuss each coordinate system separately and then summarize the
details in the form of a table.

a. Cartesian Coordinate System.

For the cartesian coordinate system, the three mutually orthogonal
surfaces are three planes. Let us consider three orthogonal planes which
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intersect at a particular point O which we will call the origin, as shown in
Fig. 1.12(a). The three planes also define three straight lines which are the
intersections of pairs of planes. These three straight lines are mutually per-
pendicular and form a set of coordinate axes which are denoted x, y, and z
axes. Values of x, y, and z are measured from the origin so that the origin
is taken as the reference point. We say that the coordinates of the origin
are (0,0,0), that is, x =0, y =0, and z= 0. Thus, if we consider the
x axis, values of x on one side of the origin are positive and on the other
side, they are negative. The direction of increasing values of x is indicated
by an arrowhead. We will direct a unit vector i, drawn from the origin in
the direction of increasing values of x. By doing the same with the y and z
axes, we define unit vectors i, and i, at 0. Now, we note that we can choose
the directions of increasing values of x, y, and z in two ways: (a) such
that i, x i, =i, as in Fig. 1.12(a); or (b) such that i, x i, = i,. The first is
known as a right-hand coordinate system since, if a right-hand screw is turned
from the direction of increasing values of x towards the direction of increas-
ing values of y through the smaller angle 90°, it advances in the direction of
increasing values of z. The second choice is known as a left-hand coordinate
system since it requires a left-hand screw to advance in the direction of
increasing values of z when turned from the direction of increasing values
of x towards the direction of increasing values of y through the smaller angle
90°. By convention, the right-hand coordinate system is used.

Movement on the yz plane requires no displacement along the x direction;
hence the value of x is constant on this plane. In particular, since the value
of x at the origin is zero, this constant is zero. Also, the unit vector i, is in
the increasing x direction and hence is normal to this plane. Similarly, for
the xz plane, y = constant = 0 and i, is normal to this plane; for the xy
plane, z = constant = 0 and i, is normal to this plane. Any other point in
space is now defined by the intersection of three planes parallel to the three
planes defining the origin. Alternatively, we can displace the three planes
x =0, y=0, and z = 0 along the coordinate axes (or unit vectors) per-
pendicular to them and obtain a new point of intersection. For example,
by moving the x = 0 plane by one unit along the x axis, the y = 0 plane
by three units along the y axis, and the z = 0 plane by four units along the
z axis, we obtain a point of intersection whose coordinates are (1, 3, 4), as
shown in Fig. 1.12(b). On any plane parallel to the x = 0 plane, the value
of x is constant and equal to its displacement from the x = O plane; on
any plane parallel to the y = 0 plane, the value of y is constant and equal
to its displacement from the y = 0 plane; and on any plane parallel to the
z = ( plane, the value of z is constant and equal to its displacement from the
z = 0 plane. Thus the point (1, 3, 4) is the intersection of the three planes
x =1, y =3, and z = 4. These three planes also define three straight lines
which are intersections of pairs of planes. Unit vectors i, i,, and i, can be
drawn along these lines of intersections. These unit vectors are parallel to the
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Fig. 1. 12. Cartesian coordinate system. (a) The three orthogonal
planes defining the coordinate system. (b) Unit vectors at an
arbitrary point. (c) Differential volume formed by incrementing

the coordinates.
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corresponding unit vectors at the origin since the lines of intersection are
parallel to the x, ¥, and z axes. In general, an arbitrary point (a, b, ¢) is
defined by the intersection of the three planes x =a, y = b, and z = c.
Unit vectors i, i,, and i, are directed normal to these planes along increas-
ing values of x, y, and z, respectively, and are parallel to the corresponding
unit vectors at the origin. Thus, in the cartesian coordinate system, the direc-
tions of the unit vectorsi,, i, and i, are everywhere the same as their directions
at the origin.

Let us now consider two points P(x,y,z) and Q(x + dx,y -+ dy,
z 4 dz), where Q is obtained by incrementing infinitesimally each coordi-
nate from its value at P. The three orthogonal planes intersecting at P and
the three orthogonal planes intersecting at Q define a rectangular box of
edges dx, dy, and dz in the i,, i,, and i, directions, respectively, as shown in
Fig. 1.12(c). The differential displacements (or length elements) along the unit
vectors i, i,, and i, in going from P to Q are therefore the same as the dif-
ferential increments dx, dy, and dz of the coordinates x, y, and z, respec-

tively. The vector displacement dl from P to @ is given by

dl =dxi, + dyi, 4 dzi, (1-19a)
The magnitude of this displacement is
dl = /(dx)* + (dy)* + (dz)? (1-190b)

The three displacements dx i, dy i,, and dz i, also define three surfaces of
infinitesimal areas in the three planes intersecting at P. To take into account
the orientation of the surface area, it is convenient to represent the area
by a vector quantity whose magnitude is equal to the area and whose direc-
tion is that of the normal to the area. The three infinitesimal surfaces are
then t-dydzi,, +dzdxi, and +dxdyi, where the 4 sign takes into
account two possible directions of normal to the surface. The infinitesimal
volume of the box is dx dy dz. We will use the differential length elements,
surface areas, and volume introduced here in later sections.
Any arbitrary surface is defined by an equation of the type

Sx,3,2)=0 (1-20)
where f denotes a function. Since an arbitrary curve is an intersection of
two appropriate surfaces, it is defined by a pair of equations

f(xy s Z) =0 and g(xa Vs Z) =0 (1'21)
where f and g are two different functions. Alternatively, a curve may be
defined by three parametric equations

x=x() y=y z=:z0 (1-22)
where ¢ is an independent parameter.

A vector drawn from the origin to an arbitrary point P(x, y, z) is called
the position vector defining the point P. It is denoted by the symbol r.
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Thus, in the cartesian coordinate system,
r=xi, 4+ i, 4 zi, (1-23)

b. Cylindrical Coordinate System. |

- For the cylindrical coordinate system, the three mutually orthogonal
surfaces are a cylinder and two planes, as shown in Fig. 1.13(a). One of the
planes is the same as the z = constant plane in the cartesian coordinate

= Constant = ¢

r = Constant = a

(2) (b)

©

X

Fig. 1.13. Cylindrical coordinate system. (a) The three orthogonal
surfaces defining the coordinate system (b) Unit vectors at an
arbitrary point. (¢) Differential volume formed by incrementing
the coordinates.
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system. The second plane is orthogonal to the z = constant plane and hence
contains the z axis. It makes an angle ¢ with a reference plane, conveniently
chosen as the xz plane of the cartesian coordinate system. This plane is
therefore defined by ¢ = constant. The third orthogonal surface, which is
cylindrical, has the z axis as its axis. On such a cylindrical surface, the radial
distance r from the z axis is a constant. Thus the three orthogonal surfaces
defining the cylindrical coordinates of a point are given by r = constant,
¢ = constant, and z = constant. In particular, the origin is defined by » = 0,
¢ = 0, and z= 0. Note that only two of the coordinates (+ and z) are dis-
tances, whereas the third coordinate (¢) is an angle. Since the radius of a
cylinder cannot be negative, the coordinate r varies only from 0 to oo.
Since one revolution of the ¢ = constant plane about the z axis sweeps
the entire space, the coordinate ¢ varies from O to 2z. The coordinate z
varies from —oo to +-co as in the cartesian coordinate system.

Through any arbitrary point (g, &, ¢) we can pass a cylinder r = g,
a plane ¢ = &, and another plane z = c. These three orthogonal surfaces
define three curves, mutually perpendicular at (a, &, ¢), two of which are
straight lines and the third is a circle. We draw unit vectors i,, i;, and i,
tangential to these curves at (g, &, ¢) and directed toward increasing values
of r, ¢, and z, respectively, as shown in Fig. 1.13(a). It follows that i,, i,, and
i, are mutually perpendicular and normal to the surfaces r =a, ¢ = a,
and z = ¢, respectively, at the point (g, &, ¢). If we now consider a point
(a, B, ), this point is defined by the intersection of the surfaces r = a, ¢ = S,
and z = c¢. Three mutually perpendicular unit vectors i,,i,, and i, can be
drawn at the point (a, §, ¢) tangential to the curves of intersection of pairs
of these surfaces and in the directions of increasing r, ¢, and z, respectively,
as shown in Fig. 1.13(b). However, we note that the unit vectors i, and i,
at this point are not parallel to the corresponding unit vectors at the point
(a, a, ¢). Thus, unlike the unit vectors in the cartesian coordinate system,
the unit vectors i, and i; do not have the same directions at all points; that
is, the directions of i, and i, are functions of the coordinates r and ¢, whereas
i, remains uniform. We also note that a right-hand coordinate system defined
by i, x iy =i, and a left-hand coordinate system defined by i, x i, =1,
are possible. However, we will work with the right-hand coordinate system.

Let us now consider two points P(r, ¢, z) and Q(r -+ dr, ¢ + dd, z + dz),
where Q is obtained by incrementing infinitesimally each coordinate from
its value at P. The three orthogonal surfaces intersecting at P and the three
orthogonal surfaces intersecting at Q define a box which can be considered
as a rectangular box since dr, dd, and dz are infinitesimally small. The sides
of this box are made up of the differential length elements dr, r d¢, and dz
along the i,, i,, and i, directions, respectively, as shown in Fig. 1.13(c). Thus
the differential displacements along the unit vectors i,, i, and i, in going
from P to Q are dr, r dg, and dz, respectively. We note that the differential
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displacement in the ¢ direction is not d¢ but » d@. The vector displacement
dl from P to Q is given by

dl=dri, +rdpi, 4 dzi, (1-24a)

The magnitude of this displacement is
dl = /(dr)* + (r d)* + (dz)* (1-24b)

The infinitesimal areas in the three surfaces intersecting at P are 4 ( d¢)(d2)i,,
+(dr)(dz) i, and - (r d$)(dr)i,. Finally, the infinitesimal volume of the box
is (dr)(r dp)(dz) = r dr d$ dz. Equations similar to (1-20), (1-21), and (1-22)
define arbitrary surfaces and curves. The position vector defining an arbi-
trary point P(r, ¢, z) is given by

r=ri, +z, (1-25)

¢. Spherical Coordinate System.

For the spherical coordinate system, the three mutually orthogonal
surfaces are a sphere, a cone, and a plane, as shown in Fig. 1.14(a). The
plane is the same as the ¢ = constant plane in the cylindrical coordinate
system. The sphere is centered at the origin. On the surface of such a sphere,
the radial distance r from the origin is constant and hence the sphere is
defined by r = constant. The spherical coordinate r should not be confused
with the cylindrical coordinate ». When these two coordinates appear in the
same expression, we will use subscripts ¢ and s to distinguish between

# = Constant = «

ir rsin 6 do

Constant

=a

Y

¢ = Constant = 8

() ()

Fig. 1.14. Spherical coordinate system. (a) The three orthogonal
surfaces defining the coordinate system. (b) Differential volume
formed by incrementing the coordinates.
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cylindrical and spherical. The cone has its vertex at the origin and its surface
is symmetrical about the z axis, so that the angle 8 which the conical surface
makes with the z axis is constant. Thus the three orthogonal surfaces defin-
ing the spherical coordinates are given by r = constant, # = constant, and
¢ = constant. In particular, the origin is defined by » = 0,0 = 0, and ¢ = 0.
Note that only one coordinate (r) is distance whereas the other two (@ and ¢)
are angles. Since the radius of a sphere cannot be negative, the coordinate
r varies only from 0 to co. Likewise, it is sufficient if the coordinate § is
allowed to vary from 0 to m to cover the entire space. The coordinate ¢
varies from 0 to 27 as in the cylindrical coordinate system.

Through any arbitrary point (a, &, §) we can pass a sphere » =g, a
cone @ = a, and a plane ¢ = B. These three orthogonal surfaces define three
curves, mutually perpendicular at (a, &, §). We draw unit vectors i,, i, and i,
tangential to these curves at (a, &, f) and directed towards increasing values
of r, 8, and ¢, respectively, as shown in Fig. 1.14(a). It follows that i, i,
and i, are mutually perpendicular and normal to the surfaces r = a, = a,
and ¢ = f, respectively, at the point (a, &, ). By doing the same at another
point, it may be seen that the directions of all three unit vectors i,, iy, and i,
are functions r, 8, and ¢. We also note that a right-hand coordinate system
defined by i, x i, = i, and a left-hand coordinate system defined by i, x i,
= i, are possible. We will, however, work with the right-hand coordinate
system.

Let us now consider two points P(r,8,¢) and Q@ + dr,0 + 40,
¢ + do), where Q is obtained by incrementing infinitesimally each coordinate
from its value at P. The three orthogonal surfaces intersecting at P and
the three orthogonal surfaces intersecting at Q define a box which can be
considered as a rectangular box since dr, df, and d¢ are infinitesimally small.
The sides of this box are made up of the differential length elements dr, r d6,
and r sin 0 d¢ along the i,, is, and i, directions, respectively. Thus the differ-
ential displacements along the unit vectors i,, i;, and i, in going from P to
Q are dr, r df, and r sin 0 d¢, respectively, as shown in Fig. 1.14(b). We note
that the differential displacements in the § and ¢ directions are r d@ and
r sin @ d¢ and not 4@ and d¢. The vector displacement dl from P to Q is
given by :

dl=dri, +rdfi,+rsin@ddi, (1-26a)
The magnitude of this displacement is
dl = \/(dr)® + (r dB)* + (r sin 0 d¢)? (1-26b)

The infinitesimal areas in the three surfaces intersecting at P are
4 (r dO)(r sin @ d)i,, +-(dr)(r sin 6 dd)ie, and - (dr)(r dO)i,. Finally, the infini-
tesimal volume of the box is (dr)(r d0)(r sin 0 dp) = r? sin @ dr df d¢.
Equations similar to (1-20), (1-21), and (1-22) define arbitrary surfaces and
curves, The position vector defining an arbitrary point P(r, 8, ¢) is given by
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(1-27)

The various details discussed thus far in this section are summarized in
Table 1.1.

r =ri

r

TABLE 1.1. Summary of Details Pertinent to the Cartesian, Cylindrical, and
Spherical Coordinate Systems

Cartesian Cylindrical Spherical
Orthogonal three planes a cylinder and a sphere,
Surfaces two planes a cone,
and a plane
Geometry Fig. 1.12 Fig. 1.13 Fig. 1.14
Coordinates X, ¥, Z e,z no,é
Unit Vectors ix, iy, iz iy, g, iz ir, Ig, iy
Limits of —o0 < x < o0 0<r<oo 0<r<oo
Coordinates —oo <y < oo 0<¢<2zm O<fb<n=m
—o0 <z < oo —oo <z < 0o 0<¢<2n
Differential dx iy, dyiy, dz i, drip, rd¢ iy, dzi; ariy, ¥ dd i,
Length Elements rsin 0 dé iy
Differential “dxdyi, rdrddi, rdrdfig
Areas dydziy rd¢ dzi, r2sin 6 d0 dé i,
dz dx iy drdzig rsin@drddig
Differential dxdy dz rdrd dz r2sin 6 dr d0 dé

Volume

Since any particular point in space can be defined by its coordinates
in any one of the three coordinate systems, it is possible to derive relation-
ships between the different sets of coordinates from simple considerations
of geometry.

ExaMpLE 1-4. Express the cylindrical coordinates of a point in terms of its spherical
coordinates.
From the construction of Fig. 1.15, the distance of point P (r,, 0, ¢)
from the z axis is , sin 6. This is the radius of the cylinder passing through
P and having the z axis as its axis. The height of point P above the xy plane
is r, cos 8. This is the value of z on the constant z plane passing through
P. Thus the cylindrical coordinates (r,, ¢, z) of point P are

r.=r. sin @

p=2¢
z=r,cos

The various relationships between the different sets of coordinates obtained
in this manner are summarized in Table 1.2. |
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s sin 0
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|Fs cos 7}

X

Fig. 1. 15. Conversion from spherical coordinates
to cylindrical coordinates.

TABLE 1.2. Relationships Between Different Sets of Coordinates

Cartesian Cylindrical Spherical
x,y’z r7¢’z r’e’¢
Cartesian x =rcos ¢ x =rsinfcos ¢
X, ¥,z y=rsing y =rsinfsin ¢
7=1z z=rcosf
Cylindrical r=a/x%2 + y2 Fo=rssinf
v
92 $ = tant L b=9
z=7z z=rs;cosb
Spherical r=a/x2 4 y2 4 22 rs=ar2+z2
7,0,¢ g = tan—! —_M 0=tan‘12
z z

¢ = tan-1 £ $=¢

1.3 Components of Vectors

Once we set up a coordinate system and define unit vectors pertinent to that
coordinate system, we can express vectors at any point in terms of their
components along the unit vectors at that point and perform vector opera-
tions using the components. Let i, i,, i, be a set of mutually perpendicular
vectors at a point P such that i, x i, = i,, so that they can represent any
one of the sets of unit vectors (i, i, i,), (i,, is i,), and (i, Iy, i,) in the three

x5 ly’

different coordinate systems. Let A, B, and C be three vectors at the point
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P. Then we have, from Example 1-3,
A=(A-i)i, + (Aii, + (A« i,)i,
= Ai, + A,i, + A,i,
where A4,, A,, and A4, are equal to (A « i,), (A » i,), and (A . i,), respectively;

that is, 4,, 4,, and A4, are the components of A along i, i,, and i;, respect-
ively. Similarly,

(1-28)

B = Bi, + B,i, + Bii, (1-29a)
C = Ciji, + Gj, + Cii, (1-29b)

Now, we can perform the vector operations discussed in Section 1.1 as
follows:

(2) Equality of vectors: Two vectors A and B are equal if and only if
their respective components are equal; that is,

B, =4, i=1,23 (1-30)
(b) Magnitude of a vector:
|A|= 4 = /4 + 4} + 43 (1-31)
(c) Addition and subtraction of vectors:
A+ B = (4, + B)i, + (4, + B, + (4, + By)i, (1-32a)
B—C= (B, —CDi, + (B, — Ci, + (B, — C))i, (1-32b)
(d) Multiplication and division by a scalar:

m(A) = mA i, + mA,i, + mA,i, (1-33a)
1 __ B, B,. | B,. i
o B =1 + S, + A, (1-33b)
(e) Unit vector: The unit vector along the direction of a vector A is
given by
. A+ A, + 4., (1-34)

WE T AT 4
(f) Scalar or dot product of two vectors:
A.B= (A1i1 + 4,5, + A3i3) * (B, -+ Bii, + Bii;) (1-35)
= A,B, 4+ A4,B, + A,B,

(g) Vector or cross product of two vectors:
A x B =(4i, + 4,i, + 4,i;) x (B,i; + B,i, + Biiy)
= A,B,i, — A,B,i, — A,B,i, + A,B,i, + A,B|i, — A,B,i,

= (AoB; — AsB)iy + (A;B, — A, B)iy + (4,8, — B 0
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(h) Scalar triple product:

L L
A+BxC=(4,i, + A4,i, + 4,i,)« |B, B,
Cc, G,

A, A, 4,

=|B; B, B;

¢ G G

Sec. 1.3

ExampLE 1-5. Find the dot and cross products of the unit vector i,, at the point

P(r,, ¢., z) and the unit vector i, at the point O(r,, 9, ¢,).

Since the unit vectors i, i,, and i, are uniform everywhere, we express
i,. at P and i, at Q in terms of their components along i,, i,, and i, and then

perform the dot- and cross-product operations.
From the construction of Fig,. 1.16 we have

i, =cos¢, i, + sing, i,

ip=cosf@cos @, i, + cos@sing,i, —sinf1i,

Using (1-35) and (1-36) and simplifying, we then obtain
irc . io = COS 0 Cos (¢s - ¢c)

i, x i, =sinfi, + cos@sin(p, — ¢.)1i,

X

Fig. 1. 16. To find the dot product of i, at P(., @., z) and iy

at Q(r.u 0, ¢s)
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If P and Q are the same points (r, 8, ), then these results reduce to
i, oig=cosf
i,, x i, =sinf@1i,
Dot products and cross products between different unit vectors at the
same point (7, 8, ¢) are listed in Tables 1.3 and 1.4, respectively. J

TABLE 1.3. Dot Products of Unit Vectors at a Point (v, 8, ¢)

ix iy l‘z irr.‘ i¢ ir: i9
ix e 1 0 0 cos ¢ —sin¢ sinfcos¢  cosfcoso
iy 1 0 sin ¢ cos ¢ sin 8 sin ¢ cos @ sin ¢
iz 1 0 0 cos @ —sin @
irce 1 0 sin @ cos @
ig e 1 0 0
"1 0
ige 1

Table 1.4. Cross Products of Unit Vectors at a Point (7, 8, ¢)

ix iy i; irc i¢ irs i9
ixx 0 i, —i, sin¢i, cos¢i, sinfsingi, —cosfi, cos §sin ¢ i, + sin 81,
iy X 0 i, —cos¢gi, singi, —sin@cosdi, +cosfix —cosfcosdi, —sinliy
i: % 0 ig —ire sin @ ig cos B iy
ire X 0 iz — cos f iy sin 0 iy
i; % 0 ~sinfi; + cos @i, —cos fi, — sin @i,
irs X 0 i
is X 0

Since any vector drawn at a point can be expressed in terms of its
components along any one of the three sets of unit vectors, it is possible to
derive relationships between the components of a vector in one coordinate
system and the components of the same vector in another coordinate sys-
tem.

ExAaMPLE 1-6. Express the component 4, of a vector A in terms of its components
A, A,and 4,
Ag - A L ig
= (A, + Aji, + A,i) - (cos@cos i, +cos@singi, —sinfi)
= A, cosfcos¢p + A,cosfsing — A4,sinf
The various relationships derived in this manner between different com-
ponents of a vector are summarized in Table 1.5. ||

ExAmMpLE 1-7. Show that (A xB)x C=(A « C)B — (B« C)A.
First, we note that the vector A x B is perpendicular to both vectors A
and B and hence is normal to the plane containing A and B. But the vector
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(A x B) x C is perpendicular to the vector (A x B) as well as to the vector C.
Hence (A x B) x C lies in the plane containing A and B. In view of this,
(A x B) x C can be written as a superposition of two vectors proportional
to A and B; that is, A
(A x B) x C=mA -+ nB
To find m and n, we expand (A x B) x C. Thus
i, i, i
(AxB)yx C=|(4,B, — A,B,) (4,8, — A,B;) (4,B, — 4,B))
C, C, C,
= (4,C,B, + 4,C;B, — B,C,4, — B;C,4))i,
+ (A1C1Bz + 4,C,B, — B,C\ 4, — B3C3A2)i2
+ (A1C1B3 + 4,C,B; — B,Ci4; — B,C,A4,)i,
= (4,C,B, + 4,C,B, + 4,C;B, — B,C 4,
— B,C,4, — B3C3A1)'i1
+ (A1C1B2 + 4,C,B;, + 4,C,B, — B,C, 4,
— B,C,4, — B;C A)i,
+(4,C,B, + A4,C,B, + A,C,B, — B,C A4,
— B,C, 4, — B,C,4,)i;
=A.COB—(B.0A
Similarly, it can be shown that
AxBxC=A-CB—(A:BC |

ExampLE 1-8. Given
A=2i —Ii,
B=2i, —i, + 2i,
C=2i, —3i,+1i,
We wish to perform several operations with these vectors as follows:
(@ A+B=Qi, —i)+ Qi, —i,+2i,)=4i, —i, +1i,
() B—C=(Qi, —i,+2i,)— @i, —3i, +1) =2 +1,
) A+B-—C=A+B—-0C=Qi, —i)+ @i,+i)=2i +2i
@ |B= /T F (I ¥ 22 =3

. _ B 2, —i, 2, 2. 1. 2.
© by =g ="—73"— =3k~ 3L+ 3k
£) AeB=(2, —i)+Qi, —i, +2)=4+0—-2=2
z. X y
A-B 2

Cosine of the angle between A and B = =
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i, i, i

h)yBxC=|2 —1 2|=>5i, +2i, — 4,
2 =3 1 '
(i) Sine of the angle between B and C = II% ﬁ g II = 3{/4_% = «/114
2 —1 2
G) BeCxA=[2 —3 1 |=14
2 0 -1
i, i, i
KAxBxC=|2 0 —1|=2i + 3i, 4 4i,
5 2 —4

(I) Components of B in spherical coordinates at (1, z/2, x)
B, =B,sinfcosd + B,sinfsin¢ + B,cosf

= 2sin X —1sinZ g T _ _

——2S11’1200$7t 1s1n251n7z~l—20052 = —2
B, = B,cosB@cos¢d + B,cos@singd — B,sinf

= n — r —2sin® - —

——-ZCOSTCOSE lcoszcosn 2s1n2 2

B,= —B, sin¢ + B,cosd = —2sinzm — lcosm =1

(m) By using a vector product, find any vector perpendicular to B. We
can consider the unit vector i, for simplicity. Then

i, i, i

x Y z
D=Bxi —=|2 —1 2|=2 +i
1 0 0

We can verify that D is indeed perpendicular to B by showing that
B.D = (2, —i,+2) @+i)=0-2+2=0 ]

1.4 Scalar and Vector Fields

A’'mathematical function or a graphical sketch constructed so as to describe
the variation of a quantity in a given region is said to represent the “field”
of that quantity associated with that region. We distinguish between scalar
and vector fields, depending upon whether the quantity of interest is a scalar
or a vector. We will first discuss scalar fields or functions. A simple example
of scalar function is one by means of which we attempt to describe how the
depth d of water in a lake varies from point to point on the lake surface.
Assuming the lake surface to be plane, we first set up a two-dimensional
coordinate system to define each and every point on the surface by a set of
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coordinates (x, ¥) with respect to a chosen origin. To each set of coordinates
(x, y) we assign a number for d, which represents the depth of water beneath
the point defined by that set of coordinates. The coordinates (x, y) are the
independent variables and the depth 4 is the dependent variable. The func-
tion d(x, y) represents the depth field associated with points on the surface
of the lake.

If we join points in the xy plane for which the depth is equal to a par-
ticular constant, we obtain a curve known as a constant-depth contour.
Similarly, by joining the points which have associated with them the same
depth value but different from the previous constant, we obtain a different
constant-depth contour. In this manner we can draw several constant-depth
contours with convenient increments ranging from zero depth to the greatest
depth, as shown in Fig. 1.17. The constant-depth contours provide a graphical
representation of the depth field d(x, y).

J
J

T,

20
10

0] > X

Fig. 1.17. Sketch of a two-dimensional scalar field d(x, y)
showing contours of constant values of d.

To add one more dimension to the scalar field, let us consider the tem-
perature field associated with points inside a room. We can set up a coordinate
system to define the location of each and every point inside the room with
respect to a chosen origin. However, we will need all three coordinates
(x, y, z) in this case instead of just two coordinates as in the previous exam-
ple. To each set of coordinates (x, y, z) we assign a number which represents
the temperature 7 at the point defined by that set of (x, y, z). The coordi-
nates (x, y, z) are the independent variables and the temperature 7 is the
dependent variable. The function T(x, y, z) represents the temperature field.
If we join points in the coordinate system for which the temperature is equal
to a particular constant, we obtain a surface which is known as a constant-
temperature or isothermal surface. Similarly, by joining the points which have
associated with them the same temperature value but different from the
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previous constant, we obtain a different isothermal surface. In this manner
we describe the temperature field in the room by a set of isothermal surfaces.

The addition of time ¢ as an independent variable introduces one more
dimension to the problem. The temperature at each and every point in the
room varies with time in general so that the discussion in the preceding
paragraph is valid only for fixed times or for the special case in which the
temperature does not vary with time. In the latter case the temperature field
in the room is said to be “static.” In the general case, however, the temperature
distributions measured throughout the room at two times #, and ¢, can be
different so that the shapes of the isothermal surfaces representing the same
constant temperatures at the two times can be different. Mathematically,
we need two different functions of (x, y, z) to describe the temperature
fields at these two times. To generalize this statement, since ¢ is a continuous
independent variable, T is a function of four indeépendent variables x, y, z,
and ¢. Thus we describe the time-varying temperature field in the room by
a function T(x, y, z, 1).

The same concepts can be used to describe vector fields. However, in the
case of vector quantities, we need to describe not only how the magnitude
of the vector varies as a function of the independent variables but also how
the direction of the vector varies. Hence, if we wish to describe the variation
of a vector as a function of position in three-dimensional space and also of
time, we associate a set of two numbers to each possible combination
(x,y,z,0) or (r, 9, 2, £) or (r, 8, ¢, r), depending upon the coordinate system
used, where one of the two numbers represents the magnitude and the other,
the direction of the vector. More conveniently, since the variation of the
unit vectors in each coordinate system is completely known (the unit vectors
are independent of time), it is sufficient if we describe how each component
of the vector of interest varies with (x, y, z,#) or (r, @, z, 1) or (r, 0, ¢, 1).
Thus we have reduced the problem of describing a vector field to one of
describing the component scalar fields. Mathematically, we write

F(x,y,2,t) = F.(x, y, 2, Oi, + F,(x, ¥, 2, O}, + F,(x,y,z, i,  (1-38)
F@r,d,z,0) = F(r, d, z, )i, + Fyr, ¢, z, )i, + F (r, ¢, z, 0i, (1-39)
E(r,0,0,1) = F,(r, 0, ¢, i, 4 Fy(r, 0, @, Diy + Fy(r, 0, @, 1)i, (1-40)

where F is the vector of interest and remembering that the unit vectors i,
and i, in cylindrical coordinates and i,, ip, and i, in spherical coordinates
are themselves known functions of the coordinates.

ExampLE 1-9. Consider a circular disk of radius a rotating with a constant angular
velocity @ about an axis passing normally through its center. It is desired
to describe the linear velocity vector field associated with the points on the
disk.

We can choose the center of the disk as the origin and set up a two-
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dimensional coordinate system. We have a choice of the coordinates (x, y)
or the coordinates (r, ¢). Since the linear velocity of a point is equal to the
product of the angular velocity and the distance from the axis about which
the disk rotates, we note that points equidistant from the center have the same
magnitude of velocity. Also, the velocity is directed everywhere in the angular
direction. This suggests the use of (r, ¢) coordinate system. Then, at a point
(r, §) the velocity magnitude is re and its direction is i,, as shown in Fig.
1.18(a). Thus the expression for the linear velocity vector field is given as

(2)

o R

Fig. 1.18. (a) Rotating disk. (b) Field of the linear velocity vector
associated with the points on the rotating disk. (c) Same as (b)
with the arrows omitted and the density of direction lines used
to indicate the magnitude variation.

v(r, ¢) = v,(r, P)i, + v,(r, Py = roi, forr<a (1-41)

The constant-magnitude contours are circles centered at the origin and
having radii proportional to the magnitudes. The velocity direction is every-
where tangential to these circles. One way of pictorially representing the
vector field is by drawing at several points vectors whose lengths are equal
to the radii of the circles passing through those points and hence proportional
to the velocity magnitudes at those points and whose directions are every-
where along i,, as shown in Fig. 1.18(b). For this field, these vectors are
everywhere tangential to the constant-magnitude contours (circles) passing
through those points; that is, the constant-magnitude contours are also the
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curves along which points on the disk move as the disk rotates. Such curves
are known as direction lines since they indicate the direction of the vector
field. The constant-magnitude contours and direction lines are not the same
curves for a general vector field. The pictorial representation of Fig. 1.18(b)
can be simplified by omitting the vectors and simply placing arrowheads
along the circles, that is, the direction lines, as shown in Fig. 1.18(c). Also,
by decreasing the spacing between the direction lines as r increases, the
density of direction lines is used to indicate the magnitude variation. This
is the common procedure adapted for graphically depicting a vector field.
In Chapter 2 we will discuss a procedure for obtaining the equations for
the direction lines from the field expressions. ||

Differentiation of Vectors
In calculus, we have learned the rules for differentiation of scalar functions.
If fis a function of x, then the derivative of f with respect to x is

% — lim f& + AAX)Z — fx) (1-42)

Ax—0

If fis a function of (x, y, z), then the partial derivative of f with respect to
xis

0f_ 3 f(x+Ax,y,Z)_f(x,y,Z) -
T im Ax (1-43)
and the differential increase in f from a point (x, y, z) to a neighboring point
x+dx,y +dy,z+ dz)is
_9f of 4y 1 I .
df = dxdx+0ydy+0zdz (1-44)
where df/dy and df/dz are given by expressions similar to (1-43).
Differentiation of vector functions is defined in the same manner as dif-
ferentiation of scalar functions. Let us consider a vector function A(x, y, z).
The differential increment in A from a point (x, y, z) to a neighboring point
(¢ +dx,y + dy, z + dz) is

dAzg%dx—i—g—‘;dy—}—%édz (1-45)

where
% _ AI;I_E, Alx, y + Ay,AZ; — A(x, », 2) (1-47)
% — im Alx, p, z + AAZZ) — A, », 2) (1-48)

Since [A(x 4+ Ax, y, z) — A(x, , z)] is a vector, the derivative dA/dx is a
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vector which, in general, is oriented in a direction different from that of A.
Similarly, dA/dy and dA/dz are vectors which, in general, are oriented in
directions different from that of A. If we express a vector function in terms
of its component vector functions in cartesian coordinates, that is, if

A(x, y,2) = A (x,y, i, + A,(x, y, Di, + A,(x, y, 2)i, (1-49)
then
dA =dA,i, + dA,i, + dA, i, (1-50)

since i,, i, and i, are independent of x, y and z.

ExaMPLE 1-10. The unit vector i, in cylindrical coordinates is independent of » and
z but not ¢. Hence di,/dr = di 0z = O but di,/dp = 0. We wish to find
0i,/0¢ in two ways: (a) from first principles, and (b) by using (1-50).
(a) By definition,
di, i(r, ¢ + A, z) i(r, ¢, 2)
- = lim =~ 1-51

Ag—0

To deduce the right side of (1-51), consider the unit vectors i,, and i,, at
the points P(r, ¢, z) and Q(r, ¢ + A¢, z), as shown in Fig. 1.19. Then we
can write

i, = (o 10 + (g e i¢)i¢ = cos Ad i,, + sin A iy (1-52)
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Fig. 1.19. For the evaluation of di,/d¢.
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where i, is the unit vector in the ¢ direction at point P. Using (1-52), we have

i(r, ¢+ Ap,2) —i(r,¢,2) =i, —i,
= (cos A¢p — Di,, + sin Ad i, (1-53)

Substituting (1-53) into (1-51), we get
di, lim (Co8 Ad — l)i;; + sin Ad i, _ i, (1-54)

Ad—0

(b) To use (1-50), we first note that since i, is only a function of ¢,
0i,/0¢ is the same as di,/d¢. Expressing i, in terms of i, i,, and i,, we have
i, =cos¢i, -+ singi, (1-55)

Then, from (1-50), we obtain

di, = d(cos §) i, + d(sin ¢) i,

= (—sin¢i, + cos ¢ i)dp = do i, (1-56)
or
di, di, .
o ~dp ™

which agrees with (1-54). Partial derivatives of unit vectors obtained in this
manner are listed in Table 1.6. ||

TABLE 1.6. Partial Derivatives of Unit Vectors; All Derivatives Not Listed in
the Table are Zero

dx dy oz dr; a9 d6
i S0 85, s d;, 0 0 is 0
iy 2 95, ﬂi 0 0 e 0
dir:/ _( sin ¢ 1 ——-(COS ¢ 1 %1’19 ia COrS i ig sin 8 i¢ ig
* - cos § cos @ ig) + cos @ sin ¢ ig) *
di/ C—(;t—o(—sm pis  ©9cosgi, sinf; —cos Oy cos@is —ips

§ S
—sinfcos i) —sinfsingdi,s)

Expressions similar to (1-50) are not true in cylindrical and spherical
coordinates; that is,

dA % dA, i, + dA, i, + dA. i, (1-57)
dA = dA, i, + dAyi, + dA, i, . (1-58)

To derive the correct expressions for these two coordinate systems, we make
use of the differentiation rule,

d(fA) =fdA + df A (1-59)
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where f'is a scalar function. Thus if
A=A, + A, + A,
we have
dA = d(4,i,) + d(4;) + d(4.i)
= A, di, + dA, i, + A, di, - dA,i, + dA, i, (1-60)
Similarly, if
A=A, + Ajy + Aji,
we have
dA = A, di, + dA. 1, + A, diy + dA, i, + A, diy + dA, i, (1-61)
Finally, if A is also a function of ¢ in addition to x, y, z, we have

dA =dA, i, + dA,i, + dA, i, (1-50)
where
_ 04, a4, dA4, d4, - )
dA’_de+Wdy+7z—dz+ ?Tdt i=xz (1-62)
Rules for the differentiation of dot and cross products of vectors are

as follows:
dA+B)y=dA-B+ A-dB (1-63)

d(A x B) = dA x B+ A x dB (1-64)

The Gradient

Gradient is an operation performed on a scalar function which results in
a vector function. The magnitude of this vector function at any point in the
region of the scalar field is the maximum rate of increase of the scalar func-
tion at that point. The direction of the vector function at that point is the
direction in which this maximum rate of increase occurs. To illustrate this
concept mathematically, let us consider a scalar function V{(x, y, z) which
is single-valued everywhere so that it is differentiable. From calculus, we
can express the change in ¥ from a point (x, y, z) to another point (x + dx,
¥y + dy, z + dz) an infinitesimal distance away from it as

_av 14 oV

(g—;/ix + (;—I;iy + ‘;—I:i,) «(xi, + dyi, + dzi) (165
— VW .dl

where the symbol V stands for “del” and is a vector operator defined as

_ 4. J . J . i
V—a—)—clx—l—@-l},—{*al, (1-66)

When “del” operates on a scalar function, the operation is known as evaluat-
ing the gradient of the scalar function; that is, V¥ is the gradient of V. Thus
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VV=g¥ix+%%iy+‘;—IZ/i, (1-67)
The vector dl is the infinitesimal displacement vector drawn from the point
(x, y, z) to the point (x + dx, y + dy, z + dz).

To discuss the physical significance of V¥, let us consider a surface
containing a point P(x,, ¥,, z,) on which the scalar function is constant and
equal to V(x,, Yo, Zo) = V. If we now consider another point Q(x, + dx,
Yo + dy, z, 4 dz) on the same surface and an infinitesimal distance away
from P, dV between these two points is zero since ¥ remains constant through-
out this surface. It follows from (1-65) that for the vector dl drawn from P
to Q on this surface,

VW.dl=0 (1-68)
and hence VV is perpendicular to dl. But since (1-68) is true for all points
QO on the constant V surface surrounding P, VV must be normal to all pos-
sible infinitesimal displacement vectors drawn away from P on the constant
V surface, and hence it is normal to that surface. Actually, it is sufficient for
V¥V to be normal to any two different infinitesimal displacement vectors
drawn away from P on the constant ¥ surface to conclude that V¥ is normal '
to that surface. Thus we can reach the general conclusion that the gradient
of a scalar function at any point is directed normal to the surface passing
through that point and on which the value of the scalar function is a constant.
Designating i, as the unit vector normal to the constant ¥ surface, we then
have

VYV =|VV|i, (1-69)
Let us now consider two adjacent surfaces of constant V equal to ¥
and ¥, + dV, respectively, as shown in Fig. 1.20. Let P and Q be points
on the V, and ¥V, + dV surfaces, respectively, and let 41 be the displacement
vector drawn from P to Q. Then, since dV is infinitesimally small and hence
the two surfaces are infinitesimally close to each other, we have, according
to (1-65),
: dV = (VV), p+dl=|VV|i, « dl] (1-70)
where we have substituted the right side of (1-69) for (VV),, » and expressed
dl as di i, From (1-70), we have

dv
(7
where ¢ is the angle between i, and i,. But since the maximum value of cos &
is unity, the maximum value of (dV/dl),, » is equal to | V¥| and it occurs for
o equal to zero, that is, for the case in which i; = i,. Thus | V¥| is indeed the
maximum rate of increase of ¥ and it occurs in the direction normal to the
constant ¥ surface, consistent with the conclusion of the previous paragraph.

) —|VV|i, + i, = | VV] cos & (1-71)
at P

ExampLE 1-11. Consider the scalar function V(x, y, z) = xy. Obtain a unit vector
normal to the constant ¥ surface of value 2 at the point (2, 1, 0) in two ways:
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Fig. 1.20. Surfaces of constant V equal to ¥, and V,, + dV,
respectively, for evaluating VV. .

(a) by using the cross product of two vectors which are tangential to the
surface at that point; (b) by using the concept of the gradient of a scalar
function. What is the maximum rate of increase of the scalar function at the
point (2, 1, 0)? '
(a) The constant V surface of value 2 is given by
xy =2

A cut section of this surface is shown in Fig. 1.21(a) and its cross section in
the xy plane is repeated in Fig. 1.21(b). The unit vector i, is tangential to
the surface everywhere. Hence it is sufficient if we find another vector tan-
gential to the surface at (2, 1, 0) so that we can take the cross product of
these two vectors to find a unit vector normal to the surface. For simplicity,
we can find the tangential unit vector i, lying in the xy plane. To find the
components of i, along i, and i,, we need the angle « which the tangent to
the curve xy = 2 in Fig. 1.21(b) makes with the x axis. Noting that the curve
is defined by y = 2/x, we obtain

(%)2,1 = (—é>2,1>: ——%

Hence tan ¢ = 1 or o = 26.6°. Now,
i, =-cosai sin o i —Li —I——i
r — x y — /_5 x /=

The unit vector normal to the surface xy = 2 at (2, 1, 0) is then given by
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i)’
} L:\
1x
| PNy
[0 ar > X
x///h @ ®

Fig. 1.21. For Example 1-11.

i, i 1,
s . 2
i,=Lxi= 0 = ——__ =
2 1
75 75 °

(b) The direction of the gradient of a scalar is normal to the surface of
constant value of the scalar, Hence by evaluating the gradient of the given
scalar function at the point (2, 1, 0) we can find the required unit vector.

_ 9(xp)4 0(xy) _ ;
VV = W i,=yi, + xi

(VV)Z,I,O =i, + 21.v
This vector is normal to the surface xy = 2. To find the unit vector we divide
it by its magnitude which is /5. Thus
I, = flx + == J_ 1,
which agrees with the result of part (a). The maximum rate of increase of
the scalar function at (2, 1, 0) is the magnitude of the gradient. Hence it

isequalto ./5. |

Equation (1-67) gives the gradient of a scalar in cartesian coordinates.
We can similarly consider cylindrical coordinates and write the following
steps:
av=ar % ap 1. 9
dr d¢
. | oV, aV (1-72)
(0 AR 4 ) (dri, + dpi, + dzi) |
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But, in cylindrical coordinates,

dl=dri, +rdpi, + dzi, (1-24a)
Hence we have to modify (1-72) as
)4 1 dV

av="5dr + 53 d¢—|—a

v, 19V, | av. . . .
<0r L+ r 3¢ iy + 97 ) s (dri, +rdpi; +dzi) (1-73)
=VV.dl
Thus, in cylindrical coordinates,

w=9V ¢ L0V L 3V, (1-74)
o9
. Similarly, in spherical coordinates,

w. 1av, 1 av.
VW=t et g ag (1-75)

ExaMPLE 1-12. Find the rate at which the scalar function ¥ = r? sin 2¢, in cylin-
drical coordinates, increases in the direction of the vector A =i, 4 i, at

the point (2, /4, 0).
Evidently, the required quantity is VV « A/|A| evaluated at (2, z/4, 0).

v = (%(rz sin 24) i, ¢(r sin 26) i, - _(r2 sin 2¢) i,
= 2rsin 2¢ i, 4+ 2r cos 2¢ i

VV e A= (2rsin2¢i, 4 2r cos 2¢ i,) « (i, + i,)
= 2r sin 2¢ + 2r cos 2¢

VIVA,A—A/ rsin 2¢ 4+ /2 cos 2¢

Finally, the rate of increase of ¥ along A at the point (2, z/4, 0) is equal to

2/7. 1

1.7 Volume, Surface, and Line Integrals

In the study of electromagnetic fields, we repeatedly encounter three types
of integrals: (a) the volume integral, (b) the surface integral, and (c) the line
integral. We will discuss each of these separately and provide some examples
for evaluating them,

a. The Volume Integral.

If the density of a quantity is specified throughout a certain volume,
we make use of volume integral to evaluate the amount of that quantity
in that volume. For example, let us assume that the density of mass p of
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a body is known as a function of the coordinates (x, y, 2), (r, @, z), or (+, 8, ).
To obtain the total mass contained in the volume occupied by the body, we
divide the volume into a number of infinitesimal volumes dv,, dv,, dv,, . ...
Within each infinitesimal volume, the density may be considered to be con-
stant so that the mass contained within each volume is given by the product
of the infinitesimal volume and the density in that volume. The total mass m
is then the sum of these several masses, that is,

‘m=p1dv1—l—p2dv2+p3dv3+---=Zj]p,¢z’v, (1-76)

where p, is the density associated with the volume dv, Equation (1-76)
gives only the approximate value of m since the density within each infinites-
imal volume is not quite constant. However, it becomes exact in the limit
that dv, tends to zero (i.e., shrinks to a point) in which case the summation
becomes an integral

m= J pav (1-77)

where the integration is performed throughout the volume ¥ of the body,
as indicated by the letter V associated with the integral sign. The integral
on the right side of (1-77) is known as a volume integral. The volume integral
is a triple integral since dv is the product of three differential lengths.

ExampLE 1-13. The density of mass of a spherical body of radius a centered at the
origin is given by

p(r’e’(ﬁ):%

where p, is a constant. It is desired to find the mass m of the spherical body.

The differential volume dv in spherical coordinates is r? sin  dr d@ d¢.
Substituting for p and dv in (1-77) and introducing the limits for the three
variables 7, 0, and ¢, we have

a 7~ 2z
m=f f J Poy2 gin 9 dr d di
r=0J 8=04d g=0 7

=2zp,a® 1

b. The Surface Integral.

If the density of flow of a fluid or, in general, the flux density of any phys-
ical quantity is specified over a certain surface, we make use of surface inte-
grals to evaluate the amount of the flux of that quantity crossing that surface.
For example, let us assume that the density of current at all points on a
particular surface S is known. Since current is due to the flow of charges,
the current density at a point has magnitude and direction and hence is a
vector. Let us denote the current density vector as J. To obtain the current
crossing the surface S, we first divide the surface into several infinitesimal
areas of magnitudes dS,, dS,, dS,, . ... Since each of these areas is very,
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very small in magnitude, we can treat them as plane surfaces and define
their orientations by their corresponding normal vectors i, i,,, i, -
Furthermore, we can consider the current density vector associated with each
area to be constant.

Let us then consider one infinitesimal area 4S, i,, and its associated
current density vector J, as shown in Fig. 1.22. Let the angle between i,,

inl

Fig. 1.22. Division of a surface § into several infinites-
imal areas to evaluate the flux of a vector J crossing the
surface.

and J, be a. Then the projection of the area dS, onto a plane normal to the
current density vector J, has an area dS, cos «. The current crossing this
projected area and hence the current crossing the surface dS, i, is equal to
| ¥, 1dS, cosa, or J, « dS,1i,,. Similarly, we can obtain the currents flowing
through all the other infinitesimal surfaces and add them up to give the total
current 7 as

I=J, edS;i, +J,dS,i,+J, «dS,i,+ -
=T, +dS,i, =X, - dS, (1-78)
k k

where dS, = dS'i,,. Equation (1-78) is approximate since the assumption of
constant current density vector for any infinitesimal surface is true only in
the limit that the area of that surface tends to zero (i.e., shrinks to a point).
In this limit, the summation in (1-78) becomes an integral, giving us

szsJ-dS=fsJ-i,,dS (1-79)

where the integration is performed over the entire surface S. The integral on
the right side of (1-79) is known as a surface integral. The surface integral
is a double integral since dS is the product of two differential lengths. If
the surface is closed, we call it a closed surface integral and write it with a
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small circle associated with the integral sign, as follows:
I=§ 3.ds (1-80)
s

Also, the normal vectors to the differential areas comprising the closed sur-
face are then usually chosen to be pointing away from the volume bounding
that surface so that the closed surface integral represents the flux emanat-
ing from the volume.

ExaMpLE 1-14. 1In a certain region, the current density vector is given by
J=3xi, + (y — 3i, + (2 + 2)i, amp/m?

Find the total current flowing out of the surface of the box bounded by
the five planes x =0,y =0,y =2,z=0,and 3x + z = 3.

With reference to Fig. 1.23, we will consider the normal vector to be
always pointing out of the box so that [ J « dS gives the current flowing out
of the surface.

For the surface x = 0,dS = —dy dzi,, J = (y — 3)i, 4+ 2 + 2)i..

\dx dy

Fig. 1.23. For Example 1-14.
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JedS=0
fJ-dS:O

For the surface y = 0, dS = —dzdxi, J = 3xi, — 3i, + (2 + 2)i,.
JedS=3dzdx

1 3-3x 9
J‘J-dS=f f 3dzdx = %
x=0 z=0 2

For the surface y = 2,dS = dzdxi, J = 3xi, — i, + (2 4 2)i,.
JedS= —1dzdx

1 3-3x 3
fJ'dS=f f (—1)dzdx=—7
x=0 o z=0

For the surface z = 0,dS = —dx dyi,, J = 3xi, + (y — 3)i, 4 2i,.
JedS=—2dxdy
[a.as=] jz (—2) dx dy = —4
x=0 »=0
For the surface 3x + z = 3,

_ VGx+2) | 3,4 3, Ly
" V@Bx+z)| T /3412 /107 T /10T

From dS'i, « i, = dx dy, we have

i

dsziﬁlﬂ?:f‘wdxdy

dS = (3i, +1i,)dxdy
J=3xi, + (y — 34, + (6 — 3x)i,
JedS=0Ox+5—3x)dxdy = (6x+ 5)dxdy

jJ-dS:j;o j2=0(6x+5)dxdy: 16

Finally, adding the values of j J « dS for the five surfaces, we obtain
the total current flowing out of the box to be 043 —3 — 4416 =
15amp. |

¢. Line Integral.

The line integral consists of evaluating along a specified path the integral
of the dot product of a vector and the differential displacement vector tan-
gential to the path. For example, let us consider a path from point a to point
b, as shown in Fig. 1.24 in a region of a known force vector field F. To find
the total work done by the force from a to b, we divide the path from a to
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dhy
a

a Fi

Fig. 1.24. Division of a curve into several infinitesimal
segments to evaluate the work done by the force vector F
along the curve.

b into a number of segments of infinitesimal lengths d/,, dl,, di,, . ... Since
the length of each segment is very, very small, we can treat these segments
as straight lines and define their orientations by the corresponding differential
vectors dl,, dl,, dl,, .... Within each segment, we can consider the force
vector to be constant.

Let us then consider one infinitesimal segment dl, and its associated
force vector F,. Let the angle between dl, and F, be ¢. The component of
the force F, along the direction of dl, is equal to F, cos &. Hence the work.
done by F, along dl, is equal to (F, cosa)(dl,), or F, « dl,. Similarly, we can
obtain the work done by the forces for all the other infinitesimal segments
and add them up to give the total work ¥ done from ato b as

W=F,+dl,+F,ed,+F,edl,+ ... =Fdl, (1-81)
i

Equation (1-81) is approximate since the assumption of constant force
vector for any infinitesimal segment is true only in the limit that the length
of that segment tends to zero (i.e., shrinks to a point). In this limit, the
summation in (1-81) becomes an integral, giving us

w=[F.a (1-82)

where the integration is performed along the path from a to b. The integral
on the right side of (1-82) is known as a line integral. For the case of the
force vector, it represents the work done by the force field. For other vectors
it will have different meanings. When the line integral is evaluated around
a closed path C, it is known as the “circulation” around that path and we
write it with a small circle associated with the integral sign, as follows:

W= §CF . dl (1-83)
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ExaMpLE 1-15. Find the work done by the force vector
F=yi, — xi,
around the closed path abcdefga shown in Fig. 1.25.
The work done by the force vector is ibcaem F « dl. This integral consists
of seven parts which will be evaluated independently. First, we note that
Fedl= (yi, — xi,) + (dxi, +dyi)=ydx — xdy
Along path ab, y = x%, dy = 2xdx, F + dl = —x? dx.

b -1 1
fF-dl=—f xtdx =%
a x=0 3

Yy
$
24 e
A
y = 1x
avVz
b 41 f
1 ofd ] -

Fig. 1.25. For Example 1-15.
Along path be, y=(/2 — Dx+/2,dv=(/2 — 1) dx
Fedl=./2 dx.
[Fea=[ yTax=y7
b x=-=1
Along path ed, x = 0,dx =0, F « dl = 0.
de.dhzo
Along path de,y = 2,dy = 0, F « dl = 2 dx.
e 1/2
jF.ﬂ=j 2dx =1
d

x=0
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Along path ef, y = 1/x, dy = —(1/x?) dx, F « dl = (2/x)dx.

s 1 )
jF-dl=f Zdx=2In2

x=1/2 X
Along path fg, x = 1,dx = 0, F « dl = —dy.

4 1/2 1
f y=1 2

Along path ga, x =2y, dx =2dy,F «dl = 0.
[Fea=o0
g

Finally, adding the values of [ F .« dl for the seven paths, we obtain
the total work done to be 1 +./2 +0+1+4+2In2+ 4+ 0= 4.634.
The fact that the integrals along the paths cd and ga are zero is obvious if
we note that F = yi, — xi, = —ri,. Thus the force vector is everywhere
tangential to the circle with the center at the origin and, since cd and ga are
radial to the origin, F « dl = 0 for these paths. Hence [ F « dl is zero for the
paths cdand ga. |1

Integration of vectors is performed by expressing the integrand in terms
of its components in cartesian coordinates, thereby reducing the problem to
one of evaluating three scalar integrals. Thus, for example,

j Adm = j (A, + Aj, + Ai) dm

— ([ a.dmi, + ([ 4, dm)i, + ([ 4.am)i. (-89

where dm stands for dv, dS, or dl, depending upon whether the integration
is over a volume, surface, or along a line, respectively. Similar expressions
using the components in cylindrical and spherical coordinate systems are
not correct since some or all of the unit vectors in these coordinate systems
are functions of the coordinates. For example, the magnitude of the sum
of two component vectors along the unit vector i, at two different points is
not, in general, the sum of the magnitudes of the two vectors since the two
components are directed in different directions. For that matter, the direction
of the sum of the two component vectors is not the direction of either of
the component vectors. Thus

[ Adm = ( [ 4, dm)i, + ( [ 4, dm)i¢ + ( [ 4, dm)i, (1-85a)

[ Adm = ( [4, dm)i, + ( [ 40 dm)ia + ( [ 4, dm)i¢ (1-85b)

The integrand must, in general, be expressed as the sum of its component
vectors along i and i, for correct results.

x° lya
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Divergence and the Divergence Theorem

In Section 1.7 we introduced the concept of the surface integral. Let us
consider a closed surface S enclosing a volume ¥ in a region in which the
current density vector J is specified. Then the amount of current emanating
from this volume is given by

I= §S J.ds (1-86)

where the integration is performed over the closed surface S. If we let this
volume shrink to an infinitesimal value Av, we obtain an infinitesimal amount
of current flowing out of the surface AS bounding Av. In the limit that
we let the volume shrink to a point, the current emanating from the point
may tend to zero. On the other hand, since the volume occupied by the
point is zero, the ratio of the current emanating from the point to the
volume occupied by the point can be nonzero; that is, although the quantity
J « dS may tend to zero in the limit Av — 0, the quantity

AS
J«dS
AS
Av

can approach a nonzero value in the limit Av — 0. The quantity

J+dS
AS
Av

is the amount of current, or the flux of the quantity whose density vector is
represented by J, per unit volume emanating from the infinitesimal volume
Av. The value that this quantity approaches as Av tends to zero (i.e., shrinks
to a point) is known as the divergence of the vector J. The divergence of J
is represented as the dot product of the vector operator V and the vector
J, that is, as V « J. Thus

. s J.dS
Vel = fim fet— (1-87)
Since the surface integral results in a scalar, the divergence of a vector is
a scalar. It is the flux emanating per unit volume as the volume shrinks to
a point. Hence the concept of divergence is valid at a point.

To make use of the concept of divergence of a vector, we need to derive
expressions for it in terms of the components of the vector in different coor-
dinate systems. Let us choose the cylindrical coordinate system for this
purpose. The method of deriving the required expressions consists of follow-
ing exactly the steps involved in the definition of divergence. First we choose
an infinitesimal volume at an arbitrary point P(r,, ¢,, z,), as shown in Fig.
1.26. The infinitesimal volume is formed by the surfaces ¥ = ry, ¥ = r, + dr,
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d=0¢, d=4¢, + dp,z=z, and z = z; + dz. The resulting differential
surfaces 1,2,3,4,5, and 6 are given by —r,dd dzi,, (r, + dr)d¢ dzi,,
—drdzig, drdziy, —r,d¢dri,, and r, dp dri,, respectively. Expressing J
in terms of its components in cylindrical coordinates, we have

J=Ji, + Jji, + J.i, (1-88)
The next step is to evaluate the integral of J « dS over the surface bound-

ing the differential volume. We do this by evaluating the surface inte-
grals over the six surfaces separately and then adding them up. Over

X

Fig. 1.26. For obtaining the expression for the divergence
of a vector in cylindrical coordinates.

each surface, we can assume that J is constant since the surface area is
infinitesimal. Only one of the three components of J will contribute to the
flux crossing a particular surface since the other two components are tangen-
tial. Thus the flux leaving the volume from any surface is simply the
product of the surface area and the normal component of the J vector
evaluated on that surface or its negative, depending upon whether that com-
ponent is directed out of or into the volume. In this manner we obtain

flux leaving the volume from surface 1 = —[J,],-,, r, d¢ dz (1-89)
and

flux leaving the volume from surface 2 = [J,],-,,.4,(ro + dr) dd dz
(1-90)
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From (1-89) and (1-90) we have
net flux out of the volume due to surfaces 1 and 2
= ['Ir]r=ro+dr(r0 + dr) d¢ dZ - [Jr]r=ro rO d¢ dZ

={t"])=rosar — [1),=1} dp dz (1-91a)
Similarly,

net flux out of the volume due to surfaces 3 and 4

= {[Velo=poras — ly=y,} dr dz (1-91b)
and

net flux out of the volume due to surfaces 5 and 6
= {[Jz]z=zo+dz - [Jz]z=zq] ro dar d¢ (1-9 lC)
The total flux emanating from the differential volume is the sum of the
expressions on the right sides of (1-91a), (1-91b), and (1-91c). Adding these
three expressions and dividing by the differential volume,
Av = r, dr d¢ dz (1-92)
we obtain

AS J ) ds — [rJr]r=rn+dr _ [rJr]r=ro
Av ro dr

+ [ngg=gs-;dg — [sls-4 (1-93)

[Jz] z=zo+dz [Jz]z=z
- dz B

By taking the limit of (1-93) as Av -0, we obtain V « J at P(r,, d,, 2,) as

J.dS

— h AS
Ve Twsnm = 10 85—

= lim (1), =resar — [T )r=r, + lim [Jslo=goras — [Jolp=go

dar—0 Fo dr d¢—0 rq
+ lim [Jz]z=z +dz T [Jz z=2z,
dz—0 aZ
_1ra 1[dJ, 0J,
B Fo I:ar(rjr):|’=’° + Z %—:L‘Fe“o + I:a?jlng
r1 4 1o, | 8J.
- T a;(r']r) + -r— aﬁ + 951(1‘0,«50,10)

Now, since (1-94) is valid for any (r,, ¢,, 2,), We can generalize (1-94) by
stating that at any point (r, ¢, z),

(1-94)

14 1dJ, , dJ, 95"
V'J:'r—a;(r-],)—i—’;"#—i-?; (l 95)

Similar expressions for the divergence can be derived in the cartesian and
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spherical coordinate systems by repeating the procedure followed for the
cylindrical coordinate system. The resulting expressions are as follows:
Cartesian coordinates:

Q.:
B
=3

J, 0, 9], i
V. J=a—+w—l—$ (1-96)

Spherical coordinates:

A
VeI = G500+ rp gm0 g gg (97

By rewriting (1-96) as

diy Lo i)

V . J — <a lx "l— 0_yiy ‘I“ ’5} lz + ,iny + Jziz) (1-98)

we note why the divergence of J is written as V « J
We will now derive a theorem which relates the closed surface integral

3€ J + dS to a volume integral evaluated in the volume ¥ bounded by S.
s

To do this, let us divide the volume ¥ into a large number of infinitesimal
. volumes dv,, dv,, dv,, ... having surfaces AS,, AS,, AS,, ..., respectively. -
- For each infinitesimal volume, we can assume V « J to be uniform and equal

-to the value it approaches in the limit the volume shrinks to a point. Accord-
- ing to definition, V » J is the flux of the quantity, represented by J, per unit.

volume in the limit that the volume shrinks to a vanishingly small value.
" Now, let us consider one of the infinitesimal volumes dv, with its associated

surface AS, and vector J,. The total flux emanating from this volume is

equal to (V « J), dv;, where (V + J), is the value of V + J evaluated in that

volume. But, from the concept of surface integral, this flux is also equal to
J, « dS. Thus

AS,

(V + ), dv, = §AS 3, +dS (1-99)

By writing similar expressions for all the other infinitesimal volumes and
adding them up, we obtain
Ved)dv, + (Ve D), dv, + (V) dv, +

¢ J.das+& I, .dS+4§ T, .dS+ .-

ASt ) AS, AS3

(1-100)

But the right side of (1-100) is equal to fi; J « dS, since contributions from
N

all the surfaces and portions of the surfaces inside the boundary of the volume
V cancel, leaving a net integral over the surface bounding the volume V.
Equation (1-100) then becomes

S (Ved)do,=§¢ I dS (1-101)

Equation (1-101) is approximate since the assumption of uniform V.« J
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inside any infinitesimal volume is true only in the limit that the volume

shrinks to a point. In this limit, the summation in (1-101) becomes an integral, '

giving us

where the integration is performed throughout the volume ¥ bounded by

S. The result represented by (1-102) is known as the divergence theorem.

It permits the replacement of a surface integration by a volume integration
and vice versa,

ExampLE 1-16. In Example 1-14 we evaluated a surface integral to find the current

1.9

flowing out of a box. It is now desired to compute the same quantity by
using the divergence theorem and performing a volume integration.
According to the divergence theorem (1-102), the current flowing out

of the box of Fig. 1.23 is j (V « J) dv, where V is the volume of the box
Vv

and J is the current density vector specified in Example 1-14. For this current
density vector, the divergence is equal to 5. Hence

§SJ.dS= jy(V-J)dv: fysm:: sfydv
= 5(volume of the box)

=5x (u—gx—?’>=15amp

This result agrees with the result of Example 1-14. |

Curl and Stokes’ Theorem

In Section 1.7 we introduced the concept of circulation or line integral around
a closed path. Let us consider an infinitesimal area AS in the field of a vector
F and orient it such that the circulation § F « dl around the periphery AC of
the area is a maximum, Let i, be the unit vector normal to the area for that
particular orientation. Then we define a vector quantity known as the “curl”
of F, having the symbol “del cross” as

' ACF «dl

VxF= Al;l_x}o s (1-103)
We note that in the limit AS — 0, although §,. F « dl may tend to zero,
V x F can be nonzero. The line integral in (1-103) is evaluated by travers-
ing the perimeter of the area AS on the side of the unit vector i, in
such a direction that the area is on the left, as shown in Fig. 1.27. This is
the same as the direction in which a right-hand screw turns as it advances
in the direction of the normal vector. Just as the divergence of a vector is
associated with a point in space, the curl of a vector is also associated with
a point in space, in view of the limit on the right side of (1-103). Whereas

[ @-Dav=§ 5.as (1-102) |
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the divergence of a vector is a scalar, the curl of a vector is another vector.
The magnitude of this vector is the circulation per unit area as the area
shrinks to a point, maintaining in this process an orientation of the area
such that the circulation around its periphery is a maximum. The direction
of the vector is the direction which the normal vector to the area assumes
as the area shrinks to the point.

Direction of Path
Integration

Fig. 1.27. Illustrating the sense of traversal around the
periphery of area AS to evaluate the line integral in (1-103).

Later in this section we will explore the physical significance of curl,
but first let us obtain the expressions for the curl of a vector in terms of the
components of the vector. To do this, we first wish to show that the compo-
nents of the curl of a vector at a point are simply the circulations per unit
area at that point with the areas oriented normal to the corresponding
coordinate axes.

Let us consider an infinitesimal plane area 4ABC, as shown in Fig. 1.28,
such that its normal vector i, is oriented in an arbitrary direction in the
field of the vector F. We can write

$ Fedl=§ Fedl+¢ Fedl+§ Fedl (1-104)
ABCA ABOA BCOB . cdoc

since the contribution to the integrals on the right side from the paths between
O and 4, O and B, and O and C cancel. Dividing both sides of (1-104) by
the area ABC, we get

ff F.dl 3€ F.dl jﬁ F.dl ff F.dl
ABCA — ABOA + BCOB _+_ cAocC (1_105)
area ABC area ABC area ABC area ABC

With the relationships
area AOB = (area ABC)i, » i, (1-106a)
area BOC = (area ABC)i, + i, (1-106b)
area COA4 = (area ABC)i, + i, (1-106¢)
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A

|7 .
) .y

I
Fig. 1.28. For showing that the components of the curl of a
vector at a point are the circulations per unit area at that
point with the areas oriented normal to the corresponding
coordinate axes.

(1-105) can be written as

§ F.dl 5;3 F.dl 3€ - dl 3€ F.dl
ABCA ABOA l + BCOB . i + CAOC
area ABC =~ area AOB L area BOC Lo L area COA L

<3€ Fedl § Fedl 36 . dl )
:i . ABOA + BCOB _,_ c4 OC
" area AOB 1 area BOC L area COA

(1-107)
Taking the limit of both sides of (1-107) as the area ABC — 0, we have

§ F.dl 3§ F.dl
m 4864 —j .| lim T4Bo4 ___j
A

i
o area ABC . AOB *
ABC-Q a oBp~0 area (1-108)
3‘3 F.dl § F.dl )
1 BCORB CA40C
+ Blolgl_l»o area BOC i+ c};l,ho area COA

The magnitude of V x F is the maximum possible value of
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3@ F.dl
H ABCA
Jim ~rea ABC

that is, the maximum possible value of the quantity on the left side of (1-108).
The maximum value of this quantity occurs when the orientation of i, coin-
cides with the direction of the vector inside the parentheses on the right side
of (1-108). It then follows that this maximum value is the magnitude of the
vector inside the parentheses. Hence the vector inside the parentheses on the
right side of (1-108) isindeed V x F. Thus the components of V x F are simply
the circulations per unit area at the point of interest with the areas oriented
normal to the corresponding unit vectors and as these areas are shrunk to
the point. Although the foregoing proof is carried out for the cartesian
coordinate system, it is obvious that it is valid for any orthogonal coordinate
system since the unit vectors in Fig. 1.28 can be replaced by any orthogonal
set of unit vectors.

We will now derive the expressions for the components of V x F. Let
us choose the spherical coordinate system for this purpose. To obtain the
r component, we consider an infinitesimal area abed normal to the unit
vector i, at point P(r, 0, ¢), as shown in Fig. 1.29(a). From our experience

-in deriving the expressions for the divergence in Section 1.8, there is no need
. to consider a point (r,, 8,, ¢,) and then generalize the result. Expressing ¥
" in terms of its components in spherical coordinates, we have

F = Fji, + Fji, + Fji, (1-109)
Then we evaluate the circulation of F around the path abced in Fig. 1.29(a),
divide the circulation by the area of abed, and find the limit of the resulting

z z z
\ P 1 g
dr
d
a\ Pa h
/1 \N/4
FrX '.c /},‘/Ib !
8/ /" 4
pdE | AN |
o/ifi_'__. - oY H_ -
? L‘L J g g MQ. g
N - .
x d¢ X \l
(2 (b) (©)

Fig. 1.29. For obtaining the expression for the curl of a vector
in spherical coordinates.
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quantity as the area abcd tends to zero. The circulation of F around abed
is the sum of four line integrals, evaluated along the four sides of the area
abed. For each side, we can assume that F is constant since the lengths are
infinitesimal. Only one of the three components of F contribute to the line
integral involving any particular side since the other two components are
normal to the path. Thus the line integral along any side is simply the product
of the length of the side and the tangential component of the F vector evalu-
ated along that side or its negative, depending upon whether the component
is directed along or opposite to the path of integration. In this manner, we
obtain

[(F-a1= k), ras (1-110)
be e dl = [FJlp.4rsin (6 + d6) do (1-111)
de s dl = —[Flyay 1 dd (1-112)
[[Fear——iF)rsin0dp (1-113)

From (1-110)-(1-113) we have

Fedl=(Fedl+ [Fedi+ [(Fedi+ ["F.a
abcda a b ¢ 4

= {[Foly — [Folgraglr 40
+ {[Fylo+ao sin (8 + dB) — [F,), sin §}r do (1-114)
= {[F);, — [Fs]¢+d¢}r dag
+ {[F, sin 0]y, 49 — [F, sin Ol,}r d
Dividing both sides of (1-114) by area abed = r? sin § df d¢ and taking the
limit as the area tends to zero, we have

m abcdaF - dl — lim {[Fols — [Folsraslr 46

1 .
abed—0 area abed do=t r?sin @ dO dé
-0

. {[F,sin 0y, 40 — [F, sin 0]6}" d¢ -
+§§fz“8 T 0 d0 46 (1-113)
_ 1, 1 a
T rsin@ d¢ " rsin@o0

(sin 6 F,)

Similarly, to derive the 8 component of V x F, we consider an infinitesimal
area adfg normal to the unit vector i, at point P(r, 8, ¢), as shown in Fig.
1.29(b), and evaluate the circulation around the periphery of this area.
Following in the same manner as for the r component of (Vx F), we
have
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SG.,W F o dl =[F,), rsin 0 dp + [F,]s.as dr
— [Fylsa(r + dr) sin @ dp — [F,], dr
= {[rFyl, — [rFyl,.sa,} sin 6 dp
+ {[Fr]¢+d¢ - [Fr]¢} dr
Noting that area adfg = r sin § dr d¢, we obtain

(1-116)

F.dl .
lim _&f_zﬂ_ — lim HrFel — [rFyl, .o} sin 0 d
adfg~0  area adfg ar=9 r sin @ dr d$

o (Flsras — [Fls} dr .
T %:1?% r¢sidli @ dr dq; (I-117)

1 OF,
o dr( ¢)+rsm0 6¢

Finally, to obtain the ¢ component of V x F, we choose an infinitesimal area
aghb normal to the unit vector i, at point P(r, 6, ¢), as shown in Fig. 1.29(c),
and evaluate the circulation around the periphery of this area. Following in
the same manner as for the r and 8 components of V x F, we have

§  Fedl=I[Fldr + [El ol + dr) 40 — [Foso dr — [FiLr d
aghba

= {[FJo — [FJosao} dr (1-118)
_I— {[rFO]r+dr - ["Fo]r} do
Noting that area aghb = r dr df, we obtain

F.dl
lim iﬂbi_'_ hm {[Fr]o [Fr] 0+d9} dr

agib~0 area aghb — dro rdr df
{[rpo]r+dr ["Fg],} do -
+ 31?.% rdrdf (1-119)
1 0F,

T-!— r 0r(rF‘9)

Thus, in the spherical coordinate system, we note that

oF, .
VXF= 0[00(sm 0F,) — ¢"
1 1 JF, 1
t 500 —‘E — 0—(’F¢):l'a + — [Gr(rF”) — 1‘.»
i iy (1-120)
r2sin@ rsind r
= 9 9 Fl

» W %
F, rFo rSin0F¢
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Similar expressions for the curl can be derived in the cartesian and cylindrical
coordinate systems by repeating the procedure followed for the spherical
coordinate system. The resulting expressions are as follows:

Cartesian coordinates:

i, i, i
vxF=|2 g_y 2 (1-121)
F, F, F,
Cylindrical coordinates:
| Loy i
r r
VxF=|d 0 0 (1-122)
dor 0¢ Iz
F, rF; F,

The form of the right side of (1-121) explains why the curl of F is written as
VxF.

Let us now discuss briefly the physical significance of curl. To do this,
we will use the concept of the curl meter or the paddle wheel as suggested
by Skilling (see bibliography). Consider a stream of rectangular cross section
carrying water in the z direction, as shown in Fig. 1.30(a). Assume the velocity
v of the water to be independent of height but increasing uniformly from a
value of zero at the banks to a maximum value of », at the center. Thus

vo%i, for0<y<a
=1 (1-123)
voLa_—yi, fora<y<2a

The curl of the velocity vector is given by

T
RERK
Vxv= *x T
0 0
_ vy a_e;,i (1-124)

Yoj a<y<2a

Sketches of v, and (V x v), are shown in Figs. 1.30(b) and (c), respectively.
Now, let us consider a frictionless paddle wheel having negligible influence
on the velocity of the water and introduce it into the water with its shaft
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Vz
A
Wk —— —
|
|
|
|
0 clz 2a -
)]
(VX V)x
Vg/a‘-_—]
Yo I
|
*‘\X*‘\ ’*t’* > T
|
|
—Vo/aF L—
© : Y

Fig. 1.30. For explaining the physical significance of curl using the
paddle-wheel device.

vertical, that is, parallel to the x axis. It will turn in the counterclockwise
direction on the left side of the center of the stream and in the clockwise
direction on the right side of the center, as shown in Fig. 1.30(d). Moreover,
since the velocity differential is independent of y, it will turn at the same
. rate independent of y. In exactly the midstream, it will not turn since the
velocities on either side are equal and are in the same direction. Now, if we
examine the graph of (V X v), and compare it with the action of the paddle
wheel, the physical meaning of curl is apparent. It signifies the ability of the
vector field to rotate the paddle wheel. If we insert the paddle wheel hori-
zontally, that is, along the z axis or along the y axis or in any other direction
parallel to the yz plane, it will not rotate since the top and bottom plates
are hit with the same force, thus indicating that the curl for this field has no
horizontal component, as indeed the expression (1-124) shows. The curl has
nothing to do with curvature or curling flow as the name might imply. We



56 Vector Analysis Chap. 1

have already seen in the example just discussed that a vector field whose
direction lines are straight lines has a nonzero curl. Likewise, it is possible
to have vector fields whose direction lines are curved but with zero curl.
As an example, consider the field given in cylindrical coordinates by

F— rii¢ (1-125)
For this vector field, (1-122) gives
VxF— {0 . everywhere except at r = 0 (1-126)
oo i, atr=20

This can be explained by referring to Fig. 1.31. Although the magnitude of
the force on the right side of the center of the paddle wheel is less than on
the left side, there are more blades hit by the force on the right side, thereby
keeping the paddle wheel still. At r = 0, however, there is circular motion
of the fluid which turns the paddle wheel.

Y

A

Fig. 1.31. An exaggerated picture
/ of a paddle wheel in the field
0 — x  (1/r)i,.

Two important identities involving curl are
V:VxF=0 (1-127)
VxVI=0 (1-128)

The first identity states that the divergence of any vector which can be
expressed as the curl of another vector is zero, whereas the second identity
states that the curl of any vector which can be expressed as the gradient
of a scalar is zero. These relations can be derived simply by carrying out the
vector operations indicated by the left sides of (1-127) and (1-128). Con-
versely, if the divergence of a vector is zero, it can be expressed as the curl
of a vector and if the curl of a vector is zero, it can be expressed as the
gradient of a scalar. '

We will now derive a theorem which relates the closed line integral
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§F «dl to a surface integral evaluated over any surface bounded by the
closed path. To do this, let us consider in the field of the vector F a con-
tour C which is the boundary of a surface S, not necessarily plane, as
shown in Fig. 1.32. Let us divide the surface S into a large number of infini-
tesimal areas dS|, dS,, dS,, ... bounded by contours AC,, AC,, AC,,...,
respectively. For each infinitesimal area, we can assume V x F to be uniform
and equal to the value it approaches in the limit the area shrinks to a point.
According to definition, V x F is the maximum circulation of F per unit
area at a point. If an infinitesimal area dS is oriented such that its nor-
mal vector is in the direction of V x F, the circulation around the per-
iphery of that infinitesimal area is (V x F) dS. If the infinitesimal area has
some other orientation, we have to take the component of V x F along
the normal vector to that area and multiply by the area to obtain the cir-
culation.

Contour C

— /

Fig. 1.32. Division of a surface S
bounded by a contour C into a
number of infinitesimal areas to
derive Stokes’ theorem.

Let us then consider one of the infinitesimal areas dS, with its asso-
ciated vector F,. The circulation around the contour AC; bounding this
infinitesimal area is equal to (V x F), « i,; 4S,, where i,, is the unit normal
vector to dS; oriented in accordance with the convention shown in Fig. 1.27
and (V x F), is the value of V x F evaluated over that area. But, from

the concept of line integral, this circulation is also equal to F, « dl. Thus
. AC)

(VxF), i, dS, = §AC F, - dl (1-129)

By writing similar expressions for all the other infinitesimal areas and add-
ing them up, we obtain .

(VxF) o, dS,+(VxF), i, dS,+ (VxF)ei;dS;+ -
=¢ Foedi+§ Fed+§ Foed+ -
AC3

AC, AC:

(1-130)
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But the right side of (1-130) is equal to f‘j; F « dl, since contributions from
c

all the contours and portions of the contours inside the periphery of the
surface S cancel, leaving a net integral around the periphery. Equation
(1-130) then becomes

S(VXF),.i,dS, = § F.dl (1-131)
J (o4

Equation (1-131) is approximate since the assumption of uniform V xF
over any infinitesimal area is true only in the limit that the area shrinks to
zero. In this limit, the summation in (1-131) becomes an integral, giving us

j (VxF).i,,dS:ff F.dl (1-132)
S c
or

jS(VxF)-dS=§CF.d1 (1-133)

where we have absorbed the unit vector i, into the vector dS. The result
represented by (1-132) is known as Stokes’ theorem. It permits the replace-
ment of a line integration by a surface integration and vice versa. In
(1-132) and (1-133), the sense of traversal around C must be such that the
area on the side of the normal vector i, is on the left.

ExampLE 1-17. In Example 1-15 we used line integration to evaluate the work done
by a force vector around a closed path. It is now desired to compute the
same quantity by performing a surface integration.

According to Stokes’ theorem, the work done by the force vector is

J (Vx F)«i,dS, where S is the surface bounded by the closed path and
S

F is the force vector specified in Example 1-15. For this force vector, the curl
is equal to —2i,. The normal vector i, must be chosen such that it is on the

left side while traversing the path specified in Example 1-15. Hence i, = —i,,
and
[ (VxF).ids= [ (=2)-(~iyds
abcdefg abcdefg
= 2(area abcdefg)

area abedefy = = + I, % 4 In2=2317
Thus
;}3 F.dl= j (VxF) i dS=22317) = 4.634
abcdefga abedefg

This result agrees with the result of Example 1-15. |
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The Laplacian

In Sections 1.6, 1.8, and 1.9 we introduced gradient, divergence, and curl,
respectively. Gradient is an operation performed only on scalar functions,
whereas divergence and curl are operations performed only on vector func-
tions. In this section we will introduce another operation, known as the
Laplacian, which is performed both on scalar and vector functions.

a. The Laplacian of a Scalar.

The Laplacian of a scalar function ¥ is defined as the divergence of
the gradient of V. The gradient of ¥ is a vector and the divergence of a
vector is a scalar. Hence the Laplacian of a scalar results in a scalar. The
Laplacian operation has the symbol V2. Thus

ViV =V.VV (1-134)
In cartesian coordinates,

J . ad. d. av. ov. | av, )
2 — | —_ —_ o | —0 —_— Pl
VV"QQ”WW*W&)(M”+®”+w”
Y 4
T axz T dy? T dz2
Similarly, expressions for V2V can be derived in other coordinate systems'.
These expressions are as follows:

(1-135)

Cylindrical coordinates:

19 (. avy, 13V o
VZV:TW< )+ (1-136)

") T EE T

Spherical coordinates:

1 9/ ,0V 1 d(. 0V 1 0V
Vi = FWQZW) e 90_9<Sm00_9) T s 6 96> (1-137)

b. The Laplacian of a Vector.

The Laplacian of a vector A is defined as the gradient of divergence of
A minus the curl of curl of A; that is,

VIA=V(V.-A) —VxVxA (1-138)

Expansions for V2A in different coordinate systems can be obtained by

_carrying out the operations on the right side of (1-138) and simplifying the

resulting expressions. The results are as follows:
Cartesian coordinates:

V2A = (V24 )i, + (V2A)i, + (V2A), (1-139)
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Cylindrical coordinates:

ViA = (V24 —

34\, (1-140)
=+ (V2A¢ r + 72 6¢)l¢

+ (V24,)i,

Spherical coordinates:

2 2 2 94,
VA = [VZA’ — 24— e (90(A9 sin 6) — r2sin 6 0¢:|
4 204, 2cosf d4, )
+ (Vo g+ w0 e ag)e (4D

4, 2 04, | 2cosf d4,\.
+ (V2A¢ ~ TsnZg T e sin@ d¢ ' r?sin26 P )l

1.11 Some bkseful Vector Relations

In this section we will summarize the important vector relations discussed
in this chapter and present additional useful vector identities. The following
notation is used:

i, 1,,1, = set of mutually perpendicular unit vectors forming a
right-hand coordinate system.
u,, 4y, u; = set of three orthogonal coordinates.
dl,, dl,, dl, = differential displacements along the direction of the unit
vectors i, i,, i,, respectively.
hy, by, hy = dl[du,, dl,|du,, dl,|du, known as the metric coefficients.
Table 1.7 summarizes u,, u,, u, and h,, h,, h, for the three coordinate sys-
tems.

TABLE 1.7. Coordinates and Metric Coefficients for the Three Coordinate Systems

Ui Uz Us h 1 h 2 h 3
Cartesian y z 1 1 1
Cylindrical r [ z 1 r 1
Spherical ) ] 1 ¥ rsin @

We will denote the components of a vector A as A4,, 4,, and 4, so that
A=4i + 4,1, + 4,i,
The following general relations can be written:

A<B = A,B, + A,B, + 4,8, : (1-142)
i L 0
AxB=\4, 4, 4, (1-143)

B, B, B,
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1L av. 1 V. 1 v .
A\ 4 E%ll +E0_1,42:12+E(W313 (1'144)
1 0 d d
Ve = [ ahsd) 4 o) 4 o) | (1-145)
il iZ i3
hh, Rk, Tk,
VxF=|d 9 4 (1-146)
ou, Odu, Jdu,
thl hZFZ h3F3
_ 1 0 (hyh, OV 0 (hsh, IV 0 (hh, OV
Vi = hlhzhiﬁj( I (9_ul> M(?Tl E) M(f&“@ﬂ
(1-147)

We will now list some useful vector identities. U and ¥ are scalar functions
whereas A, B, C, and D are vectors.

A:BxC=B:CxA=C.AxB
Ax(BxC) =BA-.C —CA-B)
(AxB)x C=BA+C)—AB-.C)
AxXBxC)+Bx(CxA)+Cx(AxB)=0
(AxB).(CxD)=(A-C)B-.D)— (B-C)A-D)
AxB)x (CxD)=AxB.D)C—(AxB.CD
VU4 V)=VU+VV
V-(A+B)y=V.A+V.B
Vx(A+B)=VxA+VxB
VUV)=UVV+ V VU
V.(UA)=A.-VU+UV-.A
VA+B)=AXx(VXxB)+Bx (VxA)+ (A-V)B+B-.V)A
V:(AxB)=B:VxA—-A-VxB
Vx(UA)=VUxA-+UVxA
Vx(AXxB) =AV.B—BV.:A+B-.V)A—(A.V)B
VeVXxA=0
VxVU=0
VXVXxA=V(V.A) — VA
Lway=v  dUy
dA
dt

dA

d _ dB
E(AXB)_AXQT+BXE

d _ . .dB
S@A-B=A-21B.
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PROBLEMS

1.1.

1.2.

1.3.

1.4.

1.5.

For the vectors of Example 1-1, perform the following operations:
(a) A —B.

(b) B/4 + C/3.

© A—B+C.

dB-C.

(&) CxA.

H A+B)-C

(& A-B)xC.

(b) (B/4 + C/3) - BA — 4C).

i) B/4 4+ C/3) x B3A — 40).

(G) B-CxA.

k) C-AxXB.

O Ax®BxO.

(m)B x (C x A).

(a) Show that the area of a triangle having vectors A and B as two of its sides
is equalto }|A X B|.

(b) Show that the volume of a tetrahedron formed by three vectors A, B, and C
originating from a point is equal to {|A + B X C|.

A triangle is formed by three vectors A, B, and C such that C = B — A and hence

C.C=(B —A) (B — A). Obtain the law of cosines relating C to 4, B, and

the angle between A and B.

The tips of three vectors A, B, and C drawn from a point determine a plane.

(a) Show that (A X B + B X C + C X A) is normal to the plane.

(b) Show that the minimum distance from the point to the plane is

|A-[(A—B) x (A — O]
[(A—B) X (A —C)]
(c) Obtain an equation for the plane in terms of A, B, and C.

(a) In the expression for the differential displacement vector dl in the cartesian
coordinate system given by (1-19a), substitute for x, y, z in terms of the cylin-
drical coordinates r, ¢, z and obtain the expression for dl in the cylindrical
coordinate system.

(b) Repeat (a) by substituting for x, y, z in terms of the spherical coordinates r,
8, ¢ to obtain the expression for 41 in the spherical coordinate system.

(c) The parabolic cylindrical coordinates u, v, z are related to x, y, z as
x = Hu? —v?) y = uw z=1z
Obtain the expression for dl in the parabolic cylindrical coordinate system.

(d) What is the expression for the differential volume dv in the parabolic cylindrical
coordinate system ?
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Derive the relationships listed in Table 1.2 between the different sets of coordinates.

In Fig. 1.33, a point of observation 7" on the surface of the earth is defined by a
spherical coordinate system with the origin at the center of the earth. The spherical
coordinates of T are its distance r, from the center of the earth, its colatitude 85
and its east longitude ¢r. The colatitude is 90° minus the latitude, with south
latitudes being.negative. N is the north pole. A point P in space is now defined
by a coordinate system centered at the point of observation 7. The coordinates
of P in this new coordinate system are the azimuthal angle &, which is the angle
between the great circle path TN and the great circle path TR, where R is the
projection of P onto the earth’s surface, the elevation angle A in the plane 7PR
and the range S. The colatitude and east longitude of R are § and ¢p, respectively.

Fig. 1.33. For Problem 1.7.

(a) Show that
cos # == sin Oy sin B cos (Pr — Pr) + cos Oy cos Oy
(b) Show that
cos @ — cos # cos O
sin # sin O

(¢) Find &, A, and S if T is at Urbana, Illinois (40.069° N latitude, 88.225° W
longitude) and P represents a geostationary satellite parked above the equator
at 50° W longitude. The earth radius r, is equal to 6370 km and the height A
of the geostationary satellite above the earth’s surface is equal to 35800 km.

(d) Find & if T represents Bondbville, Illinois (40.1° N latitude, 88.4° W longitude)
and R is located at Houston, Texas (29.4° N latitude, 95.0° W longitude).
Repeat for the locations of T and R reversed.

cos o =

Derive the expressions listed in Tables i.3 and 1.4 for the dot products and cross
products of unit vectors in the different coordinate systems.
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Derive the relationships listed in Table 1.5 between the components of a vector |

in the different coordinate systems.

Which of the following pairs of vectors are equal?

(a) i, + 2i, + 3i, at (1,2,3) and i, + 2i, + 3i, at (5.6, 9.8, 3.7) in cartesian
coordinates.

coordinates.

© i, +i4 -+ 3i; at 2, /2, 3) and 4/ 21, + 3i, at (3.6, 3m/4, 9.4) in cylindrical
coordinates.

(d) 3i, + /30, — 2iy at (1, #/3, #/6) and 3i, + /3 is — 2i, at (5.4, /6, 7/3) in |
spherical coordinates.

© 3i, + /31, — 2ig at (1, 7/3, #/6) and i, 4 /3y — 2.,/ T i, at (5.4, 7/6, 7/3)
in spherical coordinates.

Show that

@A AxXB - (CxD)=A-0OB-D)— B--C)(A D)

B AXBX(CxD)=(AxXxB-D)C—(AxXxB-:COD.

©AXB) - BxCOX({CxA)=AxB. (2

AAXBXC+BXx(CxA)+Cx(AxXB)=0.

Four vectors are given by

A =i, + 2, + 3i,
B =3i, +2i, +i,
C=i, —2i,+1i,
D = —2i, +i,
Find
@A+B—-C,C—D—-AA+B+4+C+D.
(b) 2A + 3C, A — 3C + 2D.
© |C—D||C—-—D—A|
(d) The unit vector along (C — D — A).
e A-BA-(C—D),B-(C—-D—A).
(f) The cosines of the angles and the angles between A and B, Aand (C — D), B
and (C — D— A).
@ AXB,BXC,CxA AXx(BxC),BX(CxA),Cx(AxB).
(h) The sines of the angles and the angles between A and (B X C),Band (C X A), -
Cand(A X B).
(i) (A x B) - (C x D); verify by using the identity of Problem 1.11(a).
() AXB:D,AXB:-CBXC-A, CxB-.A,
(k) (A x B) X (C x D); verify by using the identity of Problem 1.11(b).
O (AXB):- B x C) X (Cx A); verify by using the identity of Problem 1.11(c).
mAXBXC)+Bx(CxA)+CX(AXB).
(n) The components of C in cylindrical and spherical coordinates.
(0) A vector perpendicular to (A + B) by using a vector product; verify by using
a dot product.
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Let A and B be vectors in the xy plane making angles & and f with the x axis.
With the aid of dot and cross products, prove the following trigonometric identi-
ties:
(@) cos(®t — B) = cos & cos B + sin o sin f3.
(b) sin(e — B) = sin & cos B — cos & sin S.
(c) cos(e + B) = cos & cos B — sin o sin S.
(d) sin(® + B) = sin & cos B + cos a sin .
Write an expression for the component of a vector A along the direction of another
vector B without the use of a coordinate system. Then find the component of
A = 2i, — 3i, + i, along the direction of B = 3i, — i, — 2i,.
Using two vectors in the plane x + 2y + 3z = 3, find the unit vector normal to
that plane.
Show that the equation of the plane passing through the point (x,, ¥, zo) and
normal to the vector ai, + bi, + ci, is

a(x — xp) + b(y —¥o) + c(z —25) =0
For the following scalar functions, describe the shapes of the constant-magnitude
surfaces:
@) T(x,y, z) = x2 + 4y? + 9z2,
(b) U@, §, z) = (cos P)/r. )
© V(. 0,$) = (sinO)r.
Using a spherical coordinate system with the origin at the center of the earth,

write a vector function for the linear velocity of points inside the earth due to its
spin motion. Describe the constant-magnitude surfaces and direction lines.

Using a spherical coordinate system with the origin at the center of the earth,
write a vector function for the force experienced by a mass m in the gravitational
field of the earth. Describe the constant-magnitude surfaces and direction lines.
Discuss the following vector fields with the aid of sketches:

(a) A(xa Vs Z) = (x - 2)ix-

(b) B, @, 2) = r(r — 1)i,.

(C) C(I‘, 0: ¢) = (l/r)i0~

d) D, 6, ¢) = ri,.

Derive the expressions listed in Table 1.6 for the partial derivatives of unit vectors

with respect to the coordinates.

Let r = xi, + yi, + zi, = r.,. + zi, = r,i,, be the position vector of a point P

moving in three dimensions. Obtain the expressions for the velocity v and accelera-

tion a of the point in all three coordinate systems.

(a) A point P moves along a curve in two dimensions such that its coordinates
are given by r = at and ¢ = bz, where a and b are constants. Find the velocity
and acceleration of the point.

(b) A point P moves along a curve in three dimensions such that its coordinates
are given by x = acos wt, y = bsin wt, and z = ct, where a, b, ¢, and @
are constants. Find the velocity and acceleration of the point.
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Verify Egs. (1-63) and (1-64) by expansion in cartesian coordinates.

Find a unit vector normal to the surface 72 cos 2¢) = 1 at the point (/2 , /6, 0)
in the cylindrical coordinate system in two ways: (a) by using two vectors which
are tangential to the surface at that point; and (b) by using the concept of the
gradient of a scalar function.

Find the scalar functions whose gradients are given by the following vector func-
tions:

@) VT(x,y, z) = yzi, + zxi, + xyi,.

(b) VU(x, y, z) = 3x2yz2%, + x322%, + 2x3yzi,.

© VV(r, d,2) = (1/r*)(cos § i, + sin @ iy).

(d) VW(r,0, ¢) = —nr/r+2, where r is the position vector.

Make up a table of gradients of the scalar functions defining the orthogonal sur-
faces in the three different coordinate systems.

Find the component of the unit vector normal to the surface x2 — y2 = 3 at the
point (2, 1, 1) in the direction of the vector joining the point (1, —2,0) to the
point (0, 0, 2).

Find the rate of change of ¥V = x2y + yz2 + zy? in the direction normal to the
surface x2y — yz + xz2 = 5 at the point (1, 2, 3).

Find the equation of the plane tangential to the surface xyz = 1 at the point (}, 4, 8).
Evaluate the following volume integrals:

(a) J xyz dv, where V is the volume enclosed by the planes x =0,y =0, z = 0,
v -
andx +y+z=1.

(b) f —i dv, where V is the volume of a cylinder of radius a with the z axis as
|4

its axis and of length /.

() J- X dv, where V is that part of the volume of a sphere of radius unity lying
14
in the first octant.

Given A = x%yzi, + y2zxi, + z2xyi,, evaluate § A - dS over the following closed

- surfaces:

(a) The surface of the cubical box bounded by the planes

x=0,x=1
y=0,y=1
z=0,z=1

(b) The surface of the box bounded by the planes
x=0,y=0,z=0
x+2y+3z=3

Given A =rcos@i, —rsin @i, in cylindrical coordinates, evaluate § A « dS
over the following surfaces:
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(a) The surface of the box bounded by the planes z = 0, z = /, and the cylinder
r =a.

(b) The surface of the box bounded by the planes x =0,y =0, z =0, z =1,
and the cylinder ¥ = a.

Given A = r2i, + rsin 0 i, in spherical coordinates, evaluate §A - dS over the
following:

(a) The surface of that part of the spherical volume of radius unity lyirg in the
first octant.

(b) The surface of a solid spherical shell lying between r = a and r = b, where
b > a (note that this surface consists of two disconnected surfaces; the normal
vectors to the surfaces must both be chosen to be away from or into the volume
bounded by the surfaces).

For the force vector F = yi, + xi,, find the work done by the force vector from
the origin to the point (r/2, 1,.0) along the following paths:
(@) y=sin2x,z=0.
) y=@n)x? z=0.
©) x= @2y z=0.
(d) Any other path of your choice not necessarily in the z = 0 plane.
A certain vector field is given by
A = a%i, — b%xi,
where a and b are constants. Evaluable [ A - dl from the origin to the point
(1, 1, 1) along the following paths:
@y=x=2z. :
(b) The path givenby y =0,z =0,thenx =1,z =0, andthenx—y—l
() The pathgivenby y =x,z=0,andthenx =y = 1.
(d) The pathgivenby x =0,z =0,theny =1,z=0,andthenx =y = 1.
€ x=y=rz

Given A = xyi, + yzi, + zxi,, evaluate the circulation § A - dI around the con-
tour abcda shown in Fig. 1.34.

.

| E—

b

/ |
Fig. 1.34. For Problem 1.37. x
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1.38  Given A = 2rcos @ i, + ri, in cylindrical coordinates, find:

(@) § A - dl, where C is the contour shown in Fig. 1.35(a).
. )

(b) A-dl+ A . dl, where C, and C, are the contours shown in Fig. 1.35(b).

C1 Ca
Y g
‘ |
1 c
‘ D * AN
0 o \Ja b
(@) (b)

Fig. 1.35. For Problem 1.38.

1.39. Given A = (e~"/r)ipin spherical coordinates, evaluate § A - dl around the contour
abca shown in Fig. 1.36.

X Fig. 1.36. For Problem 1.39.

1.40. Evaluate the following vector integrals:

@) ff dl, where C is any closed path of your choice.
(o}
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(b) ff; dS, where S is the surface of the hemispherical volume of radius a above '
S
the xy plane and with center at the origin.

© f iy dv, where V is the volume of the sphere of radius a centered at the origin.
v

Derive the expression for the divergence of a vector in cartesian coordinates given
by (1-96).

Derive the expression for the divergence of a vector in spherical coordinates given
by (1-97).

Make up a table of divergences of the unit vectors in the three coordinate systems.
Find the divergences of the following vectors:

@ A = x%yzi, + y2zxi, + z2x)i,.

(b) B = 3xi, -+ (y — i, + 2 + 2)i,.

(© C=rcos¢i, — rsin ¢ iy, cylindrical coordinates.

(d) D = (1/r?)i,, spherical coordinates.

© E=r2i, 4 rsinfi,

Using the position vector r = ri, in three dimensions, verify the divergence theorem
by considering a sphere of radius a, and centered at the origin.

Verify your answers to Problem 1.32 by evaluating the appropriate volume ihtegrals
and using the divergence theorem.

Verify your answers to Problem 1.33 by evaluating the appropriate volume integrals
and using the divergence theorem.

Verify your answers to Problem 1.34 by evaluating the appropriate volume integrals
and using the divergence theorem.

For the vector A = yzi, + zxi, + xyi,, use the divergence theorem to show that
fﬁ A - dS is zero, where § is any closed surface. Then evaluate [ A - dS over the
S

following surfaces:
(a) That part of the plane x + 2y + 3z = 3 lying in the first octant.

(b) That part of the cylindrical surface r = 1 lying in the first octant and between
the planes z = 0 and z = 1.

(c) The upper half of the spherical surface r = 1.
(d) That part of the conical surface @ = /4 lying below the plane z = 1.

Derive the expression for the curl of a vector in cartesian coordinates given by
(1-121).

Derive the expression for the curl of a vector in cylindrical coordinates given by
(1-122).

Make up a table of curls of the unit vectors in the three coordinate systems.
Find the curls of the following vectors:

(@) A = xyi, + yzi, + zxi,.
(b) B = yi, — xi,.
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(©) C=2rcos @i, + ri,, cylindrical coordinates.

(d) D == (1/r)ig, cylindrical coordinates.

(€) E = (e~"/r)is.

Discuss the curls of the following vector fields by using the “paddle-wheel” device

and also by expansion in the appropriate coordinate system:

(a) The velocity vector field associated with points inside the earth due to its spin
motion.

(b) The position vector field associated with points in three-dimensional space.

(c) The velocity vector field associated with the flow of water in the stream of
Fig. 1-30(a) such that the velocity varies uniformly from zero at the bottom
of the stream to a maximum at the top surface.

(d) the vector field F = i,.
By expansion in cartesian coordinates, verify

V:VXF=0

VxVrV=0

Determine which of the following vectors can be expressed as the curl of another
vector and which of them can be expressed as the gradient of a scalar:
@) A = yzi, + zxi, + xyi,.
(b) B == xyi, + yzi, 4 zxi,.
(© C=(x%— ydi, — 2xyi, + 4i,.
(d) D = (e /r)iy, cylindrical coordinates.
(e) E = (1/r?)(cos @i, + sin ¢iy), cylindrical coordinates.
(f) F = (1/r3)(2cos 81, + sin #1i,), spherical coordinates.
Verify your answer to Problem 1.37 by evaluating the appropriate surface integral
and using Stokes’ theorem.
Verify your answers to Problem 1.38 by evaluating the appropriate surface integrals
and using Stokes’ theorem.
Verify your answer to Problem 1.39 by evaluating the appropriate surface integral
and using Stoke’s theorem.
For the vector A == yzi, 4 zxi, + xyi,, use Stokes’ theorem to show that
ﬂ;cA + dl is zero, where C is any closed path. Then evaluate { A - dI along the

following paths:

(a) From the origin to the point (1, 7/2, 0) along the curve r = ¢, ¢ = (7/2)¢,
z = sin 7 ¢, in cylindrical coordinates.

(b) From the origin to the point (1,1,1) along the curve x ==,/2 sint,
¥ = ,/2 sint, z = (4/n)t.

(c) From the origin to the point (22.34, 5.68, —6.93) in cartesian coordinates along
any path of your choice.

Use Stokes’ theorem and the divergence theorem to prove that V-V X A =0,
without the implication of a coordinate system.
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From the definition of V¥, show that § VV .dl = 0, where C is any closed path.
[of

Then use this result and Stoke’s theorem to prove that V x VV = 0, without the
implication of a coordinate system.

Find the Laplacians of the following scalar and vector functions:

@ T(x,y,2) = x3yz2,

(®) U(r, ¢, z) = (cos ))r.

© V(. 0,0) =e)r.

d) A(x, ¥, 2) = x2pzi, + xy2zi, + xyzi,.

Derive the expansion for the Laplacian of a vector in cartesian coordinates given
by (1-139).

Derive the expansion for the Laplacian of a vector in cylindrical coordinates given
by (1-140).

Derive the expansion for the Laplacian of a vector in spherical coordinates given
by (1-141).

Verify the general expressions for VV, V- J, V X F and V2V given by (1-144),
(1-145), (1-146), and (1-147), respectively.

By expansion in cartesian coordinates, show that

@ V-UA=A-VU+UV-A

) VXxUA=VUXA+UVXA.

©V:-AxB =B:-VxA—A-.VxB.
dVxAxB)=AV-B—BV-A+B:-V)A—(A:-V)B.





