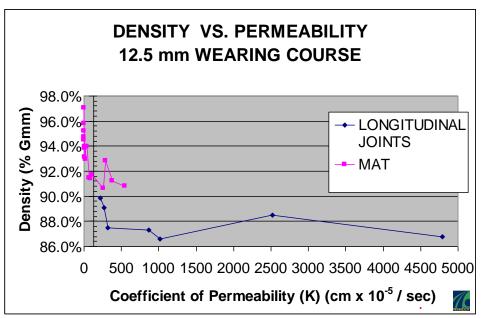

Asphalt Pavement Construction: Best Practices

57th Annual Illinois
Bituminous Paving
Conference
December 12-13, 2016

Effect of In-Place Voids on Life asphalt institute

Enhanced Durability

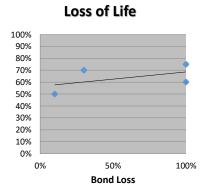
- A 1% increase in field density can increase asphalt pavement service-life +10% (conservatively)
- Today's compaction target is typically 92% of maximum (G_{mm}) (8% air voids),
 - Varying requirements for longitudinal joints
- Increased Density Pavements target a 2% increase across the entire pavement!
 - Just 2% more... makes a huge difference!


NCAT Report 16-02 (2016)

"A 1% decrease in air voids was estimated to improve:

- Fatigue performance between 8.2 and 43.8%
- The rutting resistance by 7.3 to 66.3%
- Extend the service life by conservatively 10%."

Importance of Tack Coats



- Promotes the bond between pavement layers
 - Prevents slippage between pavement layers
 - Vital for structural performance of the pavement
 - All layers working together
 - Seals all transverse & longitudinal vertical surfaces

Loss of Fatigue Life Examples asphalt institute

- May & King:
 - 10% bond loss = 50% less fatigue life
- Roffe & Chaignon
 - No bond = 60% loss of life
- Brown & Brunton
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

7

Everyone MUST be on the same page asphalt institute

What we are talking about:

- Original Emulsion—undiluted emulsion consists of a paving grade binder, water, and an emulsifying agent.
- Diluted Emulsion—an emulsion that has been diluted with additional water.
 - Critical to sprayed control
 - 1:1 typical (Original Emulsion:Added Water)
- Residual Asphalt—the remaining asphalt after an emulsion has set typically 57-70 percent or Original Emulsion

What difference does it make?

If the example spec intended 0.05 gal/yd2 of residual asphalt:

To receive **Residual Asphalt** at **0.05 gal/yd²** using an emulsion with 60% residual asphalt, the contractor would need to apply:

0.083 gal/yd² of Original Emulsion or 0.167 gal/yd² of 1:1 Diluted Emulsion

What is going on and why?

What is going on and why?

What The Worth It To Apply A Tack Coat?

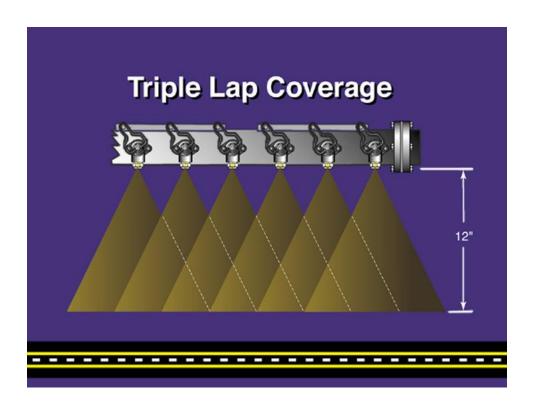
Cost of Tack Coat

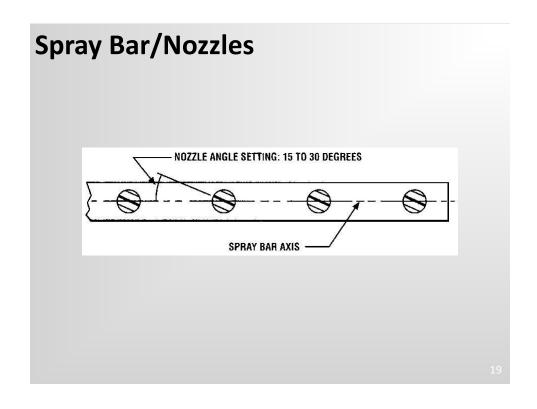
- New or Reconstruction
 - About 0.1-0.2% of Project Total
 - About 1.0-1.5% of Pavement Total Cost
- Mill and Overlay
 - About 1.0-2.0% of Project Total
- About 1.0-2.5% of Pavement Total Cost

Cost of Bond Failure in Only the Top Lift Asphalt institute

- Assume no inflation for materials
- Estimated traffic control
- Used project plans for thicknesses
- Used bid tabs for:
 - Milling
 - Material costs
 - Replaced pavement markings

30-100% of Original Pavement Costs


1


Common Tack Coat Questions asphalt institute

- What is the Optimal Application Rate?
 - Surface Type
 - Surface Condition
- Workshop Recommended Ranges

Surface Type	Residual Rate (gsy)	Appx. Bar Rate Undiluted* (gsy)	Appx. Bar Rate Diluted 1:1* (gsy)
New Asphalt	0.020 - 0.045	0.030 - 0.065	0.060 - 0.130
Existing Asphalt	0.040 - 0.070	0.060 - 0.105	0.120 - 0.210
Milled Surface	0.040 - 0.080	0.060 - 0.120	0.120 - 0.240
Portland Cement Concrete	0.030 - 0.050	0.045 - 0.075	0.090 - 0.150

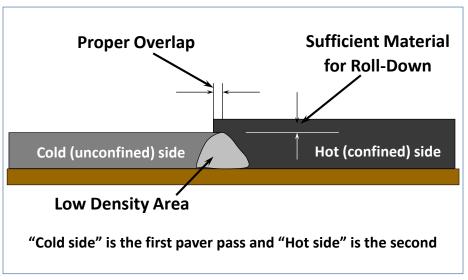
*Assume emulsion is 33% water and 67% asphalt.

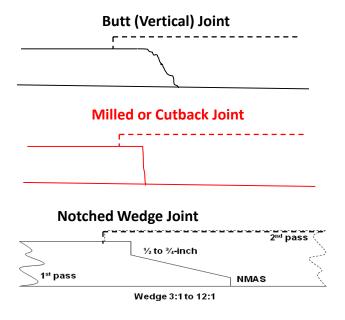
Common Tack Coat Question

- When to Re-Tack?
 - Tracking
 - Contamination

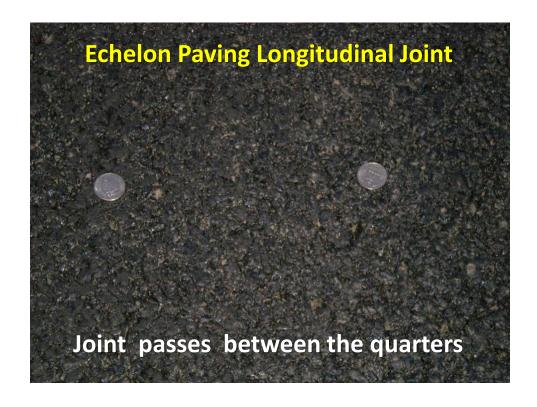
If in doubt ... Re-Tack

How To Build a Longitudinal Joint?



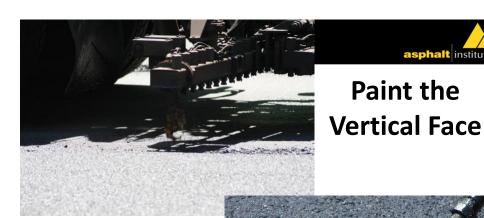


Longitudinal Joint Definitions asphalt institute


Unsupported Edge Will Have Lower Density

Different Types of Longitudinal Joints asphalt institute

First Pass Must be Straight



- Don't delivery segregated mix to the joint area
- Use auger & tunnel extensions

asphalt institute Paint the

Good: Double Tack with Emulsion Better: PG Binder

Best: Joint Adhesive

- Overlap By 1-inch +/- 1/2
- If milled or cutback joint, then 0.5-inch
- Keep end plate flat
- Set automation to NEVER STARVE THE JOINT!
- Joint Matcher best (versus ski) to match exact amount of material needed at joint

Mill & Pave One Lane at a Time

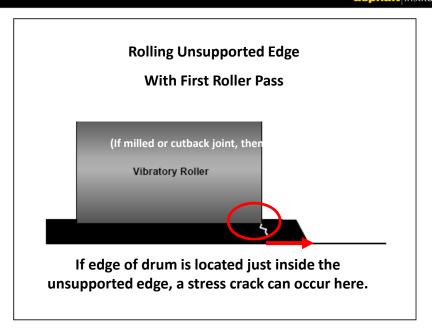
Do NOT Rake Away From the Joint asphalt institute

Rolling Unsupported Edge?

Option 1
Hang over 4-6"

Roller

2nd Pass hang over 4"-6"


Roller

Roller

Pass 4"-6" inside

4"-6"
Roller

What We Don't Want

Rolling the Confined Edge: asphalt institute

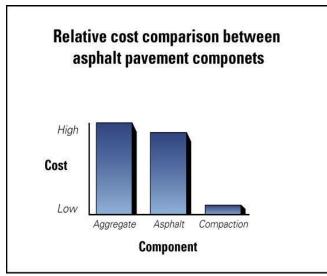
1st pass all on hot mat with roller edge off joint approx 6-12 inches

IDOT Joint Sealer

Licensed Subcontractor ≈ 11 Trucks

Also Works as a Tack Coat

Improved Durability


Balance the Mix Design

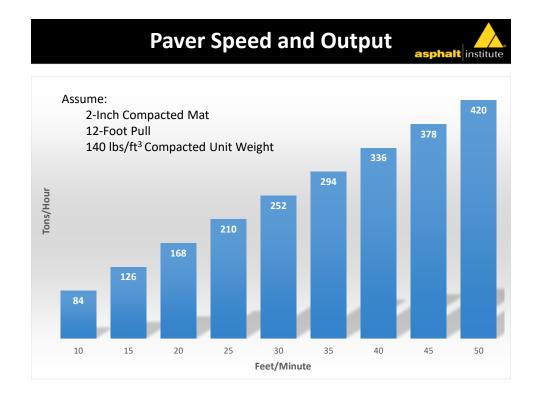
DON'T ATTACK ONE HALF AT THE EXPENSE OF THE OTHER HALF!!

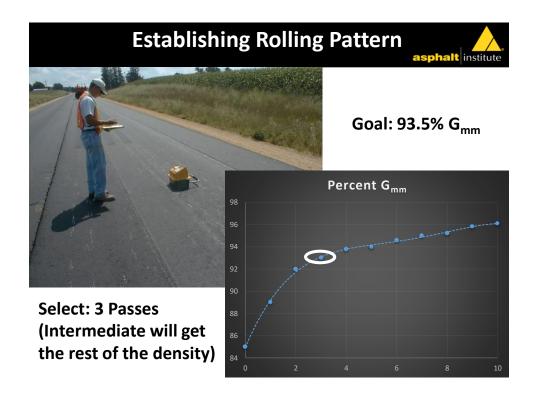
Cost of Compaction

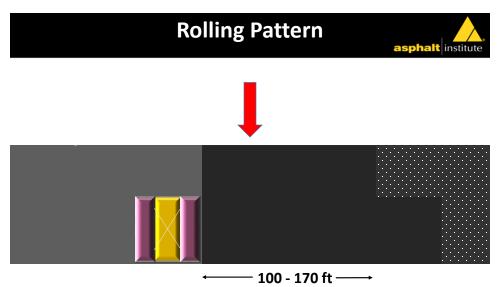
- Least expensive part of the paving process
- Aggregates and binders are expensive in comparison
- Compaction adds little to the cost of a ton of asphalt

52

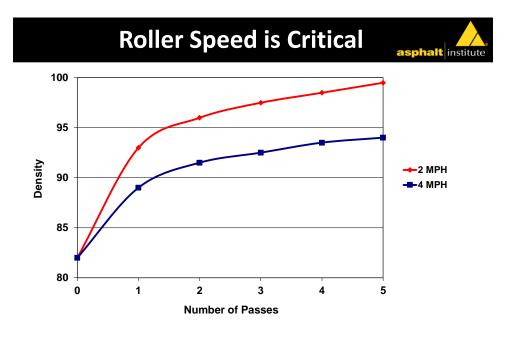
Lift Thickness' Effect on Compaction


- Aggregates need room to densify
- Too thin vs. NMAS leads to:
 - Roller bridging
 - Aggregate lockup
 - Aggregate breakage
 - Compaction Difficulties
- NCHRP Report 531 (2004)
 - Fine Graded Mix—Min Thickness = 3 X NMAS
 - Coarse Graded Mix—Min Thickness = 4 X NMAS
 - SMA Mix—Minimum Thickness = 4 X NMAS


Material Cooling



- Thicker = More Time for Compaction
- Free tools for estimating compaction time
 - PaveCool—single lift (generation 1)
 - PC
 - iOs App
 - Google App
 - MultiCool—multiple lifts (generation 2)
 - PC
 - Google App
 - Mobile Web



- Roller width should overlap 6 inches
- Odd number of passes to advance
- Repeat uniformly

Slower = More Compaction/Pass

Vibratory Rollers - Amplitude

- Amplitude too high
- Travel speed too fast
- Vibrating cool mat
 - Roll closer to paver
- Damaged gutter
 - Roll along interface

60

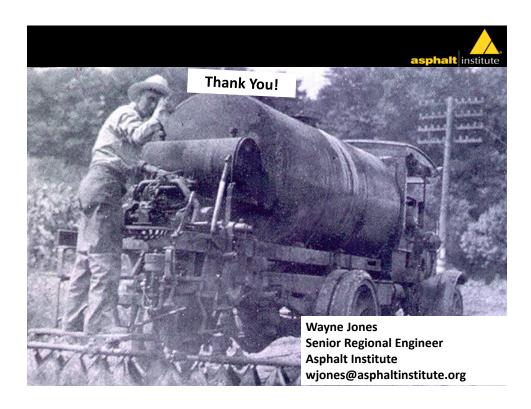
Drum Impacts per Foot

Frequency	2 MPH	3 MPH	4 MPH	5 MPH
2000 vpm	11.36	7.58	5.68	4.55
2200 vpm	12.50	8.33	6.25	5.00
2400 vpm	13.64	9.09	6.82	5.45
2600 vpm	14.77	9.84	7.39	5.91
2800 vpm	15.91	10.61	7.95	6.36
3000 vpm	17.05	11.36	8.52	6.82
3200 vpm	18.18	12.12	9.09	7.27
3400 vpm	19.32	12.88	9.66	7.72
3600 vpm	20.45	13.64	10.22	8.18
3800 vpm	21.59	14.39	10.80	8.63
4000 vpm	22.72	15.16	11.36	9.10

Additional Vibratory Rollers

Maximizing Our R.O.I.

- Infrastructure loads continue to rise
- Budget availability continues to fall
- Increased pavement life can be economically achieved
- Research shows a 10% increase in pavement life can be achieved by increasing compaction by 1%.


What would a 3% increase in compaction do for our industry?

www.asphaltinstitute.org

Constructing Quality Pavements
March 28th
NIU Naperville Campus
PDH 7.5

Airport Pavement Technical Workshop
April 25-27
Chicago, IL
PDH 22

