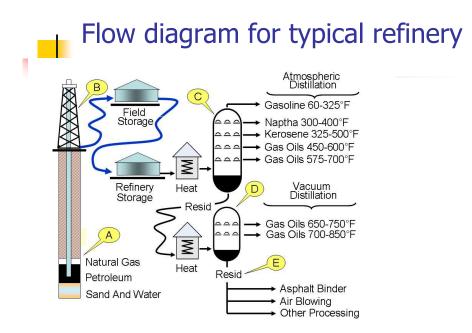
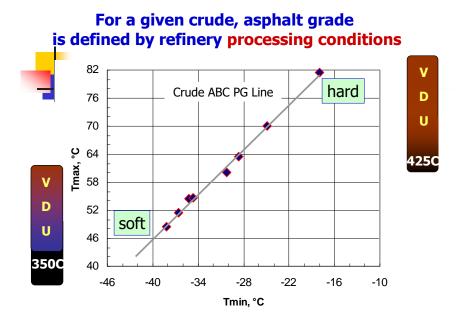
Binder Modification to soften Grades


John D'Angelo D'Angelo Consulting, LLC johndangelo@dangeloconsultingllc.com

Demand for soft grades of Binder

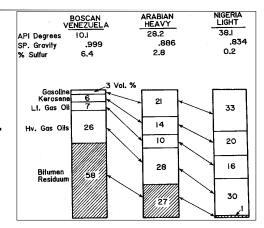
- There is an increased demand for softer grade asphalt binders such as PG 58-28, 52-34.
 - Increased RAP usage
 - Use of RAS
 - Increased demand for improved low temperature grades to reduce cracking.
- Limits on the availability of crudes to produce softer grade straight binders.

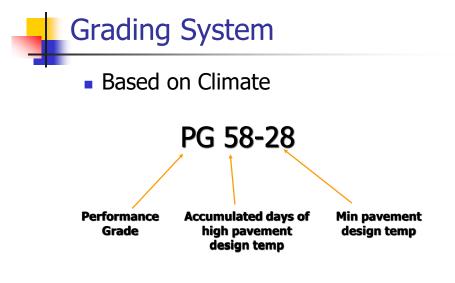

Definition - Asphalt

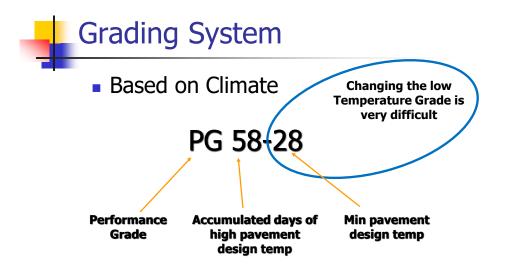
A high molecular weight, thermoplastic hydrocarbon constituent, found in a large number of petroleum crude oils. Although some asphalts do occur naturally, asphalt as we know it, and as discussed herein, is derived from fractional distillation of petroleum crude oil.

UTI of Performance Grade Asphalts

- A PG 64-22 would have a UTI of 86 C°
- A PG 58-28 also has a UTI of 86 C°
- If we needed a PG 76-22, which has a UTI of 98 C° how is this accomplished?
- As a "rule of thumb", to achieve a UTI of >92 C°, or 86 C° V or E Grade MSCR the asphalt has to be "modified".
- Depending on crude source, some binders with more narrow UTI's of 86 and 89 C° may also require modification


Puzic 2005




- Refinery output driven by
 - Crude source
 - Refinery configuration
 - Economics

 Different crude oils will produce different asphalt binders with different properties.

Softening agents

- There are limited ways to produce asphalt binder with lower, low temperature grades.
 - Heavy Vacuum Gas Oils
 - Tall Oils
 - Aromatic Oils
 - Recycled Oils
 - Bio Oils
- Most are expensive and have limited effect

Component makeup of the 2 asphalt binders

<u>Property</u>		rty Test Method		<u>AC 2</u>
	Basic C	composition: As R	eceived	
Ash, %		AASHTO T 111	0.04	0.06
Solubility, %		ASTM D 2042 99.98		99.94
	Asphaltenes		14.9	14.2
Component	Polar Aromatics	ASTM D 4124, SARA Fractions by latroscan	39.7	39.7
Fractions, %	Naphthene Aromatics		34.6	36.9
	Saturates		10.8	9.9

Change in SARA with aging and RAP

DATA / RESULTS:

		ASTM	RESULTS: Sample ID / #						
Prop	perty	Test Method	-01	-02	-03	-04	-05		
. ,		Test Method	4362 Original	4362 RTFO	4362 PAV	4362 Double PAV	CS-1 Top		
	Asphaltenes		16.6	19.6	23.4	26.2	23.9		
Component	PA's	D 4124	49.5	46.9	43.7	43.1	48.8		
Fractions, %	NA's	by latroscan	22.4	22.0	21.5	19.6	15.9		
	Saturates		11.5	11.5	11.4	11.1	11.4		

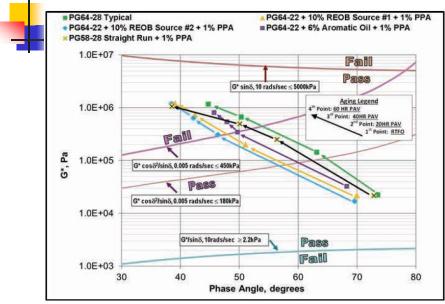
		ACTM	RESULTS: Sample ID / #						
Prop	perty	ASTM Test Method	-06	-07	-08	-09	-10		
			CS-1 Bottom	CS-1 Top PAV	CS-1 Bottom PAV	CS-4 Top PAV	CS-4 Bottom PAV		
	Asphaltenes		25.5	29.4	30.2	28.4	30.3		
Component	PA's	D 4124	47.4	47.1	46.8	46.8	45.6		
Fractions, %	NA's	by latroscan	15.7	12.8	12.4	13.5	13.3		
	Saturates		11.4	10.7	10.6	11.3	10.8		

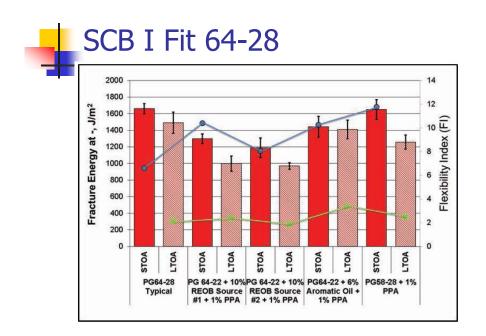
Recovered Binder after APWS

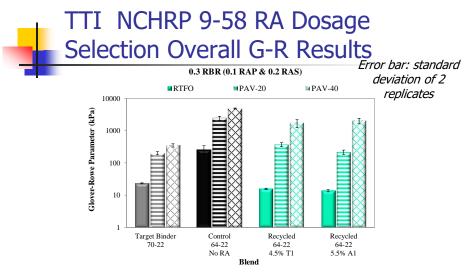
True Performance Grade After APWS Before APWS Before APWS After APWS 100 80 87.4 75.7 69.3 60 66.3 Temperature, °C 40 20 0 -20.13 -22.63 -24.8 -20 -27.8 6% EcoAddz Control -40

VTAE affects on binder grade and aging

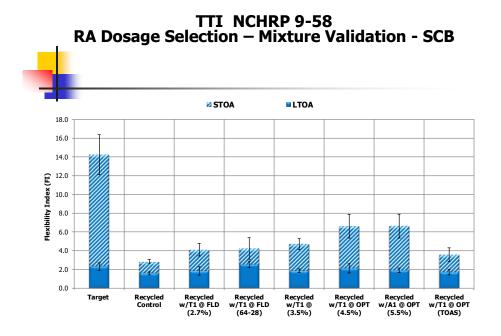
Lab Blends %	AASHTO M 320, Table 1, PG continuous grade & Difference between S and m grade temperature						
	0	2	4	6	8	20	
PG 64-22 1 w/VTAE 1	67.3-26.2	68.3-25.0	64.9-26.5	64.2-27.6	62.6-26.5	55.6-26.6	
Difference Between S & m grade	-1.5	-4.6	-3.6	-3.7	-6.9	-15.2	
PG 64-22 1 w/VTAE 2		65.9-24.8	66.0-25.7	65.6-25.9	64.9-27.6	61.5-26.0	
Difference Between S & m grade		2.2	-4.6	-5.7	-4.5	-9.8	
PG 64-22 2 w/VTAE 1	66.5-25.9	64.7-26.7	63.9-27.2	62.6-28.1	61.0-27.4	55.8-29.8	
Difference Between S & m grade	0.2	-0.5	-1.8	-2.5	-4.8	-7.9	
PG 64-22 2 w/VTAE 2		65.5-26.0	64.3-27.1	63.9-27.7	63.3-27.3	60.1-31.0	
Difference Between S & m grade		-3.7	-4.3	-5.7	-4.5	-12.1	


Blends Continuous Grades Original and Recovered


		RESULTS Recovered Binder					
	Mix with 5% RAS						
PROPERTY		0.5% Antistrip:					
	Contro		VTAE				
	Contro		8%	16%	24%		
 AASHTO M 320 SUPERPAVE™ Binder Grade, PG:		5	70-22	70-22	70-22		
Continuous Grade	79.7-21	4 74	.3-24.8	73.8-23.2	74.4-23.6		
Difference Potween C. 9. m. grade	_	4.3	-5.4	-12.	6 -14.4		
Difference Between S & m grade		т. Ј	5.1	12.			
Lab Blends %	AASHTO N	4 320,	Table 1	, PG contin en S and n	uous grade		
	AASHTO N	4 320,	Table 1 te betwee temper	, PG contin en S and n	uous grade		
	AASHTO I & Dif	M 320, ferenc	Table 1e betweetemperTAE6%0	, PG contin en S and n ature 6 VTAE &	nuous grade n grade		
Lab Blends % AASHTO M 320 SUPERPAVE™	AASHTO I & Dif	4 320, ferenc 6% V	Table 1e betweetemperTAE6% 0220-61	, PG contin en S and n ature % VTAE & 0.5% AS	10% VTAE		


Study Walaa Mogawer UMass

Binder	Modifier (s)	Continuous Grade	Performance Grade
PG64-28	Unknown - Typical Binder	CG 65.6-29.4	PG64-28
PG58-28	1% PPA	CG 67.0-29.1	PG64-28
PG64-22	2% REOB Source #1 + 1% PPA	CG 72.0-26.1	PG70-22
PG64-22	6% REOB Source #1 + 1% PPA	CG 67.7-27.4	PG64-22
PG64-22	10% REOB Source #1+ 1% PPA	CG 64.4-29.8	PG64-28
PG64-22	13% REOB Source #1 + 1% PPA	CG 61.6-30.4	PG58-28
PG64-22	18% REOB Source #1 + 1% PPA	CG 58.8-32.0	PG58-28
PG64-22	8% REOB Source #2 + 1% PPA	CG 64.5-28.8	PG64-28
PG64-22	10% REOB Source #2 + 1% PPA	CG 63.8-29.6	PG58-28
PG64-22	6% Aromatic Oil + 1% PPA	CG 66.9-30.0	PG64-28
PG64-22	10% Aromatic Oil + 1% PPA	CG 61.4-32.3	PG58.28


Glover Rowe Cracking Criteria

Target Binder \leq Recycled Blends @ opt RA < Recycled Blend no RA

- Producing Softer PG binders generally not economical.
- Multiple additives available to soften binders.
- Each has advantages and limitations.
- Significant Engineering is needed to optimize performance.

12/13/2016

