I-FIT: Improve Your Mix Durability

Thomas Bennert, Ph.D. Rutgers University, NJ

> 57th Illinois Bituminous Paving Conference December 12th-13th, 2016 Champaign, Illinois

Acknowledgements

- Eileen Sheehy, former Chief of Materials Bureau of NJDOT
- Paul Hanczaryk, current Chief of Materials Bureau of NJDOT
- Robert Blight and Susan Gresavage, NJDOT Pavement Design and Management
- Rutgers Laboratory Staff
 - Ed Wass Jr., Ed Haas, Chris Ericson, Brett DiFrancesco

Presentation Overview

- Introduction NJ's Interest
- Validation Work Field Performance Comparisons
 - FHWA ALF
 - Newark & JFK International Airports
 - Comparison to Overlay Tester
- Future Implementation
 - NJDOT Performance-Related Specifications
 - Port Authority of NY/NJ Runway Mixtures
 - Industry Usage
- Final Thoughts

NJ's Durability Issues

- No new pavements being built mostly all rehab work.
- Pavement life through rehab projects
 - NJ highways generally stiff structures from continual overlays
 - Mill 2", Pave 2" 7 to 8 years
 - Mill 2", Pave 4" 8 to 9 years
 - Composite Pavements 4 to 6 years
 - Over 50% of NJDOT network is composite (HMA/PCC)
- Predominant pavement distress = top-down longitudinal cracking
 - Reflective cracking in composite pavements
 - Current mixtures are dry and stiff
- Reason for NJ's Performance Related Specifications (PRS)
- In addition, industry pushing for higher recycled asphalt contents
 - RAP up to 40%
 - RAS conversation has started

NJ's Durability Issues

- NJDOT utilizes the Overlay Tester (OT) for asphalt mixture durability evaluation for PRS
 - Good success with OT to date, but always comes with industry complaints
 - Repeatability (variability)
 - Equipment expense
- Looking for a potential test that provides same ranking/correlation to field performance, yet something less expensive or could be conducted on common equipment

I-FIT Validation Work for NJDOT

NJ's I-FIT Validation Work

- Examples of some of the validation work to date
 - FHWA ALF Experiment on Recycled Asphalt
 - PANYNJ's Airfield Durability
 - I-FIT to Overlay Tester Correlation
 - Resultant Proposed Criteria

FHWA Accelerated Loading Facility (ALF)

- ALF Loading Conditions
 - Controlled 20°C @ 20mm depth
 - Loading only in one direction
 - Lateral wander
 - 425 Super Single Tire
 - 100 psi inflation
 - 14,200 lb load

FHWA Accelerated Loading Facility (ALF)

	ALF Lane	% R	BR	Virgin	WMA	
Re-running		RAP	RAS	Binder PG	Process	
	1	0	-	64-22	-	
	2	2 40 - 58-2		58-28	Water	
	3	-	- 20 64-22		-	
	4	20	-	64-22	Chemical	
	5	40	-	64-22	-	
Re-running	6	20	-	64-22	-	
	7	-	20	58-28	-	
	8	40	-	58-28	-	
	9	20	-	64-22	Water	
	11	40	-	58-28	Chemical	

FHWA Accelerated Loading Facility (ALF)

- Cracking performance measured and quantified in two indices
 - Number of cycles until 1st Crack observed
 - Cracking Rate

FHWA Accelerated Loading Facility (ALF)

- Question: How well do asphalt mixture and binder tests correlate to field measured fatigue performance?
 - RAP, RAS, WMA
- 10 cores taken from each lane
- Mixture and binder testing conducted on bottom 2 inches of field core to minimize surface aging

SCB FI vs Cycles to 1st Crack

SCB FI vs Cracking Rate

SCB FI (Mixture) vs Glover-Rowe (Binder)

SCB FI (Mixture) vs DENT CTOD (Binder)

FHWA ALF Conclusions

- I-FIT provided best ranking to field cracking
 - Good correlation to both
 - # of cycles to 1st crack
 - Cracking rate
 - Also evaluated Overlay Tester and LTRC SCB
- I-FIT results also ranked well with binder "fatigue" testing
 - DENT CTOD & Glover-Rowe parameters
 - Potential to include both in specifications
 - Binder "fatigue" test for a PG Plus purchase specification
 - I-FIT for QC/QA mixture test

PANYNJ – Newark and JFK Runway Fatigue Cracking

- Evaluate different runway P401 mixtures for their respective fatigue cracking performance
 - 6 different mixes (1 seal coated so eliminated from analysis)
 - Different asphalt binders
 - Different field performance
 - 3 years performing poorly
 - 15 years performing well
- "Fatigue" asphalt binder testing
- Mixture fatigue cracking tests
- Ultimately can we find a binder parameter for purchase specification and mixture specification for Quality Control to promote durable asphalt mixtures

PANYNJ Field Observations

- No rutting
- Longitudinal and transverse cracking observed
- Cracking top-down
 - Stops approximately 0.5" to 0.75" below surface

Newark and JFK Mixture Info

Runway	Binder Type	Supplier	Visual Observations	Aggregate Type	Date Placed (Age)	
EWR 11-29	PG76-22 (PG64-22 +	Mt. Hope, Tilcon B	Not performing well;	Crusing	9/20/2008	
(Core Set 1)	7% Vestoplast)	Plant	Excessive cracking	Gneiss	(6 Yrs, 9 Months)	
EWR 11-29	PG76-22 (PG64-22 +	Mt. Hope, Tilcon B	Not performing well;	Caralan	8/9/2008 (6 Yrs, 10	
(Core Set 2)	7% Vestoplast)	Plant	Excessive cracking	Gneiss	Months)	
JFK 4R-22L	0.076.00	Willets Pt Asphalt,	Performing well; No	Trap Rock (from	9/5/2002 (12 Yrs, 9	
(Core Set 3)	PG76-22	Flushing, NY	cracking	Tilcon, Haverstraw)	Months)	
JFK 4L-22R	DC76 30	Willets Pt Asphalt,	Performing well; Very few	Trap Rock (from	6/4/2000 (1E V)	
(Core Set 4)	PG/0-28	Flushing, NY	cracks	Tilcon, Haverstraw)	0/4/2000 (15 Yrs)	
JFK 4L-22R	Mt. Hope Rock		Performing well; some	Crusies	C /4 /2000 (15)()	
(Core Set 5)	PG76-28	Products, Flushing NY	cracking	Gneiss	6/4/2000 (15 Yrs)	

Runway	Asphalt Content	QC Air Voids	QC VMA	QC VFA	Eff AC by Vol (%)	Stability (lb)	Flow (0.01")	% Finer #200	In-Place Voids (%)
EWR 11-29 (Core Set 1)	5.4	3.4	15.8	78.8	12.4	2723	11.8	4.5	5.5
EWR 11-29 (Core Set 2)	5.3	3.5	15.9	77.9	12.4	3056	11.0	3.9	5.2
JFK 4R-22L (Core Set 3)	5.1	4.9	17	71.1	12.1	3255	13.8	4.4	5.0
JFK 4L-22R (Core Set 4)	5.0	4.6	17	72.9	12.4	2606	13.3	4.8	4.1
JFK 4L-22R (Core Set 5)	5.1	4.6	16.4	72	11.8	3274	14.5	3.7	4.6

Semi-circular Bend (SCB) Flexibility Index (FI) – Corrected for Thickness

PANYNJ Newark and JFK Cores

- I-FIT clearly showed difference between good and poor performance
 - I-FIT > 7.0 correlated with good fatigue performance for airport runways in NJ/NY area
- Paper at TRB (TRB Paper 17-06277)

I-FIT Correlation with Overlay Tester

- NJDOT relies on the Overlay Tester for Performance Related Specifications (PRS)
- NJDOT evaluating the potential use of the I-FIT for either;
 - Guide for asphalt industry on how well their asphalt mixtures will perform in the Overlay Tester; and/or
 - 2. Replacing the Overlay Tester within their PRS

I-FIT Correlation with Overlay Tester

- Developing a database on various projects where Overlay Tester and I-FIT are being used
- Separating comparisons between
 - Plant Mixed, Lab Compacted (PMLC)
 - Reheated then compacted
 - Compacted immediately after sampling
 - Plant Mixed, Field Compacted (PMFC)
 - Lab Mixed, Lab Compacted (LMLC)

All Data

- Grouping results by ALL conditions show a "moderate" correlation
- Specimen condition type results in better correlations
- Individual projects even better

Plant Mixed, Lab Compacted (Reheated)

- Compacted specimen before cutting varied from 77 mm to 120 mm
- Final specimens cut to 50 mm

Plant Mixed, Field Compacted (Cores)

 Final specimen thickness' ranged between 35 mm cut to 50 mm

Overlay Tester to I-FIT Correlation

- Relationship appears dependent on specimen fabrication method
- Adopting criteria for QC/QA may need to take into consideration different values based on specimen fabrication type

Future I-FIT Implementation in NJ

NJDOT's Performance Related Specifications – Example: HRAP

- NJDOT utilize PRS for a number of different performance based mixtures
- Most popular is the High RAP (HRAP)
- Fatigue performance (Overlay Tester) requirements dependent on traffic and location in pavement
 - For Plant Produced, Lab Compacted
 - OT 150 cycles ≈ I-FIT 7.0

	Requirement					
	Surface	Course	Intermediate Course			
Test	PG 64-22	PG 76-22	PG 64-22	PG 76-22		
APA @ 8,000 loading cycles (AASHTO T 340)	< 7 mm	< 4 mm	< 7 mm	< 4 mm		
Overlay Tester (NJDOT B-10)	>150 cycles	> 175 cycles	> 100 cycles	> 125 cycles		

NJDOT's Performance Related **Specifications – HRAP Low/Med Traffic**

Port Authority of NY/NJ (PANYNJ) **Runway Mixtures**

- Starting 2017, PANYNJ will include I-FIT (AASHTO TP124) during QC
- Loose mix sampled at plant and compacted
- Specimens brought back to PANYNJ labs for prep and testing
- Initial criteria
 - I-FIT > 8.0

dard Method of Test for Determining the Fracture Potential sphalt Mixtures Using Semicircular Bend Geometry (SCB) at of Asphalt Mixtures Using Semicircular Bend G Intermediate Temperature AASHTO Designation: TP 124-16

AASHO

- This test m

REFERENCED DOCUMENTS

ease: Group 3 (August 2016)

SCOPE

- T 166, Bulk Spe
- Gravity (Grou) and Density of Hot Mix Asphalt (HH d Dense and Open Asphalt Motures alt Mixtures to Mix-
- - D3549/D3549M, Standard

I-FIT for HMA Supplier Guidance

- Most common complaint of PRS by asphalt suppliers is equipment availability
- Most plants still have Marshall equipment
 - TSR's
 - FAA work
- Proposing the use of Marshall equipment for I-FIT evaluation

SCB Using Marshall Machine

SCB Using Marshall Machine

I-FIT: Servo-Hydraulic (MTS) vs Screw Machine (Pine Marshall Machine)

- Developing database to validate use of Marshall machine for I-FIT.
- Total cost of equipment investment approximately \$500

Final Thoughts

- HMA Durability is a nationwide crisis
 - Function of binder properties, mix design, volumetrics, aging, field conditions, etc.
- Currently a need exists for a reliable mixture cracking test that correlates to field performance
 - Mixture design (PRS, Balanced Mix Design)
 - QC/QA
- I-FIT shows great potential
 - Correlates to observed field performance
 - Correlates to current Overlay Tester results (NJ conditions)
 - Less expensive than conventional equipment
 - Marshall machine potential

