What's in Your Binder? And What Happened Last Summer With This Shortage?

Presented by: Bob Berkley

Executive Director

The Association of Modified Asphalt Producers

I was also asked to mention...

What would effect availability of AC next year?

- Hopefully nothing will effect supply next year.
- The world economy will not shock the financial markets—we have been shocked already
- If anything effects availability, it would be
 - OPEC dramatically lowering production
 - Extended war or terror activities
 - Low fuel prices
- How does addition of cokers effect asphalt supply?
 - We will talk about that
- What do different crudes mean to asphalt supply?
 - We will talk about that also

What's in your binder?

Depends on:

- PG Grade
- Crude source
- Anti-strip additives
- Supplier
 - Haulers/truckers
- Modifier (if modified)
 - Cross linking agents

What's in your binder?

– PG Grade

- Crude source
- Anti-strip additives
- Supplier
 - Haulers/truckers
- Modifier (if modified)
 - Cross linking agents

- Generally speaking, PG grades with a performance temperature "window" of 86 degrees Celsius or less, will be a neat asphalt.
- Some "robust" asphalt binders such as PG 70-22 can still be neat.
- To obtain the higher performance temperature windows, the supplier will modify the neat asphalt in some way

Crude Source and Asphaltenes

All Crudes Are Not Equal-

One difference is % of asphaltenes

- In the past, neat AC's high in asphaltenes were considered best for paving. However, when producing modified binders, a high asphaltene content of 30% or more is less desirable due to less compatibility between the neat asphalt and Styrene/Butadiene modifiers
- In Illinois, you are getting asphalts supplied to your refiner from Canada, Mexico, US and South America
- Your refiner knows the nature and chemistry of each of its sources and produces asphalt to the state specs

Crude Sources, continued

- The source of the crude and how it effects the binder is important but....
 - Refineries are built to run certain type crudes
 - Refineries operate principally to manufacture fuels, not asphalt
 - It makes sense that the oil companies are going to try to refine the crude oil offering more fuel without regard to asphalt byproducts
 - Most refineries receive their crude from pipelines from many different oil fields, but know the nature and chemistry of each crude source
- The asphalt supplier must produce a binder that is within the state specifications

Cokers from Richard Holmgreen, ConocoPhillips

- Cokers reduce the amount of asphalt that will be made
- The economy will dictate asphalt production
 - Price of fuels
 - Healthy profits in fuels will cause refineries to run at efficiencies that may "overrun" a coker and that will add asphalt to the market
 - Low profits cause refineries to slow production less asphalt but demand unchanged
 - Some companies that utilize cokers at the refinery also continue to manufacture asphalt
- Having said all that, "Our industry is as uncertain as I have ever seen it in my 40 plus years."

What's in your binder?

- PG Grade
- Anti-strip additives
- Crude source
- Supplier
 - Haulers/truckers
- Modifier (if modified)
 - Cross linking agents

- Anti-strip agents
 are surfactants capable of modifying the interfacial aggregate to bitumen
- They must satisfy three requirements
 - To improve adhesion
 - To be heat stable
 - Must not change the performance of the binder (change PG grade)

Anti-Strip Agents

- From Institute of Scientific Technology,
 French Study
 - For polymer-modified asphalt mixtures, increasing the dosage of liquid anti-strip additives did not improve resistance to moisture susceptibility. On the basis of the investigation, lower dosages of liquid anti-strip additives are recommended for polymermodified asphalts than would be required for straight asphalts

Supplier

- PG Grade
- Crude source
- Anti-strip additives
- Supplier
 - Haulers/truckers
- Modifier (if modified)
 - Cross linking agents

- Supplier must produce to the specifications and
 - Will choose its own modifier
 - Have rheology lab and pass various agency specifications
 - Have adequate and proper storage
 - Provide proper heat to finished products
 - Have proper screens and filters in piping

Haulers/truckers

- Tanker transport trucks moving binder from refinery/supplier to plant must be monitored
 - To check what material was in the tanker prior to loading the binder
 - ACs on top of emulsions—temperature and water
 - Cutbacks leaving residue on side of tanker
 - To insure there is no material left in the tanker from last load
 - A 5,000 gallon load of PG 82-22 on top of 2-3 inches of left over PG 64-22 from last load will probably put the entire load out of spec.

What's in your binder?

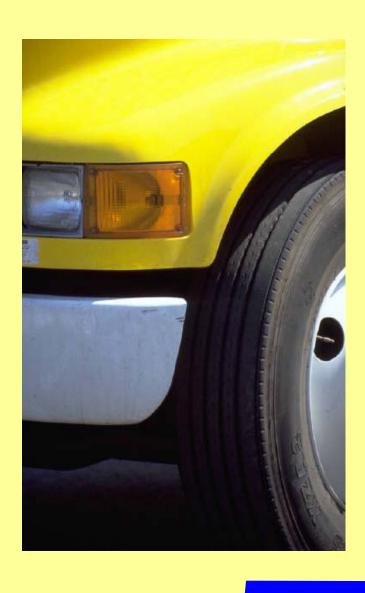
- PG Grade
- Anti-strip additives
- Crude source
- Supplier
 - Haulers/truckers
- Modifier (if modified)
 - Cross linking agents

- Generally speaking, most modified asphalt binders are modified with a styrenebutadiene type rubber
- Cross-linking agents
- But this category of modifier is not the only modifier that can be used
- This past summer, there was a serious shortage of SBS modifiers—and it could happen again
- Here is what you need to know about the shortages

Why was SBS in Short Supply?

- Styrene-Butadiene-Styrene (SBS) polymer capacity is not short
- Shortage of raw materials
- Ethylene production is the problem

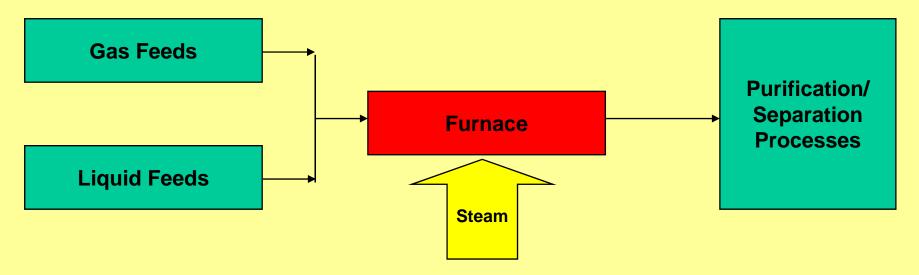
Why is Ethylene Production the Problem?


By-products of Ethylene Production

- Styrene
- Propylene
- Butadiene
- Isoprene
- Pentadiene
- Cyclopentadienes
- Aromatic Resin Formers
- Isobutylene
- Amylenes
- Hydrogen
- Benzene

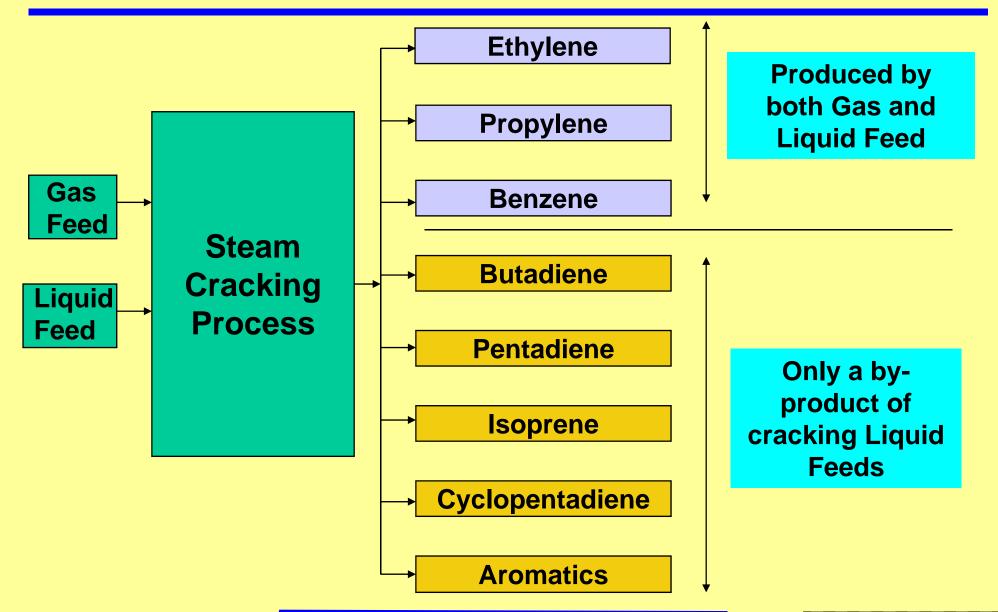
Ethylene & Butadiene Market Comparison

Ethylene Market


- 120 million tons per year
- Primary use packaging materials
 - Plastic wrap
 - Trash bags
 - Milk jugs

Butadiene Market

- 14 million tons per year
- Primary use tires (70%)
- Multiple other automotive and durable good uses
- SBS polymer for asphalt (6%)


How Is Ethylene Made?

- Basic ethylene production technology is called a steam cracking process
 - Process heats feed up to 1700 degrees, then injects steam that cracks the molecules
 - Cracker unit cost \$2 billion
- Choice between gas feeds like ethane, propane and butane and liquid feeds like naphtha and gas oils.
- Output is a mixture of ethylene and other products
- Requires a downstream purification processes to separate products

What's Important to Know About Ethylene Production

Ethylene General Trends

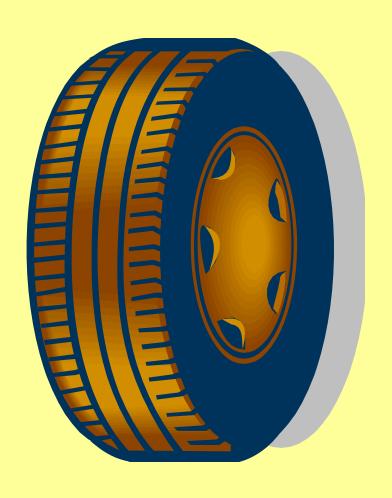
- Significant ethylene capacity additions in Middle East and Asia
 - Most of the Middle East is gas cracking
 - Most of Asia is liquid or naphtha cracking
- Little to no capacity additions in Western World
- Naphtha is short globally and expected to priced higher like gasoline until more refineries are built ~2012
- New trend for ethylene units outside of US to be more flexible to be able to run more gas feeds
 - Historically have been naphtha crackers
- Expect more flexible cracking; hence, more variable
 Butadiene supply

Butadiene (Bd) Supply

- Globally tight due to lighter cracking and higher demand
 - 2008 Bd supply estimated at 75-85% of 2007
- New Bd and ethylene capacity due on-stream in Asia
- Expected capacity utilization to be lower than 90% for the foreseeable future
- Regional differences
 - US crude Bd supply tight due to light cracking in first half
 - US has excess purification capacity and buys crude Bd from Europe to fill capacity
 - Europe tight on supply due to somewhat lighter cracking; thus, less crude Bd to export to US
 - New Asian capacity needs to catch-up with demand

What Factors Will Influence Supply?

Positive

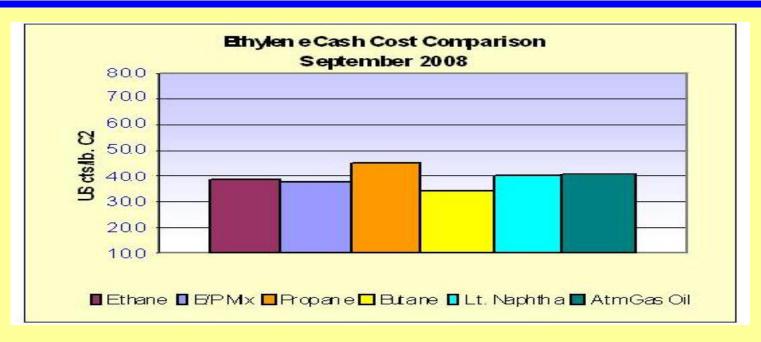

- New capacity
- Bd pricing itself out of some applications
- High gas prices:
 - Less driving mean fewer replacement tires
 - Smaller vehicles/smaller new car tires
- Slowing economy; less growth

Negative

- Higher natural rubber prices driving consumers to synthetic rubbers based on Bd
- Lighter cracking
 - Higher naphtha prices
 - Structural change in US ethane market
- Low cost gas-based ethylene capacity coming on-stream in Middle East.

Tire Demand Data

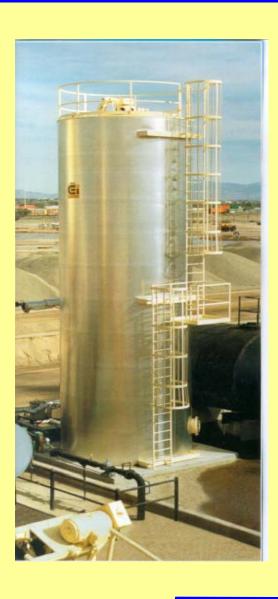
New Tire Demand


- June vehicle production down 8% and falling
- Vehicle production skewed towards smaller vehicles
- Tire demand could be down over 12%

Replacement Tires

- Higher gas prices are reducing miles driven
- Expect reduced tire demand over time
- May take 3-6 months to play out.

Changes in past 3 months


- Hurricanes Gustav and Ike temporarily shut down Gulf Coast crackers
 - Expected Bd price increase of \$0.10 per lb
 - Reduced demand caused spike of only \$0.04 per lb
- Crackers are back on line, but tire compound plants are not
- Tire Demand is way down Frees up Butadiene supply for SBS
 - Result 100% Bd available to SBS producers for now
 - SBS suppliers will be able to build up substantial inventory this winter

- SBS polymer-modified asphalts are typically crosslinked systems
 - Contractor friendly
 - Terminal blend supply
 - Do not require agitation
 - Storage stable
 - No major changes to HMA plant operation
 - No major changes to HMA laydown and compaction
- Alternative modification systems need to exhibit similar qualities

- SBR Latex butadiene based polymer that is not in short supply at this time
 - Not storage stable
 - Must be blended at HMA plant which means rheology labs at the plant
- Non- butadiene polymers
 - Reactive Ethylene Terpolymer (Elvaloy)
 - Ethyl Vinyl Acetate (EVA)
 - Used in warm climates
 - Blended with SBS in cold climates
- Polyphosphoric Acid (PPA)
 - An extender, not an alternative
 - Can be blended with SBS to reduce SBS content

- Ground Tire Rubber
 (GTR) wet process
 - 15-20% GTR melted and swelled into asphalt
 - No cross-linking occurs
 - Not storage stable
 - Not a terminal blend process
 - AR binder cannot be PG graded in a meaningful way

Hybrid Binders

- Blend of SBS and GTR
- Cross-linked system
- Storage stable
- Terminal blend system
- Current research
 sponsored by FL DOT at
 University of Florida

'NOTHING' is not an option

- PG Grading system is based on climate and traffic
- Using the wrong grade will lead to poor performance
- We have enough historical data to prove that PMA does improve pavement performance
- Flexibility and creativity are needed to come up with answers

What's in your binder?

Performance!!

Questions?

AMAP's 10th Annual Conference

- Considered by many to be the most informative meeting about modified binders in the world
- February 9th, 2009—Modified binders and emulsion workshop from 1:00 pm to 6 pm
- February 10th and 11th, General Session with excellent agenda
- Venue: Hilton Sedona Resort and SPA, Sedona, AZ
- For information—website: www.
- modifiedasphalt.org

DON'T SHOOT THE MESSENGER

