INVESTING IN RAP

David L. Lippert, PE

Bureau of Materials and Physical Research Illinois Department of Transportation

49TH Annual Bituminous Paving Conference December 3, 2008

INVESTING IN RAP

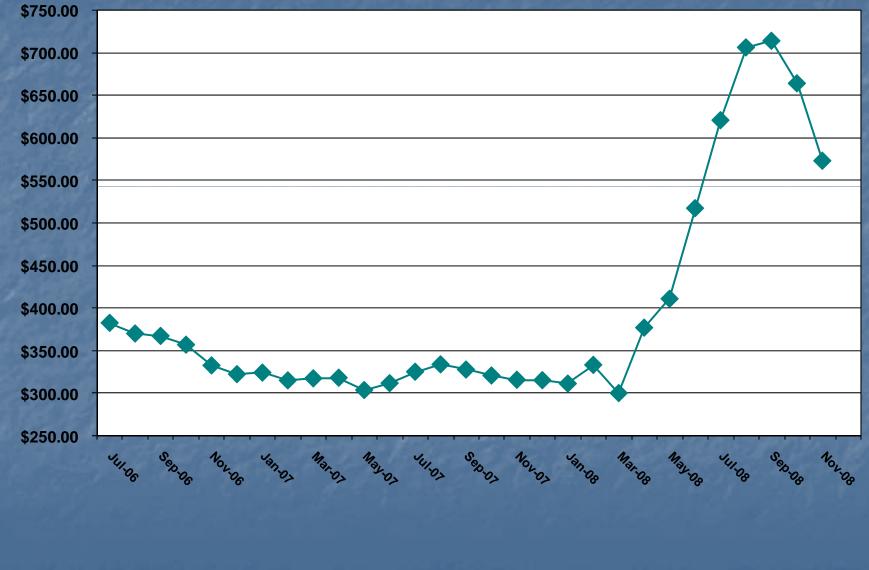
Background
Barriers
Research Efforts

National
Illinois

Producer Opportunities

Background

1980's Roto-milling became popular


- Urban Areas saves curb
- Millings become property of contractor little control

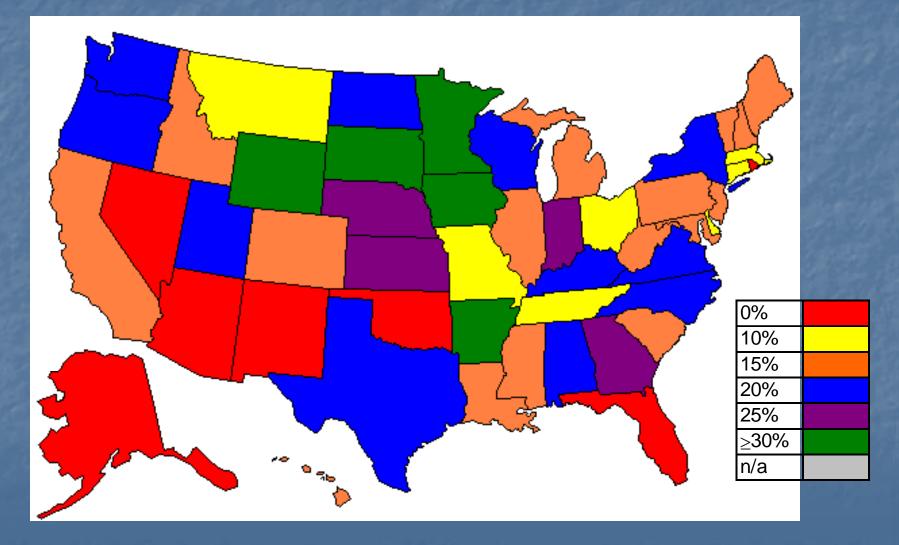
1990's SuperPave and Polymer Mixes
 Did not allow RAP - Piles of RAP grew
 Contractors needed to improve pile quality
 2000's

Piles sorted by quality

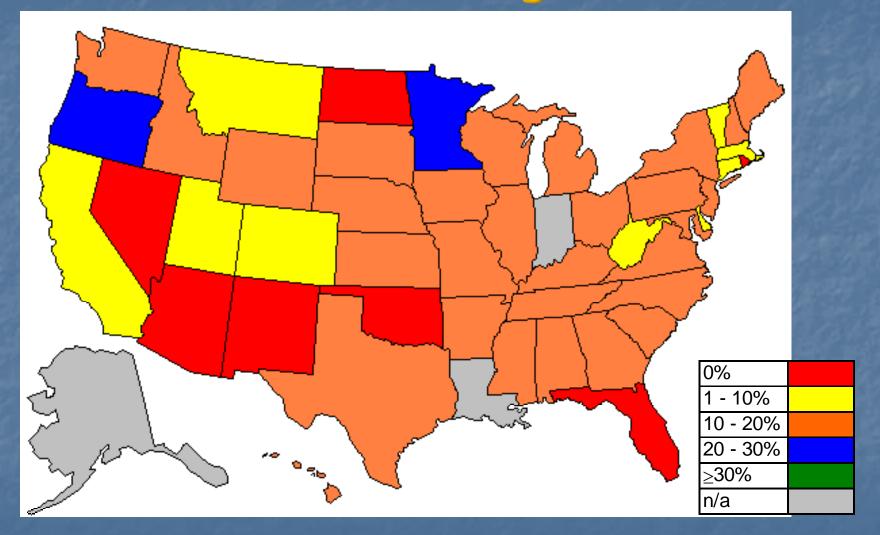
High oil prices – push for increased RAP use

Bituminous Price Index

2007 Max RAP % Changes


N-	Binder/	Surface	With
Design	Level Binder	1200	Polymer
30	30	30	NA
50	<mark>25</mark>	15	10
70	15/ <mark>25</mark> *	10/15*	10
90	10	10	10
105	10	10	10

Shoulders up to 50% *RAP Max Percentage if Crushed to -3/8" New in 2007


Barriers to Usage of RAP Agency Survey Contractor survey

Agency Survey

Surface Mixes – Allowed (2007 Survey)

Surface Mixes -- Average Use (2007 Survey)

Barriers – State Perspective

Stockpile Management – Quality/Gradation Availability – Used as Aggregate AC Binder – Grade Bumping/Final Blend Mix – Durability, Testing and Variability Contractor – Unwilling to Use Specifications – Existing **Designer – Not Allowing**

Producer Survey

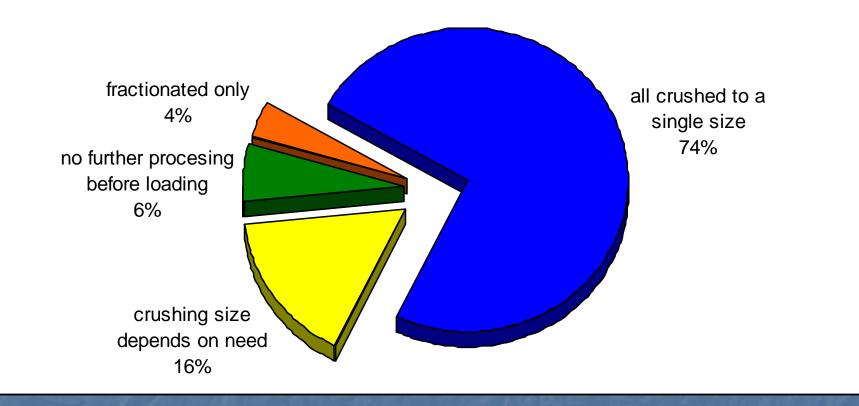
Number of RAP Cold Feed Bins

One 61%
Two 36%
Three 3%

Supply of RAP

Stable 51%
Declining 24%
Increasing 25%

RAP Management Practices


Combine all RAP into a single stockpile

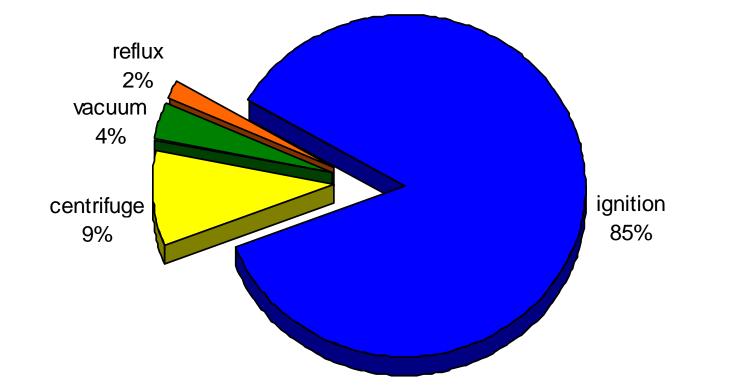
50%

 Maintain separate stockpiles for different sources of RAP
 50% Producer Reasons Given for Separate RAP Stockpiles

Required by state
 To keep millings separate from multiple source RAP
 To improve consistency with RAP stockpiles

RAP Crushing & Processing

RAP Crushing: Max Size


Screen Size	% of Responses	
< 1/2 inch	6%	
1/2 inch	52%	
5/8 inch	16%	
3/4 inch	11%	
1 inch	5%	
> 1 inch	11%	

12/9/2008

Quality Control: Frequency of Testing RAP Stockpiles

Testing Frequency (one test per)	% of Responses
500 tons or less	43%
Greater than 500 tons, less than or equal to 1000 tons	33%
Greater than 1000 tons, less than or equal to 2000 tons	20%
Greater than 2000 tons	4%

AC Content of RAP Stockpiles

Producer Key Findings

Most HMA producers have a limited supply of RAP (only 27% of producers have enough RAP to run 25% in all mixes) Nearly half of producers use the same RAP% in surface and non-surface mixes Most HMA producers claim that the greatest factor limiting RAP usage is agency specifications

Producer Key Findings

Most HMA producers do not use best practices for RAP management Separate stockpiles for different sources Screening/Crushing to minimize dust Minimizing moisture in RAP stockpiles Fractionating RAP Meeting volumetric properties during production is the second most cited limiting factor for increased RAP usage

Producer - Key Barriers

RAP Pile Management for Aggregate Quality
Grade bumping at higher RAP Percentages
Agency Maximum RAP Percentage Limits
Meeting volumetric properties during production

Research Efforts

National

NCAT Test Track
NAPA
AASHTO/NCHRP
North Central User Producer Group
FHWA - RAP Expert Task Group

Illinois Research

Illinois Center for Transportation (ICT) Determination of Usable Residual Asphalt **Binder In RAP** Impact of High RAP Content on Pavement **Structural Performance** Bureau of Materials and Physical Research Determination of Aggregate Quality in RAP Trials Using Warm Mix Asphalt W/RAP

Determination of Aggregate Quality in RAP

Goal:

Assign Aggregate Quality (A, B, C or D) to Processed RAP

Aggregate Quality in RAP Study

Aggregate of Known Quality
Coating With Asphalt
Removing Coating.

Ignition
Extraction w/Trichloroethylene
Removal w/N-Propyl Bromide (Safer solvent)

Re-run Traditional Quality Test on Recovered Material
Correlate to MicroDeval

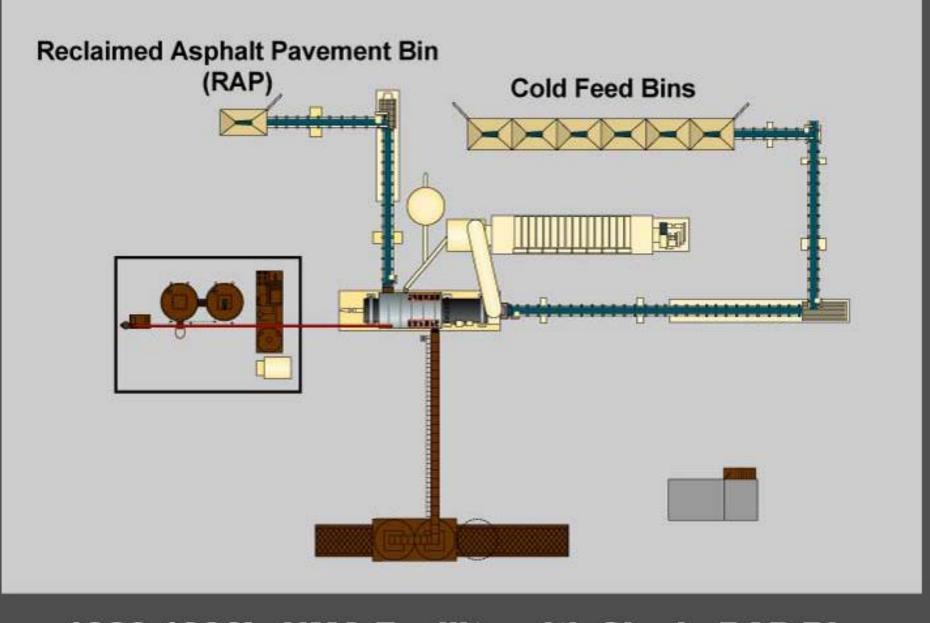
MicroDeval

Aggregate "Before"

Aggregate "After"

9,500 to 12,500 **Rotations** Break on #12 Sieve Measure Percent Passing "LOSS"

"Investment" Opportunities for Increasing RAP Specification of Max RAP% Must be Able to Control Mix Without Fighting Variability of Segregated RAP Reduced Grade Bumping Requirements Warm Mix Asphalt May Reduce Need for Grade Bumping


How to Reduce Variability of RAP Usage Above 20%? Fractionation **Producer Equipment Investment**

Single Gradation:

Prone to Segregation and High Variability

1/2 x 0 6% AC Segregated and Variable ~ 20% Max

1980-1990's HMA Facility with Single RAP Bin

12/9/2008

Fractionation: Reduces Segregation

1/2 x 4 4% AC

4 x 0 7% AC

2/9/2008

How to Reduce Grade Bumping when Using RAP?

Warm Mix Asphalt

Shows Promise – Possible Investment for Future

Why Warm Mix Asphalt? Conventional HMA temperature requirement causes "burn off" lighter oils why grade bump down is needed Lower temperature mix easier to produce with high RAP percents WMA – ability to compact mix Being looked at Nationally by FHWA Expert Task Group – Other states have demos started in 2007

Trials Using Warm Mix Asphalt w/RAP

 Warm Mix Issues and Possibilities
 Usage Needs Review Without RAP
 Some WMA Systems Result in Low TSR's at Production – Long Term??
 Lower Production Temperatures (Below 285) May Eliminate Need for Grade Bumping
 Need Trial Sections That Can Be Followed for Performance

Proposed IDOT RAP Specification

- Being Sent Out for Review by BDE in Near Future
- Features Increased RAP of 5 to 10% if Fractionation Used
- Reduced grade bumping if WMA Used (Tentative feature –WMA with and without RAP needs more field trials and performance monitoring)
 - Working with Districts to Obtain WMA Trials

Draft Max FRAP % Changes

N-	Binder/	Surface	With
Design	Level Binder		Polymer
30	30 35	30 35	NA
50	25 30	15 25	10
70	15/25* 25	10/15* 20	10
90	10 20	10 15	10
105	10	10	10

Shoulders up to 50% *RAP Max Percentage if Crushed to -3/8" New in 2007

Producer Opportunities To increase Usage of RAP

Control RAP Gradation (Fractionate)

 Volumetric Control is Key to Higher RAP%

 Control incoming stockpiles by quality to retain highest usage

 Surface: A or B Quality
 Binder: A, B or C Quality

 Hopeful of Positive Outcome in RAP Quality Testing

Resource Links

FHWA: <u>http://www.fhwa.dot.gov/PAVEMENT/recycling/rap/index.cfm</u>

NCAT RAP ETG: <u>http://www.ncat.us/RAP/RAP.html</u>

ICT: http://www.ict.uiuc.edu/

