

Durable	Thin Overlays								
	Sun	nmai	ry of	A	C Mix	tur	es		
Quartz	tite Mix	Slag/Fib	er Mix	Ś	Sprinkle Mix		4.75	SMA	
 Frictio resista 	n/ rut • ince	Tensile resistar	st./ rut ice	• F e	riction/ cost ffective	t-	• Thin/ d	urabl	9
	Transfer Sector		A STATE	-		base			
N	lix Туре	NMAS (mm)	Gradation	ı	Binder (SBS)	N _{des}	Air Voids (%)	VMA	AC (%)
Control	F-mix	9.5	Coarse Den	se	PG 70-22	90	4.0	14.5	5.1
Mixes	SMA	12.5	SMA		PG 76-22	80	3.5	17.6	6.0
	Quartzite Mix	x 9.5	Fine Dense	е	PG 70-22	90	4.0	15.2	5.8
New	Slag/Fiber Mi	x 9.5	Fine Dense	е	PG 70-22	90	4.0	15.4	5.7
Mixes	Sprinkle Mix	9.5	Fine Dense	е	PG 70-22	90	4.0	15.3	6.1
	4.75 SMA	4.75	SMA		PG 70-22	80	4.0	18.5	7.3

Durable Thin Overlays		
Per	rformance Test	S
Performance	Test Method	Laboratory/ Field
Durability	Cantabro Loss Test	LMLC & PMLC
Moisture Susceptibility	IL Modified Lottman Test	LMLC & PMLC
Fracture	Semi Circular Bending Test	LMLC & PMLC
Complex Modulus	Complex Modulus Test	LMLC & PMLC
Rutting	Wheel Tracking Test Dip Stick Transverse Profiling	LMLC & PMLC PMFC
Friction	Locked Wheel Skid Test	PMFC
Noise	On-Board Sound Intensity Test	PMFC
Surface Texture	Laser Texture Measuring	PMFC
Note: LMLC: Lab-Mixed & Lab-Compacted, PMLC: F	Plant-Mixed & Lab-Compacted, PMFC: Plant-Mixed & Field-C	Compacted (in place/cores)

M	lixes with High I	RAP					
	Mixt	ture V	olumetr	ics: <i>Di</i>	stric	t 1	
-							-
	RAP (%)	Total AC (%)	Binder Replaced (%)	Air Void (%)	VMA (%)	VFA (%)	
	0	4.9	0	4.0	13.7	70.8	
	30	4.9	27.6	4.0	13.6	70.6	
	40	5.1	34.6	4.0	13.7	70.8	
	50	5.0	43.7	4.0	13.7	70.8	
	INOIS CENTER FOR ANSPORTATION				11	LLINO	IS

Tá	ack Coats				
		Re	sults	I-80	
_	 Optimu blast, n 	ım residual naintaining	application the same	on rate dec bond stre	reases with air ngth.
	Testing Method	Tack Coat	Surface Type	Cleaning Method	Optimum. Res. App. Rate (gal/yd²)
		88 1h	Milled	Broom	0.06
		33-111	AC	Air Blast	
	Shoor	Tracklose	Milled	Broom	0.04
	Silear	TIACKIESS	PCC	Air Blast	
		SS-1h	SMA	Broom	0.00
		Trackless	Binder	Droom	0.02
T III	INOIS CENTER FOR ANSPORTATION				

Warm Mixe	es																					
SM	A	Mix	De	sig	n a	nd	Сι	ırin	g	Tim	e											
Mixture	Ν	NMAS (mm)	E	Binder		RAP	RAS	Com Temp.	р. (°F)	WM Ac	lditive											
Control			PG 64-	22 (12%	GTR)	00/	Х	305		X												
Evotherm	80	80	80	80	80	80	80	80	80	80	80	80	10.5	PG 64-3	PG 64-22 (12% GTR)		0%	Х	260)	0.5% of	binder
Sasobit													00	00	00	00	00	12.0	12.5	12.5	PG 70-22 (SBS modified)	
Foamed			PG 64-	22 (12%	GTR)	13%	Х	260)	1.0% of	binder											
Teet (D						Cı	iring T	ime														
Test (Re	epiic	ates)	3h	6h	12h	24h	3d	7d	3w	6w	12w											
E*	* (3)																					
Flow Nu	umb	er (3)																				
Hamb	ourg	(2)																				
IDT Creep/	Stre	ngth (2)																				
SC	B (4))							_													

Warm Mixes Traffic Open Criterion: Contained and the same modulus/ traffic opening for the same for the same modulus/ traffic opening for the s	ing Ti trol SMA (strength time	me: Evo and Warm (NOT temp	SMA have berature) a	SMA e the t the
Traffic Opening Temperature for Control	Surface Modulus	Temperature for Evotherm	Traffic Openir	ng Time (hr)
(°F)	(ksi)	(°F)	Control	Evotherm
140	40.8	132.9	0	0
120	205.7	110.5	1.4	0.5
100	370.7	88.1	3.7	3.2
			2	ILLINOIS CENTER I

Mixture Cost	Control SMA	Warm SMA	Warm SMA (with 10% more RAP)
Agency Cost	\$47,628	\$49,094	\$45,963
User Cost	\$18,170	\$13,463	\$13,463
Environmental Cost	\$977	\$921	\$921
Total Cost	\$66,775	\$63,479	\$60,347

