

٦

2012 District PG INV Field Samples							
	District	Sample Total	Off Test	% Off Test			
	1	345	8	2.3			
	2	81	3	3.7			
	3	89	3	3.4			
	4	88	1	1.1			
	5	123	0	0			
	6	136	0	0			
	7	166	1	0.6			
	8	250	2	0.8			
	9	96	0	0			
	TOTAL	1374	18	1.3 %			

Г

District PG Investigative Field Samples As of 11/21/12 2012 (2011) (2010)					
Sample Total	Off Test	% Off Test			
345 (357) (<u>654</u>)	8 (11) (<u>12</u>)	2.3 (3.1) (<u>1.8</u>)			
81 (122) (<u>215</u>)	3 (3) (<u>4</u>)	3.7 (2.5) (<u>1.9</u>)			
89 (57) (<u>121</u>)	3 (0) (<u>1</u>)	3.4 (0) (<u>0.8</u>)			
88 (112) (<u>223</u>)	1 (0) (<u>0</u>)	1.1 (0) (<u>0</u>)			
123 (95) (<u>176</u>)	0 (0) (<u>0</u>)	0 (0) (<u>0</u>)			
136 (189) (<u>227</u>)	0 (2) (<u>2</u>)	0 (1.1) (<u>0.9</u>)			
166 (179) (<u>209</u>)	1 (0) (<u>1</u>)	0.6 (0) (<u>0.5</u>)			
242 (260) (<u>249</u>)	2 (0) (<u>7</u>)	0.8 (0) (<u>2.9</u>)			
81 (99) (<u>122</u>)	0 (1) (<u>2</u>)	0 (1.0) (<u>1.6</u>)			
	As of 2012 (20) Sample Total 345 (357) (654) 81 (122) (215) 89 (57) (121) 88 (112) (223) 123 (95) (176) 136 (189) (227) 166 (179) (209) 242 (260) (249) 81 (99) (122)	As of 11/21/12 2012 (2011) (2010) Sample Total Off Test 345 (357) (<u>654</u>) 8 (11) (<u>12</u>) 81 (122) (215) 3 (3) (<u>4</u>) 89 (57) (<u>121</u>) 3 (0) (<u>1</u>) 88 (112) (<u>223</u>) 1 (0) (<u>0</u>) 123 (95) (<u>176</u>) 0 (0) (0) 136 (189) (<u>227</u>) 0 (2) (<u>2</u>) 166 (179) (<u>209</u>) 1 (0) (<u>1</u>) 242 (260) (<u>249</u>) 2 (0) (<u>7</u>) 81 (99) (<u>122</u>) 0 (1) (<u>2</u>)			

2012	2012 PFP Projects					
District	Projects	Tons	% Jobsite			
I	6	87398	0			
2	I	8,516	100			
3	3	99,227	100			
4	2	57,807	100			
5	6	97,522	50			
6	2*	76,000**	100			
7	6(7*)	141,757	100			
8	I (3*)	8,000 (44,000)	100			
9						
Total	25 (30*)	476,851 (612,227)				
* With carry **Approxim	over ate					

2012 PFP Projects					
District	Projects	Surface	Binder		
I	6	6	0		
2	I	L	0		
3	3	I.	2		
4	2	L	I		
5	6	3	3		
6	2*	I	I		
7	6(7*)	5	2		
8	I (3*)	I	2		
9					
Total	25 (30*)	19	П		
* With carryover					

2012	PFP Proje	ect Disput	ces	
District	Projects	Disputes		
		Mix	Cores	
I	6	3	9	
2	L	15	5	
3	3	0	0	
4	2	0	0	
5	6	0	0	
6	2*	3	I	
7	6(7*)	2	20	
8	I (3*)	2	0	
9				
Total	25 (30*)	25	35	
*Carryover				

(C	Unconfined Edge Density Pay Adjustment Table				
	Density	Deduct / half mile / unconfined edge			
	≥ 90%	\$0			
	89.0% to 89.9%	\$1000			
	88.0% to 88.9%	\$3000			
	< 88.0%	Outer 1.0 foot will require remedial action acceptable to the Engineer			

2012 QCP Projects						
District	Contract #	Mix Application	Tons	Рау	# of Mix Sublots tested by District	
2	64529	N70 F Surf	5400	100%	2/6 = 33%	
3	66A75	Surface	9,840	93.8%	10/10 = 100%	
3	66A75	4.75 mm L.B.	4,920	99.5%	5/5 = 100%	
3	66644	Surface	5,124	100.0%	5/5 = 100%	
3	66644	4.75mm L.B.	2,509	100.0%	1/3 = 33%	
8	76E52	Binder	1967	100.0%	2/2 = 100%	
8	76E52	Surface	4103	100.0%	4/4 = 100%	
9	78271	4.75 leveling Binder	6251.2	99.4%	2/7 = 29%	
9	78271	C Surface	12929.6	97.9%	4/13 = 31%	
			53,044	99.0%	70%	
L			1		II	

- 1. Cap each Pay Parameter Prior to Calculating the Combined Pay Factor
- 2. Adjust Ranges for 103% Pay
- 3. Adjust Density for 95% Pay
- 4. Clarify Additional Dept. Testing/Results May be Included in Pay Calcs
- 5. Change Acceptable Limits density range for IL-4.75 from 92.0-98.0% to 90.0-98.0%
- 6. Increase timeframe for submittal of QC results to 48 hrs (allows aging to match IDOT)

Sustainability:

Is the capacity to endure. For humans, sustainability is the longterm maintenance of responsibility, which has environmental, economic, and social dimensions, and encompasses the concept of stewardship, the responsible management of resource use. (Wikipedia)

Green Movement

Elected officials can't help themselves for voting "green"

Recycled and Reclaimed Materials Utilized in Highway Construction 2010

- Air-Cooled Blast
 Furnace Slag
- By-Product Lime
- Crumb Rubber
- Fly Ash
- Glass Beads
- Glass Cullet
- Ground Granulated
 Blast Furnace Slag
- Microsilica

- Reclaimed Asphalt
 Pavement
- Reclaimed Asphalt Shingles
- Recycled Concrete Material
- Steel Reinforcement
- Steel Slag
- Wet-Bottom Boiler Slag

2010 Recycling

- 1.7M Tons
 - 73,913 semi truck loads
 - Line of Trucks 700 miles long
 - Downtown Chicago to Mississippi River on I-57 (both directions)
 - Value \$53M

12/18/2012

Two Sources

Manufacture "waste" – Type I

- Not technically "waste" but IL EPA monitors usage
 Apply for Benefitual Use Determination (BUD)
- Tear-offs Type II
 - Headed for landfill as <u>waste</u>
 - To reclaim/divert from landfill
 - Must follow regulatory processes of ILEPA
 - No hazard to environment
 - Benefitual use of material
 - Apply for Benefitual Use Determination (BUD)
 - BUD's granted by ILEPA before use in IDOT project

Construction and Demo Debris Recycling - MBL

Landfill \$\$: IN Only C & D Site \$: IN = OUT

INCOMING

- New Building Waste
 - Lumber, pallets and plywood
 - Metal
 - Drywall scrap
 - Contractor waste bags/containers
 - Scrap roofing/siding/flooring
 - Waste containers
 - Carpet
 - Brick/block/stone/concrete/ tile
- Mixed Demo Waste
- Tear-off Roofs/shingles

OUTGOING

- Wood Scrap
 - Mulch
 Fuel for power generation
- Aluminum scrap
- Copper scrap
- Steel/iron scrap
- Plastic/vinyl scrap
- Recycled Aggregate (brick, stone, tile & concrete)
- Shingles (sorted)
- Fiber
- True waste landfill

Sort and Grind

- Final sort
- Grind
- Screen
- Ready for HMA

Engineering Asphalt Binder Replacement (ABR)

Controls

Too Soft

- Stripping TSR
- > PG Grade selection (Polymer)
- Hamburg

• Too Hard

- Limits on Replacement Asphalt (RAP/RAS %)
- > Grade bumps down with higher replacement %
- Max Tensile Strength
- > Fracture toughness requirement (under research)

