Life Cycle Assessment for Flexible Pavements: Overview, Recent Results, Possible Future Directions

> John Harvey University of California Pavement Research Center

54th Annual Illinois Bituminous Paving Conference December 11, 2013

Why use LCA for evaluating environmental performance?

- Quantifies outcomes:
 - GHG, energy, pollutants, finite resources
 - for project-specific inputs:
 materials, transport, construction, traffic
- levels, re-use
 Requires explicit prioritization of
- outcomes for decision-making
- Can account for regional and time variability, and other uncertainties in data sets and analysis

- Network level
 - IRI maintenance/rehab trigger criteria for GHG
 - Funding for M&R of pavement versus other transportation investments
- Project level
 - Recycling strategies
 - Pavement type selection
 - Design life selection
 - Continuous vs night-time construction windows
- Innovation
 - New materials, structures, construction

Current state approaches for meeting AB32 goals for transportation sector

Pavement Rolling Resistance

- Roughness (models available)
 - Measured with International Roughness Index (IRI)
 - Dissipates energy through suspension and tires
- Macrotexture (models available)
 - Dissipates energy through tire tread distortion
- Deflection (models under development)
 - Theory: dissipates energy through deflection of viscoelastic pavement materials (HMA)
 - Theory: larger deflection and viscoelasticity results in vehicle always running uphill

Conclusions from project-level case studies

- Smoothing rough pavement has great potential to reduce energy consumption and GHG emission.
- Emissions from construction and materials for high traffic volume roads can be paid back very quickly (in less than 1 year at extreme).
- For low traffic volume roads, material production and construction emissions will never be paid back with use phase savings.

20

Application of models to Caltrans network

- LCA used to identify optimal IRI values to trigger 5 to 10 year treatments to quickly improve smoothness

 Optimized for different traffic levels
- Applied to 48,000 lane-mile network
- Life cycle cost to determine \$/metric-ton of CO₂-e saved compared to previous IRI trigger values
- Models implemented in Caltrans PMS

10 year Results of Optimal vs Previous IRI Trigger (214 in/mile)				
Average Daily Traffic Pass Car Equivalents/ Direction	Optimal IRI triggering value (inches/ mile)	Total lane- miles in the network	GHG reductions (MMT CO ₂ -e)	Agency cost- effectiveness (\$/metric ton CO ₂ -e)
< 2,517		12,068	0.24	-5,127
2,517 to 11,704	152	12,068	0.28	3,818
11,704 to 19,108	127	4,827	0.29	2,420
19,108 to 33,908	127	4,827	0.52	1,283
33,908 to 64,656	101	4,827	1.68	1,030
64,656 to 95,184	101	4,827	2.03	638
> 95,184	101	4,827	3.11	441
Total			8.15	688

Conclusions from network-level calculations

- Use of optimized IRI triggering values can contribute to the statewide GHG emission reduction target (reduction of 0.2 percent compared to current trigger).
- Performing M&R on segments with a very low daily traffic in the network does not lead to net GHG or energy benefits.
- The optimal IRI triggering values and the resultant GHG reduction are very sensitive to construction smoothness.

Long-life rehabilitation of heavy duty concrete and asphalt pavements

 LCCA studies show longer rehab design lives (30-40 years) reduce costs where high traffic

 Initial results indicate longterm GHG savings also

Typical AC Long-life Rehab Structure Designed with ME

Existing gra	de			
Rubberized OGFC – safety, noise 25-50 mm				
Top layer* – rutting, cracking, 6% AV 75-100 mm				
Widdle lever erectring witting Varying				
6% AV, 25% RAP thickness				
Rich Bottom layer** – cracking, 0-3% AV 50-75 mm				
Variable base granular, CTB, PCC 0 or 150 mm				
subgrade				
*15% RAP, polymer binder				
** 15% RAP				

What is happening now with Pavement LCA?

- LCA is the framework for new FHWA Sustainable Pavement Guidelines
- Model and software development in universities and institutes
- LCA + LCCA used to select contractors for Design-Build-Maintain projects in Netherlands and France
- Future trends
 - More standardization, better data
 - More implementation, but how??

Slides prepared by Nick Santero – PE INTERNATIONAL John Harvey – UC Davis Joep Meijer – The Right Environment Tom Van Dam – CTL Group (now with Nichols Consulting Engineers)

Definitions and Relationships PCRs, LCAs, and EPDs

PCR: the framework	Product Category Rule (PCR) "Set of specific rules, requirements, and guidelines for developing Type III environmental product declarations for one or more product categories" (ISO 14025)
LCA: the analysis	Life Cycle Assessment (LCA) "Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040)
EPD: the declaration	Environmental Product Declaration (EPD) "Providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information" (ISO 14025)

