55th Illinois Bituminous Paving Conference *In Conjunction With* North Central Asphalt User Producer Group

Mix Optimization for Quality and Consistency

William J. Pine, P.E. Heritage Construction & Materials February 3, 2015

Some Definitions...

• Optimize:

To make something as good or as effective as possible

- Quality:
 - A high level of value or excellence
- Consistent:

Always acting or behaving in the same way

Merriam-Webster.Com

What's Your Definition of an *Optimized* Mix?

- Contract Requirements
- Economical
- Reproducible
- Compactable and Non-Segregating
- Workable and Controllable
- Achieve Full Pay

Meets or Exceeds *All* Contract Requirements

- Gradation
- VMA and Voids
- Binder Replacement
- Stripping Test
- Density
- Non-segregating
- Smooth
- Hamburg Wheel
- Future Cracking Test...?

Economical 🗧 Cheapest

The most <u>economical</u> blend seeks the right <u>balance</u> between material costs and design characteristics that influence pay <u>and</u> customer satisfaction.

- As-Produced vs. Design material costs (produce a quality mix <u>at or below</u> design material cost)
- Bonus vs. Penalty dollars achieved (achieve <u>maximum</u> pay for each mix on each job)
- <u>User-Friendly</u> to all parties involved (plant, lab, laydown)

Reproducible

• Achieve <u>accurate</u> mix design results

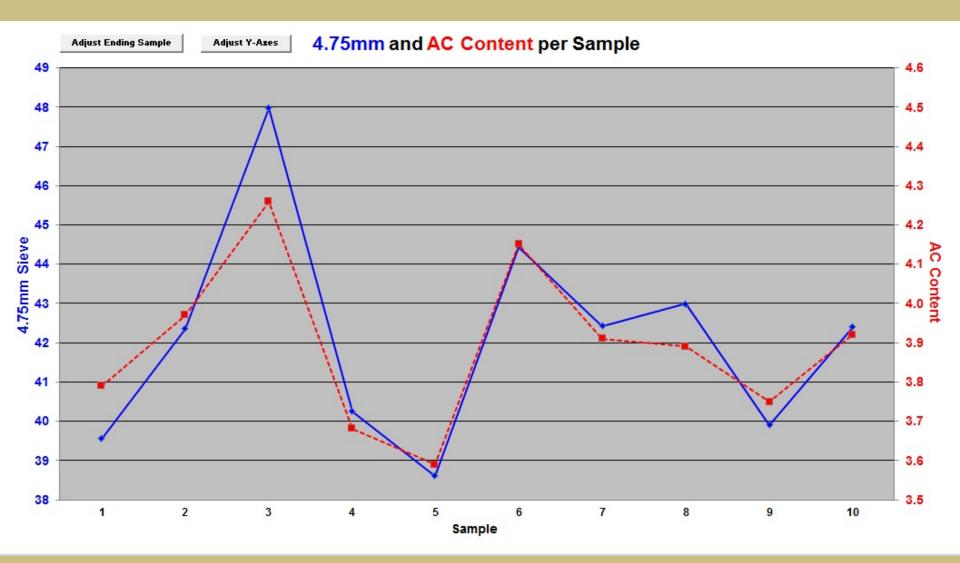
- Aggregate specific gravities
- Consistent and Correct
 - Blending, mixing, handling, specimen preparation and specimen testing
- Do the results make sense?
- Verify blend gradation and AC content achieved
- Account for anticipated VMA loss
 - Know what was achieved in the design
 - Field data evaluation

Compactable, Non-Segregating

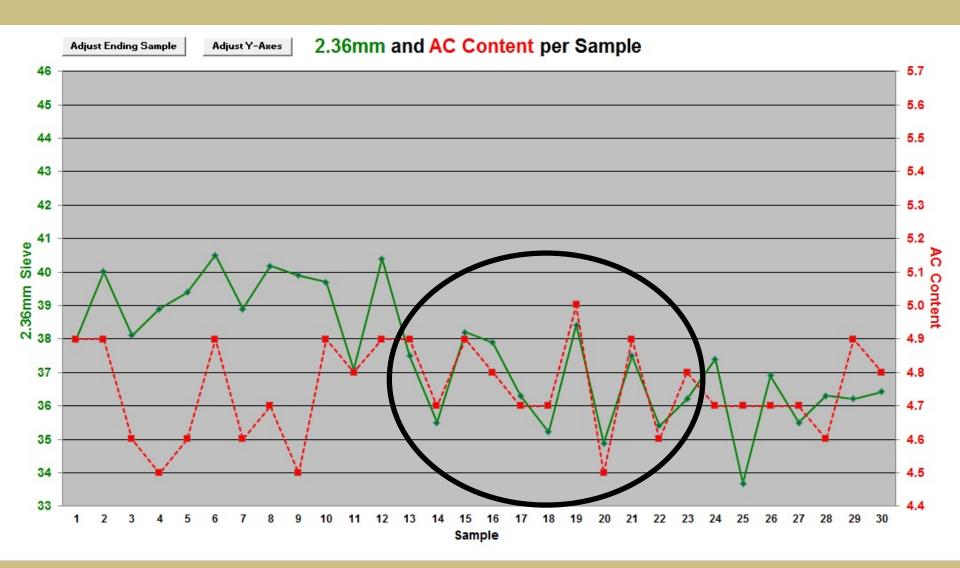
The *Bailey Method* relates to:

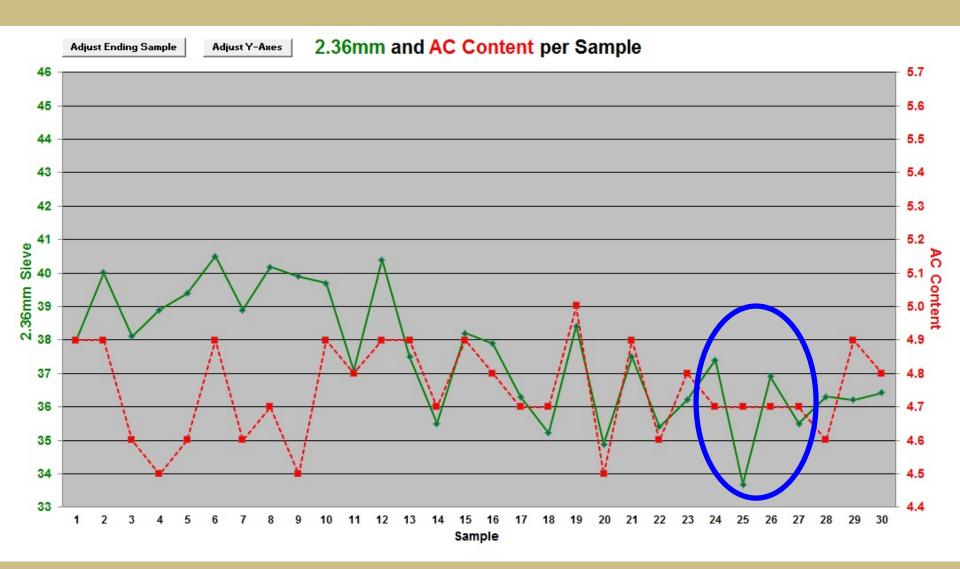
- Field Compactability, Segregation Susceptibility and Tenderness
 - **CA** volume relative to mix **type** and **<u>lift thickness</u>**
 - CA ratio
 - **FA_c** and **FA_f** ratios
- Do you have a systematical approach to mix evaluation (design and field)?

Laboratory Mixture Analysis



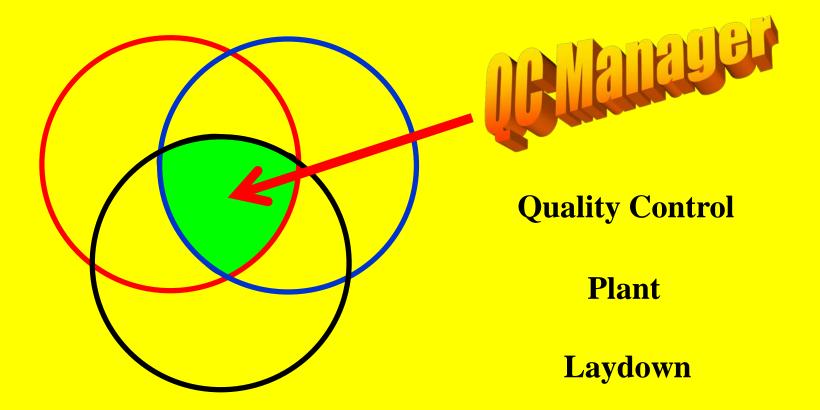
Laboratory Mixture Analysis




Segregated Mix

Non-Segregated Mix

Workable and Controllable


- Volumetric adjustability during production
 - Key to meeting volumetrics, while maintaining cost effectiveness
 - Achieving a blend and corresponding volumetrics that provides a **workable** mix
- Sensitivity to field gradation <u>changes</u> as it relates to mix control
 - What method do you have for analyzing mix results to provide an indication of sensitivity to change relative to volumetrics, density, and performance tests?

Other Issues to Consider...

- Design should take into account job specific characteristics, such as:
 - Silo time
 - Haul time
 - Lift thickness
 - Handwork
 - Underlying base
- **Communication** is vital!

Moving Forward As A TEAM!

Everyone Plays a Role in QC!

Train them, Enable them, Support them, and Hold them Accountable

Things That Handcuff Us...

- Low Bid System
 - We have to compete!
 - Not enough pie!
- Challenging Decisions...
 - Multiple mixes
 - Production/Placement rate
 - Stockpile area
 - Commitment
- Locally Available Materials
- Lift Thickness

Mix Type vs. Lift Thickness

HMA Lift Thickness vs. NMAS and Mix Type

Nominal Maximum Aggregate Size	NCAT Coarse-Graded 4 x NMAS	NCAT Fine-Graded 3 x NMAS	IDOT Specification 3 x NMAS
9.5mm (3/8'')	1-1/2"	1-1/8"	1-1/4"
12.5mm (1/2'')	2"	1-1/2"	1-1/2"
19.0mm (3/4'')	3"	2-1/4"	2-1/4"
25.0mm (1'')	4"	3"	3"

Info from Fine-Graded Literature Review Performed by Murphy Pavement Technology

Mix *Optimization* Where do you start?....

- Trial and *Error*?
 - Experience
 - Specification Bands
- Which blend is **best**?
- How will it work at the plant and in the field?
- How will it perform?
- Today, it requires a more systematical approach to design and control a mix to achieve success!

Thank You