Testing Protocols to Ensure Mix Performance w/ High RAP and RAS

I. L. Al-Qadi, H. Ozer, J. Lambros, & D. L. Lippert A. Elkhatib, T. Khan, and P. Sighn

Illinois Center for Transportation University of Illinois at Urbana-Champaign

February 3, 2015

Challenges with RAP/RAS

- SuperPave was developed for neat materials
- More recycled materials are used in HMA moving away from specifying virgin components – especially asphalt PG grades in final mix
- Currently recycle usage is allowed by method specifications intended to limit risk of cracking by ABR limits and grade bumping, not actual mix performance
- Fatigue cracking issue: stiffer mixes with high ABR may exhibit early fatigue cracking
- Thermal/Block cracking issue: Stiffer mixes have reduced relaxation potential

Challenges (RAB/RAS Binder)

- Shingle asphalt is air blown to harden asphalt (PG 112+02) then additional aging on the roofs
- RAP AC can be hard or soft depends on project(s) milled
- Counteracting binder selection of virgin binder becomes arbitrary
- Neat asphalt blending with RAP and RAS for final mix is not well understood

Measurement Scheme at a Glance RAP aggregate Virgin aggregate with **RAP-binder** Scan size: 30µm С D Α B **C** : Transition zone A : RAP-bitumen **D** : Virgin bitumen **B** : Blended zone Alex Schmets **Ť**UDelft

RAS and Virgin Binder Interface

Alex Schmets **TU**Delft

Comparing RAP & RAS 'Rejuvenation'

Alex Schmets **TU**Delft

T_{RAS} >180 °C

T_{RAP} ~130 °C

Mixture Tests Available

DCT (ASTM D7313)

SCB (AASHTO TP105)

Texas Overlay Test

Test Method Selection Criteria

- Significant and meaningful spread in test output
- Correlation to independent tests and engineering intuition
- Correlation to field performance
- Applicability and seamless implementation

Semi-Circular Bending Test

- Relies on simple three point bending
- Easy specimen preparation
- Can use
 AASHTO T283
 equipment
- □ Repeatability

Research Approach

Parameter	Variables	
Material Source	Plant Mixes, Lab-Mixes, Field Cores	
N-Design	N30, N50, N70, N80, N90	
Nominal Maximum Aggregate Size	4.75 mm, 9.5 mm, 12.5 mm, 19.0 mm	
Asphalt Binder	PG52-28, PG58-22, PG58-28, PG64-22, PG70-22, PG70-28, PG76-22	
Recycled Materials	RAP, RAS, Recycled Concrete, and Steel Slag	
Asphalt Binder Ratio	0 to 60	
RAP Content (%)	0 to 53	
RAS Content (%)	0 to 8.5	

 Assessment of variety of plant mixes, lab design mixes, and field cores

Correlation to other tests (modulus and fatigue)
 Theoretical and numerical evaluation

Overall Framework

FEM Results

FEM simulations of N80-25 mix

Fracture Process Zone

Fracture Process Zone

N90 30% ABR (7% RAS)

-12°C @ 0.7 mm/min

25°C @ 50mm/min

0.0015

-0.0003

0.015

-0.003

SCB Fracture Results

Establishment of Test Temperature and Loading Rate

SCB fracture test results at -12°C
 Limited data spread

Establishment of Test Temperature and Load Rate

- SCB fracture energy results for the same mixes at 25 °C using displacement control at 50 mm/min
- Significant spread in fracture energy

Establishment of Test Temperature and Load Rate

- A comparison of low temperature and intermediate temperature (25°C) SCB test results indicate the suitability test to discriminate mixes
- 25 °C and 50 mm/min loading rate were selected

SCB Fracture Results

 Flexibility Index calculated for two lab design (N90) mixes w/ and w/o ABR (30% ~ 7% RAS):

Flexibility Index (FI) = A * G_F / m

SCB Fracture Results

Flexibility Index calculated for two lab design (N90) mixes w/ and w/o ABR (30% ~ 7% RAS):

Development of Flexibility Index

□ A theoretically-supported flexibility index (FI)

Development of Flexibility Index

□ A theoretically-supported flexibility index (FI)

Development of Flexibility Index

□ A theoretically-supported flexibility index (FI)

FI Results

Flexibility index calculated for selected plant mixes

FI - Plant Mixes

FI (with SF): Field Cores

FI Categorization & Implementation

Draft Categorization of Mixes Using Flexibility Index and Threshold

Mix Category	Mix Type Based on Flexibility Index (FI)	Potential Actions and Remedies
Unacceptable Mix	Type III	Reject mix due to high early cracking
	(<2.0)	potential. Redesign the mix.
Inferior Mix	Type II (≤2.0-4.0)	Mix susceptible to cracking.
		Use the mix only in temporary
		application or redesign.
Acceptable Mix	Type I (≤4.0-10.0¹)	Accept the mix. Mix is expected to
		perform adequately. Use the mix in
		surface overlay or typical pavement
		applications.

*Lab-compacted mix having FI > 10 is considered high performance mix.

Final Remarks

- We need to engineer our asphalt concrete mixes
- □ Wheel Track, Tensile, and <u>SCB</u>
 - A simple, reliable, and scientifically sound test is introduced
 - Flexibility Index can discriminate between mixes
 - More Validation is underway

Acknowledgment

- □ FHWA
- ICT Engineers: Aaron Coenen, Greg Renshaw, and Jim Meister
- ICT Students and Staff

THANK YOU

Main Quad – University of Illinois at Urbana-Champaign