Recycled Engine Oil Bottoms as Asphalt Binder Additive

Terry Arnold & Nelson Gibson

North Central Asphalt User Producer Group Feb 3 2015

Acknowledgments

- State DOTs and FHWA Federal Lands
- Crystal Clean / Heritage Research Group
- Safety-Kleen
- SES Group / Turner Fairbank Highway **Research Center**
 - Anant Shastry
 - Susan Needham
 - Xinjun Li – Scott Parobeck
 - Lakesha Perry

Adrian Andriescu

– Frank Davis

AASHTO Task Force

Christopher Abadie **Bill Ahearn Terry Arnold Richard Bradbury** Matthew Corrigan Nelson Gibson John Grieco Matt Mueller Christopher Peoples Michael San Angelo **Eileen Sheehy**

Louisiana DOT Vermont DOT (leader) **FHWA** Maine DOT **FHWA FHWA** Massachusetts DOT Illinois DOT North Carolina DOT Alaska DOT **New Jersey DOT**

AASHTO Task Force Goals and Objectives

- 1. Develop a Common Understanding of the published information about REOB mid January
- 2. Finalize a State by State summary of REOB specification/use status IBNLT known or unknown end January
- 3. Define data gaps in knowledge and timeframes for resolution mid February
- 4. Develop consensus on risk and recommended action end February
- 5. Finalize response to SCOH early March

Recycled Engine Oil Bottoms are Liquids at Room Temperature

U.S. Department of Transportation Federal Highway Administration

Their Brookfield Viscosities Differ Widely Between Producers

- Producer A: 257.3 cps @ 135°C
- Producer B: 28.2 cps @ 135°C

Lubricating Oil additives

XRF-Spectrometer

Variation and Complications between and within REOB Suppliers

- 1.5 1.9% Phosphorous
- Sulfur
- Calcium
- Iron
- Copper
- Zinc
- Molybdenum

- 1.5 1.9%
- 7,204 10,901ppm
 - 372 1,838 ppm
 - 704 1,563 ppm
 - 4,554 7,213 ppm
 - 288 669 ppm

Variation and Complications – Asphalt

- XRF Phosphorous and Sulfur Peaks Overlap
- Sulfur 3.05 11.49%
- Iron 8 115 ppm
- Molybdenum 0 15.7 ppm
- May contain Zinc H₂S Scavengers

XRF Analysis of REOB and GTR (ppm)

Element	REOB	GTR	Asphalt
Phosphorous	12,000	0	0
Sulfur	16,000	33,000	30-300,00
Calcium	9,000	1,600	0
Iron	1,200	2,800	8-115
Copper	900	1,000	0
Zinc	5,500	16,000	0
Molybdenum	600	0	0
Silica	-	21,000	0

14

XRF Analysis of GTR Modified Binder

REOB Content of Binders

1,208 binder samples received from 38 Agencies

		XI	XRF Analysis ppm			REOB% (08-1001))1)	
State	Performance Grade	Calcium	Copper	Zinc	Molybdenum	Calcium ppm	Copper ppm	Zinc ppm	Molybdenum ppm	GTR %
IN	64-28	424.3	36.6	417.9	43.4	3	4	7	10	3
WA	64-22	479	48	424.5	44.4	4	5	7	10	3
AL	-	643.4	56.5	469.1	64.2	5	6	8	14	3
WA	64-28	576.6	51.9	480.2	51.8	5	6	8	11	3
IN	58-28	550.6	52.7	501.4	48.5	5	6	8	11	3
ОК	70-28	478	50.6	548.1	44.4	4	5	9	10	3
ОК	64-22 OK	874.1	124	576.6	32.8	8	12	9	8	4
ТΧ	AC 15P	611.4	79.4	591.3	48.5	5	8	10	11	4
ТΧ	AC 5	781.7	84.1	775.3	59.9	7	8	13	13	5
ТΧ	AC20-5TR	-101.1	-8.1	794.7	-2	-1	0	13	1	5
ТΧ	76-22T	-62.6	-8.7	837.9	0.6	-1	0	14	1	5
FL	76-22 AR	26.2	33.3	913.4	10.7	0	4	15	3	6
CFL	64-10	1255	200	933.3	42.1	11	19	15	9	6
AZ	76-22TR	0	18.5	1128.9	0.1	0	3	19	1	7
NE	58-28	-131.5	83.7	1203.8	5.9	-2	8	20	2	8
NE	64-30	-128.6	-14	1523.1	3.7	-2	0	25	2	10
CA	76-22TR	189.7	37.2	1761.7	10.6	1	4	29	3	11
AZ	58-22	1737.3	141	2452.4	64.1	15	14	41	14	16
ТΧ	64-22	34.7	42.9	2558.4	-6.1	0	5	43	0	16
CA	64-28TR	782.5	145	2653.7	45.8	7	14	44	10	17

Conclusions on XRF Analysis

- You can readily detect REOB presence
- You cannot tell exactly how much is there

Field study

- FHWA/ARC/WRI and FHWA/ARC/NCAT Validation sites in the US and Canada -> MN site
- Only difference between the sites is the binder used??

Field Study - Rochester, MN Comparative Test sites

2012 Distress Data (500 feet test sites)

Low Severity Transverse Cracking

NOT ACTUAL CRACK MAPS - GRAPHICAL REPRESENTATION OF DATA TO SCALE

Low Severity Non-Wheelpath Longitudinal Cracking

NOT ACTUAL CRACK MAPS - GRAPHICAL REPRESENTATION OF DATA **TO SCALE**

Low Severity Fatigue Cracking

NOT ACTUAL CRACK MAPS - GRAPHICAL REPRESENTATION OF DATA TO SCALE

Western Research Institute WRI Atomic Force Microscopy AFM

Binder Microstructure study: AFM

Typical neat AAG surface Nearly flat and featureless

Binder Microstructure study: AFM

□ AAG-1 + REOB topography

Topographic image indicates a relatively smooth flat surface with a number of small "holes"

U.S. Department of Transportation Federal Histoway Administration

Binder Microstructure study: AFM

□ AAG-1 + REOB topography + Aging

Topographic image indicates a relatively smooth flat surface with more small "holes"

U.S. Department of transportation Federal Higtyway Administration

Summary from WRI

- A preliminary study on a very limited sampling, still on going at WRI
- However some interesting findings:
 - REOB not inert affects microstructure, properties and aging
 - Microstructure: 2-phase structures (at least) – "holes" occurring and expanding over aging

Binders' and Mixtures' Engineering Properties

Two Modification Approaches

• Softening an unmodified PG to another PG

6% **REOB***

*with a single REOB sample

Two Modification Approaches

• Softening an unmodified PG to another PG

• Diluting a unmodified PG

ampie

• DSR High Temp ~9% REOB per PG Grade Drop

- DSR High Temp
 ~9% REOB per PG Grade Drop
- BBR m-Value
 - ~21% REOB per PG Grade Drop

- DSR High Temp
 ~9% REOB per PG Grade Drop
- BBR m-Value
 ~21% REOB per PG Grade Drop
- BBR Stiffness
 ~9% REOB per PG Grade Drop

BBR $\Delta T_{critical}$ **Spread: PG**_{(S)tiffness} – **PG**_{(m)-creep}

		Exp	Exploratory Blends				
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3		
					PAV		
	-2.0°C						
	60-30						
Holly 58-28							

34

		Exp	Exploratory Blends				
	Base PAV	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3		
					PAV		
	-2.0°C	-0.8°C					
Holly 58-28	60-30	69-24					
		-1 .6° C 0% / 30% 72-20					

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
					PAV
	-2.0°C 60-30	-0.8°C 0% / 20% 69-24	-10°C 20%/20% 59-28	-14°C 20%/20% 51-28	
Holly 58-28		-1 .6° C 0% / 30% 72-20	-13°C 25% / 30% 59-25		

		Exp	loratory Ble	Final Blends	
	Base PAV	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
					PAV
	-2.0°C 60-30	-0.8°C 0% / 20% 69-24	-10°C 20%/20% 59-28	-14°C 20%/20% 51-28	
Holly 58-28		-1.6°C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40

		Exp	loratory Ble	Final Blends	
	Base PAV	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
					PAV
	-2.0°C 60-30	-0.8°C 0%/20% 69-24	-10°C 20%/20% 59-28	-14°C 20%/20% 51-28	-5.7°C 15% / 20% 58-33
Holly 58-28		-1.6°C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15% / 0% 51-40
					-0.2°C 2.5% 59-33

		Exp	loratory Ble	Final Blends	
	Base	+PG100-0	+REOB Source 1	+REOB Source 2	+REOB Source 3
	PAV				PAV
	-2.0°C	-0.8°C	-10°C	-14°C	-5.7°C
Holly 58-28	60-30	69-24	59-28	51-28	58-33
		-1 .6° C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15%/0% 51-40
					-0.2°C 2.5% 59-33
Р -22	+0.8°C		-1.7°C	-4.0°C	-2.2°C
В 64-	67-27		61-31	58-29	6% 61-28

			Exp	loratory Ble	nds	Final Blends	
	Base		+PG100-0	+REOB Source 1	+REOB Source 2	+RE Sour	EOB rce 3
	PAV	2 X PAV				PAV	2 X PAV
	-2.0°C	-1.1°C	-0.8°C	-10°C	-14°C	-5.7°C	-10°C
Holly 58-28	60-30	□-29	69-24	59-28	51-28	58-33	□-26
			-1 .6° C 0% / 30% 72-20	-13°C 25% / 30% 59-25		-5.1°C 15%/0% 51-40	-10°C 15% / 0% <i>⊡</i> 34
						-0.2°C 2.5% 59-33	-2.8°C 2.5% □-29
Р -22	+0.8°C	-1.9°C		-1.7°C	-4.0°C	-2.2°C	-2.9°C
В 64-	67-27	□-23		61-31	58-29	ნ% 61-28	6% □-23

DSR Fatigue: Linear Amplitude Sweep (LAST)

Notched Tension: Cracking Strain Tolerance

Ongoing Mixtures' Experimental Design

- <u>"Moisture Damage"</u>
 - Granite- Occoquan, VA
 - Tensile Strength Retained TSR
 - Hamburg Wheel
 Tracking
 - Repeated With &
 With<u>out</u> Liquid Amine
 Anti-strip or Hydrated
 Lime

- <u>"Structural Performance"</u>
 - ALF 22% RAP Mix
 - Flow Number; confined
 NCHRP 9-30A
 - Dynamic Modulus, |E*|
 - Uniaxial Fatigue Short and Long-Term Aged (loose mix 5 days @ 85°C)
 - Thermal Stress Restrained
 Specimen TSRST Short and
 Long-Term Aged (loose mix 5 days @ 85°C)

U.S. Department of Transportation Federal Highway Administration

U.S. Department of Transportation Federal Highway Administration

Federal HighwayAdministration

2

Conclusions (1 of 4)

- 1. You can readily detect REOB presence
- 2. You cannot tell exactly how much is there
- **3.** Effect of REOB depends on base binder (like PPA)
- 4. Variation between REOB suppliers & their samples
 - Same concentration can produce different PG grades

Conclusions (2 of 4)

- 6. 2 X PAV is a reasonable approximation of 5 years where anecdotal concerns lie
- 7. REOB softens and reduces tensile strength
 - Binder notched tension (DENT)
 - Decreases mix wet and dry IDT strength
- 8. In 2 of 3 cases, REOB improved binder intermediate temperature parameters for fatigue / strain tolerance
 - 6% and 2.5% REOB blends
 - CTOD and LAST

Conclusions (3 of 4)

- 9. Rheological "disruption" occurred w/ highest %REOB
 - Differences in Low Temperature m&S
 - Did Not occur in blend with PG100-0
 - Did occur in blends with high-REOB
 - Made worse by continued aging
 - Alludes to performance deterioration
 - Corroborated by DENT CTOD & LAST & Stripping
 - Forces the issue of compatibility (extenders, rejuvenators, RAP / RAS, WMA...)

10. Consider specification change to BBR m & S

Conclusions (4 of 4)

10. REOB effects on Moisture Sensitivity

- TSR ratio, strength and Hamburg performance decreases with increasing REOB when no anti-strip is added
- REOB did not interfere with liquid anti-strip which improved TSR and Hamburg performance
- Consistent results from T283 and Hamburg
 - different conditions: hot/no-freeze and cold-freeze
- Notably, liquid ant-strip (0.4%) alters IDT strength and Hamburg deterioration more than REOB (2.5%-15%)

Ongoing experiments on mixture performance will be finishing February-March 2015

Thank You.

Questions?

Awareness of long-term performance

- Utility of PAV to approximate 5-years age
- Poor performance after 5-years <u>anecdotally</u> attributed to REOB
- Data from FHWA ALF test sections
 - Top and bottom 1-inch of core extracted & recovered binder

U.S. Department of Transportation Federal HighwayAdministration

Federal HighwayAdministration

Aging study: High Pressure DSC

Overlap of Phosphorous and Sulfur Peaks

