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AASHTO Task Force Goals and Objectives

1. Develop a Common Understanding of the published information 
about REOB – mid January

2. Finalize a State by State summary of REOB specification/use 
status IBNLT known or unknown – end January

3. Define data gaps in knowledge and timeframes for resolution –
mid February

4. Develop consensus on risk and recommended action – end 
February

5. Finalize response to SCOH – early March
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Recycled Engine Oil Bottoms are 
Liquids at Room Temperature 5



Their Brookfield Viscosities Differ Widely Between 
Producers 

• Producer A:  257.3  cps @ 1350C
• Producer B:    28.2  cps @ 1350C
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Lubricating Oil additives
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XRF-Spectrometer
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Variation and Complications 
between and within REOB Suppliers

• Phosphorous       1.5 - 1.9%
• Sulfur                    1.5 - 1.9%
• Calcium           7,204 - 10,901ppm
• Iron                     372 - 1,838 ppm
• Copper                704 - 1,563 ppm
• Zinc                  4,554 - 7,213 ppm
• Molybdenum       288 - 669 ppm

11



Variation and Complications – Asphalt 

• XRF Phosphorous and Sulfur Peaks Overlap

• Sulfur                  3.05 - 11.49%
• Iron                          8 - 115 ppm
• Molybdenum          0 - 15.7 ppm

• May contain Zinc H2S Scavengers
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Element REOB GTR Asphalt

Phosphorous 12,000 0 0

Sulfur 16,000 33,000 30-300,00

Calcium 9,000 1,600 0

Iron 1,200 2,800 8-115

Copper 900 1,000 0

Zinc 5,500 16,000 0

Molybdenum 600 0 0

Silica - 21,000 0

XRF Analysis of REOB and GTR (ppm)
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y = 156.87x + 13.386
R² = 0.9911
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REOB Content of Binders
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IN 64-28 424.3 36.6 417.9 43.4 3 4 7 10 3
WA 64-22 479 48 424.5 44.4 4 5 7 10 3
AL - 643.4 56.5 469.1 64.2 5 6 8 14 3
WA 64-28 576.6 51.9 480.2 51.8 5 6 8 11 3
IN 58-28 550.6 52.7 501.4 48.5 5 6 8 11 3
OK 70-28 478 50.6 548.1 44.4 4 5 9 10 3
OK 64-22 OK 874.1 124 576.6 32.8 8 12 9 8 4
TX AC 15P 611.4 79.4 591.3 48.5 5 8 10 11 4
TX AC 5 781.7 84.1 775.3 59.9 7 8 13 13 5
TX AC20-5TR -101.1 -8.1 794.7 -2 -1 0 13 1 5
TX 76-22T -62.6 -8.7 837.9 0.6 -1 0 14 1 5
FL 76-22 AR 26.2 33.3 913.4 10.7 0 4 15 3 6
CFL 64-10 1255 200 933.3 42.1 11 19 15 9 6
AZ 76-22TR 0 18.5 1128.9 0.1 0 3 19 1 7
NE 58-28 -131.5 83.7 1203.8 5.9 -2 8 20 2 8
NE 64-30 -128.6 -14 1523.1 3.7 -2 0 25 2 10
CA 76-22TR 189.7 37.2 1761.7 10.6 1 4 29 3 11
AZ 58-22 1737.3 141 2452.4 64.1 15 14 41 14 16
TX 64-22 34.7 42.9 2558.4 -6.1 0 5 43 0 16
CA 64-28TR 782.5 145 2653.7 45.8 7 14 44 10 17

XRF Analysis ppm REOB% (08-1001)

1,208 binder samples 
received from 38 Agencies
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Conclusions on XRF Analysis

• You can readily detect REOB presence

• You cannot tell exactly how much is there
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Field study

FHWA/ARC/WRI and FHWA/ARC/NCAT 
Validation sites in the US and Canada -> MN 
site

Only difference between the sites is the 
binder used??

18



Field Study - Rochester, MN Comparative Test sites

2012 Distress Data (500 feet test sites)



Low Severity
Transverse Cracking

MN1-2

MN1-2

MN1-4
8% REOB

MN1-5

NOT ACTUAL CRACK MAPS   - GRAPHICAL REPRESENTATION OF DATA TO SCALE



Low Severity Non-Wheelpath Longitudinal 
Cracking

MN1-2

MN1-2

MN1-4
8% REOB

MN1-5

NOT ACTUAL CRACK MAPS   - GRAPHICAL REPRESENTATION OF DATA TO SCALE



Low Severity Fatigue Cracking
MN1-2

MN1-2

MN1-4
8% REOB

MN1-5

NOT ACTUAL CRACK MAPS   - GRAPHICAL REPRESENTATION OF DATA TO SCALE



Western Research Institute WRI
Atomic Force Microscopy AFM

100 µm

Average Diameter of Human Hair

Source: Wikipedia
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Binder Microstructure study: AFM
Neat AAG-1  topography

Typical neat AAG surface Nearly flat and featureless
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AAG-1 + REOB  topography

Topographic image indicates a relatively smooth flat surface with a 
number of small “holes”

Binder Microstructure study: AFM
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AAG-1 + REOB  topography + Aging

Topographic image indicates a relatively smooth flat surface with          
more small “holes”

Binder Microstructure study: AFM
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Summary from WRI 

• A preliminary study on a very limited 
sampling, still on going at WRI

• However some interesting findings:
 REOB not inert – affects microstructure, 

properties and aging
 Microstructure: 2-phase structures (at 

least) – “holes” occurring and expanding 
over aging
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Binders’ and Mixtures’
Engineering Properties
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Two Modification Approaches
• Softening an unmodified PG to another PG

• Diluting a unmodified PG

PG58-28PG58-28

PG64-22

PG58-28

+REOB PG64-22

PG58-28
+REOB

PG64-22

PG58-28

6% REOB*

*with a single REOB sample 29



6% REOB*
PG64-22

PG58-28

• Softening an unmodified PG to another PG

• Diluting a unmodified PG

Two Modification Approaches

PG58-28

PG69-24

PG58-28

+20% PG100-0 +15% REOB* PG58-28 PG58-28

+2.5% REOB*
*with a single REOB sample 30



• DSR High Temp
~9% REOB per PG Grade Drop



• DSR High Temp
~9% REOB per PG Grade Drop

• BBR m-Value
~21% REOB per PG Grade Drop



• DSR High Temp
~9% REOB per PG Grade Drop

• BBR m-Value
~21% REOB per PG Grade Drop

• BBR Stiffness
~9% REOB per PG Grade Drop
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DSR Fatigue: Linear Amplitude Sweep (LAST)
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P
δ

Notched Tension: Cracking Strain Tolerance
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Ongoing Mixtures’ Experimental Design
• “Moisture Damage”

– Granite- Occoquan, VA
– Tensile Strength 

Retained TSR
– Hamburg Wheel 

Tracking
– Repeated With & 

Without Liquid Amine 
Anti-strip or Hydrated 
Lime

• “Structural Performance”
– ALF 22% RAP Mix
– Flow Number; confined 

NCHRP 9-30A
– Dynamic Modulus, |E*|
– Uniaxial Fatigue - Short and 

Long-Term Aged (loose mix 5 
days @ 85oC)

– Thermal Stress Restrained 
Specimen TSRST - Short and 
Long-Term Aged (loose mix 5 
days @ 85oC)
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+REOB

+REOB
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Conclusions (1 of 4)

1. You can readily detect REOB presence

2. You cannot tell exactly how much is there

3. Effect of REOB depends on base binder (like PPA)

4. Variation between REOB suppliers & their samples
– Same concentration can produce different PG grades
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Conclusions (2 of 4)

6. 2 X PAV is a reasonable approximation of 5 years  -
where anecdotal concerns lie

7. REOB softens and reduces tensile strength
– Binder notched tension (DENT)
– Decreases mix wet and dry IDT strength

8. In 2 of 3 cases, REOB improved binder intermediate 
temperature parameters for fatigue / strain tolerance
– 6% and 2.5% REOB blends 
– CTOD and LAST 
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Conclusions (3 of 4)

9. Rheological “disruption” occurred w/ highest %REOB
– Differences in Low Temperature m&S
– Did Not occur in blend with PG100-0
– Did occur in blends with high-REOB

– Made worse by continued aging
– Alludes to performance deterioration

– Corroborated by DENT CTOD & LAST & Stripping 

– Forces the issue of compatibility (extenders, rejuvenators, RAP / RAS, WMA…)

10. Consider specification change to BBR m & S
51



Conclusions (4 of 4)

10.REOB effects on Moisture Sensitivity
– TSR ratio, strength and Hamburg performance decreases 

with increasing REOB when no anti-strip is added
– REOB did not interfere with liquid anti-strip which improved 

TSR and Hamburg performance
– Consistent results from T283 and Hamburg 

• different conditions: hot/no-freeze and cold-freeze

– Notably, liquid ant-strip (0.4%) alters IDT strength and 
Hamburg deterioration more than REOB (2.5%-15%)

Ongoing experiments on mixture performance will be 
finishing February-March 2015 
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Thank You.

Questions?
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Awareness of long-term performance
• Utility of PAV to approximate 5-years age

• Poor performance after 5-years anecdotally attributed to REOB 

• Data from FHWA ALF test sections 
– Top and bottom 1-inch of core extracted & recovered binder
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 Exploratory practices 
using 2 x PAV is a good 
step in the right direction
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Aging study: High Pressure DSC
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Sulfur Kα 

Overlap of Phosphorous and Sulfur Peaks
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