National Center for Asphalt Technology

at AUBURN UNIVERSITY

Pavement Preservation and Thin Lift Asphalt

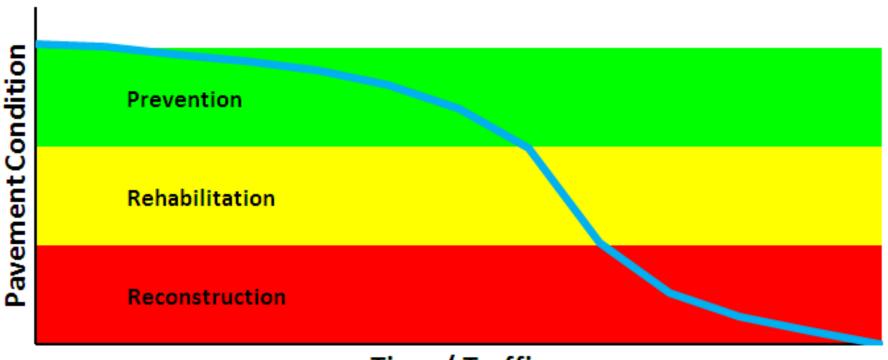
NCAUPG and Illinois Bituminous Paving Conference February 3, 2015

Dr. Michael Heitzman, PE Dr. Mary Robbins Mr. Don Watson, PE

Pavement Preservation

"A program employing a network level, long-term strategy that enhances pavement performance by using an integrated, cost-effective set of practices that **extend pavement life**, improve safety and meet motorist expectations"

- FHWA Pavement Preservation Expert Task Group



Current Life Extension Based on Ranges

Treatment	Reported Extended Service Life Range (Years)			
Thin Overlay	3-23			
Chip Seal	3-8			
Microsurfacing	3-8			
Crack Sealing	0-4			
Mill and Resurfacing	4-20			
Hot In-place Recycling	3-8			
Slurry Seal	4-7			
Fog Seal	4-5			
Cold In-place Recycling	4-17			
Full Depth Reclamation	10-20			
Structural Overlay (Mill and Fill)	6-17			
Whitetopping	3-17			
FHWA-HIF-10-020, January 2010	3			

Pavement Preservation

Time / Traffic

2012 Preservation Group Study

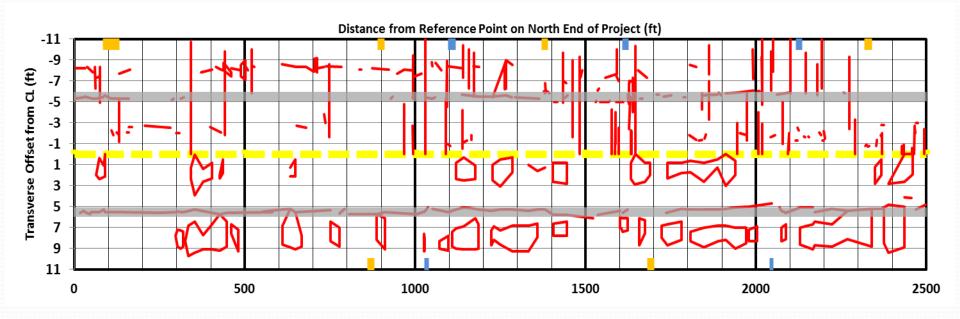
Quantify life extending benefit of study treatments

- Time/traffic to return to pretreatment condition(s)
- Test sections on the Track and Lee Road 159

Preservation Group Experiment

- 25 sections on local county road (Lee Road 159)
 - ≈5½" thick paved access road to quarry/asphalt plant
 - 2 control, 22 sections with treatments/combinations, 1 demonstration section
 - Pretreatment condition varied by WP and direction
- 14 sections on the NCAT Pavement Test Track
 - 7" pavements placed in the summer of 2009
 - PFC sections, DGA sections (virgin, high RAP)
 - >10 million ESALs

PG Sections on Lee Road 159


Martin Marietta Quarry

Asphalt Plant

Lee Road 159

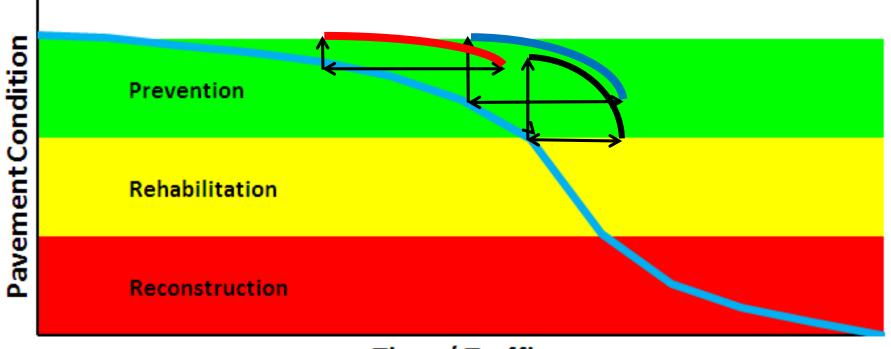
Low ADT roadway
<u>Very</u> high % trucks
Load data provided by quarry and asphalt plant
No traffic control needed for data collection

Lee Road 159

- Preventive maintenance
 - Routine maintenance
- Minor rehabilitation

- 1. Rejuvenating Fog Seal
- 2. Fibermat Chip Seal
- 3. Control
- 4. Control
- 5. Crack Seal (CS)
- 6. Single Layer Chip Seal
- 7. CS + Single Layer Chip Seal
- 8. Triple Layer Chip Seal
- 9. Double Layer Chip Seal
- 10. Single Chip + Microsurfacing (Cape)
- 11. Microsurfacing
- 12. CS + Microsurfacing
- 13. Double Layer Microsurfacing

- 14. Fibermat Chip + Microsurfacing (Cape)
- 15. Scrub Seal + Microsurfacing (Cape)
- 16. Scrub Seal
- 17. Distress Demo Section
- 18. Fibermat Chip + HMA thinlay (Cape)
- 19. HMA Thinlay (PG 67-22)
- 20. 100% Foamed Recycle Inlay + thinlay
- 21. HMA Thinlay (PG 76-22)
- 22. Ultra Thin Bonded Wearing Course
- 23. HMA Thinlay (50% RAP)
- 24. HMA Thinlay (5% PCRAS)
- 25. HMA Thinlay (High Polymer)



LR 159 Testing Overview

Weekly

- Inertial Profiler (roughness, texture)
- Visual inspections with notes/pictures
- Monthly
 - Video for crack mapping
 - Rut depth
 - Falling weight deflectometer (FWD)
 - Subgrade moisture readings
- Other
 - Locked wheel skid trailer friction
 - Ground penetrating radar (GPR)

Time / Traffic

Thin Lift Asphalt (Thinlays)

- Surface preservation
- Smaller NMAS, thinner lift thickness lower cost
- Good rut resistance
- Impermeable surface
- Selection conditions:
 - Smooth pavement
 - Good friction fine aggregate in mix (for high speed routes)
 - Cool weather paving (thin lift)
 - Modified mix design / construction criteria

Advantages of Thin Overlays

- Pavement preservation tool (no cure, no loose stone)
- Provides long service life (<u>when placed over structurally</u> <u>sound pavements</u>)
- Provides good riding surface(site dependent)
- Reduces noise (fine-graded mixes)
- Maintains grade and slope geometry
- Is recyclable
- Uses a surplus aggregate (if required quality)

2003 NCAT Test Track Cycle

- Mississippi DOT 4.75 mm mix
- ¾ in thick
- 92.2% Theoretical Density
- PG 76-22
- Aggregate
 - 69% Limestone
 - 19% Gravel
 - 12% Natural Sand
- After 30 million ESALs, 7 mm rut

2003 NCAT Test Track Cycle

- 9.5 mm mix
- 1 in thick
- 93.7% Theoretical Density
- PG 76-22
- Aggregate
 - 19% Natural Sand
- After 30 million ESALs, 5 mm rut

NCHRP Synthesis of Thin Overlays

- 9.5 and 12.5mm dense graded
- 9.5 and 12.5mm SMA
- 4.75mm dense graded and SMA
- UTBWC (ultra-thin bituminous wearing coarse)
- OGFC/PFC

PennDOT Use of Thin Overlays

Where Not To Use Thin Overlays

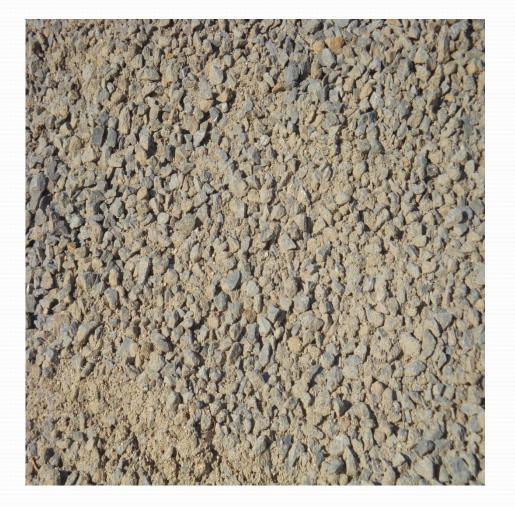
Performance Measures

(Purdue Study)

Performance Indicator	Roughness <u>(IRI)</u>	Condition <u>(PCR)</u>	<u>Rut Depth</u>		
Threshold Used	110 in/mi (1.74 m/km)	85	0.25 in (6 mm)		
Expected Life (Yrs.)	7 - 10	7 - 11	8 - 11		

Service Life

- LTPP Data (Liu, 2013)
 - 341 Thin Overlay Sections
 - 40 States, 8 Canadian Provinces
- Median life expectancy 7 to 9.5 years


Environmental Differences

Construction Quality Standards -Interstate versus Secondary

Variation in material quality

Temporary Fix

NCAT Pavement Preservation Study

Section	18	19	20	21	22	23	24	25
Surface	4.75/PG 67-22	4.75/PG 67-22	4.75/PG 76-22	4.75/PG 76-22	UTBWC	4.75 50% RAP	4.75 5% Shingles	4.75 PG 88-22
Subsurface	Fibermat	Existing	Full-Depth Reclamation	Existing	Existing	Existing	Existing	Existing

Conclusions

- Agencies need to define performance for pavement preservation
- Thin overlays routinely used as preservation tool
- Thin overlays extend life of pavements
 - Success depends on existing distresses
 - Service life generally in 7 11 year range

2015 Pavement Test Track Conference

March 3-5, 2015

The Hotel at Auburn University and Dixon Conference Center Auburn, Alabama

WMA & High RAP/RAS/GTR Mixes
 Pavement Preservation
 Open-Graded Friction Courses
 Optimized Structural Design

National Center for Asphalt Technology

Official registration information available at www.nca

Lee Road 159

Pavement Preservation Experiment to Reduce the Cost to Maintain Your Roads

Funding Provided by:

Alabama, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, and FP2 via Auburn University and the Lee County Commission