Tack Coat Implementation & Success

U.S. Department of Transportation Federal Highway Administration

Tack Coat Best Practices

FHWA Cooperative Agreement Subtask

Longitudinal Joints Intelligent Compaction

Overall Purpose

... to improve the overall bonding of pavement layers;
to decrease distresses associated with poor bond;
and to improve overall pavement performance.

Tack Coat Workshops

Successful Tack Coat

The Ultimate Goal: Uniform, complete, and adequate coverage

Importance of Tack Coats

- Promote the bond between pavement layers
- To prevent slippage between pavement layers
- Vital for structural performance
- Achieve optimum density
- Prevent rutting

Loss of Fatigue Life Examples

- May & King:
 - 10% bond loss = 50% less fatigue life
- Roffe & Chaignon
 - No bond = 60% loss of life
- Brown & Brunton
 - No Bond = 75% loss of life
 - \circ 30% bond loss = 70% loss of life

Loss of Life

Consequences of Poor Bonding

- Costly pavement repairs
 - Repair of isolated area relatively inexpensive
 - Removal and replacement of a portion or the entire pavement structure is very expensive
 - Shorter than expected performance can be devastating for agency budgets
 - Influences future Life Cycle Cost Analysis

Everyone MUST be on the same page

What we are talking about:

- Original Emulsion—an undiluted emulsion which primarily consists of a paving grade binder, water, and an emulsifying agent.
- Diluted Emulsion—an emulsion that has been diluted with <u>additional</u> water.
 - Critical to control
 - 1:1 typical (Original Emulsion: Added Water)
- Residual Asphalt—the remaining asphalt after an emulsion has set typically 57–70 percent.

What's wrong (if anything) with the following specification regarding application rate?:

"Apply the tack coat at a rate of 0.05 gallons/yd²"

What difference does it make?

If the example spec *intended* 0.05 *gal/yd*² of residual asphalt:

Original emulsion applied at **0.05 gal/yd²** using an emulsion with 60% residual asphalt, leaves **0.03 gal/yd²** on the roadway?

40% less than intended

What difference does it make?

If the example spec *intended* 0.05 *gal/yd*² of residual asphalt:

Diluted Emulsion using the same emulsion diluted 1:1 with water and applied at 0.05 gal/yd² leaves 0.015 gal/yd² on the roadway?

70% less than intended

What difference does it make?

If the example spec *intended* 0.05 *gal/yd*² of residual asphalt:

To receive **Residual Asphalt** at **0.05 gal/yd²** using an emulsion with 60% residual asphalt, the contractor would need to apply:

0.083 gal/yd² of Original Emulsion or 0.167 gal/yd² of 1:1 Diluted Emulsion

Isolated Slippage Failure

Slippage Failure

8-10 years est. Interstate Pavement

Cores Showing Debonding

Courtesy of MoDOT

So is it worth it to apply a tack coat?

Cost of Tack Coat

New or Reconstruction

• About 0.1-0.2% of Project Total

About 1.0-1.5% of Pavement Total Cost

Mill and Overlay

 About 1.0-2.0% of Project Total

About 1.0-2.5% of Pavement Total Cost

Estimated Cost of Bond Failure in the Top Lift

- Assume no inflation for materials
- Estimated traffic control
- Used project plans for thicknesses
- Used bid tabs for:
 - Milling
 - Material costs
 - Replaced pavement markings

30-100% of Original Pavement Costs

What is the Risk?

Obstacles In Getting a Good Tack?

Project Pressure due to:

- Working in short construction windows
- Cool, damp weather
- Night time paving
- High traffic areas
- Proper surface cleaning

Current Research

- NCHRP 9-40a
- SHRP2
- Arkansas
- Colorado
- Illinois
- Louisiana

- NCAT
- Texas
- Wisconsin
- Oregon
- MnRoads
- International

Testing

Field/Laboratory Bond Testing

- Shear Testing
- Torsion Testing
- Pull–Off Testing (tensile)
- Cyclic

Trends From 35 Workshops

FHWA Best Practices Tech Brief (Dec. 2015)

Trends From 35 Workshops

- DOTs Specification Revisions
 - Increasing Application Rates
 - Spray rates to increase residual rate
 - Adjusting application rates for different surfaces
 - Fresh asphalt, old asphalt, milled, PCC
 - Adding more heat prior to spraying

Trends From 35 Workshops

DOTs Specification Revisions

- Verifying Calibration of Distributors
- Adding more heat prior to spraying
- Eliminating dilution from specifications
 - Only when needed and only once by supplier
- Tack as Separate Pay Item vs. Incidental Item
- Moving to Stiffer Base Asphalts
 - Improve bonding & reduce tracking

Future Trends

- Performance testing as proof of bond strength
 - DOT's will adopt a standardized test
 - Monitoring results for a period of time
 - Establish a baseline as minimum
 - Eventually, contactors will be rewarded or penalized
 - Based on test results

Wayne Jones Senior Regional Engineer wjones@asphaltinstitute.org