

Illinois Center for Transportation University of Illinois at Urbana Champaign

Complete Testing Suite for HMA Performance Prediction

Presenter: Imad L. Al-Qadi, PhD, PE, Dist.M.ASCE

H. Ozer, P. Singhvi, J. Rivera, A. El Khatib, M. Mueller, and J. Trepanier,

Loaded Flexible Pavement

Pavement Distresses Segregation due to

paver operation

Heavy traffic

Source: Nunn and Ferne (2001)

Aging and thermal loads

Rutting/ Cracking in HMA

Contribution of Asphalt Binder

An analysis of over 1000 mixes shows increased energy with increased binder %

Contribution of Asphalt Binder

An analysis of over 1000 mixes shows
 increased energy with increased binder %

Asphalt Binder Replacement (ABR)

Environmental Savings from ABR

"Where Excellence and Transportation Meet" Yang et al. (2014). Environmental impacts from producing asphalt mixtures with varying degrees of recycled asphalt materials.

Challenges with RAP/RAS (ABR)

- Fatigue cracking issue: stiffer mixes with high ABR may exhibit early fatigue cracking
- Thermal/Block cracking issue: Stiffer mixes have reduced relaxation potential
- Shingle asphalt is air blown to harden asphalt (*PG 112+02*) then additional aging on the roofs
- RAP AC can be hard or soft depends on project(s) milled
- Counteracting binder selection of virgin binder becomes arbitrary

Pavement Cracking

- Traffic loading, temperature, AC material properties all play a role → VERY COMPLEX
- We can't afford running a battery of tests to simulate these conditions → SUCH TESTS DO NOT EVEN EXIST
- We need a simple, affordable (money AND time), and meaningful test as a best approximate to overall cracking related damage → THERMAL, FATIGUE, BLOCK,...

IL-SCB Test

- Modified SCB fracture test conducted at 25°C
- LVDT control load rate @ 50
 mm/min
- Parameters calculated:
 - Fracture energy (G_f)
 - Peak load (P_{max}) & corresponding displacement (u_o)

"Where Exce

- Critical displacement (u₁)
- Slope at inflection point (m)

SCB Simulations

 Perform numerical simulations of SCB test with bulk characteristic from complex modulus tests

DIC: Full Field Measurements

exx [1] - Lagrange 0.0166

-0.0047

eyy

FPZ (Temperature Effect)

"Where Excellence and Transportation Meet"

Fracture Energy Ambiguities

Development of Flexibility Index

Applicability and Seamless Implementation

Applicability and Implementation

- Can use AASHTO T-283 (TSR) equipment
- Two low-cost prototypes were already manufactured (9-18K)

 Water bath conditioning allows the use of AASHTO T-283 (TSR) set up

IL-SCB Tool

 A software tool was developed to process IL-SCB results

Provide a Significant and Meaningful Spread in Test Output

Case Study: High ABR Mixes

Goal: Identify a difference in the performance of:

Mix	ABR	Binder	Constant Properties	Expected Behavior
L4	0%	64-22	AC (%): 6	Increment in ABR Decreases Toughness
L7	20%	58-28		
L9	30%	58-28	VIVIA (%): 15 3	
L10	60%	52-34	10.0	

Low Temperature SCB (-12°C):

SCB (-12°C, 1 mm/min, CMOD Control)

Low Temperature SCB (-12°C):

Low Temperature SCB (-12°C):

Low Temperature SCB:

Intermediate Temperature SCB (25 °C):

Intermediate Temperature SCB (25 °C):

Intermediate Temperature SCB (25 °C):

[&]quot;Where Excellence and Transportation Meet"

Intermediate Temperature SCB:

- Intermediate
 Repeatability:
 - ~ 10% COV ~
- Intermediate
 Discrimination:
 - ~ 25%Overlap

Normal Distribution Overlap:

10 %

20 %

30 %

40%

Flexibility Index SCB (25 °C):

Normal Distribution Overlap:

 $\mathbf{0}$

20 %

30 %

- Reduced
 Repeatability:
 - ~ 15% COV .
- High
 Discrimination:
 - ~ 3% Overlap

Correlation to Field Performance

Accelerated Loading Facility

- Simulates truck traffic with controlled loading and pavement temperatures.
- Up to 35,000 cycles can be applied per week.
- Wheel load can be varied from 33 kN (7,500 lb) representing a light truck to 84 kN (19,000 lb) simulating a heavy axle.

Lane Properties

ABR Group	Lane	WMA	Binder Grade	
Control	1	-	PG64-22	
20% (w/ RAP)	9	Water	PG64-22	2
	4	Chemical	PG64-22	
40% (RAP)	8	-	PG58-28	LANEI
	11	Chemical	PG58-28	0%RAP
	5	-	PG64-22	
20% (w/ RAS)	7	-	PG58-28	35
	3	-	PG64-22	
				and the second

IL-SCB vs. Fatigue Cracking

Field Cores

- Field cores were obtained from nine IDOT districts
- Flexibility index values were compared to field performance data obtained from districts

Field Correlation (D1)

District 1 Section #	Field Perf.	FI	Thickness (mm)
5	Bad	1.3	40
10	Bad	1.4	41
4	Bad	1.8	41
7	Good	2.3	38
6	Bad	2.9	38
2	Bad	3.1	38
11	Good	3.4	26
12	Bad	3.9	38
3	Good	4.9	41
1	Good	5.0	37
8	Good	6.0	25
13	Bad	10.4	41
9	Good	10.9	26

Increasing FI

I

Effect of Construction Year

Balanced Mix

"Where Excellence and Transportation Meet"

Balanced Mix

Final Remarks

- Asphalt mixture brittleness can result from mixture volumetrics as well as adding recycled materials (RAP and RAS)
- Low temperature fracture tests could not distinguish between AC mixes
- IL-SCB test is a practical, affordable, and reliable test to distinguish between mixes' cracking resistance
- The method is supported by extensive lab and field testing, theoretical, and numerical methods, and DIC technique

Findings and Remarks

- IL-SCB test method and the proposed Flexibility Index have successfully screened hundreds of AC mixes for changes in brittleness
- Implementation of a balanced mix design and field performance validation is underway
 - Simple interaction plots combining Hamburg and IL-SCB tests
- A life-cycle approach is needed to assess sustainability impact of recycled materials
 - Pavement performance and traffic volumes are critical

Acknowledgements

- ICT R27-128 Project Technical Review Panel
- Undergrad and graduate students involved
- ICT research engineers

ICT.illinois.edu

HMA Testing "Book Ends"

