
Autofocus algorithm for dispersion correction in
optical coherence tomography

Daniel L. Marks, Amy L. Oldenburg, J. Joshua Reynolds, and Stephen A. Boppart

Practical clinical optical coherence tomography �OCT� systems require automatic tools for identifying and
correcting flaws in OCT images. One type of flaw is the loss of image detail owing to the dispersion of
the medium, which in most cases is unknown. We present an autofocus algorithm for estimating the
delay line and material dispersion from OCT reflectance data, integrating a previously presented dis-
persion compensation algorithm to correct the data. The algorithm is based on minimizing the Renyi
entropy of the corrected axial-scan image, which is a contrast-enhancement criterion. This autofocus
algorithm can be used in conjunction with a high-speed, digital-signal-processor-based OCT acquisition
system for rapid image correction. © 2003 Optical Society of America
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1. Introduction

Optical coherence tomography �OCT� is rapidly be-
coming a practical diagnostic clinical instrument.
Its high resolution surpasses other noninvasive
three-dimensional imaging modalities, including
x-ray computed tomography, magnetic resonance im-
aging, and ultrasound imaging, making it suitable for
in vivo analysis at near histological resolutions. For
OCT technology to achieve the utility of other imag-
ing systems, it is necessary to develop the system that
is usable by personnel outside the field of optical
engineering. Because numerous problems can com-
promise imaging performance, it is highly desirable
to build these systems with as much automatic anal-
ysis as possible to compensate for these problems.
Dispersion, which can corrupt the resolution of the
images, can be problematic because it depends on the
material or materials the light passes through, which
are not necessarily known a priori. Fortunately,
dispersion effects can be corrected computationally.
We propose an autofocus algorithm that utilizes our
previous research1 for automatic and reliable estima-
tion of the dispersion parameters of the delay line and
the medium and applies these parameters to produce
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a corrected image. This autofocus algorithm is suit-
able for implementation on a digital-signal-processor-
based OCT system for rapid, real-time correction of
images.

Dispersion is a linear effect in which the group
velocity in a medium depends sensitively on the
wavelength of light. The effect of dispersion on OCT
imaging is that previously sharp features are blurred
into adjacent features, resulting in a reduction of
image quality. A similar effect is observed on a pho-
tograph that is taken out of focus. However, there is
an important difference between these two situa-
tions. In the case of a blurry photograph, informa-
tion is lost because high spatial frequencies are not
transmitted through the optical system. Dispersion
in OCT, however, does not degrade the power spec-
trum of the collected signal whatsoever. As a result,
dispersion in OCT can be corrected digitally without
any image-quality consequences.

Both digital and optical methods have been utilized
to correct dispersion in OCT images. Fercher et al.2
utilized a space-variant convolution kernel to decon-
volve depth-dependent dispersion. Optical phase
conjugation methods, such as employed by Drexler et
al.3 insert various transparent optical materials to
balance the dispersion between the reference and the
signal arm of the interferometer. Another method
has processed data in the Fourier domain to remove
defects.4 Also, a CLEAN-type algorithm5 can iden-
tify dispersed pointlike scatterers in tissue. Poten-
tially, the contrast criterion we utilize could be used
in conjunction with another dispersion compensation
method to achieve an alternate autofocus method.



Biological tissues generally contain a wide variety
of materials, each of which has different dispersion
properties. It is desirable for a medical instrument
to automatically adapt to the tissue by calibrating the
dispersion parameters without a separate measure-
ment. By introducing a compensating dispersion
into the delay arm, the image can be corrected in the
optical system. However, digital processing adds a
high degree of flexibility, as well as eliminates the
complexity of optical dispersion compensation.
Modern digital signal processors provide the capacity
for real-time correction of the image, so that optical
compensation is not required. In addition, digital
filters can also compensate for spectral nonunifor-
mity and reject noise at the same time. We believe
that for these reasons digital analysis will become an
integral and necessary part of an OCT instrument.

2. Algorithm Description

Any automatic algorithm, such as blind deconvolu-
tion algorithms, must make a priori assumptions
about the nature of the distortion and the image.
For typical image restoration, one can stipulate that
the unblurred image be positive valued, as well as the
blurring function. Also, other assumptions can be
made about finite support when the image is sur-
rounded by a dark area. Unfortunately, we cannot
make these assumptions because, in general, the
OCT reflectance data can take on positive or negative
values. This reflectance can be of either sign be-
cause positive reflections occur at higher-to-lower
refractive-index boundaries while negative reflec-
tions occur at the surface of conductors or at lower-
to-higher refractive index boundaries. The sign of
the reflectance corresponds to a phase shift of 0 or �
in the measured interferogram of a reflector relative
to the reference signal. The nature of dispersion is
that it is a power-preserving phase distortion, not a
convolution of intensities, which, in general, means
that any chirped reflectance function can plausibly be
caused by a chirped set of reflectors that are distrib-
uted in the medium by frequency. However, most
biological tissues do not contain objects where peri-
odic structures of different periods are spatially sep-
arated. Most structures are characterized by
speckle objects that lack any long-range correlations
in the distributions of reflectors in the tissue. We
note, however, that almost any set of chirp parame-
ters can produce a plausible estimate of the reflectors.
We have chosen a method that empirically produces
good results on specklelike objects.

Many, but not all, biological structures possess fea-
tures with contrast and sharp boundaries. This as-
pect becomes especially true as the bandwidth
increases and one can resolve individual cells and
their constituents. A human operator attempting to
guess the right chirp parameters might adjust the
parameters to achieve a sharp-looking object with
narrow boundaries. Our algorithm is essentially an
automated way to do this. The method is to design
a functional for the OCT reflectance data, adjusted
with trial dispersion parameters, that tends to be

minimized when the adjusted data contains sharp
boundaries and objects. We then optimize this func-
tional over the dispersion parameters. Since the
number of dispersion parameters is usually fairly
low, and this functional tends to be globally smooth
with relatively weak cross dependence of the param-
eters, this optimization converges quickly. These
parameters can then be typically applied globally to
the OCT image if the material composition in each
axial scan is similar.

For a complete review of the formalism used here,
we refer the reader back to our earlier research.1
We assume that one has applied the algorithm to the
point where one has computed G̃���, the Fourier
transform of the temporal reflectance function of the
axial scan. This result should ideally already have
the noise filtered out, perhaps by use of the Wiener-
type filter presented in our previous research. Be-
cause of dispersion, this result does not directly
correspond to the spatial features in the reflectance.
Dispersion compensation uses knowledge of the ma-
terial dispersion to compute the actual reflectance
function g�z� from G̃���. We will constrain the re-
flectance function to be nonzero only for z � 0. The
functional � computed from a trial reflectance func-
tion g�z� will be

� � � �
0

	

� g� z��2�1
��dz. (1)

This functional has several properties that make it
attractive for finding sharp boundaries. First, since
it integrates over the entire reflectance function,
there is no preference on the actual position or per-
mutations of the reconstructed data. Second, this
function is always negative, so that an upper bound is
always known. Finally, the reflectance depends
only on �g�z��2, the energy in the reflectance signal at
each position �and disregards phase�. The total en-
ergy in the signal is invariant to charges in the chirp
parameters, which corresponds to setting � � 0. �As
a result, � � 0 is not a useful value for optimization
of �.� Values of � � 0 will tailor � to decrease when
pointlike objects are present in the signal, emphasiz-
ing sharp features. Conversely, for � 
 0 the signal
tends to be smoothed out. We will use values of � �
0 for this functional to sharpen boundaries. In par-
ticular, the value of � � 1 may offer computational
convenience by allowing one to perform the squaring
operation twice rather than resort to an exponent
operation.

By choosing �, we can control the global smooth-
ness of the functional �. Large values of � tend to
produce sharply peaked values of �, whereas values
near zero tend to smooth out �. When one optimizes
�, a low value of � can be chosen to provide a gentle
push toward the minimum when attempting to find
the global minimum, whereas high values of � can be
used when one wants to quickly find the local mini-
mum. We have found that the dispersion parame-
ters that minimize � are insensitive to the actual
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value of � chosen, so changing the parameter during
optimization does not compromise the eventual tar-
get parameters. Although Eq. �1� has an analytic
derivative, we recommend against using gradient in-
formation of � during optimization because although
� is typically globally smooth, it often has small,
high-frequency ripples that make gradient informa-
tion less useful.

The functional of Eq. �1� has a relation to the min-
imum entropy method. When � is near zero, � can
be approximated by a Taylor series in �. The con-
stant term of this series is the energy of the signal,
which is invariant to changes in the dispersion pa-
rameters. The magnitude of the first-order term is
given by its first derivative:

d�

d�
���0 � ��

0

	

� g� z��2 log�� g� z��2�dz. (2)

This function is the definition of Shannon entropy6

for the distribution �g�z��2, if the energy in the signal
is normalized to 1. In the maximum entropy
method, this functional would be maximized to
spread the power out over the image as widely as
possible, constrained by a goodness of fit to the data.
In this case, we minimize it to create as sharp of a
reconstruction as possible, because it is possible to
blur out the data arbitrarily with large chirp param-
eters. This autofocus algorithm can be considered to
be a minimum entropy algorithm that minimizes the
Renyi entropy,7 which approaches Shannon entropy
in the limit of �3 0.6 Another application of Renyi
entropy minimization to blind source separation can
be found in Ref. 8.

Sets of dispersion parameters generally fall into
two categories: fixed dispersion and material dis-
persion. Fixed dispersion can be measured if one
places a mirror at the location of the top surface of the
sample. Since the mirror produces no dispersion,
the signal contains only the information about the
dispersion of the delay system at that position.
With a sample, the dispersion in the sample is due to
the delay system dispersion plus the total material
dispersion at a given depth. Depending on the de-
gree of dispersion correction required, one can correct
only the fixed dispersion, or both the fixed and the
material dispersion. For wide bandwidth sources
and long axial-scan ranges, material dispersion com-
pensation is typically necessary.

Rather than an integral formation, we develop the
algorithm in a unitless discrete-time formation that
is much more likely to be useful in practice. Because
all the dimensionality of the quantities will be re-
moved, the algorithm is scaled to the sampling rate of
the delay line. The formulas presented assume that
the maximum frequency of all of the spectra is �max.

3. Algorithm Discrete-Time Implementation

We assume that we have sampled the complex Fou-
rier spectrum of the samples of an axial scan. We
call these samples G̃n where n is an integer between

0 and N � 1. For an ideal delay line, we compute the
discrete Fourier transform �DFT� F̃n from the N sam-
ples of the interference signal fj:

F̃n � �
j�0

N�1

fj exp��ijn
N � . (3)

This DFT is usually implemented with the real-to-
complex fast Fourier transform �FFT� algorithm,
with the original signal fj padded with N zeros. If
the delay line is not ideal, a discrete version of the
procedure in Ref. 1 should be used. We also assume
we know the discrete power spectrum of the source
S̃n. We have found that S̃n can be estimated from
the image itself by averaging together the magnitude
of the DFT �F̃n� of all the axial scans in a two-
dimensional image. Since this estimate will have a
few ripples due to the placement of scatterers on an
axial-scan line, it helps to smooth the spectrum by
convolving it with a positive-valued filter. Since
most sources produce relatively slowly varying spec-
tra, this usually does not affect the estimate signifi-
cantly except to remove these ripples.

A useful optimization after the DFT is performed is
to extract only the portion of the spectrum known to
contain wavelengths that are actually present in the
source. This extraction prevents a resampling over
a much more densely sampled function than needed,
minimizing the computational burden. If the mag-
nitude of g�z� is displayed, the image produced will be
invariant to scale changes or translations in the Fou-
rier domain. The only difference is a change in the
carrier frequency of the reconstruction. We will as-
sume that this operation has been done so that the
fractional bandwidth of the extracted signal is on the
order of 1.

The spectral estimate S̃n contains the sum of the
source spectrum and the noise spectrum. The noise
spectrum usually has a relatively constant power
spectral density. We can estimate the noise spec-
trum by averaging the power spectral density of Sn
over a region of the Fourier spectrum that is outside
of the source spectrum. We call this estimate N0.
We can then use the Weiner filter estimate to com-
pute G̃n:

G̃n �
F̃n max�S̃n � N0, 0�

max�S̃n � N0, 0�2 � N0
2 . (4)

The function max gives the largest value of its
arguments. One may want to multiply N0 by a
small constant to produce a slightly pessimistic noise
estimate that will ensure that all frequencies not
emitted by the source make no contribution to the
reconstruction.

Another value that must be determined is �ctr,
which is the scaled centroid of the spectrum of Sn:

�ctr �
�
n�0

N�1

n max�S̃n � N0, 0�

�
n�0

N�1

N max�S̃n � N0, 0�

. (5)
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Now that G̃n and �ctr are known, we can attempt to
apply operations that remove the dispersion. To
remove fixed dispersion, we define the dispersion
parameters �2 and �3 as correcting second- and third-
order dispersion, respectively. We form the esti-
mate of the corrected spectrum G̃n� by means of

G̃n� � G̃n exp�i��2� n
N

� �ctr�2

� i��3� n
N

� �ctr�3� .

(6)

Expressed in this way, the maximum magnitude of
�2 before aliasing occurs is N�2. In general the max-
imum magnitude for �n is N�n. Therefore, the
search for the correct value of �n is confined to this
range.

If desired, one can correct the material dispersion
by resampling the Fourier spectrum from � to k
space. Because we are manipulating a sampled
Fourier spectrum, it is desirable to maintain the
same sampling rate in the discrete k variable as the
� variable so that the k sampling does not oversample
or undersample the modified Fourier spectrum. To
resample G̃n�, we produce an array of indices into G̃n�
called in, which determine the points of G̃n� that are
to be resampled. The resampled array is called G̃n�.
We define two material dispersion parameters �2 and
�3 that correct second- and third-order material dis-
persion, respectively. The resampling array in is
given by means of

in � n � �2� n
N

� �ctr�2

� �3� n
N

� �ctr�3

. (7)

Given this form of in, the maximum values of �2
and �3 to prevent aliasing are approximately N�2 and
N�3, respectively. Using a standard sinc-type inter-
polator, the array G̃n� can be computed from G̃n� by
means of

G̃n� � �in
1 � in� �
j�0

N�1

G̃j�
sin��� j � in��

�� j � in�
. (8)

The factor �in
1 � in� is an important Jacobian-type
rescaling factor to maintain the same energy in the
reconstructed signal. Although we have shown a
sinc-type interpolator, we recommend a windowed
sinc interpolator such as the prolate-spheroidal inter-
polator9 because of its improved convergence proper-
ties. Once G̃n� is found, the inverse DFT can be used
to compute the estimate of gn, the sampled version of
the dispersion-corrected axial scan �n from 0 to N �
1�:

gn �
1
N �

j�0

N�1

G̃j� exp���ijn
N � . (9)

One can accomplish this DFT by zero padding the
samples of G̃n� with N zeros and taking the inverse
FFT. If the complex-to-real inverse FFT is used, one
will not have the benefit of getting the complex ana-
lytic extension of gn. The analytic extension is use-

ful because, as we pointed out in our earlier paper,1
the magnitude �gn� can be a useful estimate of the
scattering amplitude in the presence of speckle.

4. Optimization of the Functional over the Dispersion
Parameters

With the dispersion parameters already known, Sec-
tion 3 provides a recipe for recovering undistorted
axial-scan reflectance data. We now outline a pro-
cedure in which we can use this to search for the
dispersion parameters that optimize the functional of
Eq. �1�. Essentially, this method is an adaptation of
the bracketing and golden section search procedure.10

The golden-section search is a method that iteratively
subdivides an interval in which a maximum or min-
imum is known to exist until it is isolated to a desired
accuracy. It is called golden section because the ra-
tio between the widths of the two subdivided inter-
vals is given by the golden ratio. Because of this, the
golden-section search is very robust but only provides
linear convergence. Because of the roughness of the
functional on the small scale, it is desirable to avoid
using gradient-based search techniques, but other
curve-fitting techniques such as Brent’s method may
improve convergence.10

To use an optimization search algorithm requires
that a region of the domain of the function be estab-
lished to contain a minimum. One establishes this
region by bracketing a minimum, which entails iden-
tifying two end points of an interval and a point in
between that has a smaller value than the end points.
This initial step is often more difficult and time con-
suming than the actual optimization search because
in general there may be little information about the
actual location of the maximum. In the Section 3,
we established limits on the magnitude of the param-
eters �2, �3, �2, and �3. A useful lower limit esti-
mate of the magnitude of these parameters is usually
given by 1, because parameters with less than this
magnitude tend to provide little noticeable correc-
tion.

In this algorithm, we will assume that there is an
nonscattering region in the axial scan above the sur-
face of the biological tissue. The presence of such a
region is frequently the case when the tissue is sur-
rounded by a transparent medium �e.g., water or air�.
Because dispersion tends to blur features on the axial
scan, the correct dispersion parameters are likely to
make the boundary between the transparent medium
as sharp as possible. By attempting to find the dis-
persion parameters that optimize the entropy at the
boundary, we may cancel the effects of dispersion in
the delay line at the tissue boundary. We will as-
sume that the uncorrected axial-scan Fourier spec-
trum G̃n has been determined, for example, from Eq.
�4�. We then compute an uncorrected axial-scan re-
flectance gn from it by using a DFT such as Eq. �9�.
Even with dispersion, the initial reflection on the
axial scan is usually readily recognizable. Assume
the front reflection has been determined to start at
sample number m on the axial scan, and end at po-
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sition m�. We create two new arrays g� and h from
this data:

gn� � gn
m, for n � N � m,

gn� � 0, otherwise,

hn � gn
m, for n � m� � m. (10)

The array gn� is the axial-scan data with the empty
space removed, whereas the array hn is an array of
length m� � m just representing the initial reflection
on the line. The task is to find the fixed dispersion
parameters �2 and �3. One obtains these parame-
ters by finding the minimum value of the functional �
over �2 and �3 as applied to the initial reflection hn:

�h � � �
n�0

m��m�1

�hn�2�1
��. (11)

The task is to determine the value of �2 that min-
imizes �h. We first recompute the Fourier spectrum
H̃n using the DFT as in Eq. �3�. Next, we bracket a
minimum of �h. We assume that the magnitude of
�2 lies within �N�2 to N�2, where � is a small nonzero
number �usually � � 1�N suffices�. The bracketing
procedure is to form a sequence of M trial intervals in
�2 that we note by �n� � N��M�n��M�2. We then
compute �h��n�� and �h���n�� for each value of �n�.
Note that we compute both positive and negative
values because we are searching in both directions.
One computes the values by using Eq. �6� applied to
H̃n, using the inverse DFT of Eq. �9� to compute the
trial hn, and then performing the sum of Eq. �11�.
When these formulas are used, the length N should
be replaced by the new length m� � m. One can
then bracket the minimum by finding the value of �n�
or ��n� with the smallest value of �h���n�� that is
also smaller than �h���n�1� and �h���n�1��. The
values of �n�1�, �n�, and �n
1� will then bracket the
minimum if M is sufficiently large. Once the mini-
mum is bracketed, the golden-section search can be
used to hunt for the minimum value of �h��2� in the
bracketed interval. The described procedure is a
straightforward application of the golden section al-
gorithm to the function �h��2�.

Once the minimum value of �2 is found, one can
search for the minimum value of �h��3� over the dis-
persion parameter �3. The previous value of �2
should be used from the earlier step in Eq. �6� but
should be left fixed during the optimization of �3. A
similar procedure can be used to bracket the mini-
mum of �3 somewhere between �N�3 and N�3 and
then to find the minimum through a golden-section
search method. If desired, one can then go back and
refine the value of �2 using the value of �3 and iterate
until convergence, if that level of accuracy is re-
quired.

The optimal values of �2 and �3 should be used to
correct the signal gn� as defined in Eq. �10�. One
performs this correction by taking the DFT of gn� and
applying Eq. �6� to find G̃n�. It is important to use
gn� rather than gn because the stationary point at
which no material dispersion correction is applied is

at the beginning of the line, and this reflection has
already been well corrected and should not be further
altered.

A similar procedure is used to find the parameters
�2 and �3. We form the sequence of M trial intervals
�n � N��M�n��M�2. Computing the values of �h for
each �n allows the minimum to be bracketed if a large
enough value of M is chosen. One calculates each
value of �h by taking the corrected G̃n� and applying
the resampling of Eqs. �7� and �8�. The corrected
dispersion data is calculated with the DFT of Eq. �9�,
and �h is computed from the corrected data with Eq.
�11�. Once the minimum is bracketed, a golden-
section search narrows the bracketed interval. First
the value of �2 can be optimized, leaving �3 � 0.
Then �3 is optimized. Again, one can go back and
improve the value of �2 through further iteration.

There is one case in which the dispersion parame-
ters may be difficult to determine with this method.
When looking at a periodic object, there are multiple
values of the dispersion parameters that have iden-
tical maxima. Identical maxima are present be-
cause of a Talbot effect,11 but occurs in the time
domain rather than the spatial domain. The spatial
Talbot effect occurs when a periodic field diffracts
through space and reproduces itself identically in a
periodic manner. Similarly, with a periodic struc-
ture, there are multiple values of the second-order
dispersion that are equally spaced and that repro-
duce the unchirped structure. This structure may
not significantly affect the reconstruction of periodic
structures, but layers beneath them will have an in-
correct correction, resulting in a blurred reconstruc-
tion. Some structures, such as the retinal nerve
fiber layer or muscle fibers may be somewhat peri-
odic, and therefore one must consider the possibility
that there may be many local minima during optimi-
zation of �h over �2 and �2.

Another important note is that there is an equiva-
lence between fixed and material dispersion over
translation of the axial scan. If the axial scan is
translated in the spatial domain by d samples, then
the values of �2 and �3 need to be changed to com-
pensate for the fact that the amount of dispersion
applied by the resampling process in Eq. �8� depends
on where on the axial scan the reflectance resides.
One encounters this equivalence by comparing the
effects of Eqs. �6� and �7� when the object is a point
reflector placed at a position d, which has an unmod-
ified reflectance function G̃n � exp�i�dn�N�. If the
parameters �2

old, �3
old, �2, and �3 correct the axial

scan given by the signal gn, the new parameters to
correct a translated axial scan gn� � gn�d will be

�2
new � �2

old � �2 d�N,

�3
new � �3

old � �3 d�N. (12)

5. Experimental Performance

The ultimate utility of a method intended to simplify
the practical application of an art can be proved only
in the field. However, as an example we show the
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application of the algorithm to two test objects: a
microfluidic structure and a tadpole. The microflu-
idic structure in a polydimethylsiloxane �PDMS�
polymer contains simple reflective layers so that the
boundary reflections can be examined in detail,
whereas the tadpole is included as an example of
enhancement of biological imaging.

Our OCT system consisted of a passively mode-
locked, Ti:sapphire laser with a center wavelength of
800 nm generating 100-fs pulses at a rate of 80 MHz
with 500-mW average power. By sending the pulses
through a narrow-core high-index silica–germania fi-
ber, these were broadened through nonlinear contin-
uum generation12 to an approximately 80-nm FWHM
bandwidth between 760 and 840 nm. The OCT sys-
tem was implemented as a Michelson interferometer
utilizing fiber-optic waveguides, a galvanometer-
scanned retroreflecting mirror as the delay line, and
galvanometer-scanned mirrors to steer the beam in
the transverse direction in the sample. With the
bandwidth used, dispersion is noticeable in the
PDMS for scan depths larger than a millimeter. Im-
aging the microfluidic structure in PDMS required
use of a 50-mm, focal-length visible-wavelength ach-
romatic doublet lens because a long depth of field was
necessary to simultaneously image the top and the
bottom surfaces of the microfluidic device. Because
of the large thickness of the achromat �approximately
7 mm�, it produced most of the dispersion that was
encountered in the axial scan. However, the PDMS
itself also produced enough dispersion so that correc-
tion of the dispersion of the achromat was insufficient
to achieve bandwidth-limited imaging performance
at all depths. Figure 1 shows a low-resolution image
of the PDMS microfluidic device. Four air–PDMS
surfaces are in this device, two of which are the ex-
terior top and bottom surfaces �the surfaces marked
�a, b� and �g, h�� and two of which are formed by an
interior channel in the microfluidic �marked by �c, d�
and �e, f ��.

The interference data was acquired for each axial
scan, with 200,000 samples per scan digitized to 12-

bits resolution. The first task was to estimate the
power spectral density of the laser and the noise spec-
trum magnitude. To do this, the FFT was taken of
all of the scan lines in the image, and the magnitudes
of these were averaged together. This estimate was
then blurred by use of a 10-nm-wide filter to remove
oscillations in the spectrum that occur due to the
regular placement of layers in the PDMS �this regu-
larity does not typically occur in biological samples�.
From the magnitude of the spectrum in the visible-
wavelength band �where no light was emitted by the
laser�, the noise power spectral density was esti-
mated. Figure 2 shows the original spectrum �solid
curve�, and the modified spectrum �hatched curve�
with the Weiner filter applied to the spectrum.
Since the sample was illuminated with approxi-
mately 20 mW of power, the shot noise was low, and
therefore much more bandwidth could be extrapo-
lated from the signal.

The center scan line was utilized for the autofocus
algorithm. The interference pattern from the top
reflection was isolated, and the golden-section search
method was utilized to minimize the Renyi entropy
over the fixed dispersion parameters �2 and �3. The
quadratic entropy was used, so � � 1 in the entropy
computation of Eq. �1�. Once these parameters were
found, the entire axial scan was corrected, so that the
remaining dispersion was due to the PDMS only.
Then, the golden-section search was used to minimize
the Renyi entropy by use of the material dispersion
parameters �2 and �3 over the entire axial-scan line.
The resultant parameters were used to correct the
entire axial scan. The original and corrected inter-
ference data are shown in Fig. 3. The original re-
flections in the microfluidic corresponding to the top
PDMS–air surface, top air–PDMS surface inside the
channel, bottom PDMS–air surface inside the chan-
nel, and bottom air–PDMS surface are shown in the
temporal interferograms �a, b�, �c, d�, �e, f �, and �g, h�
respectively. The letters �a, c, e, and g� correspond
to the original interferograms, whereas the letters �b,
d, f, and h� correspond to the dispersion-corrected

Fig. 1. Low-resolution OCT image of the PDMS microfluidic
structure with a schematic of the cross section of the microfluidic
channel.

Fig. 2. Source spectrum and digitally modified spectrum.
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interferograms. The FWHM of the corrected inter-
ferograms achieves nearly the bandwidth-limited
performance of approximately 2 �m at all four
depths. The minimization of Renyi entropy serves
to maximize the peak energy of the reflections, which
concentrates the energy as much as possible in the
four reflections.

The other autofocus example is from a Xenopus
laevis �African frog� tadpole, which has an internal
structure not nearly as well controlled as the PDMS
microfluidic, but is a more realistic test of the algo-
rithm. The tadpole specimen was cared for and han-
dled under the approved protocols of the University of
Illinois at Urbana-Champaign Committee on Animal

Care. We anesthetized the tadpole by immersing it
in a 0.05% solution of tricaine until the specimen no
longer responded to touch. The specimen was
placed on the stage of our OCT instrument for imag-
ing. A 20-mm, focal-length, 6-mm-diameter, infra-
red achromat was utilized as the focusing objective,
resulting in far less delay-line dispersion. The spot
size is approximately 10 �m, whereas the axial co-
herence length is approximately 2 �m. The spec-
trum of the illumination was very similar to that
shown in Fig. 2. Figure 4 shows an image of a sec-
tion of a live tadpole, without �4�a�� and with �4�b��
correction. For each image, we show the same ex-
panded section. The points, which are blurred in
the axial direction in image 4�a�, appear as com-
pressed points in image 4�b� because the axial reso-
lution is much better than the transverse. Figure 5
shows an expanded version of pointlike objects �cell
nuclei� from four different depths in the tadpole im-
age before and after autofocus correction. The ob-
jects appear much sharper and well defined owing to
the decrease of axial blurring.

Finally, Fig. 6 shows the dependence of the qua-
dratic Renyi entropy on the delay-line chirp param-
eter �2 and the material dispersion parameter �2.
This entropy is computed for the 200th scan line,
which was used in Fig. 4 to optimize the autofocus
dispersion parameters. The vertical axis is inverted
so that the minimum appears as a peak. There is a
clear, sharp peak in the delay-line entropy �2 that
corrects much of the dispersion in the axial scan line.
At this bandwidth and axial-scan range, most of the
blurring occurs because of the delay-line dispersion
and therefore is primarily corrected by the choice of
�2. A somewhat more modest but still noticeable
correction is achieved in optimizing the Renyi en-
tropy over the parameter �2. These two chirp pa-
rameters correspond to a total blurring at the surface
of 10 �m and a blurring of 25 �m at a depth of 1 mm.
Since the bandwidth-limited resolution is approxi-

Fig. 3. Autofocus digitally corrected reflections off of interfaces of
microfluidic structure. Plots �a�, �c�, �e�, and �g� correspond to the
uncorrected reflectance functions, whereas �b�, �d�, �f �, and �h� are
the corrected point-spread functions.

Fig. 4. Image of a tadpole: �a� before automatic dispersion correction and �b� after automatic dispersion correction. The boxes to the
right of each image show an expanded version of each image.
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mately 2 �m, the autofocus algorithm results in a
significant improvement in resolution that would be
degraded by dispersion.

6. Discussion and Conclusion

Ideally, an image-enhancement algorithm would
have a model of the image type it is attempting to
restore so that the algorithm could achieve the best
possible restored image. However, image character-
istics of biological tissues vary widely, and such a
model would be difficult to construct. In incoherent
microscopy, sharpness of the image can only occur
when the object is in focus. However, dispersion in
coherent imaging causes interference between adja-
cent features; thus dispersed features can still poten-
tially have bright points. Despite this fact, an
autofocus algorithm can be implemented when the
distribution of energy of an axial scan is concentrated
by minimization of the Renyi entropy. Using a rel-
atively simple criterion, one can find the scattering
amplitude inside tissue, accounting for dispersive ef-

fects. Since most tissues do not have long-range or-
der or periodic structures, Talbot-type multiple
minima to the Renyi entropy are not likely to occur in
practice.

The autofocus algorithm that we have described is
a scalar algorithm and therefore does not account for
polarization effects such as polarization-mode disper-
sion. Much biological media consists of isotropic
materials and therefore will not significantly exhibit
this effect. However, some fibrous structures such
as muscle and nerve fibers have form birefringence,
and the crystalline lens of the eye also exhibits bire-
fringence. At any depth in the tissue there can be a
group delay associated with both polarization modes.
Because both modes will likely project onto the
measured intensity signal, one may observe both po-
larization modes coherently superimposed on the
axial-scan data. Rather than being described by a
single scalar dispersion function, it is possible to
characterize the medium with a wavelength-
dependent dielectric tensor. However, characteriza-
tion of the medium in this manner means that
polarization-sensitive OCT must be used to capture
the interference, and four parameters must be fit to
the medium �if it is assumed lossless�. Fitting these
parameters adds significant complication to the algo-
rithm. However, correcting for the average disper-
sion of both polarizations will likely still improve the
image even if polarization effects are not considered.

We have demonstrated an autofocus algorithm to
automatically compensate for dispersive effects in
media by utilizing our previously described disper-
sion compensation method in conjunction with an
entropy optimization method. In this method we
are fitting only one set of parameters for the entire
medium. Therefore, our parameters will necessar-
ily average out the effects of varying material com-
position. However, because biological tissues tend
to contain mostly water, hemoglobin, and lipids as
their primary constituents, it is likely that the as-
sumption of a single medium will result in a superior
reconstruction, compared with that from use of no
material dispersion compensation. Corrected im-
ages of a PDMS microfluidic device, which has a
known composition, and a tadpole have significantly
improved contrast and resolution owing to the aver-
age material dispersion correction. The flexibility of
digital interferogram processing permits an essen-
tially arbitrary transformation to the image. Be-
cause dispersion does not result in a degradation in
the power of the captured signal, there is no noise
penalty for performing the correction digitally. For
this reason we believe that digital signal processing
will become an indispensable part of OCT, as it has
become for other three-dimensional imaging modali-
ties.

We appreciate the technical contributions of Alex
Schaefer, Adam Zysk, and Wei Luo. Funding sup-
port is provided by the National Science Foundation
�BES-0086696�, the Whitaker Foundation, joint
support from the National Aeronautics and Space

Fig. 5. Four sections of pointlike objects �cell nuclei� from the
tadpole images, taken at different depths in the image, and their
corrected versions.

Fig. 6. Dependence of Renyi quadratic entropy �� � 1� on the
chirp parameters �2 and �2.
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