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In Vivo Endoscopic Optical Biopsy with Optical
Coherence Tomography

Guillermo J. Tearney, Mark E. Brezinski,* Brett E. Bouma,
Stephen A. Boppart, Costas Pitris, James F. Southern,

James G. Fujimoto

Current medical imaging technologies allow visualization of tissue anatomy in the human
body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies
are generally not sensitive enough to detect early-stage tissue abnormalities associated
with diseases such as cancer and atherosclerosis, which require micrometer-scale
resolution. Here, optical coherence tomography was adapted to allow high-speed vi-
sualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter.
This method, referred to as “optical biopsy,” was used to obtain cross-sectional images
of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.

Medical imaging technology has advanced
over the last 20 years to provide physicians
with indispensable information on the mac-
roscopic anatomy of patients. Imaging tech-
niques such as conventional x-ray radiogra-
phy, magnetic resonance imaging, computed
tomography, and ultrasonography have al-
lowed the noninvasive investigation of
large-scale structures in the human body
with resolutions ranging from 100 mm to 1
mm. However, this resolution is insufficient
for the identification of many important
pathologies, such as early neoplastic changes
or coronary atherosclerotic plaques predis-
posed to rupture. Identification of these
abnormalities requires technologies that re-
solve clinically relevant tissue microstruc-
ture in the range of conventional biopsy.

Optical coherence tomography (OCT)
is an optical imaging technique that allows
high-resolution cross-sectional imaging of
tissue microstructure (1). OCT is analogous
to ultrasound imaging except that infrared
light waves rather than acoustic waves are
used. An optical beam is focused into the
tissue, and the echo time delay of light
reflected from internal microstructure at
different depths is measured by interferom-
etry. Image information is obtained by per-

forming repeated axial measurements at dif-
ferent transverse positions as the optical
beam is scanned across the tissue. The re-
sulting data constitute a two-dimensional
map of the backscattering or reflectance
from internal architectural morphology and
cellular structures in the tissue.

OCT is attractive for clinical imaging
for three reasons. (i) The typical OCT im-
age has an axial resolution of 10 mm, up to
10 times higher than any clinically avail-
able diagnostic imaging modality. (ii) Be-
cause OCT systems can be constructed with
fiber optical components used in telecom-
munications, they are relatively inexpen-
sive and portable. (iii) Fiber optic systems
can be incorporated into catheters or endo-
scopes, allowing high-resolution images of
internal organ microstructure.

Initially, OCT was applied to imaging
the transparent tissue of the eye (2, 3).
Clinical studies have shown that OCT
provides high-resolution cross-sectional
images of a wide range of retinal macular
diseases (4, 5). Recently, imaging to
depths of 2 to 3 mm in nontransparent
tissue was achieved by use of longer wave-
lengths in the near infrared (1, 6–9). The
identification of in vitro pathology has
been verified in tissue from the cardiovas-
cular system and gastrointestinal tract (8,
10).

Here we demonstrate in vivo endoscope-
based OCT imaging of the gastrointestinal
and respiratory tracts of a rabbit at an axial
resolution of 10 mm. To achieve this reso-
lution, we constructed an OCT system that
uses a light source with appropriate power
and wavelength characteristics, a high-
speed optical delay line based on femtosec-
ond pulse shaping, and a second-generation
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OCT catheter-endoscope.
A schematic of the endoscopic OCT

imaging system is shown in Fig. 1A. A
low–coherence length light source is cou-
pled into a fiber optic Michelson inter-
ferometer. The catheter-endoscope is in
one arm of the interferometer and a scan-
ning temporal delay is in the other arm.
Interference is observed only when the path
lengths of the interferometer arms are
matched to within the coherence length of
the source. The interference signal is de-
tected and demodulated to yield the echo
delay of backscattered light from the tissue.
Images are acquired by scanning the beam
position on the tissue and displaying the
resulting data in image form.

To achieve high resolution with rapid
image acquisition rates, we constructed a
short-pulse, Kerr-lens modelocked Cr41:for-
sterite laser and used it as the light source for
the OCT system (11, 12). This laser pro-
duced higher power and shorter coherence
length light than conventional low-coher-
ence superluminescent diode sources used in

previous systems (1, 6–9). In addition, self-
phase modulation was used to broaden the
optical spectrum and enhance imaging reso-
lution. The output power was 30 mW (10
mW on the tissue) with a Gaussian full-
width at half-maximum (FWHM) spectral
bandwidth of 75 nm centered at 1280 nm.
These parameters corresponded to a free-
space axial resolution of 10 mm and a signal
to noise ratio (SNR) of 110 dB.

With previous OCT systems, the opti-
cal delay in the reference arm was varied
with either a linearly translating galva-
nometer or by stretching an optical fiber
with a piezoelectric crystal (1, 13, 14).
However, commercial galvanometers do
not generate sufficient mechanical trans-
lation rates to allow imaging in real time
(14). Piezoelectric fiber stretchers allow
rapid scanning, but they suffer from high
power requirements, nonlinear fringe
modulation due to hysteresis, uncompen-
sated polarization dispersion matches, and
poor temperature stability. For these rea-
sons, we designed a high-speed optical

delay line using phase control techniques
originally developed for femtosecond pulse
shaping (15, 16). This device can be con-
structed with common optical compo-
nents, has modest power requirements, is
repeatable, and is temperature stable.

The phase control optical delay line con-
tained a lens-grating pair to Fourier transform
the temporal profile of the low-coherence
(broad-spectrum) light in the reference arm.
A mirror mounted to a galvanometer, placed
at the Fourier plane, allowed angular tilt to be
mapped to group delay (Fig. 1A). The group
delay was varied by rapidly changing the angle
of the mirror mounted to the galvanometer,
allowing the acquisition of 2000 axial scans
per second with a total optical path length
delay of ;3 mm. This method also permitted
group and phase delay to be independently
controlled so that the interferometric modu-
lation frequency produced by the scanning
delay could be selected commensurate with
higher performance detection and data acqui-
sition electronics.

A transverse scanning catheter-endo-
scope was integrated into the OCT system
to facilitate high-speed in vivo intralumi-
nal imaging of internal organs (Fig. 1, B
and C). The catheter-endoscope consisted
of an encased, rotating hollow cable car-
rying a single-mode optical fiber. The
beam from the distal end of the fiber was
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Fig. 1. (A) Schematic of the high-speed endoscopic OCT system. (B) Schematic of the distal optics of
the second-generation OCT catheter-endoscope. The angle cleaving the optical fiber and the angle
polishing the GRIN lens minimized internal reflections. (C) Photograph of the OCT catheter-endoscope
distal optics.

A B C

Fig. 2. OCT imaging of the rabbit esophagus in vivo (22). (A) This image allows visualization of the
esophageal layers of the rabbit including the mucosa (m), the submucosa (sm), the inner muscular layer
(im), the outer muscular layer (om), the serosa (s), and the adipose and vascular supportive tissues (a).
(B) A blood vessel (v) is apparent within the submucosa of the esophagus. (C) Corresponding histology
for (B) (H&E stain). Bars, 500 mm.

A

B

Fig. 3. OCT imaging of a rabbit trachea in vivo
(22). (A) This image allows visualization of distinct
architectural layers, including the epithelium (e),
the mucosal stroma (m), cartilage (c), and adipose
tissue (a). The trachealis muscle (tm) can be easily
identified. (B) Corresponding histology (H&E
stain). Bar, 500 mm.
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focused by a graded index (GRIN) lens
and was directed perpendicular to the
catheter axis by a microprism (Fig. 1, B
and C). The distal optics were encased in
a transparent housing. The beam was
scanned circumferentially at four revolu-
tions per second by rotation of the cable,
fiber, and optical assembly inside the stat-
ic housing. The catheter-endoscope was
redesigned from an original prototype (17)
to decrease its diameter, increase imaging
speed, and reduce parasitic internal reflec-
tions. The confocal parameter of the distal
lens was 1.9 mm, which corresponded to a
focused beam diameter of 40 mm. Power
loss caused by suboptimal coupling and
internal reflection within the catheter was
3 to 4 dB. The overall SNR of the OCT
system with the catheter-endoscope was
;106 dB. The catheter-endoscope had a
diameter of 1 mm, which is small enough
to allow imaging in a human coronary
artery or access through the flush port of a
standard endoscope.

OCT images of the in vivo rabbit
esophagus allowed visualization of all lay-
ers of the esophageal wall (Fig. 2, A and
B). For example, the innermost layer, the
mucosa, was readily distinguished owing to
its low reflectivity compared with the
submucosa. Vascular structures were also
identified within the wall (Fig. 2B). These
high-resolution images demonstrate the
capability of OCT to both resolve micro-
structural detail and image the entire
rabbit esophagus to the serosa. In vivo
OCT images of the rabbit trachea permit-
ted differentiation of the pseudostratified
epithelium, mucosa, and surrounding hya-
line cartilage (Fig. 3A). Because most neo-
plasms of both the esophagus and respira-
tory tract originate in the epithelium, the
ability of OCT to precisely identify the
mucosa could have important clinical
implications.

A technology capable of performing
optical biopsy should prove to be a pow-
erful diagnostic modality in clinical med-
icine. Optical biopsy is defined here as
imaging tissue microstructure at or near
the level of histopathology without the
need for tissue excision. At least three
clinical scenarios exist in which optical
biopsy will likely have a considerable im-
pact on patient management. The first is
in situations in which sampling errors se-
verely restrict the effectiveness of exci-
sional biopsy, such as the high failure rates
associated with blind biopsies used to
screen the premalignant conditions of ul-
cerative colitis or Barrett’s esophagus
(18). A need also exists for optical biopsy
when conventional excisional biopsy is
potentially hazardous. Examples of vulner-
able regions include the central nervous

system, the vascular system, and articular
cartilage. Finally, the ability to image at
the cellular level could improve the effec-
tiveness of many surgical and microsurgi-
cal procedures including coronary atherec-
tomy, transurethral prostatectomies, and
microvascular repair (8, 19, 20).
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Exchange of Protein Molecules Through
Connections Between Higher Plant Plastids
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Individual plastids of vascular plants have generally been considered to be discrete
autonomous entities that do not directly communicate with each other. However, in
transgenic plants in which the plastid stroma was labeled with green fluorescent protein
(GFP), thin tubular projections emanated from individual plastids and sometimes con-
nected to other plastids. Flow of GFP between interconnected plastids could be ob-
served when a single plastid or an interconnecting plastid tubule was photobleached and
the loss of green fluorescence by both plastids was seen. These tubules allow the
exchange of molecules within an interplastid communication system, which may facil-
itate the coordination of plastid activities.

Plastids are plant cell organelles that per-
form metabolic and biosynthetic reactions,
including carbon fixation and synthesis of

fatty acids, carotenes, purines, and pyrimi-
dines. Plastids contain multiple copies of a
genome that encodes a subset of the or-
ganelle’s RNA and protein molecules (1).
Nuclear-encoded proteins are synthesized
in the cytosol as precursors with transit
peptides that target them to and across the
chloroplast double-membrane envelope (2).
Plastids are generally regarded as autono-
mous organelles that multiply by division
and sort into daughter cells (1). We have
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