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Group refractive index reconstruction with
broadband interferometric confocal microscopy

Daniel L. Marks,1 Simon C. Schlachter,1 Adam M. Zysk,1,2 and Stephen A. Boppart1,*
1Beckman Institute of Science and Technology, Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign, 405 North Mathews Avenue,
Urbana, Illinois 61801, USA

2Current address: Medical Imaging Research Center, Electrical and Computer Engineering Department,
Illinois Institute of Technology, 3301 South Dearborn Street, Chicago, Illinois 60616, USA

*Corresponding author: boppart@uiuc.edu

Received September 28, 2007; accepted December 16, 2007;
posted February 19, 2008 (Doc. ID 88016); published April 25, 2008

We propose a novel method of measuring the group refractive index of biological tissues at the micrometer
scale. The technique utilizes a broadband confocal microscope embedded into a Mach–Zehnder interferometer,
with which spectral interferograms are measured as the sample is translated through the focus of the beam.
The method does not require phase unwrapping and is insensitive to vibrations in the sample and reference
arms. High measurement stability is achieved because a single spectral interferogram contains all the infor-
mation necessary to compute the optical path delay of the beam transmitted through the sample. Included are
a physical framework defining the forward problem, linear solutions to the inverse problem, and simulated
images of biologically relevant phantoms. © 2008 Optical Society of America
OCIS codes: 100.3010, 170.1790, 180.6900, 100.3190.
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. INTRODUCTION
ptical refractive index is a fundamental material prop-
rty for which many measurement instruments exist.
owever, few instruments are able to probe the group re-

ractive index of media at the micrometer scale. Recent
ork [1] has indicated that the group refractive index has
otential diagnostic capability to distinguish breast can-
er from normal tissues. To be able to further investigate
he origin of the group refractive index contrast at the
cale of organelles, we propose a new instrument. This in-
trument combines confocal microscopy with spectral in-
erferometry [2] so that the group delay at each point in
he medium can be precisely measured. Because spectral
nteferometry measures the relative phase between fre-
uencies in a single interferogram snapshot, the design is
ar less susceptible to vibrations and source intensity
oise, and it does not require phase unwrapping. In this
ork, the 3-D transfer function of the microscope and lin-
ar solutions to the inverse problem for refractive index
re derived, and a simulation is performed to demon-
trate refractive index reconstruction on a cellular phan-
om.

The spatial refractive index distribution determines
he behavior of many optical phenomena, including scat-
ering processes and light-induced surface forces, which
n turn are relevant to an array of optical sensing, imag-
ng, and manipulation techniques [3]. For example, scat-
ering processes arising from cellular and subcellular re-
ractive index discontinuities are key to diagnostic
echniques like diffuse optical tomography and optical co-
erence tomography [4,5]. The refractive index properties
f cellular structures remains poorly understood, prima-
ily due to the difficulty of direct measurement in situ. A
1084-7529/08/051156-9/$15.00 © 2
ore complete understanding of these properties would
ikely lead to improved diagnostic capabilities among
arious clinical optical imaging modalities.

Refractive index is an interesting diagnostic indicator
n its own right. In addition to materials applications
uch as polymer composition measurement [6], crystal
rowth evaluation [7], and optical fiber assessment [8], a
umber of biomedical properties are observable based on
efractive index changes. Recent studies have shown, for
xample, that refractive index variations hold signifi-
ance for breast cancer evaluation [1]. Since the breast is
omprised primarily of fat tissue, which has an elevated
efractive index due to its high lipid concentration, the
unctional epithelial structures, having a much lower re-
ractive index, are easily identified by direct measure-
ent. Studies have also emphasized the importance of re-

ractive index variations due to changes in biochemical
nvironments. For instance, it has recently been shown
hat oxygen saturation modulates the refractive index of
emoglobin, thus affecting the optical measurement of
lood oxygenation [9], a common medical practice.
A number of tomographic approaches have been devel-

ped for nondestructive imaging of subsurface optical re-
ractive index distribution. These techniques often em-
loy interferometric detection in order to exploit the
ighly sensitive optical pathlength measurements af-
orded by these techniques [10]. Projected index computed
omography (PICT), for example, uses a Michelson-type
nterferometer to measure the optical pathlength through
n object over a fixed physical distance [11]. These data,
hen acquired at multiple lateral and rotational posi-

ions, can be used to reconstruct the spatial refractive in-
ex distribution using standard computed tomography
008 Optical Society of America
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echniques. This technique is limited by the requirement
hat a reflective surface be placed behind the sample,
hich significantly constrains sample size. Bifocal optical

oherence refractometry (BOCR) is another interferomet-
ic refractive index technique [12,13]. BOCR employs a
ichelson-type interferometer with a pair of foci that are

canned depthwise through a sample. By measuring the
istance between the two backscattering responses
ithin the sample, a tomographic mapping of the refrac-

ive index distribution can be formed. This technique re-
uires relatively uniform sample scattering but can be ap-
lied for in vivo imaging. A recent method, tomographic
hase microscopy [14], measures the transmitted phase of
onochromatic light through a thin sample to infer the

efractive index using the inverse Radon transform. This
ethod as implemented does not account for phase wrap-

ing or the diffraction of the field; however, the methods
f Fourier diffraction tomography could be applied to the
nstrument. A method of measuring refractive index by
onfocal microscopy uses the difference between the nomi-
al focus position and the actual focus position induced by

ndex of refraction variation [15]. Another similar method
lluminates the sample with two confocal objectives to
rovide two reflectance maxima that are used to estimate
efractive index and sample thickness [16].

The previous methods rely on measuring the backscat-
ered light, delayed and refracted by the index of refrac-
ion variations. Instead of relying on backscattered sig-
al, we devise a method of determining the refractive

ndex from direct measurements of the group delay of the
ight transmitted through the sample. Analyzing the per-
urbation expansion [17,18] of the eikonal of a wavefront
s a function of the refractive index, we find that the
hanges in ray travel time that are first order in the index
erturbation are not affected by peturbations in the ray
ositions. This is a consequence of Fermat’s principle and
s the basis of travel time tomography and PICT. Because
ne expects to measure very small amounts of optical
ath delay variation when passing a ray through indi-
idual cellular organelles (10–200 nm additional path de-
ay), a method that is insensitive to refraction of the ray

Fig. 1. (Color online) Diagram of group r
ath is warranted even if the apparatus is somewhat
ore complicated than a conventional confocal micro-

cope.
In confocal microscopy, high numerical aperture (high-

A) focusing is typically used. Rather than being re-
arded as a single ray, the illumination beam is a con-
erging cone of rays. Therefore, a new solution for travel-
ime tomography for high-NA illumination must be
erived that does not assume that the illumination is a
encil beam. This paper derives such a framework and
roposes an instrument for measuring the group refrac-
ive index of a medium. The instrument presented here is
transmission confocal microscope embedded in a Mach–
ehnder interferometer with spectral interferometric de-
ection. The instrument does not require sample rotation
r reference reflectors. The physical apparatus is suitable
or integration with high-NA confocal microscope sys-
ems. The data acquisition is robust because it requires
nly that spectral interferograms be acquired as the
ample is translated in three dimensions. Because the in-
trument acquires all the data needed at a given sample
osition in a single spectral interferogram snapshot, the
ethod is insensitive to vibrations and source intensity
oise. The instrument measures the complex group re-
ractive index, which includes both a real component in-
icating the retardance at a given sample location and an
maginary part indicating the absorption.

. DERIVATION OF REFRACTIVE INDEX
ECONSTRUCTION RELATION
he proposed instrument is detailed in Fig. 1. The design

s a transmission confocal microscope embedded in one
rm of a Mach–Zehnder interferometer. Incident on the
nterferometer is a broadband source of illumination, e.g.,

mode-locked laser or a superluminescent diode. Mono-
hromatic illumination is not sufficient to infer the group
efractive index, which inherently involves the propaga-
ion of polychromatic light. This illumination is divided by
beam splitter into a reference beam and a sample beam.
he sample beam is focused by an illumination micro-

ve index confocal microscopy instrument.
efracti
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cope objective into the object space V. A second objective,
onfocal with the first, collects the illumination beam and
ecollimates it. The reference beam is adjusted so that the
otal delay through the reference arm is slightly less than
hat through the sample arm. The second beam splitter
ecombines the sample and reference beams, and the two
eams are focused into a confocal pinhole. The beam is
ecollimated from this pinhole, and the spectrum of the
eld passing through the pinhole is sampled by spectral

nterference [2]. The data acquisition consists of translat-
ng the sample in three dimensions and acquiring the
pectral interferograms.

The derivation consists of three sections. In Section 2,
he field at the pinhole is computed for a single-frequency
ocused illumination beam scattered from the sample.
his field is used to find the relationship between the 3-D
ourier components of the object refractive index at a
ingle illumination frequency and the measured field at
he pinhole. In Section 3, this relationship is extended to
ultiple illumination frequencies, thus allowing the

roup refractive index to be computed. In Section 4, a so-
ution is found to the inverse scattering problem of infer-
ing the group refractive index from the spectral inter-
erogram measurements.

To find the field scattered to the pinhole by the sample,
e consider the field u�r� in the object space V. The field

atisfies the inhomogeneous reduced wave equation:

�2u�r� + k2�n0�r� + �n�r − r0��2u�r� = 0, �1�

here k is the free-space wavenumber of the field, n0�r� is
he refractive index representing the optical system of
ig. 1 without an object, and n�r� is the inhomogeneneous
efractive index of the object, which is treated as a pertur-
ation on the order of a small parameter �. The inhomo-
eneity n�r� is zero outside of the volume V. We make the
rst Rytov approximation [19,20] where the field u�r�
u0�r�exp����r��, where u0�r� obeys the unperturbed
ave equation �2u0+k2n0

2u0=0 and � is a complex phase.
o first order in �, the solution for � is

u0�r;k���r,r0;k� = − 2k2�
V

d3r� g�r,r�;k�u0�r�;k�n0�r��

�n�r� − r0�, �2�

here g�r ,r� ;k� is the Green’s function that is the solu-
ion to the unperturbed wave equation �2g+k2n0

2g=
4���r�−r�. In the absence of an object, the refractive in-
ex in the volume V is n0�r ;k�=nb. The illumination beam
n V has a field denoted by u0�r ;k�. The field is given in
erms of its Fourier spectrum at the beam waist plane z
0:

0�r�;k� = �2��−2k−2� d2q� exp�i�q� · r� + kz�q��z���B̃�q�

k � ,

�3�

here B̃�q� /k� is the Fourier expansion of the beam field
n the plane z=0, and kz�q��=�k2nb

2−q�2. The scaling and
ormalization with k ensures that the beam amplitude at
he focus is the same for all frequencies k. For a Gaussian
eam, B̃�q /k�=B exp�−q 2�2 /2k2�, where �=� /NA, and
� 0 �
A is the numerical aperture of the focusing of the lens.
Next, we determine the Green’s function g�r ,r� ;k�. In

he volume V, the field is relayed to the pinhole plane P
y the “exit imaging optics” shown in Fig. 1. These optics
re composed of the lens recollimating the illumination
eam and the lens refocusing the illumination beam
hrough the pinhole. For simplicity, these imaging optics
re designed to afocally and telecentrically image the
lane z=0 in V to the plane of the pinhole. The propaga-
ion of the field through the exit imaging optics can then
e described by a space-invariant point-spread function
�r� ;k�= �2��−2	d2q� exp�−iq� ·r��P̃�q� /k�, where the an-
ular spectrum P̃�q� /k� is the coherent transfer function
f the exit optics. The total Green’s function g�r ,r� ;k�
hat describes the propagation to the pinhole plane is

g�r,r�;k� =
ik

2�
�

z�=0

d2r� P�r − r�;k� � d2q kz�q�−1

�exp�i�q · �r� − r�� + kz�q��z� − z����, �4�

sing the Weyl expansion of a spherical wave as plane
aves. This can be simplified by inserting the definition of
�r ;k�:

g�r,r�;k� = ik�2��−3�
z�=0

d2r�� d2q� exp�− iq� · �r − r���

�P̃�q�

k � � d2q kz�q�−1 exp�i�q · �r� − r��

+ kz�q��z� − z����. �5�

witching the order of the integrations, the integration
ver r� yields �2��2��2��q�+q�. Further integration over q�
ields

g�r,r�;k� =
ik

2�
� d2q kz�q�−1P̃�−

q

k�exp�i�q · �r − r��

− kz�q�z���. �6�

ext, the complex phase of the scattered field at the pin-
ole plane is determined. Substituting Eqs. (3) and (6)

nto Eq. (2) yields

0�r;k���r,r0;k� = − 2ik�2��−3�
V

d3r� n0�r��n�r� − r0�

�� d2q� exp�i�q� · r�

+ kz�q��z���B̃�q�

k �
�� d2q kz�q�−1P̃�− q/k�

�exp�i�q · �r − r�� − kz�q�z���. �7�

he pinhole is placed so its center is at position r=0 on
he pinhole plane. We assume that the pinhole is small
nough that the value of ��r ,r0 ;k� at r=0 is similar to its
alue over the entire pinhole. In this case, we concern
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urselves only with the value ��0 ,r0 ;k�. We define the
ourier transform �̃�Q ;k�=	d3r0 exp�iQ ·r0���0 ,r0 ;k�,
nd substitute it into Eq. (7):

u0�0;k��̃�Q;k� = − 2ik�2��−3� d3r0�
V

d3r� n0�r��n�r� − r0�

�exp�iQ · r0� � d2q� exp�i�q� · r�

+ kz�q��z���B̃�q�

k � � d2q kz�q�−1P̃�−
q

k�
�exp�i�− q · r� − kz�q�z���. �8�

witching the order of integration and performing the in-
egral over r0, we can identify the Fourier transform of
�r�:

u0�0;k��̃�Q;k� = − 2ik�2��−3ñ�Q� � d2q� B̃�q�

k �
�� d2q kz�q�−1P̃�−

q

k��V

d2r
�dz�n0�r��

�exp�i�Q
 · r
� + Qzz���exp�i�q� · r
�

+ kz�q��z���exp�i�− q · r
� − kz�q�z���, �9�

here z�=r� · ẑ, r
�=r�−z�ẑ, Qz=Q · ẑ and Q
=Q− ẑQz. In
he volume V, without an object, the refractive index is a
onstant value nb, so that n0�r��=nb in V. The integral
ver r
� can then be integrated to be a two-dimensional
elta function:

u0�0;k��̃�Q;k� = − 2iknb�2��−1ñ�Q� � d2q� B̃�q�

k �
�� d2q kz�q�−1P̃�−

q

k��V

dz�

���2��Q
 + q� − q�exp�iQzz��

�exp�ikz�q��z��exp�− ikz�q�z��. �10�

erforming the integration over q� yields

u0�0;k��̃�Q;k� = − 2iknb�2��−1ñ�Q� � d2q kz�q�−1

�P̃�−
q

k�B̃�q − Q


k ��
V

dz� exp�iQzz��

�exp�ikz�q − Q
�z�� exp�− ikz�q�z��.

�11�

erforming the integration over z� yields a one-
imensional delta function:
u0�0;k��̃�Q;k� = − 2iknbñ�Q� � d2q kz�q�−1P̃�−
q

k�
�B̃�q − Q


k ���Qz + kz�q − Q
� − kz�q��.

�12�

or brevity, one can define a 3-D transfer function of the
nstrument by

F̃�Q;k� = − 2inb� d2q kz�q�−1P̃�−
q

k�B̃�q − Q


k �
���Qz + kz�q − Q
� − kz�q�� �13�

o that u0�0 ;k��̃�Q ;k�=kñ�Q�F̃�Q ;k�.
The complex phase � is then the 3-D convolution of the

ndex profile n�r� and a 3-D point-spread function. For a
ersion of Eq. (13) suitable for numerical integration, see
ppendix A. However, � cannot be measured directly.
ather, we measure the intensity at the pinhole of the in-

erference between the reference and sample signals and
nfer the sample field at the pinhole, and from this the
omplex phase. Given the definition of the complex phase,
he sample field at the pinhole will be us
u0�0 ;k�exp���0 ,r0 ;k��. The reference field at the pinhole

s delayed by a time � relative to the sample field, so that
he field is given by ur exp�ikc��, where c is the speed of
ight. The total field at the pinhole is

I�r0;k,�� = �ur exp�ikc�� + u0�0;k�exp���0,r0;k���2.

�14�

y performing phase shifting and measuring I�r0 ;k ,�� for
hree values of � such that kc�=0, � /2, and �, the com-
lex phase can be found:

��0,r0;k� = log��ur
*u0�0;k��−11 − i

4
I�r0;k,0�

−
1 + i

4
I�r0;k,�/ck� +

i

2
I�r0;k,�/2ck��� .

�15�

he log in Eq. (15) is the complex logarithm, which is
ultiple valued so there is an ambiguity of a multiple of

�i. Because of this ambiguity, phase unwrapping needs
o be performed on ��0 ,r0 ;k�. This can be problematic if
here are values of Re���0 ,r0 ;k�� that are well below zero,
o that the phase is poorly estimated at these points.

. GROUP REFRACTIVE INDEX
EASUREMENT

n practice, the imaginary part of � may be difficult to
easure because it depends sensitively on changes of the

otal optical path length through the interferometer on
he order of a wavelength. Rather, one can use the phase
ifference between different illumination frequencies to
stimate the group refractive index. Upon differentiation
f u �̃ with respect to k, we find
0
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d�u0�̃�

dk
= ñF̃ + k

dñ

dk
F̃ + kñ

dF̃

dk
. �16�

e now assume that dF̃ /dk has little wavelength depen-
ence, so that dF̃ /dk�0. The function F̃ is dependent on
he beam spectrum B̃ and the aperture spectrum P̃. The
efinitions of the aperture functions B̃ and P̃ are achro-
atic for the purpose of minimizing �dF̃ /dk�. For focused

eams where all frequencies have the same NA, the pri-
ary difference between the beams is the spot sizes at the

ocus, which scale with k−1. For a small fractional band-
idth of illumination (e.g., 10% –20%) the contribution
ue to dF̃ /dk will be small. Neglecting dF̃ /dk it is found
hat

d�u0�̃�

dk
= F̃�Q;k�ñ + k

dñ

dk� = F̃�Q;k�ñg�Q�. �17�

n Eq. (17), the group refractive index is the term ñg
ñ+k�dñ /dk�. This indicates that d�u0�� /dk is the 3-D
onvolution of the group refractive index of the object
ith the 3-D point-spread function of the beam. There-

ore, deconvolution of d�u0�� /dk can be used to estimate
he 3-D distribution of the group refractive index of the
bject. Because d�u0�� /dk is made with a differential
easurement between samples of � at two or more fre-

uencies k, it does not depend on the absolute phase delay
hrough the object and therefore is easier to measure. The
maginary part of d� /dk is the differential group optical
ath length between the reference and sample arms.
To measure the frequency-dependent complex phase,

ne can use a spectrometer (such as a grating spectrom-
ter) that measures the spectrum of the signal passing
hrough the pinhole. Spectral interferometry enables the
nterferometric cross correlation of the reference and
ample beams to be inferred from the measured spec-
rum. The intensity measured at a particular frequency in
he spectrometer [indicated in Eq. (14)] can be divided
nto three components: the spectrum of the reference
lone, the spectrum of the signal passing through the
ample alone, and the interference component between
he reference and object signals:

I�r0;k,�� = �ur�2 + �u0�0;k�exp���0,r0;k���2

+ 2 Re�ur
*u0�0;k�exp���0,r0;k� − ikc���.

�18�

hase shifting can be used to distinguish the interference
omponent. Alternatively, if the reference signal precedes
he sample signal sufficiently in time that the two do not
verlap, the Hilbert transform can be used to compute the
omplex analytic signal of the interferogram, which con-
ains the phase and amplitude of ur

*u0�0 ;k�.
Again, the field scattered by the object is us�0 ,r0 ;k�

u0�0 ;k�exp���0 ,r0 ;k��. To compute � from this, the loga-
ithm function must be used, so again there is a phase
mbiguity of 2�. Fortunately, the phase-wrapping prob-
em can be avoided because d�u0�� /dk is needed to mea-
ure the group refractive index, not � itself. For brevity,
efine u � =d�u �� /dk, which is given by
0 � 0
u0�� =
d�u0��

dk
= u0

d�

dk
+

du0

dk
�. �19�

o simplify Eq. (19), we now examine Eq. (3) with the con-
ition r�=0, the position of the pinhole. As defined, the
mplitudes of all of beams at frequencies k are the same
t their respective foci. Because the exit imaging optics
re achromatic, the same will be true at the pinhole.
herefore du0 /dk=0 and ��=d� /dk. Using this fact, a
nite-difference approximation from two samples of the
eld us at frequencies k and k+�k can be found:

�� =
d�

dk
�

��0,r0;k + �k� − ��0,r0;k�

�k

=

log
us�0,r0;k + �k�

u0�0;k + �k�
− log

us�0,r0;k�

u0�0;k�

�k

=
1

�k
log

us�0,r0;k + �k�

us�0,r0;k�

u0�0;k�

u0�0;k + �k�

=
1

�k
log

us�0,r0;k + �k�

us�0,r0;k�
. �20�

f instead of sampling us at just two frequencies, the field
s is sampled at N frequencies ki where 1	 i	N, as
ould occur for a spectrometer sampling an entire inter-

erometric spectrum. An estimate of the average �� over
he interval k1 to kN can be calculated using

�� = �
i=1

N−1 1

ki+1 − ki
log

us�0,r0;ki+1�

us�0,r0;ki�
. �21�

ecause the phases between the samples of us are sub-
racted by the division operation before the logarithm is
aken, phase wrapping is not necessary to compute ��.
he complex logarithm need only be applied on the prin-
ipal branch with imaginary part between −i� and i�.
imiting the logarithm to this branch effectively requires

hat the phase differences between adjacent samples of us
e less than � and greater than −�.
Because a spectrometer can capture the data needed to

ompute an estimate of �� without requiring phase shift-
ng or phase unwrapping, we believe this method is a po-
entially robust and sensitive way to measure the group
efractive index of a sample with diffraction-limited reso-
ution in three dimensions. The sample must simply be
ranslated in three dimensions while the spectrum of the
eld at the pinhole is sampled. Using the Hilbert trans-
orm to infer the phase of the interferogram avoids phase
hifting, and the fact that only phase differences are
eeded avoids the phase-unwrapping requirement, which
implifies the apparatus and minimizes error.

. LINEAR SOLUTIONS TO THE INVERSE
ROBLEM FOR GROUP REFRACTIVE
NDEX
quation (17) expresses the relationship between the
roup refractive index of an object and the complex phase
f a beam passing through the object. In the spatial do-
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ain, this relationship is a 3-D convolution of the group
efractive index with a point-spread function:

u0�� = u0�0;k����r0;k� = Fng =�
V

d3r ng�r�F�r0 − r;k�,

ith F�r;k� = �2��−3� d3Q exp�− ir · Q�F̃�Q;k�,

ng�r� = �2��−3� d3Q exp�− ir · Q�ñg�Q�. �22�

he operator equation u0��=Fng implicitly defines the
perator F in terms of the 3-D convolution of the kernel
�r ;k� with the refractive index function ng�r� as shown

n Eq. (22). With this specification of the forward problem,
e can pose the inverse problem as the minimization of a

quared error functional:

ng
+ = arg min

ng

�u0�� − Fng�2 + 
�ng�2

= arg min
ng

�
V

d3r0�u0�0;k����r0;k�

−�
V

d3r ng�r�F�r0 − r;k��2 + 
�
V

d3r�ng�r��2. �23�

he term proportional to 
 is included to effect Tikhonov
egularization to stabilize the solution. Formally, the so-
ution is given by the Tikhonov-regularized pseudoinverse
olution ng

+= �F†F+
I�−1F†u0��. Because the operation of
on a function u0�� is a 3-D convolution, it is easier to

xpress the pseudoinverse in the frequency domain:

ñg
+�Q;k� =

u0�0;k���˜ �Q;k�F̃*�Q;k�

�F̃�Q;k��2 + 

. �24�

owever, the space-invariant filter of Eq. (24), while
imple to implement, suffers from a deficiency. Because
he calculated phase difference �� is given by a logarith-
ic relationship to us by Eq. (20), a constant error vari-

nce in the measurement of us does not necessarily pro-
uce a constant error variance in ��. Given the
ifferential relation ��= �dus /dk� /us, it is clear that
maller �us� will produce a larger error in ��. It is desir-
ble to modify the solution to account for the error in in-
ividual measurements of ��. We define an alternate
east-squares minimization that weights the error accord-
ng to the confidence in various samples of ��:

ng
+ = arg min

ng

�W�u0�� − Fng��2 + 
�ng�2

= arg min
ng

�
V

d3r0�W�r0��2�u0�0;k����0,r0;k�

−�
V

d3r ng�r�F�r0 − r;k��2

+ 
�
V

d3r�ng�r��2.

�25�

his expression defines a weighting operator W in the
patial domain V with a corresponding weighting function
�r0�, which is assigned greater weights to values of
��0 ,r0 ;k� for which there is greater certainty. The
eighting function that properly accounts for the confi-
ence in �� given a constant error variance for us
s W�r0�=exp�Re ��0 ,r0 ;k��. The weighted, Tikhonov-
egularized formal solution is ng

+= �F†W†WF

I�−1F†W†Wu0��. Because of the weighting in the spa-

ial domain, the solution can no longer be computed using
space-invariant filter. However, the operators W and F

re diagonal in their respective domains, so the numerical
olution of the problem lends itself well to sparse matrix
ethods such as the preconditioned conjugate-gradient
ethod [21].

. SIMULATION AND DISCUSSION
o show the feasibility of measuring group refractive in-
ex with the proposed method, a simulation was per-
ormed to demonstrate the resolution and noise resilience
f the method. The simulated object is a refracting and
bsorbing spherical shell with spherical inclusions in-
ended to be a simple phantom evocative of cells with
heir constituent organelles. The simulated volume is
5��75��75� in size sampled every � /2, where � is the
enter wavelength of the illumination. The shell is 35� in
iameter and 3� thick. The background refractive index is
.0, and all of the refractive indices of the simulation
cale with this index (e.g., if the background index were
.33, all of the reconstructed indices would likewise be
ultiplied by 1.33). The inclusions are also spheres 3� in

iameter. The shell has a refractive index of 1.2+0.02i,
nd the inclusions have a refractive index of 1.06+0.02i.
igures 2(a) and 2(b) detail a slice through the synthetic
bject, showing the real and imaginary parts of the refrac-
ive index of the object.

The simulated optical system has two NAs associated
ith it: the NA of the illumination beam optics and the
A of the relay optics to the pinhole. In our simulation,

hey were both set to have NA of 0.75. The functions
˜ �q /k�=1 and P̃�q /k�=1 for �q � � �NA�k and zero other-

ise. Using these functions, the 3-D transfer function
˜ �Q ;k� was calculated using Eq. (28) and numerical inte-
ration. A 2-D projection of the 3-D function �F̃�Q ;k�� is
hown in Fig. 3(a), which shows the bandpass of the opti-
al system in terms of the transverse and axial spatial
requencies as a fraction of k, the illumination wavenum-
er. Because this simulation is of scalar fields, the 3-D
oint frequency response is rotationally symmetric about

Q
 � =0. The 2-D projection of the 3-D point-spread func-
ion, which is the inverse 3-D Fourier transform of
˜ �Q ;k�, is shown in Fig. 3(b). This shows the axial and
ransverse resolution of the system in units of � and is
ikewise rotationally symmetric.

Using the phantom and the calculated frequency re-
ponse of the system, the synthetic interferometric data
ere computed. To do this, first the complex phase
�0 ,r0 ;k� was calculated at frequencies k and k+�k us-

ng the 3-D convolution of the refractive index profile with
he 3-D impulse response as in Eq. (13). In the simula-
ion, �k=0.03k, so that the group delay is being measured
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rom a 3% fractional bandwidth. The field us
u0�0 ;k�exp���0 ,r0 ;k�� was calculated at the two fre-
uencies, and from this the intensity of the interferomet-
ic measurements I�r0 ;k ,�� could be calculated using Eq.
18) for �=0,� /2, and �. Noise was added to the mea-
ured intensity to achieve a signal-to-noise ratio (SNR) of
0 dB. The synthetic data ���k is detailed in Figs. 2(c)
nd 2(d), which are the difference in retardance (c) and
ttenuation (d) between the frequencies k and k+�k mea-
ured at each position of the illumination beam. The total
etardance difference between the two frequencies in Fig.
(c) is given in radians and corresponds to the real part of
��k. The total attenuation difference between the two

requencies in Fig. 2(d) is given in nats (also called
epers) and corresponds to the imaginary part of � �k.

ig. 2. (a), (b), Images of the same slice through the center pla
maginary part. (c), (d), Images of the data acquired by the confoc
etween the two measured frequencies recorded at each beam pos
requencies recorded at each beam position. (e) Real part of the w
art.
�

Using the synthetic data, which consisted of interfero-
etric intensity samples measured at two frequencies k

nd k+�k and three different � over r0, the inverse scat-
ering process was performed as follows:

1. From the intensity samples, estimates of � were
omputed with Eq. (15).

2. From �, estimates of us were computed using us
u0 exp �.
3. With � and us, an estimate of �� was calculated with

q. (20).
4. The weighting function was calculated using W�r0�

exp�Re ��0 ,r0 ;k��, which assigns larger weights to esti-
ates of �� for which more power from the sample arm
as detected at the pinhole.

the simulated phantom: (a) real part of the refractive index, (b)
rument of these planes: (c) total number of radians of retardance
d) total attenuation difference in nats between the two measured
d least-squares reconstruction of the index profile, (f) imaginary
ig. 3. (a) 2-D projection along one transverse axis of the 3-D transfer function F̃�Q ;k� of the simulated confocal microscope. The func-
ion is radially symmetric about the Q
=0 axis. (b) 2-D projection along one transverse axis of the 3-D point-spread function of the simu-
ated confocal microscope. The point-spread function is likewise radially symmetric. Both density plots use relative units.
ne of
al inst
ition, (
eighte
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5. The weighted least-squares solution of Eq. (25) for ng
+

as computed using the preconditioned conjugate-
radient method. The system solved was formally
F†W†WF+
I�ng

+=F†W†Wu0��. The preconditioner was
he unweighted inverse solution, given by the space-
nvariant operator �F†F+
I�−1.

The result of the inversion is shown in the refractive in-
ex reconstruction of Figs. 2(e) and 2(f). Figure 2(e) corre-
ponds to the reconstructed real part of the refractive in-
ex, and Fig. 2(f) corresponds to the imaginary part.
ecause of the finite NA and frequency space coverage of

he instrument, it is clear that the reconstructed object
as been elongated in the axial direction. This elongation

s consistent with the depth of field of a typical microscope
ith the simulated NA. On the boundaries of the outer

phere parallel to the axial direction, there is less elonga-
ion and the estimate of the refractive index is more ac-
urate. In addition, the estimated refractive index of the
nclusions is also elongated, but it remains similar to the
hantom. While the simulation does not show a perfectly
econstructed object, it depicts the limitations that an ac-
ual instrument would have because the object is illumi-
ated with a finite-NA beam from a single direction.
A rough estimate of the magnitude of the noise in the

efractive index reconstruction can be computed. In gen-
ral, the refractive index variation �n will depend on the
A, the fractional bandwidth of the source �k /k, and the
NR of the measurements. Tighter focusing will provide
etter resolution, but less retardation is produced at the
ocus as the depth of focus is decreased. More bandwidth
ill produce a larger difference in retardance at the ex-

remes of the source spectrum. Finally, higher SNR allows
ne to better distinguish small phase variations, with the
inimum detectable phase difference being approxi-
ately �SNR�−1 in radians [22,23] (SNR being defined in

his work on the fields). Accounting for these factors, we
stimate that �n= �nbk�NA�2� / �2��k�SNR��. For the
imulation, �n�0.03, which is consistent with the noise
een in Figs. 2(e) and 2(f).

In addition, the simulation shows that if the illumina-
ion is limited to one direction, unavoidable blurring in
he axial direction can be expected. This is a limitation of
ny confocal microscope, and it can be mitigated by imag-
ng the object from multiple illumination angles rather
han fixing the orientation of the illumination beam rela-
ive to the object. In practice, axial resolution on the order
f a few wavelengths (for near-infrared or visible light)
rovides m-scale resolution, which is adequate for many
pplications.
In conclusion, we have proposed and simulated a novel
icroscope to measure group refractive index. The instru-
ent will allow the microscopic variations of tissue re-

ractive index to be investigated. The robustness of the in-
trument derives from the fact that it requires only
elative phase and amplitude measurements between two
r more wavelengths transmitted through the object.
elative measurements are less error prone than absolute
easurements of the total phase retardance and attenu-

tion, especially because the interference measurements
t different frequencies can be captured simultaneously
ith an array spectrometer. For this reason we believe
he proposed instrument will make a fundamental mate-
ial optical property, group refractive index, more acces-
ible.

PPENDIX A
quation (13) for F̃�Q ;k� is a two-dimensional integral
ith a one-dimensional delta function, which we simplify

nto a one-dimensional integral. We change variables to
=Q
 /2−q, define cos �= �Q
 ·s� /Q
s, and rewrite the inte-
ral as

F̃�Q;k� = − 2inb�
−�/2

�/2

d��
0

�

ds skz�q�−1P̃�−
q

k�
�B̃�q − Q


k ���f�s��,

with f�s� = Qz +�k2 − �Q


2 �2

− s2 − Q
s cos �

−�k2 − �Q


2 �2

− s2 + Q
s cos �. �26�

n the inner integral, the delta function selects the values
uch that f�s�=0, which are

s = ±
Qz�4k2 − Q


2 − Qz
2

2�Qz
2 + Q


2 cos2 �
. �27�

ecause the integration bounds on s are for nonnegative
, only the positive root need be considered. Using the sift-
ng theorem, Eq. (26) integrates to

F̃�Q;k� = − 2inb�
−�/2

�/2

d� skz�q�−1P̃�−
q

k�B̃�q − Q


k �
�� df

ds�−1

,

ith s =
�Qz��4k2 − Q


2 − Qz
2

2�Qz
2 + Q


2 cos2�
,

q =
Q


2
−

Q


Q


s cos � −
Q�

Q�

s sin �, Q� · �Q
,ẑ� = 0,

df

ds
=

2s − Q
 cos �

2�k2 − �Q


2 �2

− s2 + Q
s cos �

−
2s + Q
 cos �

2�k2 − �Q


2 �2

− s2 − Q
s cos �

. �28�

his formula can be numerically integrated to calculate
˜ �Q ;k�.
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