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Inverse scattering for frequency-scanned full-field
optical coherence tomography
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Full-field optical coherence tomography (OCT) is able to image an entire en face plane of scatterers simulta-
neously, but typically the focus is scanned through the volume to acquire three-dimensional structure. By solv-
ing the inverse scattering problem for full-field OCT, we show it is possible to computationally reconstruct a
three-dimensional volume while the focus is fixed at one plane inside the sample. While a low-numerical-
aperture (NA) OCT system can tolerate defocus because the depth of field is large, for high NA it is critical to
correct for defocus. By deriving a solution to the inverse scattering problem for full-field OCT, we propose and
simulate an algorithm that recovers object structure both inside and outside the depth of field, so that even for
high NA the focus can be fixed at a particular plane within the sample without compromising resolution away
from the focal plane. © 2007 Optical Society of America

OCIS codes: 100.3010, 110.4500.
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. INTRODUCTION
he capabilities of optical coherence tomography1,2 (OCT)
nd optical coherence microscopy3–5 (OCM) have been
reatly extended by computed imaging and synthetic ap-
rture techniques.6 Among the recently demonstrated ad-
antages is the ability to resolve features in the sample
hat are outside the confocal region. Ultimately, a more
uantitatively accurate and faithful representation of the
ample structure is provided. In this work, the inverse
cattering problem in full-field OCT–OCM7–15 is investi-
ated. A variant where the focus remains fixed at the sur-
ace of the sample and computed imaging techniques are
sed to infer the structure is proposed. This modality ob-
iates the requirement that the focus be scanned through
he sample. A forward model is derived that relates the
easured data to the object structure. From this model, a

olution of the inverse scattering problem is obtained,
hus providing a means to infer the object structure from
he data. The achievable resolution and system bandpass
re also derived. Finally, a simulation is presented that
emonstrates the application of the method.
Full-field OCT is capable of imaging an entire plane of

catterers simultaneously, providing a very rapid way to
cquire the sample structure. A typical full-field OCT sys-
em is built around a Michelson interferometer with a
roadband illumination source (see Fig. 1). Reference and
ample beams are derived from the source using a beam
plitter. An extended area of the sample is illuminated by
broadband collimated beam through a microscope objec-

ive. The objective is focused at the depth of features of
nterest. A signal is scattered by the sample back through
he objective. A reference beam is delayed to return to the
eam splitter at the same time that the signal scattered
rom the sample in the focal plane arrives. The reference
nd signal are superimposed and focused on a focal-plane
rray (such as a CCD sensor) where the amplitude of the
nterference signal is measured. Only those scatterers
1084-7529/07/041034-8/$15.00 © 2
ithin a coherence length of the focal plane produce scat-
ered fields that will interfere with the reference. By re-
ording the interference, an image of a slice of the sample
round the focal plane is obtained, and the out-of-focus
ontributions are removed by coherence gating. The usual
echnique is then to translate the sample through the fo-
al plane so that the scatterers at many different depths
ay be imaged and a 3-D structure obtained.
While this method can be used to obtain high-

esolution images for the entire volumes of a sample
uickly, it has a number of disadvantages. First, the
ample and microscope objective must be translated rela-
ive to each other. This is relatively slow and requires fine
ositioning. Second, this method uses time-domain detec-
ion that produces a lower signal-to-noise ratio than
ourier-domain or frequency-swept OCT.16–20

When the reference arm is adjusted such that the ref-
rence field is synchronized with the scattered field re-
urned from a plane other than (and far removed from)
he focal plane, the interference image obtained at the
CD appears to be an image of the scatterers in that
lane but out of focus. For a conventionally formed image,
his would likely irreversibly impair the resulting image
uality. However, wide-field OCT is an interferometric
echnique, and so the phase as well as the amplitude is
easured. To bring an image into focus, it is simply nec-

ssary to appropriately rephase the field. To accomplish
his, we will solve the linear inverse scattering problem.
his serves the additional purpose of providing a quanti-

atively meaningful reconstruction of the entire object.
Instead of scanning the focus through the sample, we

ropose to fix the focus at the surface of the sample so
hat no relative translation is needed between the objec-
ive and the sample. A frequency-swept source can pro-
ide a new degree of freedom, replacing a degree of free-
om lost by fixing the focus. Because the objective and
ample may be left fixed relative to each other, no trans-
007 Optical Society of America
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ation hardware is needed, which makes placing the ob-
ective on a fiber optic or a handheld probe easier. While
requency-swept full-field OCT21 has been achieved, typi-
ally the numerical aperture (NA) and hence the resolu-
ion is low so that the depth of field is very large and dif-
raction effects can be neglected. However, when a high
A is used, the depth of field is very short, and accounting

or the defocus is necessary to preserve the resolution
ver the entire volume of interest.

To understand how computational image formation
orks in full-field OCT, in Section 2 a physical model for

he scattering process is developed, and from this a rela-
ionship between the data and the object structure is de-
ived. Based on this relationship, in Section 3, the inverse
cattering problem is solved in order to infer the sample
tructure from the data. In Section 4, an analysis of the
andpass and resolving power of the system is given. In
ection 5, the results are illustrated by a numerical simu-

ation.

. DERIVATION OF THE SCATTERING
PERATOR FOR FULL-FIELD OPTICAL
OHERENCE TOMOGRAPHY
n illustration of the full-field OCT system being studied

s shown in Fig. 1. This system is based on a Michelson
nterferometer, but other configurations such as a self-
eferencing Fizeau design could be used. In this system,
he source is a tunable, narrowband laser. The laser is
uned to wavelengths � that correspond to wavenumbers
=2� /�. The laser ideally emits a plane wave (or is spa-
ially filtered to produce one).

The laser illumination is split into two. One component
ravels to a reference mirror and is reflected back through
he beam splitter to the output port where the focal-plane
rray is located. The other component is demagnified by a
actor 1/M, using a telescope of magnification M. The pur-
ose of the telescope is to concentrate the illumination
nto the sample and then relay a magnified scattered field
o the focal-plane array. This telescope consists of two con-
erging lenses, a relay lens and a microscope objective.
he illumination on the sample is a normally incident
lane wave. The sample scatters some radiation back-
ard through the telescope. The telescope is aligned to
focally and telecentrically image22 the front surface of
he sample to the focal-plane array. The telescope is in ef-
ect two Fourier-transform lenses with possibly nonunity

ig. 1. Schematic diagram of full-field OCT using frequency
canning and the focus of the objective fixed at the sample
urface.
agnification.23 Note that, unlike standard full-field OCT
icroscopy, the focus of the objective remains fixed at the

urface of the sample. It is assumed that the telescope is
berration free and vignetting inside the telescope is neg-
igible. If the telescope is assumed to correct spherical ab-
rration, then there is a finite volume within the sample
pace for which these assumptions hold. A pupil is placed
t the focus of the illumination beam inside the telescope
o spatially filter the backscattered signal to enforce a
ell-defined spatial band limit. At the focal-plane array,

he reference and sample signals superimpose and inter-
ere, and the intensity of the interference is detected.

To derive the relationship between the object structure
nd the data detected on the sensor, a mathematical
odel of scattering of the illumination field by the object

nd interferometric detection at the sensor is developed
elow. A scalar field is substituted for the electromagnetic
eld, neglecting polarization effects. The incident field on
he sample is given by the expression

Ei�r;k� = A�k�exp�ikr · ẑ�, �1�

here r is a location in the sample volume, k is the illu-
ination wavenumber, A�k� is the power spectral density

f the illumination at frequency k, and ẑ is the direction of
ncreasing depth into the sample. In this work, it is as-
umed that the scattering is well modeled by the first
orn approximation. The susceptibility of the object is
iven by ��r� such that ��r�=0 for z�0. The secondary
cattered field Es�r� ;k� from the object at the plane z=0 is
iven by the expression

Es�r�;k� =�
V

d3rEi�r;k���r�
exp�ik�r� − r��

�r� − r�
. �2�

t is useful to define the 2-D Fourier transform Ẽs�q ;k�
�d2r� Es�r� ;k�exp�iq ·r�� with q being a transverse spa-

ial frequency such that q · ẑ=0. Using the plane-wave ex-
ansion of a spherical wave, Eq. (2) is recast to read

Ẽs�q;k� = 2�iA�k��
V

d3r��r�exp�i�q · r�

+ iz�k + kz�q��	kz�q�−1, �3�

here kz�q�=
k2−q2. The 3-D Fourier transform is de-
ned such that �̃�Q�=�Vd3r ��r�exp�iQ ·r�. It is then
ound that the right-hand integral can be expressed in
erms of �̃�Q�:

Ẽs�q;k� = 2�iA�k�kz�q�−1�̃�q + ẑ�k + kz�q��	. �4�

he field Ef�r ;k� is produced by the propagation of
s�r� ;k� through the telescope to the focal-plane array.
ecause the telescope is assumed to be an aberration-free

elescope that afocally and telecentrically images the
lane at the sample z=0 to the focal-plane array in the
lane z=zf, its function can be modeled as a simple con-
olution with a point-spread function accounting for the
nite bandwidth of the telescope and a magnification fac-
or given by M. The field at the focal-plane array is given
y Ef�r ;k�, and the point-spread function of the telescope
s given by P�r ;k�. The relationship between Ef�r ;k� and

�r ;k� is thus
s �
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Ef�r;k� = M−1� d2r�Es�r�;k�P�r/M − r�;k�. �5�

e further define the Fourier transforms Ẽf�q ;k�
�z=zf

d2r Ef�r ;k�exp�iq ·r� and the coherent transfer func-
ion of the telescope P̃�q ;k�=�d2r P�r ;k�exp�iq ·r�. Thus
he convolution in Eq. (5) is expressed as

Ẽf�q;k� = MẼs�Mq;k�P̃�Mq;k�

= 2�iMA�k�P̃�Mq;k�kz�Mq�−1

��̃�Mq + ẑ�k + kz�Mq��	. �6�

quation (6) specifies a relationship between Fourier
omponents of the field on the focal-plane array and those
f the object susceptibility.

The reference mirror is placed to effect a delay of � rela-
ive to the total delay required for the beam to travel from
he beam splitter to the plane z=0 in the sample arm and
ack. The reference field Er�r ;k ,�� relayed to the focal-
lane array is then given by

Er�r;k,�� = A�k�exp�i��k���, �7�

here ��k� is a dispersion relation relating the temporal
requency to the spatial frequency in the sample medium.
or example, if the sample medium is vacuum, then
�k�=kc, where c is the speed of light in vacuum. The in-

ensity I�r ;k ,��= �Er�r ;k ,��+Ef�r ;k��2 on the focal-plane
rray is then given by the expression

I�r;k,�� = �A�k��2 + �Ef�r;k��2 + 2A�k�Re�Ef�r;k�

�exp�− i��k���	. �8�

he part of the signal that is due to interference between
he signal and the reference beams is defined as the data
unction D�r ;k�=A�k�Ef�r ;k�. The complex quantity
�r ;k� can be estimated from measurements of I�r ;k ,��
t multiple values of the delay �. For example, three mea-
urements of I�r ;k ,�� such that ��=0, � /2, and � may be
ummed to yield

D�r;k� =
1 − i

4
I�r;k,0� −

1 + i

4
I�r;k,�/�� +

i

2
I�r;k,�/2��.

�9�

his method of phase-shifting interferometry is well
nown.24 Inserting the results of Eq. (6), we can express
he Fourier transform of the data function, which is
˜ �q ;k�=�d2r D�r ;k�exp�iq ·r�, as

D̃�q;k� = K̃�q;k��̃�Mq + ẑ�k + kz�Mq��	, �10�

here for convenience the bandpass function K̃ is defined

K̃�q,k� = 2�iMA�k�2P̃�Mq;k�kz
−1�Mq�. �11�

hus the data are expressed in terms of the 3-D Fourier
ransform of the sample structure, and so the resolution
f the reconstruction of the sample structure is space in-
ariant. However, vignetting and aberrations in the tele-
cope limit the volume over which this resolution can be
btained. As long as the center of the volume of interest is
long the axis of the objective and on the focal plane of the
bjective, and the extent of the volume is much smaller
han the field size the objective is corrected for, the aber-
ations and vignetting of the telescope can be neglected,
nd the resolution can be considered space invariant.
owever, for a sufficiently large volume of interest the

esolution of the instrument becomes space variant and
ensitive to the specific vignetting and aberration proper-
ies of the objective used.

When obtaining an inverse scattering solution, it is de-
irable to express Eq. (10) in the operator notation used
or formal statements of relationships between functions
ecause formal inverse scattering solutions are commonly
xpressed in terms of such operators. We define an opera-
or K̃ such that D̃=K̃�̃, which relates the sample suscep-
ibility Fourier representation �̃ to the data Fourier rep-
esentation D̃ with the relationship of Eq. (10). We define
he axial component of �=Q · ẑ and the transverse compo-
ent of Q as Q�=Q− ẑ�. The operator K̃ is then given by

D̃ = K̃�̃

=� d3QK̃�q;k��̃�Q�	�2��Q� − Mq�	�� − k − kz�Mq��,

�12�

here the delta functions enforce the conditions of the co-
rdinate transformation. This operator concisely contains
oth the kernel and the coordinate transformations ex-
ressed in Eq. (10).
To obtain the measurements needed to reconstruct

�r�, one must vary both k and �. In practice, however, it
s often slow and inconvenient to adjust both. If one is
illing to tolerate some image artifacts, just one of these
arameters need be scanned. For simplicity, it is assumed
hat the pupil function P�r� ;k� is real and symmetric,
hich is often the case (for example, with a circular pu-
il), so that P̃�q ;k� is likewise real and symmetric.
One may decide to hold the reference delay position

xed such that �=0 to avoid translating the mirror. In
his case phase shifting is not performed, and the imagi-
ary component of D�r ;k� is not obtainable. If the imagi-
ary part of D�r ;k� is assumed to be zero, then due to the
ermitian symmetry of the Fourier transform of real

unctions D̃�−q ,k�=D̃�q ,k�*. The function �̃�Q� then also
as Hermitian symmetry reflected over the axis �q�=0.
he effect is that a conjugate image of the susceptibility is
resent, reflected across the plane z=0. Because the delay
=0 corresponds to the plane z=0, as long as the entire
ample is contained in the half-space z
0, the conjugate
mage and the real image do not overlap. In addition,
here is an artifact corresponding to the term �Ef�r ;k��2 in
q. (8). If the magnitude of the sample signal is small
elative to the reference signal, the magnitude of this ar-
ifact is also small compared with the real image and can
e neglected.
For completeness, we note that the method of inverse

cattering can be applied to time-domain full-field OCT as
ell. If the delay � is scanned as occurs in time-domain

ull-field OCT and the laser emits all wavenumbers k si-
ultaneously (such as occurs in a mode-locked laser or a
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pontaneous emission source typical of time-domain
CT), the signal IT�r ;�� is the sum of the interference
atterns over all emitted frequencies:

IT�r;�� =
1

2���−�

�

dkd�

dk���A�k��2 + �Ef�r;k��2��
+

1

�
Re��

−�

�

dkd�

dk�D�r;k�exp�− i��k���� .

�13�

he term in square brackets is a background intensity
hat is independent of � and therefore is easily subtracted
o remove its contribution from the measured intensity.
eglecting the background intensity and the slowly vary-

ng Jacobian �d� /dk�, Eq. (13) relates the real part of the
nverse Fourier transform of D�r ;k� with respect to k to
he total intensity IT�r ;��. To be able to remove the Re{ }
peration so that a unique solution for D�r ;k� can be
ound, one equates D�r ;−k�=D�r ;k�*. Equation (10) then
ikewise enforces Hermitian symmetry on �̃�−Q�= �̃�Q�*.
herefore in this case the reconstructed susceptibility is
ssumed to be real valued.
In this derivation, the focal plane of the objective and

he front surface of the sample are assumed to coincide.
his assumption has simplified the preceding analysis
nd presentation, but it is not required. If the sample is
laced such that the focus is below the sample surface by
distance z0, but the delay produced by the reference co-

ncides with the delay of the sample surface, the data can
e modified to account for the displacement. In particular,
he modified data D̃��q ;k� are related to the sampled data
˜ �q ;k� by

D̃��q;k� = D̃�q;k�exp�iz0�k − kz�Mq��	. �14�

his formula can be found by noting that the field relayed
y the telescope is now situated at the plane z=z0, intro-
ucing a factor exp�−iz0�k+kz�Mq��	 to the right-hand
ide of Eq. (3). At the same time, the delay reference mir-
or must be moved a distance z0 further from the beam
plitter so that the new effective delay corresponds to the
ront surface of the sample, including a factor of
xp�−2ikz0� to the right-hand side of Eq. (7) to place the
eference delay coincident with the front surface of the
ample. Effectively, the measured field is computationally
ropagated at each frequency to the surface of the
ample.

. INVERSE SCATTERING IN FULL-FIELD
PTICAL COHERENCE TOMOGRAPHY
sing the developed mathematical model, a solution to

he inverse scattering problem may be derived. In gen-
ral, the problem is ill posed, and so regularization tech-
iques will need to be used to produce a stable solution.
ecause the forward problem is linear, we derive a linear-

zed inverse based on least-squares error. To do so, we
rst specify the complete forward operator K such that
=K�, which relates the data to the object structure
D�r;k� = K� =� d3r�K�r�,r;k���r��, �15�

here the kernel K�r� ;r ;k� of the operator K is given by

K�r�,r;k� = M−1A�k�2 exp�ikr� · ẑ�

��
r�·ẑ=0

d2r�
exp�ik�r� − r���

�r� − r��
P�r/M − r�;k�.

�16�

iven this relationship between the data and the object,
he pseudoinverse solution �+�r� for object susceptibility
s

�+�r� = arg min
�

�D − K��2

= arg min
�

� d2r�� dk�D�r�;k� − K��r��2. �17�

xpressed in operator notation, the solution to this least-
quares problem is given by the pseudoinverse �+

�K*K�−1K*D, where K* is the Hermitian conjugate of K
nd K*K is assumed to be invertible. It is much simpler to
ormulate the least-squares problem in the Fourier do-
ain, using the operator K̃ of Eq. (12). In terms of the op-

rator K̃, the Tikhonov-regularized least-squares solution
˜ += �K̃*K̃+�I�−1K̃*D̃, with the positive constant � being
he regularization parameter. The adjoint is explicitly
iven by the expression

�̃A = K̃*D̃ =� d2q� dkK̃*�q;k�D̃�q;k�	�2�

��Q� − Mq�	�� − k − kz�Mq��

= K̃*M−1Q�;
Q�

2 + �2

2�
�

�D̃M−1Q�;
Q�

2 + �2

2�
�M−2

�

� + 
�2 + Q�
2
,

�18�

ith K̃�q ;k� taken from Eq. (11). Given the expressions
or K̃ and K̃*, the solution �̃+ is given by

�̃+�Q� =

D̃M−1Q�;
Q�

2 + �2

2�
�K̃*M−1Q�;

Q�
2 + �2

2�
�

�K̃M−1Q�;
Q�

2 + �2

2�
��2

+ �M2
�+
�2 + Q�

2

�

.

�19�

. RESOLUTION AND BANDPASS
quation (10) expresses a relationship between the 2-D
ourier transform of the data and the 3-D Fourier trans-

orm of the object. As mentioned previously, this relation-
hip implies that the resolution of the reconstructed ob-
ect is space invariant. With suitable specifications of the
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nstrument, one can identify the region of the Fourier
pace of the structure function that can be sampled. This
egion is called the band volume and is an analogue to the
and limit of 1-D signals, except that the band volume
onsists of the interior of a shape in 3-D Fourier space
ather than just a 1-D interval.

There are two specifications of the instrument that de-
ermine the shape of the band volume. The first is the
andwidth of the illumination, which is specified by the
nterval of frequencies kmin�k�kmax. The other param-
ter is the numerical aperture (NA) of the imaging system
�NA�1. A particular NA implies a pupil bandpass:

P̃�q;k� = 1 for �q�  �NA�k,

P̃�q;k� = 0 for �q� 
 �NA�k. �20�

hese inequalities constrain the volume of the data func-
ion D̃�q ;k� that can be sampled. The band volume is the
ntersection of the volumes defined by the two inequali-
ies expressed in terms of the object 3-D spatial frequency
:

kmin � Q2/�2Q · ẑ� � kmax,

�2Q · ẑ�
Q2 − �Q · ẑ�2/Q2 � NA. �21�

igure 2 shows an example of a band volume for an in-
trument with 0.5 NA and bandwidth from 0.8kmax�k
kmax. There are two views so that both the top and the

ottom surfaces are visible. The top and bottom surfaces
re spherical (with different radii and centers), and the
ide surface is a right circular cone with its vertex at the
rigin.

In the limit of small bandwidth and low NA, the band
olume shape approaches that of a circular cylinder. In
his limit, the resolution in the axial direction is deter-
ined solely by the bandwidth, and the transverse reso-

ution is determined by the NA, as is normally assumed in
CT. However, the band volume becomes less cylindrical
nd more cone shaped as the NA and bandwidth increase,

ig. 2. (Color online) Calculated band volume shape for a full-
eld OCT system. All units are in terms of the maximum spatial

requency of the illumination.
nd axial and transverse resolutions are dependent on
oth the bandwidth and the NA.

. SIMULATION
o demonstrate the expected performance of inverse scat-
ering in full-field OCT, a simulation was performed. An
bject consisting of randomly placed point scatterers was
maged with a simulated full-field OCT system, and then
he structure of the object was reconstructed from the
ata. The simulated object volume cross-sectional area
as 25 wavelengths in depth and 40 by 40 wavelengths in

he transverse direction. The illumination source had a
aussian spectrum with a 40% fractional full width at
alf-maximum bandwidth (corresponding, for example, to
20 nm of bandwidth centered at 800 nm, which can be
chieved by a Ti-sapphire laser).25–27 The simulated NA of
he imaging objective was 0.5.

Data were synthesized by first calculating the scattered
eld Es�r� ;k� using Eq. (2), where the object ��r� was
aken to be a collection of randomly chosen discrete
oints. The synthetic interferograms were calculated as a
unction of illumination spatial frequency that corre-
ponds to how the data would be acquired from a swept
ource. Then the synthesized data function was calcu-
ated using the relation D̃�q ;k�=A�k�Ẽs�q ;k�P̃�q ;k�,
here Ẽs�q ;k� was obtained from Es�r� ;k� by a 2-D Fou-

ier transform. Finally, a 2-D inverse Fourier transform
ielded D�r� ;k�. By assembling the synthetic data by su-
erimposing the signals produced by discrete scatterers,
he accuracy of the resampling-based inverse method
ould be better verified because the synthetic data were
omputed without resampling.

The synthetic data are shown in Fig. 3. Figure 3(a)
hows D�r ;k�, which describes the data that would be re-
orded on the focal-plane array. Because this is difficult to
nterpret, we have also included in Fig. 3(b) the time-
omain signal IT�r ;�� given by Eq. (13), which appears to
ore directly represent the underlying object. It may be

een in the plots of IT�r ;�� that as the delay � is increased
he planes more distant from the focus are acquired and
anifest increasing distortion. This corresponds to the

tandard degradation one expects from defocus when in-
erse scattering is not used.

The following steps were followed to compute the image
stimate �+�r� from the synthetic data D�r ;k�:

1. D̃�q ;k� was computed from D�r ;k� using the 2-D
ourier transform.
2. The kernel K̃�q ;k� was calculated using Eq. (11).
3. Equation (19) was used to compute �̃+�q ;k� from

˜ �q ;k� and D̃�q ;k�.
4. The function �̃+�q ;k�, which is uniformly sampled in

he variables q and k, is resample to be uniformly
ampled in the variables q and � using the relation
= �M2q2+�2� /2�. The resampled version is �̃+�Q�, where
he transverse component of Q is Mq and the axial com-
onent is �.
5. The 3-D inverse Fourier transform of �̃+�Q� is per-

ormed to find ��r�.
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The resampling step (step 4) is the key step in compen-
ating for out-of-focus diffraction effects and therefore
eeds further discussion. Equation (10) specifies a rela-
ionship between D̃�q ;k� and �̃�Q�. In the continuously
ampled case, there is a one-to-one correspondence be-
ween values of D̃ and �̃ so that this relation is straight-
orward. However, in practice the data D�r ;k� is dis-
retely sampled and is typically uniform in r and k. The
ourier data D̃�q ;k� are therefore sampled uniformly in q
nd k. However, the reconstructed Fourier data of the
usceptibility �̃+�Q� need to be uniform in q and � so that
he 3-D inverse Fourier transform can recover a uni-
ormly sampled reconstruction of ��r�. The resampling
tep interpolates points on the function �̃+�q ;k� that are
niformly spaced in �. Figure 4 is a plot of the points on a
iven function that are sampled in the forward and in-
erse problems. Each of the intersections of grid curves
ndicates a point on the function that is interpolated to
orm the resampled function. Figure 4(a) is the resam-
ling that maps from 3-D object space Q� ,� to the data
pace q ,k for the forward problem. Figure 4(b) is the re-
ampling from the data space q ,k to the object space

� ,�. The resampling occurs only along lines of constant
, so that only 1-D interpolation is needed. In this simu-

ation, a 1-D cubic B-spline interpolator was used to in-

ig. 3. (Color online) Simulation of inverse scattering in full-
eld OCT. (a) The magnitude of the raw interference patterns re-
orded as a function of illumination spatial frequency. (b) A pro-
ection of the time-domain data for a collection of randomly
laced point scatterers imaged with full-field OCT. (c) A projec-
ion of the computed reconstruction of the scatterers. All length
nits are in the center wavelength of the illumination, and spa-
ial frequencies are inverse wavelength units. Three planes are
enoted that are shown as en face images in Fig. 5.
erpolate from the coordinates q+ ẑ�k+kz�q�� to Q as
hown in Eq. (19).

Finally, after the 3-D inverse Fourier transform of
+�Q� is taken, the reconstruction �+�r� results, which is
hown in Fig. 3(c). As can be seen, the reconstruction cor-
ects for diffraction and produces pointlike images. Figure
shows three en face planes corresponding to the depths
, B, and C marked in Fig. 3. The left column is the time-
omain data measured in each of the en face planes, and
he right column is the image of the scatterers computed
y inverse scattering. Planes that are further from the fo-
us appear to exhibit poorer resolution when viewed in
he raw data because of the effect of defocus. One can also
ee the interference fringes between the images of adja-
ent scatterers. Despite the interference between scatter-
rs, each point is clearly resolved with space-invariant

ig. 4. (a) Resampling grid to compute synthetic data D̃�q ;k�
rom object �̃�Q�. (b) Resampling grid to compute reconstruction
f �̃�Q� from D̃�q ;k�. Note that the transverse components of Q
re the same as Mq, and the axial component of Q is �. To form
he full 3-D Fourier space, both grids are revolved around their
espective vertical axes.

ig. 5. (Color online) Three pairs of en face images of the time-
omain data (left) and the reconstructed volume (right). (a)–(c)
airs of images corresponding, respectively, to the planes A, B,
nd C marked in Fig. 3. All dimensions are in wavelength units.
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esolution in the reconstructed image. This shows the al-
orithm correctly separates the interference patterns
rom scatterers to produce high-resolution images.

To show the overall improvement to the data, Fig. 6 is
olume isosurface plots of the raw data in Fig. 6(a) and
he reconstructed computed image in Fig. 6(b). Again, the
lurring of the data is increasingly apparent with increas-
ng distance from the focus plane at the top of the volume.
n addition, stripelike features can be seen for the isosur-
aces corresponding to interfering scatterers. This method
an correct for the diffraction effects and produce point-
ike images in Fig. 6(b) for each of the scatterers. The
lanes of the scatterers need not be so widely separated
or the algorithm to distinguish them, but this was delib-
rately done to make the diffraction effects easier to visu-
lize.

. CONCLUSION
e have derived and demonstrated a method of perform-

ng inverse scattering in full-field OCT to reconstruct im-
ges of out-of-focus planes, which obviates the need to
can the focus through the volume. The solution of the in-
erse scattering problem implies that, neglecting vignett-
ng and aberrations, the achievable resolution is space in-
ariant and is the same away from the focus plane as at
he focal plane. Vignetting limits the volume over which
he resolution is space invariant because the solid angle
ver which the scattered light is collected decreases at
oints further from the objective aperture. Other factors
imiting reconstruction quality are multiple scattering
ithin the sample and sample motions during data acqui-

ition causing phase error. This method may lead to faster
nd more accurate full-field OCT imaging because data
cquisition can be very rapid, requiring only that the 2-D
nterferogram be sampled while the frequency of the
ource is scanned. As data acquisition speed and compu-
ational speed continue to increase, perhaps video-rate
canning of 3-D volumes will become possible.

Inverse scattering in full-field OCT also offers a signal-
o-noise advantage over scanned beam OCT. In conven-
ional scanned beam OCT, which utilizes a focused Gauss-
an beam rather than plane-wave illumination, it was
hown6 that the magnitude of the signal captured from
catterers away from the focus is inversely proportional to
he distance from the focus. In practice, this places a limit
n the axial range of the sample that can be imaged be-
ore the signal-to-noise ratio becomes unacceptable. There
s no such attenuation of the signal away from the focus

ig. 6. (Color online) Three-dimensional volumes representing t
re in wavelength units.
n the full-field OCT case. However, this advantage may
e offset because full-field OCT may be less able to dis-
riminate between single-scattering and multiply scat-
ered photons because of its multimode detection.
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