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Abstract. Often in imaging systems, the bandpass of the system is not
uniform. In temporal coherence imaging methods such as optical co-
herence tomography, one would like to achieve the most spatially
confined impulse response possible with a given source spectrum,
minimizing sidelobes that blur adjacent features together. Typically
the spectrum of the source is controlled in order to remove sidelobes
from the measured interferogram. However, the measured interfero-
gram is not necessarily the best estimate of the scattering density of
the object. In this work, a sidelobe supression method is proposed and
demonstrated to achieve low sidelobes even with highly nonuniform,
non-Gaussian spectra. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1806471]
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1 Introduction
In optical coherence tomography~OCT!, as in other imaging
modalities, one desires to achieve the highest possible resol
tion given instrument limitations. The bandwidth of the OCT
source chiefly determines the useful resolution. However, i
the spectrum is not smooth, then the point response in th
interferogram will have large sidelobes that cause a degrada
tion of effective resolution and introduce artifacts. This be-
comes increasingly important as imaging resolutions improve
and human cellular imaging becomes feasible. For example,
highly scattering nucleus may produce a large backscatter sig
nal with large sidelobes that may be misrepresented as adj
cent cell membranes or organelles. As a result, a smooth
Gaussian-like spectrum is often employed to minimize side
lobes. However, there are many sources that do not produc
smooth spectra but still produce a wide bandwidth, such a
Ti-sapphire oscillators,1,2 nonlinear supercontinuum genera-
tion optical fibers including microstructured3–6 and tapered
fibers,7 and ultrahigh-numerical-aperture fiber sources.8 In this
work, a method is presented that produces an estimate of o
ject scattering density~or reflectivity profile! that minimizes
sidelobes while not overly increasing the contribution of
noise. This method can make broad spectrum sources muc
more useful for high-resolution OCT. The approach is akin to
the Backus-Gilbert9,10 inversion procedure in that a quadratic
penalty for sidelobes is employed. Unlike many applications
of the Backus-Gilbert method where the number of available
data points may be low~as in seismology! and therefore
Backus-Gilbert does not require great computational cost, thi
method has low computational overhead and therefore can b
incorporated into fast OCT systems that employ digital
processing.11
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There are many other approaches to sidelobe suppres
One approach is to utilize a modified CLEAN algorithm th
attempts to estimate12,13 the positions and magnitudes of ind
vidual points in the image one at a time, eliminating t
power of each point as it is identified. Another approach co
bines the energy of multiple sources of different spectra
ratios designed to minimize sidelobe magnitude.14–16 Other
approaches digitally modify the power spectrum by applyi
a linear filter to alter the source spectrum to achieve
Gaussian-like shape.17–20 Another approach, most similar t
the one presented here, uses a linear filter on the magnitud
the interferogram to enhance and sharpen edges.21 The present
approach differs from these previous methods in that a sp
invariant, linear postprocessing filter is derived that accou
for noise estimates, minimizing the deviation from the line
least-squares solution.22 The method presented here requir
knowledge of the actual cross-correlation function, and the
fore the envelope demodulation of the signal cannot be p
formed prior to application of the sidelobe reduction filter.

2 Derivation
Consider an OCT experiment to probe a scatterer describe
scattering densityg(z) as a function of positionz in the space
z.0. The OCT signal as a function of temporal frequencyn is
modeled with the following equation:

W̃~n!5S̃0~n!E
0

`

exp@ ik~n!z#g~z!dz1Ñ~n!

5S̃0~n!G̃~n!1Ñ~n! ~1!

where S̃0(n) is the spectrum of the source,k(n) gives the
medium dispersion,Ñ(n) is the Fourier transform of a ran
dom wide-sense-stationary random process with power s
tral densityÑ0(n), W̃(n) is the cross-spectral density of th
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measured interferogram, andG̃(n) is the Fourier transform of
g(z) with a change of variables from spatial frequencyk to n.
Noise in OCT can be approximated by a wide-sense
stationary random process as detailed in Ref. 22. The poin
responseS(t) as a function of timet of a dispersion-free
OCT system is the inverse Fourier transform ofS̃0(n). The
root-mean-square~rms! width Dt rms of the point response is
given by:

~Dt rms!
2[

E t2uS~t!u2dt

E uS~t!u2dt

5
1

4p2

E UdS̃0

dn
U2

dn

E uS̃0~n!u2dn

. ~2!

This relation can be derived by applying Parseval’s theorem
to S(t) andi tS(t). Because the rms width is proportional to
the total integrated value ofudS̃0 /dnu2, which is the squared
magnitude of the derivative, nonsmooth spectra tend to have
larger rms width than smooth spectra. It is desirable to find a
spectrum which minimizes the rms width in a finite band-
width from n02Dn to n01Dn with center frequencyn0 and
bandwidth 2Dn. This aim can be achieved by solution of an
Euler-Lagrange variational problem, which has a solution
S̃B(n) such thatS̃B(n)5S0 cos@p(n2n0)/2Dn#.23,24 There-
fore the best spectral shape given a certain amount of powe
in a finite bandwidth is the cosine window if no digital post-
processing is to be used. This tapering of the source spectru
is commonly called ‘‘apodization’’ and a similar problem
arises in the spatial domain in photographic imaging.

In the practice of optical coherence tomography, one typi-
cally has limited control over the spectral shape of the source
The optical source is required to be broad bandwidth but als
a single spatial mode. Sources such as ultrafast laser pump
ultrahigh-NA fiber and microstructured fiber can produce
spectra that are highly nonuniform. One may be able to us
spectral shaping optical hardware such as optical fiber Brag
gratings or Fourier-plane pulse shapers to reshape the spe
trum to a cosine function. However, this adds cost and com
plexity to the optical source, and reduces the available sourc
power. In addition, because nonlinear sources produce
power-dependent spectrum, optical filtering methods may
have to be adjusted if the source power varies. Rather tha
filter the optical spectrum, one can design a digital filter that
produces an estimate of what the interference signal would b
if an ideal cosine spectrum was used. This can be achieve
naively by using an estimator such asW8(n)
5W(n)S̃B(n)/S̃0(n) to ‘‘force’’ the actual spectrumS̃0(n)
into the shape of a cosine spectrumS̃B(n). However, this
approach can be overly sensitive to noise if there are frequen
cies inside the bandpass of the system with little optica
power, that is,S̃0(n) is small. A practical estimation method
must account for noise introduced by photon noise, therma
noise, or quantization noise.

Our approach is to create a linear, space-invariant digita
filter that minimizes sidelobes while not overly decreasing the
signal-to-noise ratio. When a least-squares estimator is foun
for G̃(n) for the problem as posed in Eq.~1!, the result is the
Weiner filterH̃W(n):
1282 Journal of Biomedical Optics d November/December 2004 d Vol.
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G̃W~n!5
W̃~n!S̃0~n!

uS̃0~n!u21Ñ0~n!2
5W̃~n!H̃W~n!. ~3!

This result can be found by finding the filterH̃W(n) that mini-
mizes the expectation̂uH̃W(n)W̃(n)2G̃(n)u2&. This expec-
tation is over the ensemble of possibleG̃(n) andÑ(n) if they
are assumed to be wide-sense-stationary Gaussian proc
in the time domain with their given spectral densities. Ho
ever, the Weiner filter does not necessarily produce a filter
minimizes the sidelobes of the reconstructed image. We p
pose a method similar to that of the Backus-Gilbert meth
that quadratically penalizes energy contributions from si
lobes. To do this, we define a new functionL̃(n)
5H̃(n)S̃0(n), which is the power spectrum of a point sourc
object after it is filtered through the source spectrumS̃0(n)
and reconstructed using the linear filterH̃(n). This quantity
L̃(n) is called the instrument response because it is the t
spectral response of the system after inverse filtering
taken place. The functionL(t) is the inverse Fourier trans
form of L̃(n), or the point spread function of the syste
including postdetection inverse filtering. We would like
minimize a quantity proportional to the rms spread of t
point responseL(t), which we callDt:

~Dt!2[E t2uL~t!u2dt5
1

4p2 E UdL̃

dn
U2

dn ~4!

where again Parseval’s relation is applied toi tL(t) in an
identical manner to Eq.~2!. To do so, we create a functionalJ
that trades off the minimization of noise and the sidelo
width:

J[E
2`

`

@^uH̃~n!W̃~n!2G̃~n!u2&dn1a~Dt!2#dn

5E
2`

` F K U L̃~n!

S̃0~n!
W̃~n!2G̃~n!U2L 1aUdL̃

dn
U2Gdn ~5!

wherea.0 is a Lagrange multiplier chosen to constrain t
rms width of the instrument response function which det
mines the allowable magnitude of sidelobes. To continue,
must assign priors to our knowledge of the second order
tistics of G̃(n). We will assume that over the ensemble
G̃(n) the spectral density is given bŷuG̃(n)u2&5G̃0(n)2.
Typically no specific frequency content will be assumed ab
G̃(n) so thatG̃0(n)51, which corresponds to an object wit
detail potentially at all frequencies. With these priors,

K U L̃~n!

S̃0~n!
W̃~n!2G̃~n!U2L

5K U L̃~n!

S̃0~n!
@S̃0~n!G̃~n!1Ñ~n!#2G̃~n!U2L

5@ L̃~n!21#2G̃0~n!21@ L̃~n!/S̃0~n!#2Ñ0~n!2 ~6!

so that
9 No. 6
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Adaptive spectral apodization . . .
J5E
2`

` F @ L̃~n!21#2G̃0~n!21@ L̃~n!/S̃0~n!#2Ñ0~n!2

1aUdL̃

dn
U2Gdn. ~7!

The solution L̃(n) that minimizes the functionalJ can be
found by the Euler-Lagrange formula(]J/]L)2(d/dn)
3(]J/]L8)50 so that the optimal instrument response func-
tion satisfies the following second-order inhomogeneous lin
ear differential equation:

]J

]L̃
52@ L̃~n!21#G̃0~n!212L̃~n!@Ñ0~n!2/S̃0~n!2#,

~8!
]J

]L̃8
52aFdL̃

dn G→a
d2L̃

dn2
2F G̃0~n!21

Ñ0~n!2

S̃0~n!2 G L̃~n!

52G̃0~n!2.

Note that whena50 andG̃0(n)51, this reverts to the stan-
dard Weiner least-squares solution of Eq.~3!. Once the opti-
mal L̃(n) is determined, the optimal filter can be found by
H̃(n)5L̃(n)/S̃0(n).

As a is increased, one is constraining the point response t
a smaller and smaller interval. The signal-to-noise ratio will
correspondingly decrease, which is the price paid for the gua
antee that a point will produce a sufficiently confined re-
sponse. This guarantee will hold even in the presence o
speckle because while speckle modulates the reflectivity o
the object, it does so locally on a point-by-point basis. The
locality of the reconstruction is preserved because even
speckled feature will produce a confined, local point response

To show that the noise variance must necessarily increas
when the instrument response rms width is confined to a
smaller interval, we consider the noise component of the func
tional J, which we call h5*2`

` @ L̃(n)21#2G̃0(n)2

1@ L̃(n)/S̃0(n)#2Ñ0(n)2dn. The derivative dh/da determines
the magnitude of the increase in the noise as the point sprea
function size is decreased. By solving Eq.~8! to find
that L̃(n)5S̃0(n)2@ad2L̃ /dn21G̃0(n)2#/@S̃0(n)2G̃0(n)2

1Ñ0(n)2#, and substituting, we find that

dh

da
52aE

2`

` S̃0~n!2~d2L̃/dn2!2

S̃0~n!2G̃0~n!21Ñ0~n!2
dn. ~9!

Because the integrand is always positive, then dh/da.0, and
therefore the total noiseh must always increase when the
point spread function constrainta is increased. The signal-to-
noise ratio achieved by the filterL̃(n) is given by:

SNR5T1/2
*2`

` uL̃~n!G̃0~n!udn

A*2`
` L̃~n!2Ñ0~n!2/S̃0~n!2dn

. ~10!

This SNR is the ratio of the amplitude of a point object at its
center to the standard deviation of the noise amplitude at tha
point. The quantityT is the total group delay produced by the
OCT delay mechanism, such that1/T corresponds to the sam-
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pling resolution in the frequency domain of the OCT instr
ment. We include this resolution factor in the SNR calculati
to account for the fact that while wide-sense-stationary no
in theory occurs over an infinite interval, the signal is know
to be confined to the interval in which the axial scan is me
sured. When the integrations of Eq.~10! are converted to
sums to be used on discretely sampled spectra, theT1/2 factor
is automatically accounted for and need not be explic
added. We note that when no spectral reshaping is used,
H̃(n)51 or L̃(n)5S̃0(n), which can be inserted into Eq
~10! to compare the performance of digital postprocessing
no postprocessing.

In practice, Eq.~8! must be numerically solved. A simpl
way to do this is to recast it as an iterative equation with
relaxation factor:

L̃n11~n!5~12b!L̃n~n!1bS̃0~n!2

3
ad2L̃n /dn21G̃0~n!2

G̃0~n!2S̃0~n!21Ñ0~n!2
. ~11!

By choosingb sufficiently small, this equation can b
made to converge. When the spectra are discretely samp
the second derivative operator can be replaced by convolu
with a kernel with weights 1,22, 1. A good starting point tha
aids rapid convergence for this iteration formula is the Wein
filter L̃0(n)5S̃0(n)2G̃0(n)2/@S̃0(n)2G̃0(n)21Ñ0(n)2#. This
method can be extended to multiple dimensions in a straig
forward fashion by replacing the second derivative opera
by a Laplacian.

As an initial estimate of the value ofa that will trade off
sidelobes for noise, we can start with the width of the Wein
filter, which we calla0 :

1

a0
5

E
2`

` UdL̃a50~n!

dn
U2

dn

4p2E
2`

`

uL̃~n!u2dn

5

E
2`

` U d

dn F S̃0~n!2G̃0~n!2

S̃0~n!2G̃0~n!21Ñ0~n!2GU2

dn

4p2E
2`

` U S̃0~n!2G̃0~n!2

S̃0~n!2G̃0~n!21Ñ0~n!2U2

dn

. ~12!

With these formulas, and knowledge ofS̃0(n) andÑ0(n),
one can use Eq.~11! to derive a digital postprocessing filte
that produces good sidelobe and noise reduction performa

3 Experiment and Discussion
To demonstrate this method, both a glass slide and rat m
mary tissue were imaged with OCT. The OCT system c
sisted of a mode-locked Ti-sapphire laser pumping
ultrahigh-NA single-mode optical fiber.8 This produced a
broad but erratic, non-Gaussian spectrum in the wavelen
range of 740 to 860 nm. The interferometer was a fiber-ba
Michelson setup with unbalanced detection. The delay w
implemented as a galvanometer driven retroreflector and
medical Optics d November/December 2004 d Vol. 9 No. 6 1283
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Fig. 1 Spectrum of source (solid line) and sidelobe-corrected instru-
ment response function (dashed line). The OCT system used a
UHNA3 fiber as a source, and spectra were obtained from the reflec-
tions off of a microscope slide.
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imaging optics included a galvanometer-rotated transvers
scanning mirror and a 20-mm focal length infrared-
achromatic lens. The images were acquired as 512 axial sca
over 1 mm with 25,000 samples per axial scan. The powe
spectral density of the source plus the noise was estimated b
averaging the magnitude of the fast Fourier transform of al
512 axial scans. The noise was estimated from the magnitud
of the averaged spectrum in a spectral region that was know
not to contain any signal inside the bandwidth of the lase
source. This noise variance was subtracted off of the signa
plus noise estimate to produce the estimate of the laser spe
trum. The dispersion was corrected in the interferogram with
a previously developed digital dispersion compensation
method.22 In this method, the dispersion compensation was
applied but the computed sidelobe reduction filter was subst
tuted for the Weiner filter specified in the earlier reference.
Since this step is the only step that modifies the magnitude o
the spectrum of the reconstructed image, this step determine
the noise rejection and sidelobe reduction quality of the algo
rithm.

The first object imaged was a simple glass slide in order to
determine how well the algorithm could correct a single re-
flection. From the acquired interferograms, the estimated
power spectral density of the laser and the noise were inpu
into Eq. ~11!. In the equation, the constanta was chosen to
improve resolution but not overly increase noise, and the con
stantb was chosen to ensure convergence~its value does not
influence the solution outcome!. Because the spectra were
sampled, the discrete approximation to the second-derivativ
operator mentioned earlier was used. The equation was ite
ated 5000 times to ensure convergence. The solution for th
power spectral density of the instrument response filterL̃(n)
is shown in Fig. 1 as a dotted line, in contrast to the origina
source power spectral density which is the solid line. The
primary effect of the algorithm is to design a filter that
smoothes the instrument response without overly increasin
the noise contribution. The new instrument response is ver
1284 Journal of Biomedical Optics d November/December 2004 d Vol.
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smooth and cosine-like, which is similar to the solution to t
finite-bandwidth response sidelobe reduction problem d
cussed earlier.

Figure 2 shows the original and sidelobe-filtered interfe
grams of the reflection from the glass slide. Even though
resolution improvement is minimal, the sidelobe filter conce
trates the energy of the point response in a small interval o
mm around the center, while the uncorrected response
significant energy outside this interval. Unlike other forms
image correction such as dispersion compensation, side
suppression tends to have a less noticeable effect becau
operates locally on individual points rather than globally
the whole axial scan. Because of this, the benefits of sidel
suppression significant only at scales at the edge of the res
ing power of the instrument. Unless other effects have b
well corrected for, such as dispersion and defocus, sidel
suppression is unlikely to produce much improvement. T
use of this sidelobe suppression is most useful in automa
image- and signal-processing based algorithms for detec
and quantifying biological structures such as cells wh
small-scale improvements have a significant effect.

The second example image is of rat mammary tissue. F
ure 3 shows the power spectral density of the sourceS̃0(n)
~solid line! and of the corrected instrument responseL̃0(n)
~dashed line!. Again, the effect of the filtering is to smooth th
instrument response. This effect is seen more clearly in Fig
which is the numerically estimated point responses of
original spectrum~solid line! and of the filtered instrumen
response~dashed line!. The sidelobes of the response mag
tude ~shown in logarithmic scale! of the filtered response de
crease much faster than the uncorrected spectrum. Becau
the presence of the sidelobes in the source spectrum p
response, the rms width of the response is 14.3mm as op-
posed to 3.3mm for the filtered response. However, the ma
nitude of the RMS width can overstate the improvement
cause the rms width is very sensitive to sidelobes further fr
the center of the point response. We note that reducing the
width of the point spread response may increase the ma

Fig. 2 Point response of original spectrum (top) and sidelobe-
corrected instrument response function (bottom) obtained with a mi-
croscope slide as a test sample.
9 No. 6
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Fig. 3 Spectrum of source (solid line) and sidelobe-corrected instru-
ment response function (dashed line). The OCT system used a
UHNA3 fiber as a source, and spectra were obtained from scattering
off of the rat mammary tissue.
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tude of the sidelobes near the center of the response when t
peripheral sidelobes are reduced, because the goal is to redu
the overall rms width of the point response, and not eliminate
any specific sidelobe feature.

Figure 5 shows the two images of the rat mammary tissu
without ~top! and with ~bottom! sidelobe suppression. The
reconstruction was achieved using the steps outlined in Tab
1. Macroscopically, these images, which are plotted on a lin
ear amplitude scale rather than a logarithmic scale, look ver
similar because the modifications to the image occurs at th
smallest scales. Linear data scales were used because the d
shown are more like the interference signal directly sampled
and quantized by the detection electronics. To see the im
provement, the three boxed sections of the image of Fig. 5 ar
shown in Fig. 6. The effect of the sidelobe suppression filter is
Journal of Bio
e
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to make the images of point-like objects smaller and shar
the boundaries. The improvement may help to distingu
small pointlike scatterers in tissues such as cellular organe
where a sidelobe might be mistaken for a separate struct
Using Eq. ~10!, the signal-to-noise ratio of the uncorrecte
image of Fig. 5 was calculated to be 30.75, and the sidel
corrected image SNR was 57.20. The increase of SNR o
the case without any filtering can be attributed to the exc
sion of noise in frequency bands where there is little availa
signal.

We note that achieving benefit from this method is cont
gent on obtaining an accurate estimate of the power spec
density of the source and the noise. In addition, the stability
the interferometer is of paramount importance because sm

Fig. 5 Uncorrected (top) and corrected (bottom) images of rat mam-
mary tissue. Image sizes are 1.530.5 mm.

Table 1 Procedure for utilizing sidelobe suppression method.

1. Measure the axial scan data cross-spectral density and
compute the Fourier transform W̃(n) of each axial scan.

2. Average uW̃(n)u2 of all of the axial scans together to
produce an estimate of the signal power spectral density
W̃0(n)25S̃0(n)2G̃0(n)21Ñ0(n)2.

3. Assuming the noise power spectral density is constant,
average together the power spectral density of a frequency
band known not to be emitted by the laser source
to estimate the noise power spectral density.

4. Subtract the noise power spectral density estimate Ñ0(n)2

from the estimated W̃0(n)2 to find an estimate of S̃0(n)2,
assuming that G̃0(n)251. Set any negative S̃0(n)2 to zero.

5. Use Eq. (12) to compute a0 , and then select a5ka0 ,
where k is a predetermined constant on the order of unity
that provides the desired tradeoff between resolution and
noise. Select b}1/a to aid convergence.

6. Use Eq. (11) to iteratively compute L̃(n) starting with the
Weiner filter.

7. Compute H̃(n)5 L̃ (n)/S̃0(n).

8. Compute the estimate of G̃(n)5H̃(n)W̃(n) for each axial
scan.
Fig. 4 Magnitude of the estimated point response of the source spec-
trum (solid line) and sidelobe-corrected point response function
(dashed line). Plots correspond to spectra shown in Fig. 3.
medical Optics d November/December 2004 d Vol. 9 No. 6 1285
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Fig. 6 High-magnification comparison of boxed areas from Fig. 5 be-
tween uncorrected (top) and corrected (bottom) images. For scale, the
region in A is 70370 mm.
-

s
t
r
-

e

e
a

g
-

l
h

-

a,
g-

op-

um

rt,
ion

rth

cu-

art,
og-

ng

nt
ella-

ti-
di-

p-
im-

ti-

er,
her-

ation
to-

on,
an

gh
a-

nt
random path-length variations, caused by vibrations or ther
mal fluctuations for example, will alter the spatial frequencies
of the interferogram sufficiently to cause significant error in
the Fourier analysis of the interferogram. For this reason, spe
cial attention must be paid to eliminating these fluctuations to
utilize this method successfully.

The method presented provides a means to balance noi
suppression and sidelobe suppression by iteratively compu
ing an optimal filter. Two key advantages are gained, a filte
best suited to the particular instrument is found, and the com
putational cost of obtaining this filter need be paid only once
so long as the input spectrum remains unchanged. Alterna
tively, if the source spectrum is inconsistent, but remains
stable during the acquisition of a single image, then the
method can be adapted to provide a new filter for each imag
if the spectrum is measured or estimated for each image
hence it is dynamically ‘‘adaptive’’ to the source. In light of
this work, achieving a broad, stable spectrum should be mor
important than achieving a Gaussian spectrum because digit
correction can be applied to the data. The method fails to
achieve desirable results in certain circumstances where th
linearity of the data acquisition is compromised: if clipping
occurs in the electronic amplifier before sampling, if the sig-
nal is digitized with low accuracy, or if the dispersion of the
intervening medium is uncompensated. Methods, such as th
one presented here, implemented by digital signal processin
will produce a more flexible instrument able to tolerate spec
tral nonuniformity without degrading performance.
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