2366 J. Opt. Soc. Am. A/Vol. 22, No. 11/November 2005

Marks et al.

Speckle reduction by I-divergence regularization
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Daniel L. Marks, Tyler S. Ralston, and Stephen A. Boppart

Beckman Institute of Advanced Science and Technology, 405 N. Mathews, Urbana, Illinois 61801

Received January 3, 2005; accepted March 31, 2005

For optical coherence tomography (OCT), ultrasound, synthetic-aperture radar, and other coherent ranging
methods, speckle can cause spurious detail that detracts from the utility of the image. It is a problem inherent
to imaging densely scattering objects with limited bandwidth. Using a method of regularization by minimizing
Csiszar’s I-divergence measure, we derive a method of speckle minimization that produces an image that both
is consistent with the known data and extrapolates additional detail based on constraints on the magnitude of
the image. This method is demonstrated on a test image and on an OCT image of a Xenopus laevis tadpole.
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1. INTRODUCTION

The problem of speckle1 is endemic to imaging methods
utilizing coherent ranging such as optical coherence
tomography? (OCT), ultrasound, and synthetic-aperture
radar. Natural objects usually contain detail at all scales,
but most coherent ranging instruments can probe these
details in only a narrow bandwidth of frequencies. The re-
sult is speckle, which is caused by the seemingly random
interference of scatterers within a resolution cell of the in-
strument. Speckle randomizes the amplitudes of points in
the image, which obscures fine features but generally al-
lows coarse features to be resolved. We propose and dem-
onstrate a method of regularization that removes these
small-scale amplitude changes without smoothing the im-
age. This is achieved by constraining the resulting recon-
structed image to be consistent in a least-squares sense
with the known data, while simultaneously utilizing
Csiszar’s I-divergence measure> to constrain and regu-
larize the amplitudes of the reconstructed data. By ensur-
ing that the resulting image is consistent with the known
data, the detail is retained, while additional bandwidth is
extrapolated to make the amplitudes of the image consis-
tent with the regularization.

Most natural objects, especially those biological in ori-
gin, have detail at length scales from the macroscopic to
the atomic. Unfortunately, because of instrument limita-
tions and the attenutation of radiation by the sample,
only a finite signal bandwidth can be utilized for useful
resolution from the sample. The phenomenon of speckle
in these imaging modalities is caused by the interference
between scatterers that are too small and too close to-
gether to be individually resolved. What is observed is a
seemingly random modulation of the amplitude of the im-
age as a result of the interference of scattered waves from
these unresolved scatterers.

Unfortunately, it is difficult in practice to differentiate
between the features that are caused by the speckle
modulation and the features of interest. Because scatter-
ers are randomly placed in most natural objects, the
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coarse detail tends to be present in almost any frequency
bandwidth that is much wider than the reciprocal of the
minimum feature size one wishes to resolve. This is what
enables most coherent ranging techniques to be used in
practice. However, as one considers distinguishing fea-
tures on the minimally resolvable scale of the instrument,
it is less certain whether a certain feature is due to the
random modulation of speckle or to scatterers with larger
sizes.

The inspiration for our solution to this problem came
from studying an expectation-maximization (EM)
algorithm5 for despeckling from synthetic-aperture radar
in the presence of white Gaussian noise. In this algo-
rithm, it is postulated that each pixel i of the object con-
tains scatterers that have a scattering amplitude de-
scribed by a complex Gaussian random variable with
variance a'iz, so that the phase of each pixel is uniformly
distributed between —7 and 7. Due to speckle, the scat-
tering from each resolution cell will be randomly modu-
lated, because the complex amplitudes of the pixels
within the resolution element of the instrument will co-
herently interfere. The phases of the pixels are not them-
selves of interest but are estimated to better determine
the pixel variances 0'12 For a given linear relationship be-
tween the object properties and the measured data, the
EM algorithm specifies an iteration that successively es-
timates the o7 that maximizes the likelihood of observing
the data. Unfortunately, we found this method unsuitable
for our purposes. First, because it is maximum
likelihood,® it does not specify priors to the image; there-
fore it is not regularized and so tends to produce esti-
mates consisting of pointlike scatterers. Second, it tends
to be difficult to incorporate all but the simplest priors in
the algorithm. Finally, it is computationally intractable
for all but the smallest image sizes because of the need to
invert the empirical covariance matrix at each iteration.

The problem of speckle is sufficiently pervasive that
many approaches to minimize it have been put forth: sig-
nal processing methods such as using maximum
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Fig. 1. Images of Lena to demonstrate a naive Gaussian deblur-
ring algorithm. (a) Original Lena image. (b) Speckled Lena image
reconstructed with a Tikhonov-regularized least-squares algo-
rithm. (c) Amplitude of the image of (b) blurred with a Gaussian
window as in Eq. (5). (d) Image corrected with the I-divergence
algorithm. Inset in each part, magnified image of Lena’s right
eye.

likelihood,>" nonquadratic regularization,®
deconvolution,’ spectral estimation,'® adaptive speckle
suppression filters,'! wavelet denoising,'%'® the CLEAN™*
algorithm, and many others.'>® Other approaches such
as angular or frequency compounding”’18 have also been
employed. Some of these methods suffer from the problem
that increased speckle reduction entails a loss of resolu-
tion. Our research was motivated by the desire for a
method that would produce a result consistent with the
data, minimize resolution loss, and have a reasonable
computation time.

To understand the rationale behind this method, we
consider a primitive despeckling algorithm based on
smoothing the amplitude of an image. We have created a
speckled version of the ubiquitous Lena image, which is
shown in Fig. 1, by multiplying the pixel magnitudes of
the original image by a random complex phase, and then
bandpassing the image with a Gaussian filter. The effect
closely mimics the speckle seen in natural objects. By
blurring the magnitude of the complex image with a
Gaussian filter, we can produce an image with the speckle
minimized, but with much fine detail also removed. In ad-
dition to being low resolution, there is no guarantee that
this blurred version is consistent with the data. Consis-
tency means that there exists a true reconstructed image
of complex scattering amplitudes such that the the mag-
nitudes of the complex data match the blurred version
while the complex amplitudes match the measured data
to within measurement error (perhaps using a least-
squares metric). In general this blurring method will not
produce a consistently despeckled image. It is because of
this inconsistency that the method fails to incorporate the
detail of the original data. Our method essentially pro-
duces a synthesized complex amplitude image that con-
strains the complex data to be consistent with the mea-
sured data in a least-squares sense, but also manipulates
the magnitudes of the complex data to the degree allowed
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by measurement error. By doing so, this method can
despeckle but retain the detail of the original data.

2. ALGORITHM

Scattering problems in coherent ranging using the single-
scattering assumption can be modeled as linear systems.
In general, we assume we have an object that is described
by vector x;, and a data vector described by y;. The for-
ward problem is then simply modeled as y=Ax+n or y,
=23;A;x;+n;, where A describes the linear transformation
between object and data vectors, and n is a noise vector.
In the absence of regularization, the least-squares solu-
tion for x minimizes |ly—Ax|? and has the pseudoinverse
solution x=(ATA)1ATy.

To despeckle the image in a consistent manner, we
posit that we have created a despeckled image that is in
general inconsistent with the data (for example, with the
Gaussian blurring scheme already mentioned). For each
object pixel x; we have an inconsistently despeckled ref-
erence image with the magnitudes of each corresponding
pixel in the reference image given by |u;|. The algorithm
finds a consistently despeckled image x; that minimizes
the functional
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The term ||y —Ax|?> ensures the image is consistent with
the data in a least-squares sense. The second term is a
metric called the Csiszar I-divergence® and is weighted by
a regularization constant \. The I-divergence is a convex
measure that is related to the Kullback'® distance, which
is itself a relative entropy measure related to the
maximum-entropy method.?*?* The I-divergence is
analogous to the Euclidean metric, but it is more suited to
positively constrained data. The I-divergence is preferred
over the Kullback distance because while both are zero
when |x;|=|u;|, the I-divergence is also minimized, unlike
the Kullback distance which is minimized at |x;|=|u;/ Vel |
Therefore, the I-divergence tends to enforce the condition
that the magnitude of the consistently despeckled image
matches the magnitude of the reference despeckled im-
age.

To see how to optimize this function, we find the partial
derivative JdL/dx; with respect to both the real and imagi-
nary parts of x; (called the compact gradient in Ref. 8),
which is given by
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where {ATAx-A'y}; refers to the ith element of the vec-
tor. Using this derivative we can form a simple relaxation
method iteration:
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Note that to make this a stable iteration, the magnitude
of € must be less than both 1/2\ and the reciprocal of the
largest singular value of A squared. While a relaxation al-
gorithm is used here, a multiplicative type algorithm?
could also be derived.

To see what values of A will work well, we examine the
related optimization problem

XE”)

Xz('n+1) - Xz('n) —9%¢ {ATAX(n) _ ATy}i + 2}\x§")log

i

L=y-AxP+ 22 |x =y - Ax[* +\[x]?,  (4)
l

which is the least-squares solution to y=Ax under
Tikhonov?® regularization constraining the magnitude of
the solution x. This simple regularization is done in prac-
tice to ensure that the vector space of A corresponding to
small singular values does not give rise to large changes
in x. The solution is the Tikhonov-regularized pseudoin-
verse given by x.=(A'A+\I)"!A'y. In practice, we have
found the criterion for the selection of A in this Tikhonov
regularization case and the I-divergence regularization
case to be similar, i.e., the same value of A\ tends to pro-
duce good noise performance for both. A useful value of A
can usually be determined by examining the singular
value spectrum of A and determining where it decreases
sharply, setting \ equal to the square of the transition sin-
gular value.?8 More sophisticated methods assign \ based
on the magnitude of the noise relative to the acquired
signal. These methods show that the same order of
magnitude of N\ suffices for both regularizers because
Ix;2log|x;/u, | - |x;|2=|x;|?log|x;/u;Ve|>. Since the loga-
rithm tends to be a small number, on the order of unity,
the magnitude of the the regularization terms in both
methods tends to be similar.

3. DESPECKLING AN IMAGE

To address the issue of despeckling images, we restrict
ourselves to the case where the matrix A implements a
space-invariant convolution. In this case, we can describe

A in the Fourier domain by a transfer function A(v) with
a finite bandpass, where v is spatial frequency comple-
mentary to spatial coordinate r. We can then interpret

the algorithm, construing A(») to be the spatial bandpass
of coherent ranging instruments such as OCT. In the
functional of Eq. (1), the least-squares term fits the data
only inside the bandwidth of the instrument. In space-
invariant systems, the least-squares solution does not in-
fer any frequencies outside of the bandpass of the instru-
ment. The I-divergence term of Eq. (1), however,
constrains the magnitudes of the image points, and thus
can infer frequencies outside the bandpass. To simulta-
neously minimize both terms, the I-divergence term
would affect mainly frequencies outside the bandpass,
while the image inside the bandpass would be determined
by the least-squares minimization term. In this way, this
despeckle technique can be seen as a way of bandwidth
“extrapolation” that uses additional bandwidth to mini-
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mize the speckle, while keeping the image consistent with
the data. Without additional bandwidth, the algorithm
would have little freedom to optimize the image and keep
it consistent with the data.

An important question then is the amount of additional
bandwidth needed to extrapolate detail. This issue is com-
mon to such algorithms, especially maximum-likelihood
algorithms. While there are technically no priors on the
image in this case, the practical choice of the sampling
rate of the reconstructed image is itself a prior. If too
much bandwidth is added, the data will underspecify the
image, and the image reconstruction commonly will be-
come overly sharpened and sensitive to noise. We have
found empirically that the amount of bandwidth required
to allow for speckle reduction is 1.4 to 2 times the original
instrument bandwidth, but this is a question that will
benefit from further exploration.

The most important question with this method is how
to choose the reference image |u(r)|. This is the most sub-
jective aspect of the algorithm, because the algorithm
only attempts to guarantee that the image x(r) is consis-
tent with the data while keeping |x(r)|=~|u(r)|, but this
does not necessarily result in an aesthetically despeckled
image unless |u(r)| is chosen properly. Because the algo-
rithm will use consistency to keep the detail in the image,
the reference image |u(r)| need not contain all of the de-
tail in the original image. Choosing the reference image to
have smoothed magnitudes relative to the original image
tends to enforce a similar condition in the despeckled im-
age.

There are a few properties that a reference image
should have to produce good results. Of course, the |u(r)|
must be positive. In addition, the values of |u(r)| should
be similar to the magnitudes of a nondespeckled image. In
practice, this can be achieved by basing the reference
despeckled image on the speckled Tikhonov-regularized
inverse solution () =5 (1A (»)*/(|A()|2+\). To create a
simple reference image |u(r)|, we can convolve the magni-
tude of the Tikhonov-regularized solution with a Gauss-
ian kernel:

” [r—r'|?
lu(r)|”= (sz)_mf |77xTik(r’)|yeXp(_ w? )dNr’.
(5)

The magnitude of the Gaussian is chosen such that the to-
tal integral of the Gaussian is 1, with NV being the number
of dimensions in r. This is done to ensure that
[lu()]¥d¥r = [|xpi(r)|Yd¥r when 5=1, so that the magni-
tude of the image |u(r)| roughly matches that of |x(r)|.
The width of the Gaussian kernel w is chosen to be a
small multiple of the resolution of the instrument, so that
in practice the smoothing window covers several speckles.
The exponent 7y controls the relative weighting of low and
high magnitude values. We have chosen y=1 for simplic-
ity and performance here, but others may be chosen, e.g.,
v=2 has the benefit of preserving image energy. The ad-
ditional constant factor 7 is intended to compensate for
the additional energy that bandwidth extrapolation will
add to the image, so that the higher the amount of band-
width that is to be extrapolated, the higher this number
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will need to be. Sometimes if this factor is not present, the
I-divergence regularization will attempt to constrain the
values of |x(r)| to be too small to be consistent with the
additional bandwidth added. Usually 1.0<7<1.5 pro-
duces good results. Other methods of producing an incon-
sistently despeckled image, such as wavelet speckle
denoising®” on |xTik(r)|, may result in a reference image
for |u(r)| that provides better results than the simple
Gaussian blurring performed here.

Figure 1(d) shows how this algorithm performs on the
speckled Lena data. The parameters here were \=0.03,
n=1.2, y=1, and w=3 pixels, with the largest singular
value of the bandpass normalized to 1. As can be seen, the
speckle is substantially reduced. The despeckled image of
Lena keeps the detail that is seen in the speckled version
of part (b), which corresponds to |x;(r)|, while incorporat-
ing the smoother magnitude of part (¢) which corresponds
to |u(r)| calculated by Eq. (5). The despeckled version is a
compromise between these two versions.

4. EXPERIMENTAL DEMONSTRATION

As a demonstration of this technique on a biological
sample, we imaged a Xenopus laevis tadpole using OCT.
Our OCT system is a time-domain, fiber-optic-based
Michelson interferometer with the source being a mode-
locked Ti:sapphire laser with 810 nm center wavelength
and 100-nm bandwidth to achieve approximately 3-um
axial resolution. A sample power of 10 mW was measured.
The delay mechanism consists of a galvanometer-driven
retroreflector. The laser beam is scanned by
galvanometer-driven mirrors and focused with a 20-mm-
focal-length near-infrared achromatic lens, achieving a fo-
cused spot size of 15 um and a depth of field of 400 um.
The scanned area was 2 mm in the transverse direction
by 1.5 mm in the depth direction. For improved imaging
fidelity, the tadpole was placed in water under a glass cov-
erslip to index-match the medium.

To apply the algorithm, we directly digitized the cross-
correlation interferogram between the sample and refer-
ence beams as the delay was scanned. One thousand axial
scans of 80,000 samples per scan were acquired. To reduce
the quantity of data, the portion of each axial scan corre-
sponding to delays that contained the tadpole was ex-
tracted, and then each axial scan was bandpass filtered
and decimated using the one-dimensional fast Fourier
transform (FFT) so there were only 1000 decimated
samples per axial scan. During decimation, the negative
frequency components were zeroed to form the complex
analytic signal?® (CAS) version of the interferogram, be-
cause the original signal was real valued. The bandwidth
of the extracted spectrum was approximately 1.5 times
the original source spectral width to allow for additional
extrapolated spectrum to be added for despeckling regu-
larization. The power spectral density of the laser source
including the additive noise was estimated by averaging
together the magnitude of the Fourier transform of all of
the axial scans. The additive noise floor was subtracted
from this estimate (with zero as a minimum power spec-

tral density) to produce the spectrum A(») used in the al-
gorithm. The highest magnitude frequency, corresponding
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to the highest singular value, was normalized to 1, there-
fore scaling only the overall magnitude of the recon-
structed image.

A regularization value of A=0.03 was chosen based on
examination of the spectrum and the noise floor. The
Tikhonov-regularized image was then calculated in the
frequency domain using Zry(v)=F(»)A(w)"/(|A()|2+)\).
The magnitude of the CAS was used to find the magni-
tudes of |xpi(r)| and |x(r)| because it followed the enve-
lope of the interferogram® and is independent of the cen-
ter frequency of the signal (this can be found by assuming
all of the negative frequency components of a signal are
zero). Based on this, a Gaussian-blurred reference image
|u(r)| was formed using Eq. (5) with w=3, y=1, and »
=1.2. The two-dimensional discrete convolution was per-
formed by using the FFT on the entire image.

To implement the despeckling algorithm, the iteration
of Eq. (3) was used, with €=0.75 and x©=xry.. The con-
volution in the operation Ay was precalculated using the

1D FFT by applying the spectrum A(v)” to each axial scan
datum ¥(»). The convolution in the operation ATAx™ was

performed by applying |A(»)|? to each axial scan %(»). The
iteration was repeated 200 times to ensure convergence of
the norm [y — Ax|? to less than 0.1% of its initial value for
x(0. For values of € that satisfy the convergence criterion,
the value of |[y—Ax|?> monotonically decreased to near
zero without stagnation, suggesting that the iteration
produces a solution consistent with the data.

Figure 2 shows the result of the experimental despeck-
ling. Part (a) shows the CAS magnitude of the interfero-
gram acquired with OCT. Part (b) shows the Tikhonov-
regularized image |rpi(r)|, and part (¢) shows the
reference image |u(r)|. Part (d) shows the results of the
despeckling algorithm. At this scale, one can tell there is a
reduction of speckle from the original data and the
Tikhonov regularized version, but the scale is too coarse
to see the difference from the reference image. For this
reason, Fig. 3 and Fig. 4 show two magnified regions in

Fig. 2. OCT images of Xenopus laevis tadpole processed in vari-
ous ways. The image size is 1000 um transverse by 600 um
axial. (a) Original, unprocessed amplitude data. (b) Tikhonov-
regularized least-squares solution for the image. (c) Reference
image that is the Gaussian blurred amplitude of (b). (d) Despeck-
led using I-divergence minimization from the reference image.
The upper dotted box in each image corresponds to the magnified
area in Fig. 3; the lower dotted box in each image corresponds to
the magnified area in Fig. 4.
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Fig. 3. Magnified OCT images of a Xenopus laevis tadpole that
correspond to the upper dotted box in each image of Fig. 2. The
image size is 240 um transverse by 150 um axial. (a) Original,
unprocessed amplitude data. (b) Tikhonov-regularized least-
squares solution for the image. (¢) Reference image that is the
Gaussian blurred amplitude of (b). (d) Despeckled using
I-divergence minimization from the reference image. Note how
the image in (d) retains the detail of the least-squares solution of
(b) but includes the smoothed amplitude of the reference image of

(c).

Fig. 4. Magnified OCT images of a Xenopus laevis tadpole that
correspond to the lower dotted box in each image of Fig. 2. The
image size is 240 um transverse by 130 um axial. (a) Original,
unprocessed amplitude data. (b) Tikhonov-regularized least-
squares solution for the image. (c) Reference image that is the
Gaussian blurred amplitude of (b). (d) Despeckled using
I-divergence minimization from the reference image. The uni-
form intensity areas of the reference image of (c) are “filled in”
with the detail of the least-squares solution of (b) to form the
despeckled image. Consistency helps to ensure that the despeck-
led image retains the detail provided by the data.

this image that correspond, respectively, to the upper and
lower dotted boxes in each image. The four images in
Figs. 3 and 4 correspond to the same respective images in
Fig. 2. In Fig. 3, one can tell that the despeckled image is
able to denoise the speckle in the background, but main-
tain the sharp boundaries between cells, unlike in the ref-
erence image. In addition, the cell nuclei are much
sharper than in the reference image and look similar to
those in the Tikhonov-regularized image, but have greatly
reduced speckle. Fig. 4 shows another example of the al-
gorithm eliminating speckle but preserving features.
Many of the pointlike scatterers in the solid regions are
blurred in the reference image, but are recovered in the
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despeckled image. This is maintained while the speckled
background is smoothed out. The algorithm is able to
keep the details consistent with the data while finding a
solution with a more uniform background.

We have proposed, derived, and experimentally demon-
strated a novel method of minimizing speckle based on
regularizing the image with an I-divergence criterion. We
believe this algorithm has the potential to enhance the
ability of a human operator to recognize features. Speckle
features that are consistent with a uniform intensity scat-
tering background tend to be removed, leaving the fea-
tures that are more likely to be from dense scattering. In
this way, one perhaps may better differentiate strong
scatterers from other points of large magnitude that are
due to random interference between weak scatterers. Be-
cause of the relatively few parameters to choose (A, 7, w,
and v), it seems unlikely that the despeckled image can
be overspecified from the parameters alone, and features
that are seen are likely to correspond to real scatterers.
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