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Speckle reduction by I-divergence regularization
in optical coherence tomography
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For optical coherence tomography (OCT), ultrasound, synthetic-aperture radar, and other coherent ranging
methods, speckle can cause spurious detail that detracts from the utility of the image. It is a problem inherent
to imaging densely scattering objects with limited bandwidth. Using a method of regularization by minimizing
Csiszar’s I-divergence measure, we derive a method of speckle minimization that produces an image that both
is consistent with the known data and extrapolates additional detail based on constraints on the magnitude of
the image. This method is demonstrated on a test image and on an OCT image of a Xenopus laevis tadpole.
© 2005 Optical Society of America
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. INTRODUCTION
he problem of speckle1 is endemic to imaging methods
tilizing coherent ranging such as optical coherence
omography2 (OCT), ultrasound, and synthetic-aperture
adar. Natural objects usually contain detail at all scales,
ut most coherent ranging instruments can probe these
etails in only a narrow bandwidth of frequencies. The re-
ult is speckle, which is caused by the seemingly random
nterference of scatterers within a resolution cell of the in-
trument. Speckle randomizes the amplitudes of points in
he image, which obscures fine features but generally al-
ows coarse features to be resolved. We propose and dem-
nstrate a method of regularization that removes these
mall-scale amplitude changes without smoothing the im-
ge. This is achieved by constraining the resulting recon-
tructed image to be consistent in a least-squares sense
ith the known data, while simultaneously utilizing
siszar’s I-divergence measure3,4 to constrain and regu-

arize the amplitudes of the reconstructed data. By ensur-
ng that the resulting image is consistent with the known
ata, the detail is retained, while additional bandwidth is
xtrapolated to make the amplitudes of the image consis-
ent with the regularization.

Most natural objects, especially those biological in ori-
in, have detail at length scales from the macroscopic to
he atomic. Unfortunately, because of instrument limita-
ions and the attenutation of radiation by the sample,
nly a finite signal bandwidth can be utilized for useful
esolution from the sample. The phenomenon of speckle
n these imaging modalities is caused by the interference
etween scatterers that are too small and too close to-
ether to be individually resolved. What is observed is a
eemingly random modulation of the amplitude of the im-
ge as a result of the interference of scattered waves from
hese unresolved scatterers.

Unfortunately, it is difficult in practice to differentiate
etween the features that are caused by the speckle
odulation and the features of interest. Because scatter-

rs are randomly placed in most natural objects, the
1084-7529/05/112366-6/$15.00 © 2
oarse detail tends to be present in almost any frequency
andwidth that is much wider than the reciprocal of the
inimum feature size one wishes to resolve. This is what

nables most coherent ranging techniques to be used in
ractice. However, as one considers distinguishing fea-
ures on the minimally resolvable scale of the instrument,
t is less certain whether a certain feature is due to the
andom modulation of speckle or to scatterers with larger
izes.

The inspiration for our solution to this problem came
rom studying an expectation-maximization (EM)
lgorithm5 for despeckling from synthetic-aperture radar
n the presence of white Gaussian noise. In this algo-
ithm, it is postulated that each pixel i of the object con-
ains scatterers that have a scattering amplitude de-
cribed by a complex Gaussian random variable with
ariance �i

2, so that the phase of each pixel is uniformly
istributed between −� and �. Due to speckle, the scat-
ering from each resolution cell will be randomly modu-
ated, because the complex amplitudes of the pixels
ithin the resolution element of the instrument will co-
erently interfere. The phases of the pixels are not them-
elves of interest but are estimated to better determine
he pixel variances �i

2. For a given linear relationship be-
ween the object properties and the measured data, the
M algorithm specifies an iteration that successively es-

imates the �i
2 that maximizes the likelihood of observing

he data. Unfortunately, we found this method unsuitable
or our purposes. First, because it is maximum
ikelihood,6 it does not specify priors to the image; there-
ore it is not regularized and so tends to produce esti-
ates consisting of pointlike scatterers. Second, it tends

o be difficult to incorporate all but the simplest priors in
he algorithm. Finally, it is computationally intractable
or all but the smallest image sizes because of the need to
nvert the empirical covariance matrix at each iteration.

The problem of speckle is sufficiently pervasive that
any approaches to minimize it have been put forth: sig-
al processing methods such as using maximum
005 Optical Society of America
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ikelihood,5,7 nonquadratic regularization,8

econvolution,9 spectral estimation,10 adaptive speckle
uppression filters,11 wavelet denoising,12,13 the CLEAN14

lgorithm, and many others.15,16 Other approaches such
s angular or frequency compounding17,18 have also been
mployed. Some of these methods suffer from the problem
hat increased speckle reduction entails a loss of resolu-
ion. Our research was motivated by the desire for a
ethod that would produce a result consistent with the

ata, minimize resolution loss, and have a reasonable
omputation time.

To understand the rationale behind this method, we
onsider a primitive despeckling algorithm based on
moothing the amplitude of an image. We have created a
peckled version of the ubiquitous Lena image, which is
hown in Fig. 1, by multiplying the pixel magnitudes of
he original image by a random complex phase, and then
andpassing the image with a Gaussian filter. The effect
losely mimics the speckle seen in natural objects. By
lurring the magnitude of the complex image with a
aussian filter, we can produce an image with the speckle
inimized, but with much fine detail also removed. In ad-

ition to being low resolution, there is no guarantee that
his blurred version is consistent with the data. Consis-
ency means that there exists a true reconstructed image
f complex scattering amplitudes such that the the mag-
itudes of the complex data match the blurred version
hile the complex amplitudes match the measured data

o within measurement error (perhaps using a least-
quares metric). In general this blurring method will not
roduce a consistently despeckled image. It is because of
his inconsistency that the method fails to incorporate the
etail of the original data. Our method essentially pro-
uces a synthesized complex amplitude image that con-
trains the complex data to be consistent with the mea-
ured data in a least-squares sense, but also manipulates
he magnitudes of the complex data to the degree allowed

ig. 1. Images of Lena to demonstrate a naïve Gaussian deblur-
ing algorithm. (a) Original Lena image. (b) Speckled Lena image
econstructed with a Tikhonov-regularized least-squares algo-
ithm. (c) Amplitude of the image of (b) blurred with a Gaussian
indow as in Eq. (5). (d) Image corrected with the I-divergence
lgorithm. Inset in each part, magnified image of Lena’s right
ye.
y measurement error. By doing so, this method can
especkle but retain the detail of the original data.

. ALGORITHM
cattering problems in coherent ranging using the single-
cattering assumption can be modeled as linear systems.
n general, we assume we have an object that is described
y vector xi, and a data vector described by yj. The for-
ard problem is then simply modeled as y=Ax+n or yj
�iAijxi+nj, where A describes the linear transformation
etween object and data vectors, and n is a noise vector.
n the absence of regularization, the least-squares solu-
ion for x minimizes �y−Ax�2 and has the pseudoinverse
olution x= �A†A�−1A†y.

To despeckle the image in a consistent manner, we
osit that we have created a despeckled image that is in
eneral inconsistent with the data (for example, with the
aussian blurring scheme already mentioned). For each
bject pixel xi we have an inconsistently despeckled ref-
rence image with the magnitudes of each corresponding
ixel in the reference image given by �ui�. The algorithm
nds a consistently despeckled image xi that minimizes
he functional

L = �y − Ax�2 + ��
i
��xi�2log� xi

ui
�2

− �xi�2 + �ui�2� . �1�

he term �y−Ax�2 ensures the image is consistent with
he data in a least-squares sense. The second term is a
etric called the Csiszar I-divergence3 and is weighted by
regularization constant �. The I-divergence is a convex
easure that is related to the Kullback19 distance, which

s itself a relative entropy measure related to the
aximum-entropy method.20–24 The I-divergence is

nalogous to the Euclidean metric, but it is more suited to
ositively constrained data. The I-divergence is preferred
ver the Kullback distance because while both are zero
hen �xi�= �ui�, the I-divergence is also minimized, unlike

he Kullback distance which is minimized at �xi�= �ui /	e�.
herefore, the I-divergence tends to enforce the condition

hat the magnitude of the consistently despeckled image
atches the magnitude of the reference despeckled im-

ge.
To see how to optimize this function, we find the partial

erivative �L /�xi with respect to both the real and imagi-
ary parts of xi (called the compact gradient in Ref. 8),
hich is given by

�L

�xi
=

�L

� Re
xi�

� Re
xi�

�xi
+

�L

� Im
xi�

� Im
xi�

�xi

=
�L

� Re
xi�
− i

�L

� Im
xi�

= 2
A†Ax − A†y�i + 4�xi log� xi

ui
� , �2�

here 
A†Ax−A†y�i refers to the ith element of the vec-
or. Using this derivative we can form a simple relaxation
ethod iteration:
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xi
�n+1� = xi

�n� − 2��
A†Ax�n� − A†y�i + 2�xi
�n�log�xi

�n�

ui
�� .

�3�

ote that to make this a stable iteration, the magnitude
f � must be less than both 1/2� and the reciprocal of the
argest singular value of A squared. While a relaxation al-
orithm is used here, a multiplicative type algorithm25

ould also be derived.
To see what values of � will work well, we examine the

elated optimization problem

L = �y − Ax�2 + ��
i

�xi�2 = �y − Ax�2 + ��x�2, �4�

hich is the least-squares solution to y=Ax under
ikhonov26 regularization constraining the magnitude of
he solution x. This simple regularization is done in prac-
ice to ensure that the vector space of A corresponding to
mall singular values does not give rise to large changes
n x. The solution is the Tikhonov-regularized pseudoin-
erse given by xtik= �A†A+�I�−1A†y. In practice, we have
ound the criterion for the selection of � in this Tikhonov
egularization case and the I-divergence regularization
ase to be similar, i.e., the same value of � tends to pro-
uce good noise performance for both. A useful value of �
an usually be determined by examining the singular
alue spectrum of A and determining where it decreases
harply, setting � equal to the square of the transition sin-
ular value.26 More sophisticated methods assign � based
n the magnitude of the noise relative to the acquired
ignal. These methods show that the same order of
agnitude of � suffices for both regularizers because

xi�2log�xi /ui�2− �xi�2= �xi�2log�xi /ui
	e�2. Since the loga-

ithm tends to be a small number, on the order of unity,
he magnitude of the the regularization terms in both
ethods tends to be similar.

. DESPECKLING AN IMAGE
o address the issue of despeckling images, we restrict
urselves to the case where the matrix A implements a
pace-invariant convolution. In this case, we can describe

in the Fourier domain by a transfer function Ã��� with
finite bandpass, where � is spatial frequency comple-
entary to spatial coordinate r. We can then interpret

he algorithm, construing Ã��� to be the spatial bandpass
f coherent ranging instruments such as OCT. In the
unctional of Eq. (1), the least-squares term fits the data
nly inside the bandwidth of the instrument. In space-
nvariant systems, the least-squares solution does not in-
er any frequencies outside of the bandpass of the instru-
ent. The I-divergence term of Eq. (1), however,

onstrains the magnitudes of the image points, and thus
an infer frequencies outside the bandpass. To simulta-
eously minimize both terms, the I-divergence term
ould affect mainly frequencies outside the bandpass,
hile the image inside the bandpass would be determined
y the least-squares minimization term. In this way, this
especkle technique can be seen as a way of bandwidth
extrapolation” that uses additional bandwidth to mini-
ize the speckle, while keeping the image consistent with
he data. Without additional bandwidth, the algorithm
ould have little freedom to optimize the image and keep

t consistent with the data.
An important question then is the amount of additional

andwidth needed to extrapolate detail. This issue is com-
on to such algorithms, especially maximum-likelihood

lgorithms. While there are technically no priors on the
mage in this case, the practical choice of the sampling
ate of the reconstructed image is itself a prior. If too
uch bandwidth is added, the data will underspecify the

mage, and the image reconstruction commonly will be-
ome overly sharpened and sensitive to noise. We have
ound empirically that the amount of bandwidth required
o allow for speckle reduction is 1.4 to 2 times the original
nstrument bandwidth, but this is a question that will
enefit from further exploration.
The most important question with this method is how

o choose the reference image �u�r��. This is the most sub-
ective aspect of the algorithm, because the algorithm
nly attempts to guarantee that the image x�r� is consis-
ent with the data while keeping �x�r����u�r��, but this
oes not necessarily result in an aesthetically despeckled
mage unless �u�r�� is chosen properly. Because the algo-
ithm will use consistency to keep the detail in the image,
he reference image �u�r�� need not contain all of the de-
ail in the original image. Choosing the reference image to
ave smoothed magnitudes relative to the original image
ends to enforce a similar condition in the despeckled im-
ge.
There are a few properties that a reference image

hould have to produce good results. Of course, the �u�r��
ust be positive. In addition, the values of �u�r�� should

e similar to the magnitudes of a nondespeckled image. In
ractice, this can be achieved by basing the reference
especkled image on the speckled Tikhonov-regularized
nverse solution x̃Tik���= ỹ���Ã���* / ��Ã����2+��. To create a
imple reference image �u�r��, we can convolve the magni-
ude of the Tikhonov-regularized solution with a Gauss-
an kernel:

�u�r��� = ��w2�−N/2

−�

�

��xTik�r����exp�−
�r − r��2

w2 �dNr�.

�5�

he magnitude of the Gaussian is chosen such that the to-
al integral of the Gaussian is 1, with N being the number
f dimensions in r. This is done to ensure that
�u�r���dNr=��xTik�r���dNr when �=1, so that the magni-
ude of the image �u�r�� roughly matches that of �xtik�r��.
he width of the Gaussian kernel w is chosen to be a
mall multiple of the resolution of the instrument, so that
n practice the smoothing window covers several speckles.
he exponent � controls the relative weighting of low and
igh magnitude values. We have chosen �=1 for simplic-

ty and performance here, but others may be chosen, e.g.,
=2 has the benefit of preserving image energy. The ad-
itional constant factor � is intended to compensate for
he additional energy that bandwidth extrapolation will
dd to the image, so that the higher the amount of band-
idth that is to be extrapolated, the higher this number
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ill need to be. Sometimes if this factor is not present, the
-divergence regularization will attempt to constrain the
alues of �x�r�� to be too small to be consistent with the
dditional bandwidth added. Usually 1.0���1.5 pro-
uces good results. Other methods of producing an incon-
istently despeckled image, such as wavelet speckle
enoising27 on �xTik�r��, may result in a reference image
or �u�r�� that provides better results than the simple
aussian blurring performed here.
Figure 1(d) shows how this algorithm performs on the

peckled Lena data. The parameters here were �=0.03,
=1.2, �=1, and w=3 pixels, with the largest singular
alue of the bandpass normalized to 1. As can be seen, the
peckle is substantially reduced. The despeckled image of
ena keeps the detail that is seen in the speckled version
f part (b), which corresponds to �xtik�r��, while incorporat-
ng the smoother magnitude of part (c) which corresponds
o �u�r�� calculated by Eq. (5). The despeckled version is a
ompromise between these two versions.

. EXPERIMENTAL DEMONSTRATION
s a demonstration of this technique on a biological
ample, we imaged a Xenopus laevis tadpole using OCT.
ur OCT system is a time-domain, fiber-optic-based
ichelson interferometer with the source being a mode-

ocked Ti:sapphire laser with 810 nm center wavelength
nd 100-nm bandwidth to achieve approximately 3-	m
xial resolution. A sample power of 10 mW was measured.
he delay mechanism consists of a galvanometer-driven
etroreflector. The laser beam is scanned by
alvanometer-driven mirrors and focused with a 20-mm-
ocal-length near-infrared achromatic lens, achieving a fo-
used spot size of 15 	m and a depth of field of 400 	m.
he scanned area was 2 mm in the transverse direction
y 1.5 mm in the depth direction. For improved imaging
delity, the tadpole was placed in water under a glass cov-
rslip to index-match the medium.

To apply the algorithm, we directly digitized the cross-
orrelation interferogram between the sample and refer-
nce beams as the delay was scanned. One thousand axial
cans of 80,000 samples per scan were acquired. To reduce
he quantity of data, the portion of each axial scan corre-
ponding to delays that contained the tadpole was ex-
racted, and then each axial scan was bandpass filtered
nd decimated using the one-dimensional fast Fourier
ransform (FFT) so there were only 1000 decimated
amples per axial scan. During decimation, the negative
requency components were zeroed to form the complex
nalytic signal28 (CAS) version of the interferogram, be-
ause the original signal was real valued. The bandwidth
f the extracted spectrum was approximately 1.5 times
he original source spectral width to allow for additional
xtrapolated spectrum to be added for despeckling regu-
arization. The power spectral density of the laser source
ncluding the additive noise was estimated by averaging
ogether the magnitude of the Fourier transform of all of
he axial scans. The additive noise floor was subtracted
rom this estimate (with zero as a minimum power spec-
ral density) to produce the spectrum Ã��� used in the al-
orithm. The highest magnitude frequency, corresponding
o the highest singular value, was normalized to 1, there-
ore scaling only the overall magnitude of the recon-
tructed image.

A regularization value of �=0.03 was chosen based on
xamination of the spectrum and the noise floor. The
ikhonov-regularized image was then calculated in the

requency domain using x̃Tik���= ỹ���Ã���* / ��Ã����2+��.
he magnitude of the CAS was used to find the magni-

udes of �xTik�r�� and �x�r�� because it followed the enve-
ope of the interferogram29 and is independent of the cen-
er frequency of the signal (this can be found by assuming
ll of the negative frequency components of a signal are
ero). Based on this, a Gaussian-blurred reference image
u�r�� was formed using Eq. (5) with w=3, �=1, and �
1.2. The two-dimensional discrete convolution was per-

ormed by using the FFT on the entire image.
To implement the despeckling algorithm, the iteration

f Eq. (3) was used, with �=0.75 and x�0�=xTik. The con-
olution in the operation A†y was precalculated using the
D FFT by applying the spectrum Ã���* to each axial scan
atum ỹ���. The convolution in the operation A†Ax�n� was
erformed by applying �Ã����2 to each axial scan x̃���. The
teration was repeated 200 times to ensure convergence of
he norm �y−Ax�2 to less than 0.1% of its initial value for
�0�. For values of � that satisfy the convergence criterion,
he value of �y−Ax�2 monotonically decreased to near
ero without stagnation, suggesting that the iteration
roduces a solution consistent with the data.
Figure 2 shows the result of the experimental despeck-

ing. Part (a) shows the CAS magnitude of the interfero-
ram acquired with OCT. Part (b) shows the Tikhonov-
egularized image �xTik�r��, and part (c) shows the
eference image �u�r��. Part (d) shows the results of the
especkling algorithm. At this scale, one can tell there is a
eduction of speckle from the original data and the
ikhonov regularized version, but the scale is too coarse
o see the difference from the reference image. For this
eason, Fig. 3 and Fig. 4 show two magnified regions in

ig. 2. OCT images of Xenopus laevis tadpole processed in vari-
us ways. The image size is 1000 	m transverse by 600 	m
xial. (a) Original, unprocessed amplitude data. (b) Tikhonov-
egularized least-squares solution for the image. (c) Reference
mage that is the Gaussian blurred amplitude of (b). (d) Despeck-
ed using I-divergence minimization from the reference image.
he upper dotted box in each image corresponds to the magnified
rea in Fig. 3; the lower dotted box in each image corresponds to
he magnified area in Fig. 4.
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his image that correspond, respectively, to the upper and
ower dotted boxes in each image. The four images in
igs. 3 and 4 correspond to the same respective images in
ig. 2. In Fig. 3, one can tell that the despeckled image is
ble to denoise the speckle in the background, but main-
ain the sharp boundaries between cells, unlike in the ref-
rence image. In addition, the cell nuclei are much
harper than in the reference image and look similar to
hose in the Tikhonov-regularized image, but have greatly
educed speckle. Fig. 4 shows another example of the al-
orithm eliminating speckle but preserving features.
any of the pointlike scatterers in the solid regions are

lurred in the reference image, but are recovered in the

ig. 3. Magnified OCT images of a Xenopus laevis tadpole that
orrespond to the upper dotted box in each image of Fig. 2. The
mage size is 240 	m transverse by 150 	m axial. (a) Original,
nprocessed amplitude data. (b) Tikhonov-regularized least-
quares solution for the image. (c) Reference image that is the
aussian blurred amplitude of (b). (d) Despeckled using

-divergence minimization from the reference image. Note how
he image in (d) retains the detail of the least-squares solution of
b) but includes the smoothed amplitude of the reference image of
c).

ig. 4. Magnified OCT images of a Xenopus laevis tadpole that
orrespond to the lower dotted box in each image of Fig. 2. The
mage size is 240 	m transverse by 130 	m axial. (a) Original,
nprocessed amplitude data. (b) Tikhonov-regularized least-
quares solution for the image. (c) Reference image that is the
aussian blurred amplitude of (b). (d) Despeckled using

-divergence minimization from the reference image. The uni-
orm intensity areas of the reference image of (c) are “filled in”
ith the detail of the least-squares solution of (b) to form the
especkled image. Consistency helps to ensure that the despeck-
ed image retains the detail provided by the data.
especkled image. This is maintained while the speckled
ackground is smoothed out. The algorithm is able to
eep the details consistent with the data while finding a
olution with a more uniform background.

We have proposed, derived, and experimentally demon-
trated a novel method of minimizing speckle based on
egularizing the image with an I-divergence criterion. We
elieve this algorithm has the potential to enhance the
bility of a human operator to recognize features. Speckle
eatures that are consistent with a uniform intensity scat-
ering background tend to be removed, leaving the fea-
ures that are more likely to be from dense scattering. In
his way, one perhaps may better differentiate strong
catterers from other points of large magnitude that are
ue to random interference between weak scatterers. Be-
ause of the relatively few parameters to choose (�, �, w,
nd �), it seems unlikely that the despeckled image can
e overspecified from the parameters alone, and features
hat are seen are likely to correspond to real scatterers.
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