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Abstract
Sensitive assays for rapid quantitative analysis of histologic sections, resected tissue specimens, or in situ

tissue are highly desired for early disease diagnosis. Stained histopathology is the gold standard but remains a
subjective practice on processed tissue taking from hours to days. We describe a microscopy technique that
obtains a sensitive and accurate color-coded image from intrinsic molecular markers. Spectrally reconstructed
nonlinear interferometric vibrational imaging can differentiate cancer versus normal tissue sections with greater
than 99% confidence interval in a preclinical rat breast cancer model and define cancer boundaries to�100 mm
with greater than 99% confidence interval, using fresh unstained tissue sections imaged in less than 5 minutes.
By optimizing optical sources and beam delivery, this technique can potentially enable real-time point-of-care
optical molecular imaging and diagnosis. Cancer Res; 70(23); 9562–9. �2010 AACR.

Introduction

Stained histopathology is the gold standard for diagnosing
disease in tissue and relies on experienced pathologists to
assess subtle architectural features of labeled biological struc-
tures at the subcellular, cellular, and tissue levels. By far, it is a
subjective practice done remote from the patient and from
processed/stained tissue that takes over a few hours to days.
Current practice offers about 80% inter- and intraobserver
rates for reaching the same histologic diagnoses (1). There is a
significant need for a more quantitative and rapid histopatho-
logic approach to give pathologists more powerful tools for
disease diagnosis.

Optical imaging has traditionally been used for visualizing
tissue and for making diagnostic decisions. Advances in
molecular imaging have enabled the mapping of specific
receptors, ligands, or target cells and tissues, using a wide
range of exogenous contrast agents (2). In particular, these
have been used to better understand the development, dis-
tribution, and response of cancer (3). Among the emerging
technologies, vibrational microspectroscopy holds substantial
promise for biomedical applications. The intrinsic molecular
vibrational contrast provides a noninvasive characterization

of the tissue with no external staining or labeling. Diseases and
pathologic anomalies are associated with various structural
and biochemical composition variations, which are reflected
in the vibrational spectrum of the tissue. The vibrational
spectrum can, thus, be used as a reliable phenotypic marker
of the tissue pathology.

Near-infrared Raman spectroscopy is well suited to study
various disease pathologies (4–11). However, the extremely
small Raman cross sections of typical biomacromolecular
buiding blocks necessitate long acquisition times. Exposure
times of seconds for pixel-by-pixel spectra lead to image
acquisition times of hours, unrealistic for a real-time diag-
nostic technique. Coherent anti-Stokes Raman scattering
(CARS) microscopy, which is also based on vibrational con-
trast (12–15), relies on coherence enhancement to obviate the
need for high incident powers and permits video rate imaging
compatible with real-time diagnosis (16). However, CARS is
plagued by a nonresonant background, which limits its use as
a quantitative chemical imaging tool. Various methods have
been reported for suppressing the background, but these limit
access to broadband spectral information necessary for accu-
rate diagnosis (6, 8, 17–19).

The speed and quantification problems are solved by non-
linear interferometric vibrational imaging (NIVI) (20–22),
which combines the information content of Raman spectro-
scopy with the high throughput of CARS microscopy. The
nonresonant CARS background is eliminated by coupling
broadband CARS (23–25) to spectral interferometry (26).
We have recently shown (27) that the NIVI spectra are as
accurate as spontaneous Raman for analytic measurements
and can be acquired 200 times faster for comparable signal to
noise (S/N) ratio. The unique combination of quantitative
accuracy and spectral acquisition speed makes NIVI a very
promising tool for rapid tissue characterization and diagnosis.
The key factors to realize this potential are i) spectral response
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linear to the biochemical composition of the tissue, ii) milli-
second spectral acquisition to permit rapid imaging of his-
tologic sections, resected tissue specimens, or in situ tissue,
and iii) the reduction of complex spectral information to an
accurate yet simple visual code, allowing diagnosis at a glance.
Here, we report such a combination of vibrational imaging

and spectral visualization in spectrally reconstructed (SR)
NIVI. First, NIVI captures the molecular vibrational spectrum
with accurate Raman line shape at each pixel of the imaged
tissue specimen (20–22, 27, 28). Next, the resulting hyperspec-
tral cube of image data is reduced by SR into a simple color-
coded tissue image that facilitates decision making. The color
code is an optimized choice that reflects the relevance of
spectral information content to the tissue pathology. We
demonstrate the potential of SR-NIVI for cancer diagnosis
in a well-characterized rat mammary tumor model that
recapitulates human ductal carcinoma in situ (29–32). In less
than 5 minutes of image acquisition and data processing on
fresh tissue sections, we achieved a diagnostic algorithm that
differentiates the pathologic state (tumor or nontumor) of rat
breast tissue to greater than 99% confidence limits.

Materials and Methods

Animal protocol
All animal procedures were conducted under a protocol

approved by the Institutional Animal Care and Use Committee

(IACUC) at the University of Illinois Urbana-Champaign. To
induce mammary tumors, 4.5-week-old female Wistar-Furth
rats (Harlan, Indianapolis, IN) were injected intraperitoneally
with N-nitroso-N-methylurea (NMU; 12.5 mg/mL; Sigma, St.
Louis, MO) at a final concentration of 55 mg/kg on the left side
of the abdominal region. A second injection of NMU was given
a week later on the right side of the abdominal region. At
approximately 12 weeks of age, animals were sacrificed and
the mammary tumors were removed and immediately flash-
frozen for later sectioning, imaging, and histologic staining.
For this study, 6 normal tissue specimens were taken from 2
animals and 13 diseased specimens were taken from 5 tumors
of different size and location from 3 animals.

Tissue nonlinear spectroscopy
A schematic of our microscopy setup is shown in Figure 1.

Our prototype laser systemwas designed for flexibility and ease
of manipulation. A detailed description of the instrumentation
and data processing can be found elsewhere (27, 28). In brief,
our laser system generates broadband pump (810 nm), Stokes
(1,060 nm), and reference (655 nm) pulses (100-femtosecond
pulse width) at 250 kHz that probe the C–H stretch spectral
range of 2,800 to 3,100 cm�1. We weakly focused these beams
(�2 mm lateral, �10 mm axial resolution; full-width at half-
maximum) in the tissue by using a 0.3 numerical aperture
objective. The translational stage was raster scanned at
500 mm/s. The spectra, acquired at 1 kHz, were binned into

Figure 1. SR-NIVI methodology. The pump and Stokes beams interact with the third-order polarizability of the tissue specimen to yield the CARS output,
which is separated from the longer wavelength input pulses and fluorescence by a spectral filter (SP). A 0.3 numerical aperture 60� objective was used.
A 1,200-grove/mm grating disperses the combined CARS/reference beam onto a 2,048-pixel line camera (LC). Extraction of vibrational spectra
involves calculating the inverse Fourier transform (FT) of the interferogram, zeroing of the low frequency and negative components, and then calculating
the FT to yield the spectra. SVD is used to transform the spectral pixels into a single diagnostic component C, which is color mapped by the red–blue
range shown (blue ¼ positive, C ¼ normal; red ¼ negative, C ¼ tumor).
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100 pixels for each scan line (500 mm) in the image. The lateral
resolution is limited by the pixel size of 5-mm. Thus, the NIVI
spectrum within each pixel represented a sampled volume of
approximately 5 � 5 � 10 mm3.

Fresh tissue sections were used for imaging and were
exposed for less than 30 minutes to avoid tissue degradation.
Typical laser powers, verified to be nondisruptive by repetitive
imaging of control tissue sections, used in this study were 10
to 15 mW of pump, 0.5 to 1 mW of Stokes, and 1 to 2 mW of
reference.

Statistical data analysis for spectral reconstruction
We use singular value decomposition (SVD) for spectral

decomposition and dimensionality reduction. This approach
can be applied only to background-free line shapes linearly
proportional to molecular concentration (as in NIVI but not
ordinary CARS). The data matrix for SVD was constructed
from 19 NIVI images (6 normal, 13 tumor). Each of the NIVI
pixel spectra was digitized as 1,000 spectral elements in the
range 2,400 to 3,300 cm�1. The NIVI spectra within each image
were classified on the basis of their signal (integrated intensity
between 2,800 and 3,100 cm�1) to noise (intensity standard
deviation between 2,450 and 2,650 cm�1) ratio. The noisy
(coded white) areas contain little spectral information com-
pared with high signal areas (coded by saturated colors using
the mapping shown in Fig. 1). Two thousand spectra for
each normal image and 1,000 spectra for each tumor image,
with S/N > 5, were randomly extracted and stacked as rows in
a matrix of dimension 25,000 � 1,000 on which SVD was
performed. The first 3 singular value basis (SVB) functions
recovered 99%of the variance in the datamatrix. Similar results
were obtainedby SVDof the 19� 1,000matrix, with the average
spectra (spectral centroids) of the 19 NIVI images as rows.

Logistic regression analysis, which classifies the spectral
projections on SVB2 and SVB3 in terms of the tissue pathol-
ogy, is implemented using MATLAB (R2008a, The Math-
works). The model assumes that the probability Pi that a
particular tissue pixel (or tissue sample when the averaged
image spectrum is considered) falls in a specific category, say
normal, is given by the logistic function as follows:

Pi ¼
exp

�
aþP

k¼2;3 bkCk

�

1þ exp
�
aþP

k¼2;3 bkCk

� (A)

where C2 and C3 are the projections of the spectrum onto
SVB2 and SVB3, respectively. The likelihood of a given set of
pathologies for the pixel set is given by the product of the
individual probabilities, Pi , that the ith pixel corresponds to a
specific pathology. The parameters (a, bk) are obtained using
the maximum likelihood principle by maximizing the like-
lihood of obtaining the correct set of pathologies for the 19
samples (i.e., supervised training). Enforcing a linear bound-
ary, where the probability of the 2 categories (normal and
tumor) is equal, the equation of the decision line is obtained as
follows:

aþ
X

k¼2;3

bkCk ¼ 0 (B)

The orthogonal component to the decision line, which
contains the key diagnostic information, is color coded
accordingly for spectral reconstruction of the NIVI images,
as described in the Results section.

Tumor margin detection
We adapted an edge detection algorithm for noisy images

(33) to automatically detect the tumor margins in SR-NIVI
images. The SR-NIVI image pixel values were given by the
diagnostic linear combination C of C2 and C3. For any chosen
window within the image, the algorithm verifies the presence
of a connected tumor margin by considering the overall pixel
statistics in multiple tests. An overlapping sliding square
window of 20-pixel length (100 � 100 mm2) is large enough
for valid statistics and ensures the connectivity of tumor
margins over the entire image. The test begins with margin
confirmation and then proceeds to quantitative margin detec-
tion as detailed in the following text.

SR-NIVI images (plotting C) were presmoothed by a Gaus-
sian of 30-mm full-width at half-maximum. A prescreening test
was employed to avoid unnecessary computations. If the
average C in the sliding window fell within the 99% confidence
ellipses of normal/tumor pathology, then the window was
deemed monomodal (no margin) and was screened out from
subsequent analysis. Windows that fell outside of the ellipses
were subjected to the statistical tests as detailed in the
following text.

For histogram analysis, a chi-square fit test was used to
compare the binned intensity distribution of the window with
that of normalized monomodal distributions within normal
and tumor pathologies. Tumor margins lead to deviations
from monomodality and thereby to a high chi-square value.

For analysis of spatial variations, the window was further
divided into 10 rectangular subwindows (4� 20 or 20� 4) and
the homogeneity of means and variances of the subwindows
was analyzed using 4 ANOVA-like tests as detailed in Suk and
Hong (33). A tumor margin was a source of inhomogeneity of
means and variances among the subwindows.

Each of these tests yielded a test statistic. Critical values of
the test statistics, adopted from Suk and Hong (33), categorize
the 3 cases of a margin being present/absent/no decision. The
majority vote among the 5 tests was then taken to make the
final decision on the presence of a margin. The redundancy of
the multiple statistical tests makes the algorithm more reli-
able and less sensitive to noise.

Once the presence of a margin was confirmed, the margin
was detected quantitatively as follows. By thresholding the
binned intensity distribution, the window could be divided
into 2 domains. The pixels that fell above the threshold were
set to a high value. The image was then scanned in 2
orthogonal directions to identify the pixels (margin pixels)
adjoining these high valued pixels.

Results

Figure 2 provides a comparison of SR-NIVI reconstructed
tissue maps of normal and diseased rat mammary tissue with
hematoxylin and eosin (H&E)-stained histology images. The
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sections on the left of Figure 2 are realistic examples of the
contrast obtainable in real time from thick, unfixed, unstained
tissue sections. The visual contrast between tumor and normal
tissues is striking, even on easily prepared thick sample sec-
tions. A simple color code (blue¼ normal, red¼ cancer) allows
rapid diagnosis on sample scales of less than 100 mm.
We briefly describe the SR-NIVI experimental methodology

leading to the diagnostic tissue maps and discuss the pro-
spects of SR-NIVI as a sensitive clinical diagnostic tool for real-
time stain- or label-free molecular histopathologic studies.
The detailed theory of NIVI has been described elsewhere (20–
22). Figure 1 provides a summary of the methodology for
cancer diagnosis applications. Our near-infrared laser system
generates the pump, Stokes, and reference pulses that probe
the carbon–hydrogen vibrational stretching region (2,800–

3,100 cm�1) of the sample. The collinear pump and Stokes
beams are focused into the tissue by a microscope objective.
Nonlinear interaction of the pump and Stokes fields with
endogenous vibrational polarizability of the sample generates
a CARS output beam. The shorter wavelength CARS beam is
then spectrally filtered from the pump, Stokes, and back-
ground fluorescence.

Spectral interferometry
The first key step of NIVI is to acquire both the amplitude

and phase of the CARS spectrum, allowing Raman-quality,
background-free spectra to be extracted. To achieve this, the
CARS beam is mixed with a time-delayed reference pulse
(delay �2 picoseconds) covering the same spectral range.
The spectral components of the mixed beams are dispersed
by a grating, and the resulting spectral interferogram is
acquired on a line camera. The principles of Fourier transform
spectral interferometry (26) are used to reconstruct the com-
plex CARS field from the interferogram. Briefly, the calibrated
interferogram is inverse Fourier transformed to get the time
domain response. The CARS reference time delay helps reject
the DC component as well as the negative time response,
forbidden by causality in the time domain. Fourier transfor-
mation of the positive time response yields the complex CARS
spectrum. While the real part, which contains the nonreso-
nant background, is rejected, the imaginary part gives the
vibrational spectrum. Accurate and noise-free vibrational
spectra are extracted pixel by pixel for thick tissue samples
(>100 mm; see the Materials and Methods section). A NIVI
hyperspectral cube is obtained by rapid raster scanning of the
tissue pixel-by-pixel.

A concern for performing NIVI of biological tissue is the
diffuse scattering from the tissue, which makes signal collec-
tion and phase retrieval less efficient than those obtained from
a homogenous specular sample. The use of thick tissue
sections (100–150 mm) as well as thin sections (<30 mm)
served as a rigorous test of our system performance. The
heterodyne sensitivity of NIVI effectively recouped the scat-
tering losses. The normal and tumor tissue spectra from
multiple animals differ in a very reproducible manner for
tumors of different sizes and locations.

Spectral image reconstruction
The second key step is to create a SR-NIVI color-coded

image from the NIVI hyperspectral cube. We used a combina-
tion of dimensionality reduction [SVD (34)] followed by
classification (logistic regression) algorithms to reduce the
NIVI spectrum into a color code that is representative of the
tissue pathology. The resulting SR-NIVI color map of a tumor
margin in Figure 1 shows tumor projections into normal tissue
that taper off to a 100-mm length scale, which can be discerned
at a glance.

For such a visual diagnosis to be feasible from the SR-NIVI
tissue images, the normal and tumor tissue spectra must differ
from one another. The transformation of mammary tissue
from a normal to a diseased state reflects a variety of bio-
chemical and morphologic changes. Earlier Raman studies, on
both animal models and human breast, established that the

Figure 2. Comparison of SR-NIVI images and H&E-stained histology
images. Top row, adipose tissue; middle row, normal mammary tissue;
bottom row, tumor tissue. All images are 300 � 300 mm2. The stained
sections are 10-mm thick. The SR-NIVI images are 63� 63 pixels, acquired
in less than 5 minutes from 30- to 100-mm thick sections. The bottom
2 SR-NIVI images are full spectral reconstructions with color code
(blue >99% probability of normal tissue, red >99% probability of tumor
tissue), so tumor incursions less than 100 mm in size can be differentiated
readily (see also Fig. 4 and the text). The adipose tissue is a spectral
intensity-only NIVI image with color code: white ¼ zero signal,
blue ¼ maximum lipid signal.
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relative abundance of lipid and protein domains is a key
classifier of tissue pathology (6, 8, 17–19). Figure 3A shows
the NIVI spectra (C–H stretch region) of model compounds
that best represent the lipid (methyl oleate) and protein
(collagen type I) domains in animal models (35, 36). These
evident differences of lipid and protein NIVI spectra are our
basis for classifying the tissue pathology. Figure 3B shows
representative NIVI spectra of normal and tumor tissues.
Comparing with Figure 3A, these differences reflect the lipid
(fat) and protein (collagen) contents. The normal mammary
tissue is rich in fat leading to prominent peaks at 2,855 cm�1

(CH2 stretch) and 3,015 cm�1 (¼C–H stretch). Stromal pro-
liferation switches the composition toward collagen, leading
to an absence of these features in tumor spectra. This obser-
vation is also consistent with a morphologic model for human
breast cancer identifying the fat to collagen ratio as a diag-
nostic parameter (19). Where the spectra in Figure 3A and B
differ from past CARS work is in the nearly background-free
Raman line shapes, linear dependence on lipid/protein con-
tent, and a high S/N ratio, as previously quantified (27, 28).

Visual diagnosis by SR-NIVI
To make the spectral data accessible for immediate visual

diagnosis, we used SVD, followed by logistic regression to
turn each NIVI spectrum in our data set into a single color
code.

First, we use SVD to represent the 1,000 frequency data
points of each spectral pixel by just a few SVD basis spectra,
which provide a reduced dimensional framework for the
classification of normal and tumor tissue spectra. Figure 3C
shows the 3 most important basis spectra. Each pixel i
spectrum was reconstructed as follows:

Spectrum ðiÞ ¼ C1ðiÞ SVB1 þ C2ðiÞ SVB2 þ C3ðiÞ SVB3 (C)

The SVB functions SVB2 and SVB3 provided the best space
for differentiation. SVB1 is just an average spectrum with little
information to differentiate normal and tumor tissues; C2 and
C3 contain all the information to differentiate normal from
tumor spectra.

Our full data set represented in Figure 4 consisted of 6
normal and 13 tumor tissue NIVI images from 5 animals, each
of which spans 500 � 500 mm2 (100 � 100 pixels each). We
used only the highest signal pixels in each image to calculate
average C2 and C3 for each image (see the Materials and
Methods section). Each image is represented by a point
(centroid) in Figure 4. Each centroid is shown surrounded
by its four-standard-deviation ellipsoid in Figure 4, calculated
from pixel-to-pixel variations of the spectra.

We then used logistic regression to classify the points as
"normal" or "tumor" in the reduced dimensional coordinates
C2 and C3. The decision line from logistic regression max-
imizes the likelihood for obtaining the known diagnoses for
these samples. It is given as follows:

C3 � 0:184755C2 ¼ 0:001563 (D)

The best single coordinate C is perpendicular to this
decision line and is given by the linear combination as follows:

C ¼ �0:1921C2 þ 0:9813C3 (E)

C is then turned into a red–blue color code according to the
map shown in Figure 3. In addition to a red–blue code,
the images are also coded for the signal intensity at each
pixel: fully saturated corresponds to maximum signal (typi-
cally S/N > 100; see Fig. 3) and white to S/N � 1.

Figure 4 also shows the 99% confidence intervals for normal
and tumor categories, based on the Student's t test on the
sample set. One notices that the SR-NIVI diagnostic sensitivity
is not limited by either the spectral noise within an image
(small ellipsoids) or the heterogeneity among images (large
ellipsoids).

The average spectrum of images containing equal amounts
of normal and tumor tissues (black squares in Fig. 4) can lie
near the decision line, but, in fact, when the color-coded SR-
NIVI images are examined visually, the normal and tumor
areas are easily discerned down to less than 100 mm. Each area
by itself lies within the 99% confidence intervals. SR-NIVI,
thus, spatially resolves normal and tumor tissues to less than
100 mm by color-coded spectral reconstruction that can be
carried out in real time (Fig. 2).

Margin detection
It would be useful if such margins could be detected

automatically. Figure 5 illustrates software detection of
tumor margins at the 100-mm scale. Margins were detected
by the algorithm of Suk and Hong (33) in less than a few
seconds (on a Macbook Pro). The tumor margins are at the
99% confidence interval. The images for margin detection
again show the optimum linear combination C of the spec-
tral coefficients C2 and C3 from Figure 4 and eq. (E). A clean
margin (<1–2 pixel wide) demarcating the tumor and normal
domains can be obtained by placing the threshold at C ¼ 0
with the algorithm. Instead of a sharp threshold, we chose as
a "margin zone" 2 narrow bands tangent to the edges of the

A B C

Figure 3. Comparison of NIVI spectra. A, for reference, methyl oleate
(a lipid) versus collagen (a protein). B, normal versus tumor. C, the first
3 basis spectra obtained by SVD of the normal and tumor spectral images.
SVB1 is an average spectrum and contains little information to differentiate
normal and tumor tissues. SVB2 and SVB3 highlight the most important
differences between normal and tumor spectra resulting from relative
changes in lipid versus protein composition as well as the degree of
lipid saturation (small vibrational peak above 3,000 cm�1).
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99% confidence ellipses near the decision line. We thus
obtained the tumor margin as a band with a finite width
as shown in Figure 5. Pixels within the band cannot be
assigned to normal or tumor tissue with greater than 99%
confidence interval. The residual width of the margin and
small islands of segmented regions are a result either of
noise or of the spatial heterogeneity associated with tumor
incursions into normal tissue.

Discussion

We recently demonstrated that nonlinear interferometric
vibrational spectroscopy (the spectroscopic analogue of NIVI)
yields Raman-quality spectra with S/N > 500, no background,
and linear sample concentration dependence (27). We were
able to discern not just the approximate lipid content of a
sample, as is done with CARS to quantify the unsaturation
content in lipids with the same accuracy as spontaneous
Raman spectroscopy, but also 200 times faster. Linearity
and accuracy are the 2 key features that allow us to apply
a linear spectral decomposition technique (SVD) to lipid and
protein spectra in the C–H stretching region. Fast throughput
extends the capabilities of NIVI as a diagnostic tool. The
spectral range is limited by the finite bandwidth of our laser
system. This however is not a fundamental limitation and can
be expanded further with current ultrabroadband sources.
Despite the reduced spectral range, the coherent sensitivity of
NIVI leads to an increased S/N ratio that makes subtle spectral
features discernable. This enables the extraction of the relative
composition of lipids and proteins (using a signal that is linear
in the concentration of the species).

As with many other cancers, breast cancer prognosis and
survival depend critically on the cancer stage at diagnosis.
The survival rate of less than 25% for late-stage diagnosis of

Figure 4. Tissue classification.
Following SVD analysis, 19
normal and tumor samples from 5
animals (see the Materials and
Methods section) are classified as
centroids in a 2-dimensional plot of
C2 and C3, which are the SVD
coefficients of spectral basis
functions SVB2 and SVB3 (see Fig.
3), required to reconstruct average
spectra for each image according
to eq. (C). Logistic regression then
yields the central black region,
dividing normal (top) and tumor
(bottom) spectral centroids with
the highest confidence interval.
Centroids coded with the same
color are from the same tumor. The
small ellipses around individual
tissuecentroids are four-standard-
deviations of the mean for that
tissue sample. The large ellipses
are 99% confidence intervals
(Student's t distribution corrected)
for the separate normal and tumor
tissue sets. The 2 black squares
correspond to tumor margins
evident as the red–blue
boundaries in the corresponding
SR-NIVI images.

Figure 5. Automated tumor margin identification (black curves) overlaid on
2 smoothed representative SR-NIVI images. The 2 boundaries of the
margin demarcate normal and tumor domains at the greater than 99%
confidence interval. Tumor margins are readily resolved to 100 mm.
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metastatic breast cancer improves to better than 90% for
diagnosis of an early-stage localized tumor (37). The high
cost per malignancy detected, prolonged times to diagnosis,
nonrepresentative sampling, and subjectivity are notable
limitations of mammographic screening, tissue biopsy,
and current diagnostic routines. There is an evident need
for more reliable, rapid, and non- or minimally-invasive
diagnostic techniques. Using a preclinical model for human
breast cancer, we showed that SR-NIVI has the potential to
be a real-time quantitative and objective complement to
standard histology and immunohistochemistry.

The proof of principle presented in this article is amenable
to a number of improvements. With recent advances in laser
source technologies, the prototype instrument we describe
can be assembled from commercial components into a cart-
sized platform. Optical coherence tomography (38), which has
a similar overhead of lasers and optics, has already been
successfully tested clinically on a cart platform for the intrao-
perative detection of positive breast tumor margins (39). In
that study, structural cell and tissue features based on optical
scattering were used as diagnostic biomarkers rather than the
molecular spectral signatures presented in this study.

With rapid advances in fiber lasers designed to pump
nonlinear photonic crystal fibers (40, 41), key steps have been
taken toward translating the SR-NIVI technique for use in a
clinical environment. Rapid scanning galvanometers and high
numerical aperture objectives can simultaneously increase
image dimension to 1 � 1 mm2 with less than 500-nm
diffraction-limited resolution while maintaining the same
high throughput. Such a roughly 50-fold improvement of
spatial dynamic range might allow pinpointing of individual
cancer cells. The present CH-only approach can reliably
distinguish normal from cancer tissues but cannot probably
differentiate similar pathologies from one another. Therefore,
tuning into the fingerprint spectral region will permit tapping

the DNA vibrational markers, which could help classify subtle
differences between pathologies. Current advances in optical
fiber delivery have demonstrated nonlinear microscopic
endoscopy using CARS, second harmonic generation, and
two-photon fluorescence (42), paving the way for endoscopic
SR-NIVI, or using fiber-based optical biopsy needles for
in vivo diagnosis in real time (43). This would obviate the
need for tissue sections and slides, although the tissues
samples reported here already were easily obtained for
unstained thick sections. One can even foresee SR-NIVI pro-
viding guidance in intraoperative surgical procedures such as
lumpectomies in which the precise delineation of tumor
margins is critical (39) and in which SR-NIVI could provide
endogenous molecular differentiation to complement the
real-time optical coherence tomography imaging of endogen-
ous scattering structures.
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