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Abstract: Sonification is the process of representing data as non-speech 

audio signals. In this manuscript, we describe the auditory presentation of 

OCT data and images. OCT acquisition rates frequently exceed our ability 

to visually analyze image-based data, and multi-sensory input may therefore 

facilitate rapid interpretation. This conversion will be especially valuable in 

time-sensitive surgical or diagnostic procedures. In these scenarios, auditory 

feedback can complement visual data without requiring the surgeon to 

constantly monitor the screen, or provide additional feedback in non-

imaging procedures such as guided needle biopsies which use only axial-

scan data. In this paper we present techniques to translate OCT data and 

images into sound based on the spatial and spatial frequency properties of 

the OCT data. Results obtained from parameter-mapped sonification of 

human adipose and tumor tissues are presented, indicating that audio 

feedback of OCT data may be useful for the interpretation of OCT images. 
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1. Introduction 

Optical Coherence Tomography (OCT) can intraoperatively provide valuable diagnostic 

feedback about microscopic tissue morphology [1–3]. Depth-resolved backscattered light 

from tissues or biological specimens can be obtained from a single A-scan in OCT. The tissue 

structure, morphology, and beam attenuation are encoded in the intensities of the back-

scattered light. Conventionally, these A-scans are mapped to an image in synchronization with 

the transversely scanned position of the beam, where a single A-scan forms one column of an 

OCT image. To exploit the high-resolution, non-invasive and real-time subsurface imaging 

capabilities of OCT in the operating room environment, the technique should not only be 

simple to use and flexible under different operating conditions, but also present data that is 

easily interpretable. Often it is desirable to image over large fields-of-view in real-time such 

as for screening or surgical guidance. Given the high-resolution capabilities of OCT, this 

necessitates an extremely high data acquisition rate which provides a challenge for real-time 

interpretation of OCT data [4]. 

An effective method to enhance the interpretation of diagnostic measurements may be the 

rendering of the data as audio signals. The process of converting data into non-speech audio 

signals or waveforms for the purpose of conveying information about the data is known as 

sonification. Sonification is a relatively new field that has drawn considerable interest in 

recent years due to the challenges of visualizing and interpreting the increasingly large 

amounts of scientific data being generated by the availability of inexpensive hardware 
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resources and computational power. The complementary nature of sound data, the superior 

temporal resolution of the human auditory system, and the ability to monitor multiple parallel 

audio streams have enabled sonification to be used as warning alarms, for process monitoring, 

and data exploration [5]. In general, auditory information has been utilized in a number of 

different instruments or devices, such as in Geiger counters, electrophysiological recordings, 

warning alarms, human-computer interfaces, and representation of multi-dimensional and 

multi-modal data [6,7]. In biomedical applications, sonification has been used for providing 

audio feedback for manual positioning of surgical instruments [8], surgical navigational 

systems, analysis of EEG signals from the brain [9], heart rate variability [10] and 

interpretation of image data [11] and texture [12]. Audio output has also been utilized in 

Doppler ultrasound [13] and Doppler OCT [14]. 

In some situations, auditory representation of OCT data may be more beneficial than the 

conventional visual display. This is especially true in the highly demanding operating room 

environment where the surgeon has to simultaneously keep track of a number of parameters 

while attending to the surgical field and following the surgical plan. The addition of an audio 

channel can free the visual sense for other tasks. It is known that human auditory perception is 

very sensitive to slight changes in the temporal characteristics of sound and can detect even 

small changes in the frequency of a signal [15]. These properties can be exploited to provide a 

faster method of tissue classification and identification of morphological landmarks in time-

sensitive image-guided surgical procedures such as screening, tumor resection, or needle 

biopsy, and may complement the visual representation of OCT data. Sonification may also 

find applications where non-image data is collected such as optical needle biopsy procedures 

which use forward sensing devices to collect and analyze A-scan data [16,17]. 

Various methods of auditory representation of data have been reported in literature [18]. 

The simplest form is audification which is an audible playback of the data samples where 

each data value directly corresponds to a sound pressure value. Re-sampling, shifts in 

frequencies, choice of an appropriate time compression, and a level scaling factor may be 

required prior to audible playback of the sound [19]. Earcons [20] and auditory icons [21] 

have also been used, which are based on associating a unique sound to a specific message (or 

signal). Although simple, these methods only work on data than can be categorized. Another 

approach is model-based sonification where the data parameters control a parameterized 

sound model to generate non-speech audio [18]. The most widely used techniques are based 

on mapping data parameters onto sound attributes such as pitch, loudness, tempo, and 

duration. However, these interfaces are more difficult to design and interpretation may require 

extensive user training. 

In this paper, we have applied sonification to OCT data and images of human breast 

adipose and tumor tissue with the aim of distinguishing these tissue types based on the 

rendered audio signals. To the best of our knowledge, this is the first work describing 

sonification for OCT data. In section 2, we describe the psycho-acoustic properties and 

sonification principles that would form the basis of any sonification system design. Section 3 

shows results of sonification of OCT data. The limitations and future work are discussed in 

section 4 followed by the conclusions in section 5. 

2. Methodology 

A well designed sonification system must be fast. The sound must make intuitive sense, and 

the listener must be able to effectively extract important diagnostic features from the OCT 

data. A simple method could be the use of earcons or auditory icons. This requires the use of 

classification algorithms to first distinguish between tissue types. Based on the classification, 

each tissue type can then be assigned a unique sound. Real-time image interpretation is thus 

performed by the classification algorithm, which is subject to its own sensitivity and 

specificity limitations [22]. Another method could be the audification of spatial-domain 

intensity data which has the potential advantage of high speed due to low processing 
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requirements, but may be noisy due to the presence of speckle. In this paper we have used the 

method of parameter-mapped sonification which is based on extracting features from the data 

and mapping them into sound attributes. In the absence of a reliable classification scheme, this 

method utilizes the sensitivity of the human auditory sensory system as a tissue classification 

mechanism, and hence does not require prior classification of the data. 

The method of parameter-mapped sonification is illustrated in Fig. 1. Characteristics of A-

scans or image parameters that can be used to classify tissue types are chosen, and the 

extracted parameters are then mapped to a set of sound attributes for sonification. The 

mapping is done while considering the psycho-acoustic response of the human auditory 

system to different physical sound attributes. Below we discuss the key parameters used for 

the classification of breast tissues, the psycho-acoustic principles relevant to the synthesis of 

sounds, and the chosen method of sonification. 

Calculate parameters 

from data 

Data acquisition

SoundMap parameters to 

sound attributes

Sonification

Classification

Human auditory 
perception

OCT dataA-scan data

Image frames

 

Fig. 1. Parameter-mapped sonification for OCT. 

2.1 Parameter extraction from OCT data 

A range of different parameters have been reported for tissue classification in OCT. These 

parameters depend on the nature of the data and may typically be the slope, intensity 

variations, spatial frequencies, periodicity of A-scans, and textural features of OCT images 

[17, 22–24]. The extracted parameters must have good discriminating power and must be 

computationally simple in order to meet the real-time requirements of a sonification system. 

Previous work on OCT-based classification of breast tissue has found that the slope and 

Fourier spectrum possess good discriminating power [17, 22]. Therefore in our sonification, 

we have used these parameters to distinguish between adipose and tumor tissue. 

OCT images of human breast adipose and tumor tissue, and the corresponding A-scans, 

are shown in Fig. 2. Adipose tissue has a more regular scattering structure and lower 

attenuation compared to tumor tissue, which is more highly scattering and exhibits greater 

signal attenuation. The different attenuation causes a difference in the slopes of the 

(logarithmically mapped) A-scans with tumor having a higher slope compared to adipose 

tissue [17]. The slopes were calculated by selecting values in the A-scans that were above a 

certain threshold (~30% of the maximum value) and then fitting a linear function to these 

values as shown in Figs. 2(c) and 2(d). 

Previous work has shown that the unique Fourier signatures from tissue types can be used 

for classification [22]. The Fourier transforms of A-scans are shown in Fig. 2(e). Adipose, due 

to its regular structure, has more energy concentrated in the low frequency regions while 

tumor has more high frequency content. The Fourier transform was normalized to a unit area 

and truncated to half of the maximum spatial frequency (reciprocal of the system axial 

resolution) as the latter half mostly consisted of noise and did not show any differences 

between the tissue types. The truncated Fourier space was divided into three non-overlapping 

regions representing the low (from 0 to 6% of the truncated spatial frequencies), middle (22-

44%), and high frequencies (66-100%) as shown in Fig. 2(e). The squares of the areas under 

the curve corresponding to each of these regions (labeled as region I, II and III respectively) 

were selected as the three spectral parameters in our sonification. 
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Fig. 2. OCT image and data analysis from human breast (a) adipose tissue and (b) tumor tissue. 

(c) A-scan corresponding to the highlighted line from the adipose tissue. (d) A-scan 

corresponding to the highlighted line from the tumor tissue. (e) Normalized Fourier transforms 

(average of 150 A-scans). Roman numerals indicate the regions corresponding to the three 

spectral parameters. Scale bars represent 200 µm. The superimposed lines in (c) and (d) 

represent the 1st order fit to the A-scan for calculation of slope. 

2.2 Parameter mapping to sound attributes 

The psycho-acoustic properties of human hearing have been widely studied and are well 

understood. Psychological perception of sound can be described in terms of loudness, pitch, 

timbre, and time. These sound attributes in turn depend on the physical properties of intensity, 

frequency, waveform, and duration of the sound waves. The relationship between the physical 

properties and the psycho-acoustic perception of sound must be considered for sonification 

design. Moreover, the interactions amongst the sound attributes must also be taken into 

account, especially when more than one of these variables is to be manipulated 

simultaneously in the same sonification. 

2.2.1Psycho-acoustic principles 

The psycho-acoustic concepts of critical band and just noticeable difference (jnd) have the 

strongest implication for a good sonification system design. Critical band is the frequency-

dependent bandwidth at which sound intensities interact with each other. It can be 

approximated by the relationship 2 0.6925 75(1 1.4 )f f∆ = + + where f is the center frequency in 

kHz [25]. The concept of just noticeable difference (jnd) characterizes the ability to 

differentiate between two nearly equal stimuli. In general, people are much better at making 

relative judgments of the sound attributes than at making an absolute judgment. 

Loudness L is related to the sound intensity I by the relationship 0.3L kI=  where k is a 

constant which depends upon the units used and individual perception. However, the same 

intensity may produce a different sensation of loudness depending on the frequency of the 

waves, as described by the Fletcher-Munson curves [26]. Based on these curves it can be seen 

that variation in perceived loudness may be minimized by using a frequency range of 

approximately 800-2000 Hz. Moreover, these curves show that the sensitivity of the human 

ear to loudness is greatest between 3000 and 4000 Hz. The jnd in intensity between two 

sounds is about 1 dB (12% change in intensity). However, in real life scenarios, a change of 3 

dB (50% change in intensity) is easily detectable by humans [25]. Loudness is also dependent 

on duration. With an increasing duration of a sound, the perception of loudness stabilizes after 

about 100 ms. Using loudness as a sound attribute for sonification is challenging as the human 

auditory system adjusts to the loudness level of sound. Loudness is also affected by the 

distance from the source, and the loudness level of a sound may be masked by other sounds in 

the environment [25,27]. 
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Perception of pitch is primarily dependent upon the frequency of the sound wave. For a 

harmonic spectrum pitch perception depends on the fundamental frequency while for an 

inharmonic spectrum it is a function of the amplitude-weighted mean of the spectral 

components. The audible range for most humans is from 20 to 15000 Hz. The smallest degree 

of pitch discrimination between two pitches depends on their intensity and frequency range. 

Experiments have shown that the human ear is more sensitive to frequency changes at the 

mid-frequency region between 1 and 4 kHz. The jnd for pitch is typically about 1/30th of the 

critical bandwidth at a particular frequency. The perception of pitch is also dependent on the 

duration of the sound. A short duration sound will be heard as a click rather than a pure tone. 

On average, sound should have duration of at least 13 ms to be ascribed as a definite pitch. 

Although the human ear has sensitivity up to around 20 kHz, sensitivity of the human ear 

drops significantly at higher frequencies. Thus, it is reasonable to use frequencies in the 

middle of the audible range, i.e. 100-5000 Hz, so that the sound is audible in most 

circumstances. 

Those characteristics of sound which enable the human auditory system to distinguish 

between sounds of similar pitch and loudness are, by definition timbre. Timbre perception 

depends upon the harmonic content, temporal evolution, and the vibrato and tremolo 

properties of the sound waves. Timbre may be useful to represent multiple data streams 

simultaneously. 

2.2.2 Sound synthesis 

A number of sound synthesis methods such as additive synthesis, subtractive synthesis, 

frequency modulation (FM) synthesis, and granular synthesis can be used to generate sound 

[28]. For any given application, there is no preferred technique, as each has its own merits and 

demerits. In our sonification, FM synthesis was used, which has the advantage of generating a 

rich variety of sounds with the control of only a few parameters. The FM signal is described 

as cos(2 sin 2 )c mA f t M f tπ π+ where fc is the carrier frequency, fm is the modulating 

frequency, A is the amplitude and M is the modulating index. In this technique, the carrier 

wave frequency fc is modulated by the modulating wave frequency fm. The FM modulated 

signal consists of a complex tone with frequency components separated from one another by 

the modulating frequency as shown in Fig. 3(a). However, if there are reflected side 

frequencies due to sidebands falling into the negative frequency domain of the spectrum, then 

the ratio c mf f would determine the position of the components in the spectrum [29]. The 

amplitude of the components can be determined by Bessel functions, which would be a 

function of the modulating index M. For higher values of M, more spectral energy will be 

dispersed among the frequency components. 

2.2.3 Parameter mapping 

The parameters extracted from the OCT data can be mapped to any or all of the attributes. We 

selected as the significant parameters the slope of the A-scans and the spectral parameters 

corresponding to the low (I), middle (II) and high frequency (III) regions of the Fourier 

spectrum of the data as shown in Fig. 2(e). These parameters were mapped after appropriate 

scaling into the carrier frequency fc, modulation index M, amplitude A, and modulating 

frequency fm, respectively, where fm = [(Energy in region III) x (fc )]. 

Interpretation of the mapping is shown in Fig. 3(b). The slope of the A-scan is mapped to 

the pitch. The high frequency content determines the separation of the spectral components 

relative to the carrier frequency, while the low frequency content determines the spectral 

energy within these spectral components. The final synthesized sound is strongly influenced 

by the choice of carrier frequency. In our data sets, slope was the variable with the greatest 

discriminating power and hence was mapped into the carrier frequency. As a result of these 

mappings, the sonification of signals from adipose and tumor tissues had non-overlapping 
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audio spectra and the perceived sound of tumor had a higher pitch. This makes intuitive sense 

as the Fourier spectrum of tumor tissue has greater energy at higher frequencies compared to 

that of adipose tissue. 
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fcfc-fm fc+fm
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Fig. 3. Frequency Modulation (FM) synthesis. (a) Spectral components in FM synthesis. (b) 

Mapping of parameters for sonification via FM synthesis. 

2.2.4 Sound rendering modes 

The sonification of OCT data has been organized into two modes: A-scan sonification and 

image-mode sonification. In the A-scan sonification mode each individual A-scan (or a group 

of A-scans for faster playback) is sonified. Although this mode has high resolution, it has the 

limitation of being non-real-time as the typical A-scan acquisition rate (~0.1 ms for an A-scan 

rate of 10 kHz) will be much higher than the playback time (~100 ms) of the sound. A 

playback time of 100 ms was chosen based on the tone perception of the human ear. 

Image-mode sonification may be used for real-time sonification of the data. In the image-

mode, each frame is played for the duration of the playback time of the sound, and is therefore 

much faster than the A-scan sonification mode. In this mode, each frame is divided into a 

certain number of blocks and for each block the average value of the parameters are 

calculated and mapped into sound as shown in Fig. 4. The final synthesized sound consists of 

the summation of the waveforms from each individual block. The sonification (parameter 

calculation + sound synthesis) of each block is independent of all the other blocks. Hence, 

these calculations can be done in parallel for each block, which can significantly decrease the 

computational time for each frame. However, this mode will have a lower resolution than the 

A-scan sonification mode (where the resolution depends on the number of divisions of each 

frame). 

Sound was synthesized using Matlab and played at a sample rate of 10 kHz. The final 

synthesized sound from each of these modes contained a clicking sound due to appending of 

the sound waveforms (~100 ms). These artifacts were minimized by multiplying each of the 

100 ms sound waveforms with an envelope having linearly rising and decaying slopes at the 

edges. 
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Fig. 4. Block diagram for image-mode sonification. 

3. Results 

The human tissue used in this study was acquired and handled under protocols approved by 

the Institutional Review Boards at the University of Illinois at Urbana-Champaign and Carle 

Foundation Hospital (Urbana, IL). The results obtained by sonification in the A-scan mode 

and the image-mode are shown below. 

3.1 A-scan mode 

In the A-scan mode the acquired A-scans are grouped together in bins, each 10 A-scans wide. 

The data parameters are calculated for each A-scan and averaged together for each bin. Each 

bin is played for a duration of 100 ms based on the tone perception of the human auditory 

system. 

The mapping of the A-scans parameters obtained from human breast adipose and tumor 

tissues are shown in Table 1. These results show that adipose tissue has a sound of lower pitch 

with the spectral components more closely spaced to each other, and energy more widely 

dispersed among them. In contrast, tumor tissue has a sound of a higher pitch with relatively 

large spacing between the spectral components, and with most of the energy concentrated 

within the carrier frequency (due to the low modulation index M). 

Table 1. A-scan parameter mapping for FM synthesis. 

FM synthesis parameters A-scan parameters Adipose Tumor 

Carrier frequency         (fc) Slope Low High 

Modulation index         (M) Low frequency content          (I) High Low 

Amplitude                     (A) Middle frequency content     (II) Moderate Moderate 

Modulation frequency (fm) High frequency content        (III) Low High 

Note: Roman numerals refer to frequency bands shown in Fig. 2. 

Figure 5 (Media 1 – both video and audio) shows the sonification of a two-dimensional 

OCT image containing a tumor margin (boundary between normal adipose tissue and tumor). 

The data set in Fig. 5(a) was acquired using a spectral-domain OCT system with 800 nm 

center wavelength and 70 nm bandwidth, providing an axial resolution of 4 µm [22]. The 

audio spectrogram of the output sound is shown in Fig. 5(b). The audio spectrogram 

(computed using the short time Fourier transform) displays the frequency components of the 
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sound at each time instant and is helpful in visualizing the sonification results. Results 

demonstrate that tumor and adipose tissues have distinct sounds. 
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Fig. 5. Sonification using the A-scan mode (Media 1 – both video and audio). (a) Human breast 

tissue containing a tumor margin with tumor (left side of the image) and adipose (right side of 

the image). (b) Audio spectrogram of the output sound, where each column in the spectrogram 

corresponds to 10 A-scans in the OCT image in (a). 

3.2 Image-mode 

The results from image-mode sonification are shown in Fig. 6 (Media 2 (13 MB) – both video 

and audio). The sonification is applied to a three-dimensional volumetric data set of 

dimensions 1.7 mm x 3 mm x 5 mm containing both adipose and tumor tissues. This data set 

was acquired intraoperatively using a 1310 nm spectral-domain OCT system with 11 µm axial 

and 20 µm transverse resolution. Each frame was divided into 10 blocks and sonification was 

performed based on the scheme shown in Fig. 4. A portion of the data set (after 30 seconds) is 

played backwards to highlight the distinction in sonification of adipose and tumor tissues, and 

to mimic real-time intraoperative imaging back and forth across a tumor margin. The audio 

spectrogram in Fig. 6(b) demonstrates that the sound of tumor has higher frequency content 

than the sound of adipose tissue. 

The first 190 images or frames contain adipose tissue, except for the 37th frame, which 

consists of tumor. This particular frame was artificially inserted between frames of adipose 

tissue to highlight the sensitivity of our sonification technique and the human ear at 

identifying subtle changes in the image data. If only image data is displayed, then the rapid 

transition of adipose-tumor-adipose may be missed if the user does not pay close attention to 

the visual display at that particular instant in time. However, the addition of another sensory 

information channel in the form of audio feedback in conjunction with the visual display may 

make this abrupt transition more easily recognized during high-speed image and data 

acquisition. 
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Fig. 6. Sonification using the image mode (Media 2 (13 MB) – both video and audio), (Media 3 

(4 MB) – low display resolution video and audio). (a) A single frame from a three-dimensional 

volumetric data set, which consists of 450 frames played at 10 frames per second. (b) Audio 

spectrogram of the output sound where each frame in the three-dimensional volume now 

corresponds to a playback time of 100 ms, and the audio spectrum from each frame is 

represented by a single column in this spectrogram. 

4. Discussion 

Auditory representation of OCT images based on parameter-mapped sonification has been 

demonstrated in this study. The current method of sonification of OCT data may potentially 

be improved and be made aesthetically more pleasing by using more complex sound attributes 

such as vibrato and tremolo of the tones and by using dedicated hardware for sound 

manipulation and generation. Additional sound dimensionality such as stereo, where different 

parameters could be mapped to the left and right ear, may also be used. Moreover, depending 

on the tissue types and data sets employed, additional data parameters based on the 

histograms, A-scan peaks, standard deviation (for A-scan data), or textural parameters (for 

image-data) can be incorporated for sonification. 

Sonification will be especially useful if done in conjunction with the acquisition of A-

scans in real-time. For real-time performance, the calculation of the parameters and the 

subsequent mapping into sound attributes must be done faster than the data acquisition rate. A 

parallel implementation of the scheme presented in Fig. 4 can be used for real-time 

performance utilizing either commercially available sound synthesizers or parallel 

programming techniques [30]. For real-time sonification, the data must either be 

downsampled or averaged. This will not likely present a problem, as auditory feedback is 

intended to be a fast and efficient screening method for the identification of important data 

features that can alert the user to suspicious areas of tissue. For more detailed recognition and 

visualization, the user may look at the high-resolution image on the screen. The speed of real-

time sonification can be increased by decreasing the playback time of sound (100 ms was 

used in this sonification). However, as mentioned previously, this will decrease the resolution 

of the sonification, producing audible clicks rather than sound tones. 

One of the main challenges in sonification is finding the most efficient mapping of data 

parameters into sound attributes. Currently, there is no single optimized approach as the 

sonification technique will depend to a great extent on the type and form of the data, 

individual perception and preference of sound, and the computational requirements. With this 
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in mind, the current sonification scheme may not be optimal for every OCT data set. Data 

from different tissue types may have different distinguishing parameters and a sonification 

system would need experimentation with different mappings, synthesis techniques, and 

parameter tuning to customize it to the unique properties of the data sets employed. A 

versatile sonification system would likely have a calibration mode, where multiple parameters 

could be adjusted in real-time to optimize the sounds and sensitivity for identifying particular 

tissues of interest. 

Sonification of data may also have certain fundamental drawbacks and limitations. Audio 

perception will vary between individual users and there could be potential interference from 

other sound sources such as speech and the environment. Another limiting factor is that sound 

attributes are not completely independent of each other. For example, loudness has frequency 

dependence while pitch perception also depends on the intensity levels, which may cause 

misinterpretation of mapped data features. The sound attributes must therefore be carefully 

chosen to compensate for these effects. 

Future work will incorporate more tissue data from different and similar tissue types. The 

performance of human subjects at distinguishing between different tissue types based on 

audio feedback will also be evaluated. Experimentation with different mappings, different 

OCT data sets, and different variations in the scaling and polarity on the audio rendering is 

likely to further improve performance. Sonification of A-scans with multiple cell and tissue 

types present within a single A-scan will also be investigated. 

5. Conclusion 

In this paper we have demonstrated a new method to represent OCT data and images in the 

form of audio signals. This representation may complement the traditional visual display, and 

enable the user to utilize multi-sensory perception capabilities for the interpretation of OCT 

data under real-time imaging conditions, such as during surgical or diagnostic procedures. In 

the case of cancer surgery represented here, an estimate of the tumor location may first be 

gauged using audio feedback, with subsequent analysis of the image data from the suspect 

region made using tissue classification algorithms. Sonification is expected to be used as a 

complementary extension rather than a complete replacement of the traditional visual display. 

This multi-sensory approach has the potential to improve the real-time differentiation and 

interpretation of data during high-speed OCT imaging. 
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