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Abstract: As imaging systems become more advanced and acquire data at 
faster rates, increasingly dynamic samples can be imaged without concern 
of motion artifacts. For optical interferometric techniques such as optical 
coherence tomography, it often follows that initially, only amplitude-based 
data are utilized due to unstable or unreliable phase measurements. As 
systems progress, stable phase maps can also be acquired, enabling more 
advanced, phase-dependent post-processing techniques. Here we report an 
investigation of the stability requirements for a class of phase-dependent 
post-processing techniques – numerical defocus and aberration correction 
with further extensions to techniques such as Doppler, phase-variance, and 
optical coherence elastography. Mathematical analyses and numerical 
simulations over a variety of instabilities are supported by experimental 
investigations. 

©2014 Optical Society of America 

OCIS codes: (100.5090) Phase-only filters; (110.3010) Image reconstruction techniques; 
(110.3175) Interferometric imaging; (110.3200) Inverse scattering; (110.4280) Noise in imaging 
systems; (110.4500) Optical coherence tomography. 
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1. Introduction 

High-resolution volumetric tomography in biological tissue is of great importance to both 
basic science and medicine. Reaching high-resolutions and approaching the cellular level in 
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volumetric imaging, though, often incurs fundamental barriers imposed by the divergent 
nature of light. The difficulty of confining light to a small area in tissue, and the complexity 
of designing aberration-free optical systems, means that truly diffraction-limited volumetric 
tomography is rarely achieved. 

Computed imaging has a long history of enhancing the overall utility of different imaging 
modalities and has the potential to solve these challenges. Techniques such as x-ray computed 
tomography [1, 2] and synthetic aperture radar (SAR) [3] enhance their respective underlying 
imaging modalities through a better understanding the basic physics involved. More recently, 
interferometric detection of optical frequencies has enabled high-resolution imaging of 
biological samples through holography and optical coherence tomography (OCT) [4–6]. 
These techniques, while useful in their own right, have also benefitted from the introduction 
of various computed optical interferometric techniques [7–10]. The ability for these 
techniques to exactly correct defocus and optical aberrations means that near diffraction-
limited imaging over larger depth ranges and with simpler optical designs is possible. 

Computationally correcting defocus and aberrations brings with it some tradeoffs. 
Possibly the most severe tradeoff, and the one focused on in this article, is the increased need 
of stability. As a general rule, computed optical interferometric techniques rely on the 
retrieved phase of collected light. Utilizing the phase is preferable, as it has the ability to 
exactly reconstruct images convolved with phase-only masks. The sensitivity of the retrieved 
phase to motion, though, is typically orders of magnitude greater than the retrieved amplitude 
as is traditionally used in blind deconvolution [11, 12] or other techniques for OCT [13]. The 
impact of motion has until recently [14] limited computed optical interferometric techniques 
to fresh or fixed ex vivo biological samples, greatly reducing the potential for clinical 
applications. Reconstructions in SAR also suffer from undesired motion where position 
feedback can be greatly beneficial [15]. 

The side effects of motion in OCT, such as image distortion and fringe washout [16], have 
previously been investigated. This article investigates the additional impact of sample motion 
or system fluctuations on data reconstructions in computed optical interferometric imaging 
techniques. Specifically we investigate two such techniques. The first is interferometric 
synthetic aperture microscopy (ISAM) which solves an inverse problem for OCT and corrects 
for defocus due to a Gaussian beam. The second is computational adaptive optics (CAO) 
which corrects for more general optical aberrations. Extensions of this work to holoscopy [17] 
or other computed optical interferometric techniques [18] which acquire many data points 
over disjoint intervals of time should also be possible. 

This article is separated into two parts. This part (Part I) focuses on the impact of motion 
on computed optical interferometric techniques and the stability requirements which should 
be met for successful reconstructions. The second part [19], following this article, is dedicated 
to assessing the stability of OCT systems for in vivo computed imaging. The stability 
assessment in the second part is then related back to this part to validate the stability 
requirements set forth. 

2. Theory 

This section lays the theoretical groundwork to be used throughout the rest of this article. 
Such a theoretical framework will provide the necessary intuition to approach and understand 
the stability results presented in the other sections. 

2.1 Complex-valued deconvolution 

Traditionally, ISAM takes advantage of a Fourier-domain coordinate warping to remove 
defocus due to a Gaussian beam in a single step [8] similar to SAR [20]. Equivalently, ISAM 
could be performed as many sequential 3-D deconvolutions – one for each depth [17]. Thus, 
ISAM can be viewed as an aberration correction technique where the aberration is defocus. 
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As such, both ISAM and CAO can be analyzed in the same way when it comes to stability. A 
simplified inverse process is given below. 

 { }{ }1 1
AC OCT ref.( , , ) ( , , , , ) ( ),z ,f x yx y z S x y zS Hz q q k− −=    (1) 

In Eq. (1), ACS  is the aberration-corrected complex signal, OCTS  is the complex signal 

obtained from standard OCT processing, ( , , )x y z are standard Cartesian coordinates, ref.z  is 

the position of equal path length relative to the optical focus, fz is the location of the optical 

focus, ( , )x yq q  are the transverse spatial frequencies of the measured data, k is the optical 

wavenumber,  is a forward Fourier transform, and H is a phase-only filter which models 

the aberration/defocus. For defocus, ( )2 2 2
0, , ) exp 2( x y x yq k iz q qH q k= − −  where 0z  is the 

amount of defocus. The implementations of ISAM and CAO we consider here are to correct 
for the phase-only filter, H . This is in contrast to the complete inverse problem which 
involves amplitude filters as well [8]. Finally, let the operator 1

H
−  represent Eq. (1) in a 

compact way such that { }1
OCT ACH S S− = . 

2.2 Motion Model 

In this article, we focus on analyzing bulk sample motion, galvanometer jitter, and reference 
arm fluctuations. For these types of motion (and even for more generalized motion), the first 
Born approximation model remains linear in the scattering potential. To demonstrate this, let 
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be the signal measured from a point-scanned spectral domain (SD) OCT system (extended 
from [17]) where η is the scattering potential of the object, sx  and sy  represent the transverse 

scanning positions, g  is the 3-D complex optical field, and the tilde  is used to reinforce 

that OCTS  is a function of (x, y, k) . Since OCTS  is measured over time, then sx , sy  and ref.z  

are actually functions of time. For a raster-scanned system with no undesired fluctuations, 
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where fastv  is the velocity of the beam along the fast axis, fasttΔ  is the length of time it takes 

to scan a single fast-axis frame, slowv  is the velocity of the beam along the slow axis, ⋅   is the 

floor operator, and 0z  is a fixed value. Bulk motion of the sample, improper beam scanning, 

or fluctuations in the reference arm can be modeled as time-varying fluctuations added onto 

sx , sy  and ref.z . 

Now consider a fluctuating reference arm or equivalently, small axial motion of the 
sample. This can be modeled as, ref. 0( ) ( )zz t z f t= +  for some function ( )zf t . As seen from 

Eq. (2), this will affect the measured signal in two ways. First, the object and the optical beam 
waist appear to move together since ref.z  appears in both η  and g . This will produce 

fluctuations in the amplitude and phase of the measured signal which vary only as rapidly as 
the object and beam structures. The second influence of a time-varying reference arm directly 
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influences the phase through the ( )ref.2 (ex )p i k z z−  term. This term can produce very rapid 

fluctuations in the phase and only depends on the wavelengths of light used. This is why 
many techniques in OCT/phase imaging can measure very small displacements in the axial 
dimension [21–23]. 

Alternatively, motion along the transverse dimension and/or jitter in the beam scanners 

can be modeled as arbitrary functions of time, ( )fast fast fast/) ( )(s xt t t t f tx t v − +  =  and 

slow fast/( ( ))s yy t v t t f t+  = . When measuring a flat sample, motion introduced in this manner 

only affects the measured signal through η  and g . Thus, the effect of transverse motion on 

the final data depends only on the object structure and the shape of the imaging beam. For a 
moderate numerical aperture (NA) Gaussian beam (0.1 – 0.2), the transverse resolution is 
much greater than the wavelength of light. This suggests that motion along the transverse 
dimension at these NAs is much less significant than axial motion. As the NA of the imaging 
system increases, the structure of g  along the transverse dimensions scales inversely 

proportional and approaches the wavelength of light. Thus, at high NAs, the sensitivity to 
motion along the transverse dimension can become comparable to the axial dimension. 

Finally, Eq. (2) shows that even with bulk sample motion, reference arm fluctuations, and 
galvanometer jitter, the measured signal (assuming a single scattered, first Born model) is still 
linear in the scattering potential, η . As a result, the simulations and experiments performed in 

the rest of this article will focus on point scatterers. Note, though, that the measured signal is 
non-linear with respect to the motion functions , ,x y zf f f  since, for example, 

0 1 2 0 1 0 2( , , ) ( , , ) ( , , )x y z z f f x y z z f x y z z fη η η− + −+≠ ++ − + . This is even when assuming 

a linear scattering model. Thus, characterizing the impulse response will not suffice and 
various classes of motion will be separately investigated. 

Moving beyond the first Born approximation (introducing multiple scattering) will make 
the resulting model non-linear in the scattering potential, and will surely influence the 
stability requirements. We argue, though, that the effect is not severe. First, consider axial 
motion of a highly-scattering tissue. Similar to Eq. (2), movement in the axial dimension with 
multiple scattering influences the phase directly through the interferometric term and, in 
addition, the multiple scattering structure (speckle) will only vary in phase and amplitude on 
the order of the axial resolution. Thus the sensitivity to axial motion will remain similar with 
and without multiple scattering. In addition, the structure in the transverse dimension 
resulting from multiple scattering also scales with the NA of the imaging beam [24]. Thus, 
the fluctuations in the measured signal due to transverse motion with and without multiple 
scattering should also not significantly change. 

2.3 Interrogation time 

The stability requirements for phase-sensitive techniques are also governed by a quantity we 
refer to as the ‘interrogation time’. The interrogation time is defined as the union of time 
intervals during imaging over which signal is collected from a point in the sample. This 
quantity is often dependent on spatial location and imaging modality. For telecentrically 
scanned systems, raster scanning is often performed to measure the full sample space and the 
scan lines of the raster scan define a ‘fast axis’ while the transverse direction orthogonal to 
the fast axis defines the ‘slow axis’. When using a Gaussian beam, a point is said to be 
interrogated by the beam when the point is within the 1/e2 boundary. Although the 
interrogation time is often separated into many disjoint intervals (one for each fast axis scan), 
it is a good approximation to suppose that the interrogation time is a single interval defined by 
its interval span (the interval span of a set of numbers, A, is the unique interval which 
contains A and no other interval which contains A except itself). This becomes the interval of 
time the point is interrogated along the slow axis. Thus, the length of the interrogation time is 

#213184 - $15.00 USD Received 2 Jun 2014; revised 21 Jul 2014; accepted 21 Jul 2014; published 31 July 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.019183 | OPTICS EXPRESS  19187



defined by a quantity τ which is directly proportional to the 1/e2 width of the Gaussian beam 
at that depth. Figures 1(a)–1(c) depict the interrogation times for such a system. Interestingly, 
an aberrated beam can result in a non-circular PSF such as with astigmatism [9]. Thus, if the 
PSF is elongated along the fast axis but not the slow axis, the interrogation length could be 
shorter than a purely defocused Gaussian beam. 

 

Fig. 1. A graphical depiction and experimental validation of the interrogation time. (a-c) As the 
Gaussian beam performs a raster scan in a telecentric setup, particles further from the focus see 
a longer interrogation time (the length of which is indicated by τ) than particles at the focus. 
This means that stability is required over a longer period of time further from focus. (d-f) 
Experimentally, a short, impulse-like disturbance to the sample results in a degradation of the 
ISAM reconstruction. (d) Points in the sample being interrogated during the disturbance will 
not be reconstructed properly leading to a higher loss in contrast (black) while points not being 
interrogated experience little to no loss in contrast (white). (e) An en face plane away from the 
focus experiences signal degradation over a large area (indicated by black arrows), while an en 
face near the focus (f) is disrupted over only a small area (indicated by black arrows). 

If bulk displacement of the sample (such as a Heaviside step function along some 
direction) occurs during imaging, then a phase sensitive imaging technique will be corrupted 
in a region of the imaged volume if the motion occurred during the interrogation time of that 
region. Furthermore, if a point is not being interrogated during the motion, the reconstruction 
will not be disturbed in that region. Figures 1(d)–1(f) demonstrates this in a tissue-mimicking 
phantom consisting of sub-resolution TiO2 particles in a clear silicone substrate. When 
imaged with moderately high NA (0.1), appreciable defocus due to the Gaussian beam is 
present away from the focus (data not shown). Using ISAM, the defocus is corrected. The 
sample was imaged with and without a short, impulse-like disturbance applied to the sample 
stage. Figure 1d plots the change in local contrast obtained with and without the disturbance. 
Points in the sample not being interrogated during the disturbance showed no change in 
contrast and appear as white. Points in the sample being interrogated during the disturbance 
present as a reduction in contrast. The boundary of these areas trace out the shape of the 
Gaussian beam used for imaging and demonstrate the depth dependency of the interrogation 
time and thus of the stability requirements. Figures 1(e) and 1(f) shows en face planes from 
the ISAM reconstruction with the impulse-like disturbance. Away from the focus [Fig. 1(e)], 
the extent of the disturbance is large (as indicated by the black arrows), while near the focus 
[Fig. 1(f)], the disturbance is small (again indicated by the black arrows). This means that for 
ISAM with a telecentric scanning system, as higher NAs are used and/or reconstructions 
further from the focus are desired, stability must be met over longer periods of time. 

2.4 Motion as fluctuations on spatial frequencies 

An interesting, and possibly more intuitive, way to think of the influence of motion on 
aberration correction in point-scanned systems involves the concept of sequentially measured 
spatial frequencies. First consider a particle near the focus. The interrogation length for this 
particle is very short, and all the spatial frequencies contributing to the in-focus image are 
measured simultaneously. Away from the focus, though, due to the confocal gating, as the 
defocused beam scans over a particle, the particle is sequentially interrogated and measured 
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with waves from varying directions. This can be seen schematically in Fig. 3 of [8] and also 
discussed in [25]. This means that far from focus, the spatial frequencies are measured as a 
function of time. Thus, any motion which occurs during scanning will result in fluctuations 
superimposed on the spatial frequency content of that defocused particle and result in poor 
reconstructions. 

3. Determining thresholds for stability 

For telecentrically scanned systems, Section 2.2 laid out a mathematical framework showing 
how strongly motion in different directions should influence the phase and thus the 
ISAM/CAO reconstructions, and Section 2.3 explained that only instabilities during the 
interrogation time of a particular point will corrupt the reconstruction of that point. This 
section explores various types of instabilities and, through simulations, determines thresholds 
for successful reconstructions. The end goal is to determine, for a given stability 
measurement, either how fast one must scan to accurately reconstruct sample structure 
imaged with a given aberration, or the magnitude of an aberration that can be tolerated at a 
fixed speed. 

3.1 Optical coherence tomography simulation 

The OCT simulation used in this article is based around the first Born approximation and 
wave propagation. Beginning at the fiber tip, a Gaussian beam is numerically calculated 
utilizing the specified wavelengths of 1,230 – 1,430 nm and the 1/e2 mode-field diameter of 
the fiber (defined on the intensity profile) of 8.9 µm. Supposing that the Gaussian beam is 
perfectly imaged to the focus inside the sample, the beam is copied to the focal position. For 
each wavelength, the beam is then numerically propagated to the specified point scatterer 

using the propagation kernel ( )0exp zik z− , where 2 2 2
z x yk qk q= − − , k  is the wavenumber 

of a particular wavelength of light, and 0z  is the distance propagated in the axial dimension. 

At the plane of the point scatterer, the field is scaled by the scattering potential (1 where the 
point is, and 0 everywhere else) then propagated back to the focus. The beam at the focus is 
then copied back to the fiber core (again assuming a perfect imaging system) and summed in 
the complex field to determine the amplitude and phase of the light propagating in the fiber. 
Interference was then simulated by adding ( )ref.exp ikz  to the field in the fiber where ref.z  is 

the position of the reference arm with respect to the focus. Detection was finally simulated by 
instantaneously taking the magnitude of the field at each wavelength. Standard processing for 
OCT (except k-linearization since the field was simulated linear in k) and ISAM could then 
be used. 

We note that in the simulations, specific wavelengths and transverse resolution (the mode-
field diameter of the fiber) were used. From the theory in Section 2.2, though, we know that 
the sensitivity to motion in the axial dimension is predominantly dependent on wavelength 
and in the transverse dimension, is dependent on the transverse resolution. In addition, these 
relationships are direct proportionalities. For example, the theory tells us that halving the 
transverse resolution is the same as scaling the disturbance in that dimension by 2. Thus, 
although the simulations were performed with absolute quantities (µm), the plots in the 
following section have normalized axes. For plots involving axial motion, the quantities are 
measured in radians (thus normalized by the wavelength λ0 = 1.33 µm), and for plots 
involving transverse motion, the quantities have been normalized by the transverse resolution 
at 1/e2 (8.9 µm). 

Finally, it is important to note the amount of spatial oversampling used. An unusually high 
amount of oversampling could artificially inflate the sensitivity of these techniques to motion 
and undersampled data could result in poor reconstructions. We chose our simulations and 
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experiments to spatially sample the data at 2 µm per step. This results in a bit more than 4 
times oversampling (at 1/e2). 

3.2 Types of disturbances 

Discussed briefly in [26], fluctuations in the reference arm can have a detrimental impact on 
image reconstructions for ISAM. In addition, several other types of disturbances are common. 
For instance, bulk sample motion can lead to arbitrary transverse and axial disturbances, 
electrical noise (e.g. 50/60 Hz) or other spurious signals bleeding into driving waveforms can 
lead to periodic disturbances to the galvanometer scanners, and also low SNR can lead to 
increased ‘phase-noise’ [27, 28]. This section provides simulation results which investigate 
each of these classes of disturbances. 

 

Fig. 2. Reconstructions of a simulated point scatterer in the presence of reference arm 
fluctuations. (a) An OCT en face plane through a point scatterer. (b-g) ISAM reconstructions 

with varying levels of 1-D Brownian motion added to the reference arm. A scaling factor nd  

was used to control the strength of the random process (h). As the reconstruction fails, the 
main peak remains narrow, but decreases in intensity while side lobes rise to both sides. Scale 
bars represent 50 µm. 

To begin, Figs. 2(a)–2(g) show simulation results of how increasing levels of 1-D 
Brownian motion included in the reference arm impacts the ISAM reconstruction. Across 
time, the 1-D Brownian motion is defined as independent increments following a mean-zero 
Gaussian distribution with a specified variance. Figure 2h shows a map of the realization of 
Brownian motion, B )( ()zf t S t= , used as a disturbance for Figs. 2(a)–2(g). A simple scaling, 

B( ) ( )z nf t d S t= , was used to control the strength of the disturbance. Figure 2a shows an en 

face section through a single point scatterer from the original, defocused, undisturbed OCT 
tomogram. Figures 2(b)–2(g) then show the same en face sections after the ISAM 
reconstructions. 

We note the manner in which the reconstruction fails as it is a common result seen 
throughout the other disturbances. As nd  is increased, rather than broadening the central peak 

in both transverse dimensions, the central peak remains narrow but drops in intensity, 
ultimately reducing the Strehl ratio of the computed imaging system. Furthermore, side lobes 
begin to rise predominantly along the slow axis. Justification for this can be seen from Fig. 
2(h) where, along the fast axis, the variance of the disturbance is very low, and along the slow 
axis, the disturbance varies much more rapidly. This is a side effect of the timescale 
difference between the fast and slow axes. Thus, for these examples, and most of the others 

#213184 - $15.00 USD Received 2 Jun 2014; revised 21 Jul 2014; accepted 21 Jul 2014; published 31 July 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.019183 | OPTICS EXPRESS  19190



later, effects of the instability are seen predominantly along the slow axis. These are also 
similar to the artifacts found previously in SAR [15]. 

 

Fig. 3. The impact of various classes of disturbances. Organized in 3 main columns, the effects 
of 1-D Brownian motion, step functions, and sinusoidal motion are summarized here. The top 
row in each column shows the type of motion which is applied and the lower 3 rows specify in 
which direction this disturbance is applied (axial, fast, or slow axis). Finally, within each 
column, the left side shows the OCT processed en face plane and the right shows the corrected 

plane. The magnitude of the motion applied is scaled by nd . The central wavelength 

simulated is λ0 = 1.33 µm. The scale bars represent 50 µm. 

Figure 3 outlines the typical responses seen by adding 1-D Brownian motion, step 
functions, or sinusoidal motion along each axial ( ( )zf t ), fast ( ( )xf t ), and slow ( ( )yf t ) axis. 

These types of motion were chosen to appropriately model motions in experimental systems. 
For instance, the 1-D Brownian motion represents small, but rapid bulk movements of the 
sample or scanning optics, the step function represents larger, but very brief motion, and the 
sinusoid motion could represent a repetitive disturbance from a moving part such as a fan. 
The figure is organized in 3 main columns, one for each type of motion. The top row of each 
column gives a map of the disturbance at each point as the simulation scans over the sample. 
The next 3 rows of each column show OCT (left) and ISAM (right) results with a particular 
amount of motion applied in the specified direction. The magnitude of the motion is scaled by 
the value of nd  which were chosen here to show representative artifacts from each type of 

motion. In all responses, as discussed previously, artifacts arise along the slow axis. In 
addition, though, when motion of the sample occur along the fast axis, smearing or other 
artifacts are present along the fast axis as well. This is seen most strongly with the step 
function. The smearing occurs in a similar manner as in standard OCT imaging [16]. The 
sinusoidal motion is also interesting because narrow and equally spaced side lobes appear 
along the slow axis - the location and strength of which are determined by the period of 
oscillations along the slow axis. This is in contrast to the 1-D Brownian motion where the 
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motion is much less structured and thus the side lobes are much broader and random [Figs. 
2(e)–2(g)]. 

Finally, low SNR adds noise in the recovered phase and requires special treatment. Shot, 
excess, receiver, and flicker noise [29, 30], can be partially modeled as Gaussian white noise 
added to the measured interferogram [31]. Thus, variations in phase will occur isotropically. 
It may then seem reasonable that the high-frequency oscillations in the phase will result in 
large side lobes surrounding the central peak in all directions. The aberration correction 
algorithms considered here, though, are linear phase operators. Therefore, if the noisy signal 
is written as OCT ( , , ) ( , , )x y k n x yS k+  for ( , , )n x y k  being white noise, then applying the 

aberration correction expressed in Eq. (1) gives 1( , , ) { }AC x y k nS −+ . Here, ( , , )AC xS y k  is 

the noise-free reconstructed image and 1{ }(x, y, k)n−  has the same power spectrum as 

( , , )n x y k . Therefore, the reconstruction is simply the noise-free reconstruction with the same 

power spectrum of noise in the background as was present before aberration correction. 
Simulations and experimental results are provided later in Section 4. 

3.3 Reconstruction thresholds 

With an understanding of how these various classes of disturbances affect defocus/aberration 
correction, this section will determine the strength of each disturbance which can be tolerated. 
A specified quality measurement will be used to determine whether or not a reconstruction is 
considered successful. 

As is understood from the above theory and experiments, the robustness of aberration 
correction depends on the interrogation length. Thus, the results in this section will be shown 
as a function of interrogation length. Figure 4 outlines the results. These plots show 
thresholds beyond which the defocus correction is deemed unsuitable. The area below the 
threshold line will result in acceptable reconstructions while the area above the threshold line 
will result in unsuccessful reconstructions. A reconstruction is considered successful if the 
mean intensity projection of it along the fast and slow axes separately meet all of the 
following three criteria: 

• The maximum peak is within 3 dB of the non-disturbed reconstruction. 

• The central peak decreases monotonically down to 7 dB below the maximum and all 
points outside the central peak remain below this 7 dB line. 

• The 3 dB full width of the central peak is less than twice the 3 dB full width of the non-
disturbed reconstruction. 

The motivation behind the first two criteria follow from the results shown in Fig. 2 where 
it was noted that with increasing disturbances, while the central peak remains narrow, the 
intensity drops and side lobes increase. The third criteria then follows from Fig. 3 where a 
step function or 1-D Brownian motion along the slow axis can lead to an overall broadening 
of the central peak without strong side lobes. Finally, these criteria are required to be satisfied 
along both the fast and slow axes because motion along the fast axis can lead to smearing 
along the fast axis (as can be seen in Fig. 3) while motion in the other directions lead to 
smearing and side lobes along the slow axis. In terms of Strehl ratios, violations of the first 
and third criteria independently would result in a Strehl ratio of less than 0.5 and severely 
impact the imaging systems. The Strehl ratio resulting from a violation of the second criteria 
is difficult to clearly define as it more directly affects contrast rather than resolution. The 
resulting Michelson contrast (or modulation [32]) of a single particle would be less than 0.66. 
Here we considered the central peak of the reconstruction to be the signal maximum and the 
maximum of the side lobes to be noise and, thus, the signal minimum. 
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Fig. 4. Thresholds for successful defocus correction with various types of motion. Organized in 
a similar manner to Fig. 3, the three main columns separate the type of motion (1-D Brownian, 
step, sinusoidal), and the rows list the direction in which the motion was applied (reference 
arm, fast axis, slow axis). The independent variable in each case is the interrogation length 
measured to the 1/e2 boundary. The dependent axes have been normalized. For transverse 
motion, normalization was to the transverse resolution (8.9 µm). 

By running simulations along each of the three dimensions for many realizations of 1-D 
Brownian motion (n = 20 for each interrogation length), multiple sinusoidal frequencies, and 
step functions, we determined thresholds beyond which one of the above three criteria fail. 
Figure 4 is organized into 3 columns to mimic the layout of Fig. 3. The far left column 
provides the thresholds for 1-D Brownian motion, the middle column shows the thresholds 
for a step disturbance, and the far right column provides results for various frequency 
sinusoid disturbances. The rows organize the results from top to bottom for reference arm, 
fast axis, and slow axis fluctuations, respectively. The strength of the 1-D Brownian motion is 
measured using the standard deviation of the process between frames, frameσ , and the strength 

of the step and sinusoid disturbances were then measured using the amplitudes. In general, the 
plots show a trend of decreasing threshold (stricter stability requirement) with increasing 
interrogation length. These plots also show, as was predicted from the analysis of Eq. (2), that 
reconstructions at moderate transverse resolutions are much more susceptible to motion in the 
reference arm than to transverse motion. This is reflected in the much lower threshold values 
for the reference arm disturbances. Specifically considering 1-D Brownian motion, the 
threshold for axial motion with an interrogation length of 60 frames is approximately 
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1
0 / (2 ) f0.3 rameλ π − while for transverse motion, the threshold for the same interrogation 

length is approximately 1
00.05 framew −  where w0 is the transverse resolution at 1/e2. 

Supposing that λ0 = 1.33 µm and w0 = 8.9 µm, the thresholds differ by a factor of 7. The 
thresholds in Fig. 4 also show a clear dependence on interrogation length, again validating 
that the stability requirements for image reconstructions become stricter with larger 
interrogation lengths. 

To further explore Fig. 4, consider a system where the standard deviation of the 
fluctuations in the reference arm were measured (perhaps with a static mirror in the sample 
arm) to be 0.1 µm/frame. Normalizing this value to the central wavelength of λ0 = 1.33 µm, 
we obtain 0.5 radians/frame. In addition, by analyzing the temporal dynamics of the 
fluctuations, it was found that the dynamics are well approximated by 1-D Brownian motion. 
Then, using the plot in the top left corner of Fig. 4, we approximate that reconstructions can 
be performed with an interrogation length up to about 20 frames. Further supposing that the 
diameter of the Gaussian beam is 8.9 µm at the waist, and that about 2 µm spatial sampling is 
used, this interrogation length corresponds to ~280 µm (optical) above the focus, or ~4 
Rayleigh ranges. Reconstructions further from the focus could be possible with a stabilized 
system by, for example, scanning faster, better stabilization of the reference arm, or utilizing a 
phase reference [26]. The use of these thresholds will be explored in more detail in the second 
part of this article [19]. 

3.4 Time-domain, spectral-domain, and swept-source OCT systems 

Although this article focuses mostly on data acquired with SD-OCT, over the years, a number 
of OCT scanning and acquisition methods have been developed, each with a set of advantages 
and disadvantages such as imaging speed, imaging depth, peak SNR, depth-dependent SNR, 
and phase stability. Initially, time domain (TD) OCT systems utilized a moving reference arm 
to obtain depth information [6]. Subsequently, it was realized that the depth information could 
be determined by directly measuring the spectrum. This resulted in both SD-OCT systems, 
which measure the entire spectrum simultaneously, and swept-source (SS) OCT systems, 
which measure the spectrum across time [33]. The tradeoffs between these methods have 
been thoroughly investigated elsewhere [16, 29, 34], though it is worth mentioning how the 
stability of these methods relates to the material presented here. 

Among point-scanned TD-, SD-, and SS-OCT systems, SD-OCT is known to be the most 
stable due to the absence of moving parts or time-varying (on the time scale of a single A-
scan) optical sources. The second most stable is SS-OCT, which can match SD-OCT at 
tissue-level SNR values with the addition of a phase reference [35] or a Mach-Zehnder 
interferometer (MZI) [36]. Finally, TD-OCT is typically the least stable OCT modality due to 
slow imaging speeds and moving parts included in the reference arm. 

Although the stability of each OCT system varies, SD-OCT and SS-OCT systems are 
known to reach the theoretical SNR limits of phase stability for the SNR levels achieved in 
biological samples. Thus, these measurements give an upper bound on the actual stability of 
the system. As discussed in Section 3.2 and later in Section 4, phase-noise resulting from 
SNR does not significantly affect the reconstructions considered here. From [35], for an SNR 
of ~45 dB, the measured phase noise met the theoretical phase noise, which was <0.01 
radians. Furthermore, from [36], a SS-OCT system with a MZI measured phase noise <0.011 
radians, which nearly meets the theoretical limit at an SNR of 48.1 dB. Supposing that a 
tomogram with 512 A-scans/frame is measured, and that the phase noise quoted above is 1-D 
Brownian motion, this corresponds to <0.25 radians/frame, which meets the stability 
thresholds presented in the top left corner of Fig. 4 for even the longest interrogation length of 
60 frames. This suggests that, with additional hardware for phase stabilization, SS-OCT is 
sufficiently stable for the defocus and aberration correction techniques considered in this 
article. 

#213184 - $15.00 USD Received 2 Jun 2014; revised 21 Jul 2014; accepted 21 Jul 2014; published 31 July 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.019183 | OPTICS EXPRESS  19194



4. Experimental results 

The above sections provide many results using a simulation of an idealized OCT system. In 
this section, results are provided from an experimental laboratory system to validate some of 
the simulated results. The experimental system used is the one after which the simulation was 
modeled and is the same system as was used in [14]. Briefly, the system is a 1300 nm SD-
OCT system using a superluminescent diode with a bandwidth of 170 nm (LS2000B, 
Thorlabs). The measured axial resolution was 6.0 µm (full width at half max) in air. The fiber 
core was imaged with two 30 mm focal length doublets (AC254-030-C, Thorlabs) resulting in 
an NA of 0.1 (at 1/e2). A 1024-pixel InGaAs line-scan camera (SU-LDH2, Goodrich) was 
used in the spectrometer. Finally, real-time processing of both OCT and ISAM [15] was 
provided for visualization during imaging sessions with a graphics processing unit (GPU) 
(GeForce GTX 580, NVIDIA) programed with the compute unified device architecture 
(CUDA). Although the real-time processing provides good results, the experimental data was 
reprocessed offline to ensure minimal rounding and processing errors due to the single 
precision processing and 16-bit precision data saving. Offline processing on the CPU was 
performed with double precision in MATLAB and the data was analyzed with single-
precision floats. 

 

Fig. 5. Impact of varying SNR on reconstructions. Simulations (far left column) and 
experiments (right 3 columns) show the impact of lowering SNR on defocus correction. 
Validating the predictions provided from the theory, the narrow peak and the background noise 
remain the same before and after reconstructions. The scale bars represent 50 µm. 

Figure 5 compares simulated and experimental reconstructions of a single defocused 
particle with varying levels of SNR. The far left column in Fig. 5 shows simulated data in the 
presence of additive Gaussian white noise before and after ISAM. The right three columns 
show experimental data where the SNR of the acquired data was experimentally changed 
using a variable neutral density (ND) filter in the sample arm. The OCT and ISAM data 
labeled as 0 dB shows the images acquired with the ND filter set to 0 (effectively removed). 
The other two columns show OCT and ISAM data where the peak signal-to-noise ratio 
decreased by 11 and 18 dB, respectively. The relative SNR values in the experiments were 
calculated by assuming that the background noise statistics will remain the same and the 
reduction in SNR was measured off the peak of the ISAM reconstructions. In all examples, 
even if the OCT signal appears to be overwhelmed with noise (especially in the −18 dB 
image), the reconstructed peak remains narrow and clear. This validates the predicted results 
from the end of Section 3.2 where, even with low SNR, the reconstructed peak will remain 

#213184 - $15.00 USD Received 2 Jun 2014; revised 21 Jul 2014; accepted 21 Jul 2014; published 31 July 2014
(C) 2014 OSA 11 August 2014 | Vol. 22,  No. 16 | DOI:10.1364/OE.22.019183 | OPTICS EXPRESS  19195



narrow with a noisy background. The OCT and ISAM images are all normalized to the peak 
values of the corresponding ISAM reconstructions, and displayed on the same scale between 
0 and 1. 

 

Fig. 6. A comparison of an experiment and simulation with and without motion. The top row 
shows a simulation with point scatterers placed to match the experiment in the second row. 
Shown are the OCT (left column), ISAM without fluctuations (middle column), and ISAM 
with fluctuations. In both reconstructions with fluctuations, side lobes appear along the slow 
axis in similar ways. The bottom row shows traces along the slow axis through the center of 
the scatterers indicated by the white arrows. Intensities in all images are viewed on a 
normalized scale. The scale bars represent 50 µm. 

Next, an experiment with sample motion is matched to simulations. The results are shown 
in Fig. 6. The top row of simulations show from left to right, the OCT data, an ISAM 
reconstruction with no disturbance, and ISAM reconstruction with 1-D Brownian motion in 
the reference arm. The strength of the disturbance was ~0.3 radians/frame which is close to 
the threshold level for this interrogation length of ~25 frames found in the top left corner of 
Fig. 4. The middle row shows the corresponding experiments with the same particle 
distribution and the same amount of disturbances. In the experiment, the sample was mounted 
on a 3-axis piezoelectric stage (Thorlabs) and was vibrated appropriately in the axial 
dimension. Since the scale of these vibrations is very low, axial motion of the sample well 
approximates a displacement of the reference arm. The side lobes present in the simulation 
and experiment approximately match. Differences could be explained by aberrations present 
in the experimental beam (the ring-shaped point spread function is indicative of spherical 
aberration), and also by an imperfect movement of the piezoelectric stage at high frequencies. 
In order to see the details of weak scatterers in the OCT data, all images in Fig. 6 are viewed 
on a normalized scale. Finally, traces through the scatterers indicated by the white arrows are 
shown at the bottom of Fig. 6. Before normalization, the ISAM reconstructions showed a 
reduction in peak intensity by a factor of 0.70 in simulation and 0.88 in experiment. 
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5. Conclusion 

Throughout this article, we have shown the effects of various types of motion on defocus and 
aberration correction that would be encountered in phase-sensitive optical computed imaging 
techniques. Although all simulations and experiments focused on defocus correction, the 
same principles apply for phase aberrations as well. The investigations were aimed at 
quantitatively establishing guidelines for how much motion a particular phase-sensitive 
reconstruction technique can withstand. We found that although the corrupted reconstruction 
is linear in the scattering potential (hence experiments and simulations carried out were with 
point scatterers), it can be nonlinear with respect to the motion. This nonlinearity required a 
systematic investigation of some common instabilities: 1-D Brownian motion, step functions, 
and sinusoidal motion. A clear and relatively predictable dependence on the interrogation 
length of a particle was found. In addition, for moderate NAs, a high-sensitivity to motion in 
the axial dimension when compared to motion in the transverse dimensions was found. The 
results can be used to assist in the optimal design of systems implementing these and other 
phase-sensitive techniques, in addition to better identifying the possibilities for imaging of in 
vivo or dynamic samples. 

In the second part to this article [19], techniques to measure the stability of systems for in 
vivo imaging will be discussed and directly related back to the quantitative thresholds derived 
here. 
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