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Abstract: There is an inherent trade-off between transverse resolution
and depth of field (DOF) in optical coherence tomography (OCT) which
becomes a limiting factor for certain applications. Multifocal OCT and
interferometric synthetic aperture microscopy (ISAM) each provide a
distinct solution to the trade-off through modification to the experiment
or via post-processing, respectively. In this paper, we have solved the
inverse problem of multifocal OCT and present a general algorithm for
combining multiple ISAM datasets. Multifocal ISAM (MISAM) uses a
regularized combination of the resampled datasets to bring advantages of
both multifocal OCT and ISAM to achieve optimal transverse resolution,
extended effective DOF and improved signal-to-noise ratio. We present
theory, simulation and experimental results.
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OCIS codes: (110.4500) Optical coherence tomography; (110.1758) Computational imaging;
(100.3190) Inverse problems; (100.6890) Three-dimensional image processing.
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1. Introduction

Optical coherence tomography (OCT), is an optical imaging method that reveals the 3D struc-
ture of semitransparent samples with micron-resolution [1–6]. OCT has proved useful in many
fields including ophthalmology [7–12], dermatology [13–15], and cardiology [16], among
many others. We present a method of 3-D optical imaging that combines multifocal OCT and
interferometeric synthetic aperture microscopy (ISAM).

In OCT, two of the more important figures of merit are DOF and transverse resolution. How-
ever, using Gaussian beam optics, it is impossible to improve both at the same time. For a
given OCT system, the transverse resolution at each depth is equivalent to the width of the
scanning beam at that depth. The transverse resolution is best on the focal plane, where the
scanning beam has minimum beam width. For given free space wavelength λ0, free space nu-
merical aperture NA0 and media refractive index n, the beam waist radius is w0 = λ0/(nπNA0).
The transverse resolution degrades as the position of reconstruction is further away from focal
plane, where the scanning beam diverges in width. For a Gaussian beam propagating in the z
direction, with focal plane at z0, the beam radius can be expressed as

w(z− z0) =

√
w2

0 +

[
λ0(z− z0)

πnw0

]2

. (1)

Because of the beam-spreading, the reconstructed image becomes defocused at positions far
away from the focal plane. Therefore, the DOF of the OCT system is usually taken to be within
a Rayleigh range (ZR) of the focal plane on both sides. The Rayleigh range is defined as the
distance from the focal plane to the plane where w(z) =

√
2w0. It can be expressed as

ZR = nπw2
0/λ0, (2)

which is proportional to the square of the transverse resolution.
Thus, the DOF is a function of resolution as shown in Fig. 1, where the wavelength is taken

to be 1 μm and the sample refractive index is 1.4. For example, if the desired transverse reso-
lution is 0.76 μm on the above mentioned condition, which can be achieved by using a 0.3 NA
scanning beam, the achievable DOF is 5.1 μm, as can be seen at the lower sample point in Fig.
1. On the other hand, if the DOF is increased to 182 μm, which can be implemented using a
0.05 NA scanning beam, the best possible transverse resolution degrades to 4.55 μm, as can be
seen at the upper sample point.

Although OCT is limited by the above-mentioned trade-off, it is possible to mitigate the
trade-off by improving either the physical setup or the reconstruction algorithm. Recent solu-
tions include Bessel beam OCT, interferometric synthetic aperture microscopy (ISAM), and
multifocal OCT, each have their own advantages and challenges.

Bessel beam OCT [17,18] uses Bessel beam for illuminating the sample to achieve all-optical
DOF extension. The Bessel beam is generated using an axicon lens. The scattered signal is
collected using either the axicon lens or a conventional objective lens. This method trades for
larger DOF at the cost of higher side lobes.

Multifocal OCT, also called multibeam OCT or multichannel OCT [19, 20], is a version of
OCT where multiple apertures are used simultaneously in scanning. Each aperture is focused at
a different depth during the scan. One set of OCT data is collected from each aperture. An image
stitching method is used to combine each set of data, where the part with the best transverse
resolution from each set of data are stitched into the final reconstruction. Compared with each
set of OCT data, the multifocal OCT image shows an improved resolution over the whole depth,
or from another point of view, enables a larger DOF. Consider the case of a multifocal OCT
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system with 3 identical apertures. The distance between two adjacent focal planes is taken to be
2 Rayleigh ranges. The blue curve in Fig. 1 plots the trade-off curve of multifocal OCT. As three
stacked apertures are used, for any value of transverse resolution, multifocal OCT provides 3
times the DOF compared with OCT; or on the other hand, for the same desired DOF, multifocal
OCT can achieve improved transverse resolution compared to OCT. Even more apertures can
be used at the cost of additional setup complexity. Multifocal OCT also faces challenges such
as intensity discontinuities along stitching edges in the reconstructed image [19, 20]. Although
artificial blending can be used to mitigate this effect [21], it is not physically derived and thus
does not always provide accurate image reconstruction.

Fig. 1. Trade-off between the (effective) DOF and transverse resolution in OCT, multifocal
OCT and ISAM, at wavelength of 1 μm and with refractive index of 1.4.

The ISAM experiment is similar to that of OCT. ISAM takes the OCT data and corrects
for the spreading of the beam using the solution to the inverse problem of OCT [22–27]. The
algorithm can be efficiently implemented using a frequency domain resampling technique [25,
28], which can be expressed by

〈r|η〉= w(z− z0)
∫

d2k‖
〈
r‖|k‖

〉∫
dβ 〈z|−β 〉H−1

〈
k‖,

1
2

√
β 2 +k2

‖|S
〉
, (3)

where r is the space coordinate; k is the wavevector; k‖ and r‖ are the vector projection onto the
plane normal to the z axis, i.e. the beam axis; and β is the longitudinal spatial frequency. The
expression

〈
k‖,k0|S

〉
is the 2-D Fourier transform of

〈
r‖,k0|S

〉
.
〈
r‖,k0|S

〉
represents the OCT

data |S〉 collected at transverse position r‖ and wavenumber k0. In the equation, k0 is replaced

with
1
2

√
β 2 +k2

‖, which represents a set of calculated grid points to be resampled onto each

β . The inner product
〈
r‖|k‖

〉
= (2π)−1exp(−ik‖ · r‖), and 〈z|−β 〉= (2π)−1/2exp(izβ ). 〈r|η〉

is the sample susceptibility at position r. The expression w(z− z0) is the beam radius at depth
z with the focal plane at z = z0, as is defined in Eq. (1). The factor H depends on k‖, k0, and
position of the focal plane zn of the nth beam focus. This equation is similar to Eq. (19.32)
in [28] except that the expression |z− z0| in [28] are replaced by w(z− z0), which generalizes
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the asymptotic results at both near focus and far from focus, and provides a smooth transition
in between.

Because the DOF of OCT is infinitely extended by applying the algorithm, ISAM is able to
provide spatially invariant resolution, as opposed to the decaying transverse resolution of OCT
along depth axis. ISAM has been validated and is proved to provide accurate reconstruction
with focal-plane resolution [24, 29].

However, ISAM faces the challenge of signal-to-noise ratio (SNR) decreasing with 1/z as
does for standard OCT, which limits its effective DOF [24]. Assuming the SNR at the focal
plane is SNR0 (linear), and the lowest tolerable SNR is SNRL, the effective DOF can be ex-
pressed as

Effective DOF =
2πnω2

0

λ0

√(
SNR0

SNRL

)2

−1 ≈ 2πnω2
0

λ0

SNR0

SNRL
. (4)

The red curve in Fig. 1 plots the trade-off curve of ISAM when SNR0/SNRL = 10 as an
example. The curve would shift upward or downward linearly with the ratio of SNR0/SNRL
for SNR0/SNRL � 1. Compared with multifocal OCT, ISAM further shifts the curve to the
upper-right quadrant of the plot, mitigating the trade-off.

2. Multifocal interferometric synthetic aperture microscopy

Seeing the trade-off OCT is facing and the advantages and challenges of ISAM and multifocal
OCT, we have developed a new imaging technique which combines the advantages of both
multifocal OCT and ISAM. By applying a coherent combination of the reconstruction of each
channel with appropriate regularization, higher lateral resolution and signal-to-noise ratio can
be achieved without artifacts from the synthesis of the data sets. The experiment is similar to
conventional OCT, except multiple channels, each with a different focus, are used.

2.1. Forward model

The sample is again described by a susceptibility |η〉, and the data set by |S〉, but |S〉 is now in
a larger Hilbert space. The position of the nth focal spot is denoted rn. Transverse wavevector
states are denoted

∣∣k‖
〉

so that
〈
r‖|k‖

〉
= 1

2π e−ik‖·r‖ . We start from Eq. (19.26) in [28], which
describes the multifocal OCT signal component acquired with illumination focal spot at rm and
detection focal spot at rn with wavenumber k0, that is

〈rm,rn,k0|S〉=
∫

d2k′′‖
∫

d2k′‖
∫

d2r‖ dz e
ik′′‖ ·rn g̃n

(
k′′,k0

)〈
k′′
‖ |Gzn |r

〉
×
〈

r|||Kzm−z|k′
‖
〉

e
−ik′‖·rmg̃m

(
k′,k0

)〈k0|U0〉〈r|η〉 , (5)

where again 〈r|η〉 is the sample susceptibility at position r; 〈k0|U0〉 is the field amplitude as a
function of wavenumber; g̃m,n (k′′,k0) = exp(−π2k2

‖/2k2
0NA2

m,n) is the Fourier transform of the
beam waist of the illumination and the detection aperture; K and G are the field propagator and
Green’s function operator respectively.

We then assume the transverse-scanning position of the illumination aperture is infinitely
close to that of the detection aperture and have the same NA. Therefore, we can set r‖m =
r‖n = r‖, g̃m = g̃n = g̃, so that the problem is converted to the single static case with transverse-
scanning position r‖, illumination focal plane at depth of zm and detection focal plane at zn.
The datum at transverse-scanning position r‖, wavenumber k0, illumination focal plane zm and
detection focal plane zn is denoted

〈
r‖,k0,zm,zn|S

〉
. By performing a change of basis and ex-

pressing the received signal as the superposition of the contribution from each illumination
aperture, the multi-foci version of Eq. (19.29) in [28] can be derived. The signal received at

#210407 - $15.00 USD Received 18 Apr 2014; revised 16 Jun 2014; accepted 17 Jun 2014; published 27 Jun 2014
(C) 2014 OSA 30 June 2014 | Vol. 22,  No. 13 | DOI:10.1364/OE.22.016606 | OPTICS EXPRESS  16610



aperture n can be expressed as

M

∑
m=1

〈
k‖,k0,zm,zn|S

〉
= 2π 〈k0|U0〉

∫
dz h̃(k‖,z,k0,zm,zn)

〈
k‖,z|η

〉
, (6)

where
〈
k‖,z|η

〉
is the Fourier transform of 〈r|η〉 with respect to the transverse coordinates.

Here h̃(k‖,z,k0,zm,zn) =
∫

d2k′′‖
g̃(k′′,k0)g̃(k′′‖−k‖,k0)√

k2
0−k′′2‖

M
∑

m=1
e

i
√

k2
0−k′′2‖ (zn−z)+i

√
k2
0−(k′′‖−k‖)

2(zm−z)
,

which is the two dimensional Fourier transform of the point spread function of the system,
which consists of M stacked components, as can be visualized in Fig. 2.

Fig. 2. Illustration of the different components of the detected signal and the stacked PSF
in multifocal three-channel OCT.

In order to eliminate the stacked point spread function which is computationally too expen-
sive to deconvolve, we assume that the path-length difference between channels is much larger
than the source coherence length so that cross-talk components

〈
k‖,k0,zm,zn|S

〉
where m 
= n

may be neglected. This can be achieved experimentally by inserting different lengths of fiber
before each aperture [30]. With this assumption, the signal detected from the nth aperture only
consists of the back-scattering caused by the illumination from itself, resulting a simplified
point spread function, as is described by

〈
k‖,k0,zn,zn|S

〉
= 2π 〈k0|U0〉

∫
dz h̃′(k‖,z,k0,zn,zn)

〈
k‖,z|η

〉
, (7)

where

h̃′(k‖,z,k0,zn,zn) =
∫

d2k′′‖
g̃(k′′

‖ ,k0)g̃(k′′
‖ −k‖,k0)√

k2
0 −k′′2

‖
e

i[
√

k2
0−k′′2‖ +

√
k2
0−(k′′‖−k‖)

2](zn−z)
. (8)
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Since only the signals with the same illumination and detection apertures will be consid-
ered,

〈
k‖,k,zn,zn|S

〉
will be denoted as

〈
k‖,k,zn|S

〉
from now on for brevity. The method of

stationary phase can be applied when |zn − z| is large compared to Rayleigh range, where the

phase is stationary around k′′(stat.)
‖ = k‖/2 [28], resulting in an simplified asymptotics result.

The near-focus case can also evaluated by expanding the integral around the k′
‖ = k‖/2 [28].

Generalizing both asymptotics results in the far-from-focus regime and the near-focus regime,
the forward problem can be expressed as,

〈
k‖,k0,zn|S

〉
= H(k‖,k0)

∫
dz

〈
−2

√
k2

0 − (k‖/2)2|z− zn

〉
wr(z− zn)

−1〈k‖,z|η
〉
, (9)

where

H(k‖,k0) =

{
(2ik3

0NA3)/[π(k2
0 −k2

‖)]〈k0|U0〉 g̃2(k‖/2,k0) near focus
4π3 〈k0|U0〉 g̃2(k‖/2,k0) far from focus

(10)

and wr(z− zn) is defined as the relative beam radius compared to w0,

wr(z− zn) =
w(z− zn)

w0
=

√
1+

λ 2
0 (z− zn)2

n2π2w4
0

. (11)

2.2. Regularized inverse

At this stage we have formed a complete forward model of multifocal OCT which relates the
susceptibility distribution |η〉 of the sample to the signal |S〉 detected from the aperture. The
next step is to derive its inverse based on the forward problem, which enables us to reconstruct
the susceptibility distribution from the detected signal. We start from Eq. (12) below, which is
equivalent to Eq. (9),

|S〉 =
N

∑
n=1

∫
d2k‖ dk0 dz

∣∣k‖,k0,zn
〉

H(k‖,k0)

×
〈
−2

√
k2

0 − (k‖/2)2|z− zn

〉
wr(z− zn)

−1〈k‖,z|η
〉
. (12)

The detected signal |S〉 can be seen as the result of two operators P and Z acting on the sample
susceptibility |η〉, so that |S〉 = PZ |η〉. As is described by Eq. (13), the P operator takes the
data and remaps them on to a different grid,

P =

∫
d2k‖ dk0

∣∣k‖,k0
〉

H(k‖,k0)

〈
k‖,−2

√
k2

0 − (k‖/2)2

∣∣∣∣ . (13)

The Z operator takes data from |η〉 and applies a depth-dependent weighting of wr(z− zn)
−1 in

magnitude in the z dimension, that is

Z =
N

∑
n=1

∫
dz |z− zn,zn〉wr(z− zn)

−1 〈z| . (14)

To reconstruct |η〉, we need to derive P+ and Z+, the pseudoinverses of the two operators P
and Z, respectively. The reconstructed |η〉 then can be expressed as |η〉= Z+P+ |S〉.
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The pseudoinverse of P can be derived using P+ = (P∗P)−1P∗, which is of the same form as
the inverse operator in ISAM,

P+ =
∫

d2k‖ dβ
∣∣k‖,β

〉
H−1(k‖,

1
2

√
β 2 +k‖2)

〈
k‖,

1
2

√
β 2 +k‖2

∣∣∣∣ . (15)

Using similar method, the exact inverse of operator Z can also be derived, that is

Z−1 =
N

∑
n=1

∫
dz |z〉wr(z− zn)〈z− zn,zn| . (16)

When noise is considered, the exact inverse does not give the optimum results. For different
noise models, the corresponding regularization can be applied by replacing wr(z− zn) with its
function, so that

Z+ =
N

∑
n=1

∫
dz |z〉R [wr(z− zn)]〈z− zn,zn| , (17)

to achieve the least square minimum norm solution.
Thus the general regularized solution to the inverse problem is

〈r|η〉 =
N

∑
n=1

R [wr(z− zn)]
∫

d2k‖
〈
r‖|k‖

〉∫
dβ 〈z|−β 〉

×H−1(k‖,
1
2

√
β 2 +k‖2)

〈
k‖,

1
2

√
β 2 +k‖2,zn|S

〉
. (18)

Here specifically for the multiplicative noise, Tikhonov regularization promises the least
square minimum norm solution of the problem. The regularizer of Tikhonov regularization is

RTik [wr(z− zn)] =
wr(z− zn)

−1

wr(z− zn)
−2 +λ

, (19)

where λ is the regularization parameter. Thus, the Tikhonov regularized solution of the inverse
problem is then

〈r|η〉 =
N

∑
n=1

1

1+λwr(z− zn)
2

[
wr(z− zn)

∫
d2k‖

〈
r‖|k‖

〉∫
dβ 〈z|−β 〉

×H−1(k‖,
1
2

√
β 2 +k‖2)

〈
k‖,

1
2

√
β 2 +k‖2,zn|S

〉]
, (20)

where the factor H−1 depends on k‖ and β .

2.3. Implementation

Equation (20) can be implemented based on a conventional ISAM code. Table 1 presents a
step-by-step list to aid the implementation. To start with, multiple sets of OCT data should be
acquired and pre-processed to compensate for dispersion and to remove the complex conjugate
image. The later part of Eq. (20) in the square brackets can be seen as the ISAM reconstruction
of each channel, corresponding to steps 2 through 6 in Table 1. Optional aberration compen-
sation using computational adaptive optics (CAO) can be performed at this stage (not included
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in Eq. (20), and details will be covered in Section 2.5). The MISAM reconstruction is then the

weighted sum of the ISAM reconstructions, with the weighting being 1/
[
1+λwr(z− zn)

2
]
,

corresponding to step 7 and 8 in Table 1.

Table 1. A step-by-step guide for implementing MISAM.

1
Acquire OCT data with various focal plane depth {z1,z2, ...,zN} and preprocess,〈
r‖,k0,zn|S

〉
=
〈
r‖,k0|Sn

〉
.

2
For each dataset, take the 2-D Fourier transform with respect to transverse coordinates,〈
k‖,k0|S̃n

〉
= 1

2π
∫

d2r‖ exp(ik‖ · r‖)
〈
r‖,k0|Sn

〉
.

3
For each dataset, apply the inverse filter (optional),〈
k‖,k0|S̃′n

〉
= H−1(k‖,k0)

〈
k‖,k0|S̃n

〉
.

4
For each dataset, perform the resampling,〈
k‖,−β |S̃′′n

〉
=
〈
k‖,k0|S̃′n

〉∣∣∣
k0=

1
2

√
β 2+k‖2

.

5
For each dataset, take the 3-D inverse Fourier transform with respect to k‖ and −β ,〈
r‖,z|S′′n

〉
= (2π)−3/2 ∫ d2k‖dβ exp(−ik‖ · r‖+ iβ z)

〈
k‖,−β |S̃′′n

〉
.

6
For each dataset, multiply with the relative beam radius function,〈
r‖,z|ηn

〉
= wr(z− zn)

〈
r‖,z|S′′n

〉
.

7
For each dataset, multiply with the weighting,〈
r‖,z|η ′

n

〉
= 1

1+λwr(z−zn)
2

〈
r‖,z|ηn

〉
.

8
Take the sum of all datasets,〈
r‖,z|ηMISAM

〉
=

N
∑

n=1

〈
r‖,z|η ′

n

〉
.

2.4. Simulation

A computer simulation demonstrates the MISAM algorithm in Fig. 3. The sample used in the
simulation consists of a series of point-scatterers on the x-z plane with 5 μm separation in
depth between neighboring point-scatterers. An OCT system with an NA of 0.75, refractive
index of 1, and wavelength of 800 nm to 1000 nm was used, resulting in a transverse resolution
of 0.38 μm and a DOF of 1.02 μm in air.

The results in Figs. 3(a)–3(c) show how the spreading in the OCT image acquired with focal
plane at different depth becomes more severe at large distances from focus. Figure 3(d) shows
the stitched image multifocal OCT synthetized from data in Figs. 3(a)–3(c). Although Fig. 3(d)
sees an immediate improvement over Figs. 3(a)–3(c), the transverse resolution achieved by
multifocal OCT still varies spatially.

The results in Figs. 3(e)–3(g) shows the corresponding ISAM reconstruction from the OCT
data in Figs. 3(a)–3(c). Note that significant noise can be seen at lower part of Fig. 3(e) and
upper part of Fig. 3(g). The regularization works as a spatial weighting to scale-down the noisy
signal far from focus at each channel before the coherent combination. As a result, the noisy
part contributes very little to the final reconstruction. The results in Fig. 3(h) show the regular-
ized inverse solution works effectively in correcting the defocus and coherently combining the
three datasets to achieve a reconstruction with spatially invariant resolution. Compared with the
multifocal OCT image at Fig. 3(d), resolution in Fig. 3(h) again shows a significant improve-
ment.
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Fig. 3. Panels (a)-(c) are three channels of OCT data, each focused at −20 μm, −60 μm,
and −100 μm respectively, (the contrast has been lowered to show the signal far from
focus). Panel (d) is the multifocal OCT reconstruction based on (a)-(c). Panels (e)-(g)
are three channels of ISAM reconstruction based on (a)-(c) respectively. Panel (h) is the
MISAM reconstruction based on (e)-(g). The MISAM image shows spatially invariant res-
olution and superior SNR.

Fig. 4. (a) Theoretical transverse resolution for three channels of OCT, multifocal OCT and
MISAM, based on a three-aperture multifocal OCT system with focal plane at −20 μm,
−60 μm, and −100 μm. (b) Theoretical SNR of single-focal ISAM and MISAM, based on
the same multifocal OCT system.
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With the same parameters as above, Fig. 4 shows plots of theoretical transverse resolution and
signal-to-noise ratio of MISAM compared with multifocal OCT and single channel ISAM. In
Fig. 4(a), MISAM shows superior transverse resolution, especially at larger distance from each
focus, compared to multifocal OCT. Moreover, in Fig. 4(b), MISAM shows overall superior
SNR characteristics, compared to single-focal ISAM. In this case, MISAM provides 200% to
700% improvement in SNR far from focus.

2.5. Experimental results

Experimental data have been taken and the regularized inverse for MISAM has been applied
to demonstrate the MISAM reconstruction. Three datasets were acquired separately using a
single channel SD-OCT setup. The focal plane depths of the scanning beams were adjusted
before each scan. As shown in Fig. 5, three datasets (a)-(c) were acquired with focal plane at
−1200 μm, −1000 μm, and −800 μm, respectively. The OCT system has a NA of 0.1, and the
optical spectrum recorded by the spectrometer had central wavelength of 1330 nm and FWHM
bandwidth of 150 nm. Thus, the setup has a transverse resolution of ∼ 7 μm and a Rayleigh
range of ∼ 50 μm in air. The sample consists of a collection of sub-resolution sized TiO2

particles embedded in a semitransparent silicone matrix, which has a refractive index of ∼ 1.4.

Fig. 5. Panels (a)-(c) are three channels of OCT data, each focused at −1200 μm,
−1000 μm, and −800 μm respectively. Panel (d) is the multifocal OCT reconstruction
based on (a)-(c). Panels (e)-(g) are three channels of ISAM reconstruction based on (a)-(c)
respectively. Panel (h) is the MISAM reconstruction based on (e)-(g). Three outsets on the
right side show the en face planes of Multifocal OCT, MISAM and MISAM with computed
adaptive optics (CAO) at −300 μm.

Figures 5(a)–5(c) are the OCT reconstructions of each set of signals. It can be observed that
the reconstructions become defocused far away from their focal plane; thus, each set provides
∼ 200 μm usable effective DOF. After applying the image stitching method over Figs. 5(a)–
5(c), Fig. 5(d) is the multifocal OCT reconstruction of the datasets. It provides an effective DOF
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of ∼ 800 μm, from −600 μm to −1400 μm.
The MISAM algorithm was applied to the three channels of OCT data. Because the datasets

were sequentially acquired, they were not phase coherent, thus the absolute value of each
dataset were taken before the regularized combination were applied.

Because inexpensively priced lens sets were used for the imaging system, moderate aber-
ration, mainly spherical, were observed in the experimental data, which degrades the imag-
ing quality. In order to eliminate the effect, we have incorporated computational adaptive op-
tics [31, 32] to the datasets. A phase plate H(k‖) = exp [−ikΦh(−2πz f k‖/k0)], where Φh rep-
resents the weighted sum of Zernike polynomials, was multiplied to

〈
k‖,z|η

〉
for each z. The

weighting parameters for the Zernike polynomials were searched by a script for each z to opti-
mize for the maximum pixel intensity in the en face plane.

Fig. 6. Panels (a) and (d) show the three-dimensional volume rendering of size of 500 μm
by 500 μm by 1800 μm in depth of multifocal OCT and MISAM constructed with channel
1 and 3. Panels (b) and (c) show the en-face plot of multifocal OCT and MISAM about
200 μm from both focal planes of channel 1 and 3.

By comparing Fig. 5(d) with Fig. 5(h), it can be observed that after regularized combination
and CAO, the reconstruction in h) shows not only higher resolution especially far from focus,
but also high SNR throughout all depths. A set of en face planes at the same depth form the
multifocal OCT reconstruction, MISAM reconstruction without CAO and MISAM reconstruc-
tion with CAO are shown on the right side. It can be observed that MISAM corrects for the
spreading seen in multifocal OCT images. Based on the MISAM image, CAO further corrects
the aberration of the system to achieve more ideal point spread functions.

Figure 6 shows a comparison of the three-dimensional rendering of dual-channel multifocal
OCT on the left and dual-channel MISAM on the right using only datasets 1 and 3, and also
two en face plots at the middle depth between the two focal planes. In addition to the obvi-
ous advantage of MISAM at the top and bottom of the reconstruction, this comparison shows
that MISAM is able to provide higher quality reconstruction with fewer number of foci than
multifocal OCT.
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3. Conclusion

We have demonstrated multifocal ISAM to achieve improvements in SNR and image quality
over OCT alone. In this paper, the method was demonstrated with three focal planes, though
the technique can be readily extended to accommodate arbitrary numbers of foci.

Data for MISAM can be acquired either in parallel using a multifocal OCT setup or in se-
ries using a conventional OCT setup. For serial acquisition, the OCT scan is repeated multiple
times with a variety of different focal depths. Serial acquisition trades longer acquisition time
(proportional to number of foci desired) and possible sample drift for lower experimental com-
plexity.

With the aid of computational adaptive optics, inexpensive lenses can be used for data ac-
quisition without severely affecting the imaging quality. This trades computational cost for
lower equipment cost. The computational cost for MISAM is proportional to the number of
foci desired. Reconstruction at a similar scale to Fig. 5 can be easily performed using a current
mainstream notebook computer (Thinkpad X220 with Intel i7-2620m CPU) within one minute.
Furthermore, it is possible to implement the algorithm on a GPU using parallel programming
language, such as CUDA, to achieve real time reconstruction [33, 34].

MISAM is based on the assumption of the first Born approximation, as is OCT. Under such
approximation, single scattering is assumed and higher-order scattering is neglected. In many
applications of OCT, this proves to be a good approximation when dealing with many kinds of
samples. So for any sample imaged with OCT, MISAM can be applied to produce images with
high resolution, large effective DOF, and high SNR. Reconstruction artifacts may appear if the
sample is strongly scattering. Although the effective DOF is improved by using MISAM, the
effective DOF may still be bounded by penetration depth for samples with low transparency at
the scanning wavelength.

We have shown that MISAM can realize the benefits of both single-focus ISAM and mul-
tifocal OCT by producing a reconstruction with spatially invariant resolution and theoretically
high signal-to-noise over a large range. MISAM provides a physically meaningful method to
combine multiple ISAM data from the same sample with different foci to scale up the effective
DOF of the image.
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