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Abstract: Magnetic particles are versatile imaging agents that have found 
wide spread applicability in diagnostic, therapeutic, and rheology 
applications. In this study, we demonstrate that mechanical waves generated 
by a localized inclusion of magnetic nanoparticles can be used for 
assessment of the tissue viscoelastic properties using magnetomotive optical 
coherence elastography. We show these capabilities in tissue mimicking 
elastic and viscoelastic phantoms and in biological tissues by measuring the 
shear wave speed under magnetomotive excitation. Furthermore, we 
demonstrate the extraction of the complex shear modulus by measuring the 
shear wave speed at different frequencies and fitting to a Kelvin-Voigt 
model. 

©2014 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (170.6935) Tissue characterization; 
(260.2110) Electromagnetic optics; (350.5030) Phase; (350.0350) Other areas of optics, 
Elastography. 
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1. Introduction 

Elastography is the image-based mapping of tissue mechanical properties, which is important 
in many areas of medicine and biology. Changes in mechanical properties have been shown to 
be associated with disease progression in several tissues such as in the liver, breast and 
thyroid [1]. In elastography, the sample is mechanically perturbed and imaging modalities are 
used to detect the induced displacements, which can subsequently be used to infer the material 
mechanical properties under certain simplifying assumptions. Elastography techniques differ 
in the way the sample is mechanically perturbed, how the induced changes are detected, and 
how the data is processed to assess the material mechanical properties [2]. 

Ultrasound-based elastography (UE) and magnetic resonance elastography (MRE) are 
well established modalities undergoing varying stages of commercialization and clinical trials. 
Elastography based on optical methods such as optical coherence elastography (OCE) has 
attracted widespread attention in recent years as it can offer much higher spatial resolution 
and mechanical sensitivity compared to UE and MRE, however with the well-known tradeoff 
of a shallow imaging depth (~1–2 mm) in highly scattering tissues. OCE has been 
demonstrated in a number of tissue sites such as the skin, cornea, arteries, etc [3]. In addition, 
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OCE has been demonstrated using needle based configurations that can access deeper 
underlying structures [4]. 

Numerous methods for mechanical stimulation have been employed with each having 
different spatial (internal or external) and temporal (static or dynamic) characteristics. 
Methods based on static (or quasi-static) excitation subject the sample to static or low 
frequency loads, and the resulting displacements or strains are measured. Under the 
assumption that the sample is at mechanical equilibrium during measurements, and the stress 
is uniform throughout the sample, the measured displacement/strain rate can be used as a 
substitute for the elastic modulus providing relative mechanical contrast [5]. Elastography 
techniques utilizing some form of dynamic mechanical stimulus have received considerable 
attention in recent years, which compared to the static excitation methods, are more 
quantitative and less dependent on the boundary conditions outside the region of interest [6]. 
The applied dynamic excitation can be in the form of a short duration (transient) pulse or can 
be harmonically oscillating at high frequency. Elastography methods that are based on 
dynamic excitation can be formulated in terms of wave propagation phenomena. The 
perturbation of a region within the sample results in deformation of the surrounding medium, 
which can propagate in the form of elastic waves within the sample and be measured using 
imaging methods such as ultrasound, optical imaging, or MRE [2, 7]. As the characteristics of 
mechanical wave propagation are dependent on the sample mechanical properties, they can be 
used to assess the viscoelastic properties. 

A wide variety of methods have been utilized to generate mechanical waves within a 
sample. Excitation methods such as rods [8], needles [9, 10] attached to 
mechanical/electromechanical actuators, piezo-vibrators, acoustic drivers, etc., or some form 
of internal excitation such as acoustic radiation force (ARF) [11], have been used. In OCE, 
mechanical actuators on the surface of the sample [12–15], incident acoustic radiation  
force [16–19], acoustomotive forces [20], air-puffs [21], and laser induced surface  
waves [22], among others, have been utilized to mechanically and dynamically stimulate the 
sample. 

Magnetic nanoparticles (MNPs) have been widely used in biomedical applications for 
enhancing imaging contrast, for treatment in hyperthermia, or for measuring the mechanical 
properties of cells and tissues [23–25]. In magnetomotive optical coherence tomography 
(MM-OCT), the magnetic particles which act as force transducers are embedded within the 
specimen of interest. With the application of the magnetic field, these particles move in the 
direction of the magnetic field gradient, displacing the surrounding medium [26–29]. The 
temporal dynamics of this movement has been utilized in magnetomotive optical coherence 
elastography (MM-OCE) and has been shown to contain valuable information about the tissue 
viscoelastic properties [30]. In contrast to other elastography techniques, the total force, and 
hence the magnitude of deformation, depends not only on the material mechanical properties 
but also on the concentration of the magnetic particles. Therefore, in MM-OCE, the material 
properties are more readily accessible by analyzing the temporal characteristics of the 
magnetomotive response rather than the absolute displacement scales. Previous demonstration 
of MM-OCE has been done in elastically homogenous samples containing uniform 
distribution of magnetic particles with point-wise measurements typically performed within 
the magnetic excitation region. These methods utilizing a step or a chirped excitation 
intrinsically rely on the mechanical resonances of the sample, and hence the sample geometry 
and boundary conditions need to be taken into account to extract quantitative viscoelastic 
parameters [30–32]. 

In this paper, we propose to utilize MNPs as shear wave sources by modulating a localized 
region containing MNPs within the sample. The magnetic inclusion, when mechanically 
excited, displaces the surrounding medium, resulting in the generation of mechanical waves. 
In contrast to previous MM-OCE demonstrations, the measurements are taken at radial 
distances away from the excitation region to visualize these propagating mechanical waves 
using phase-resolved OCT. We show the measurement of the shear wave speed under 
magnetomotive excitation in tissue mimicking elastic and viscoelastic phantoms and in 
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biological tissues. Furthermore, we also demonstrate the extraction of the complex shear 
modulus by measuring the shear wave speed at different frequencies and fitting data to a 
Kelvin-Voigt tissue model. 

2. Methods 

2.1 Experimental setup 

A 1310 nm spectral domain OCT system shown in Fig. 1 was used for the shear wave 
measurements. The light source was a superluminescent diode (LS2000B, Thorlabs) with  
170 nm bandwidth and the measured axial and transverse resolutions (full width at half max) 
of the system were 6 μm and 16 μm, respectively. A 1024-pixel InGaAs line-scan camera 
(SU-LDH2, Goodrich) was used in the spectrometer with an optical imaging depth of 2.6 mm. 
The phase noise of the system was ~20 milli-radians measured at a line-scan rate of 46 kHz 
with a static sample (IR card) placed in the sample arm. The jitter in the scanning 
galvanometers was the main contribution to the phase noise which reduces to ~5 milli-radians 
when the galvanometer scanners are turned off. The coil for generating the magnetic field was 
placed underneath the sample while the imaging was performed from the top, allowing the 
coverage of a large field-of-view. The magnetic field strength generated by the coil was 
measured to be approximately 150 Gauss at the sample surface (~1 cm away from the coil). 

 

Fig. 1. Spectral domain magnetomotive optical coherence elastography setup. 

The OCT data is acquired by taking multiple M-mode (A-lines measured as a function of 
time) measurements at different radial positions away from the MNPs as shown in Fig. 2(a). 
Typically very high frame rates are needed to image the propagating shear waves, however, 
these waves can be visualized by a stroboscopic acquisition scheme [18, 33]. A trigger signal 
is used to synchronize the camera data acquisition with the electromagnetic coil activation and 
scanning galvanometer (M-B mode scan i.e. M-mode data acquired at different spatial 
locations) as shown in Fig. 2(b). At the beginning of each M-model data acquisition, the 
electromagnetic coil is activated to generate a square root sinusoidal waveform of 10-20 
cycles at a given frequency f. At each radial position (a single M-mode) 2000 A-lines at a 
scan rate of ~46 kHz was acquired (unless stated otherwise) and a brief waiting time (~1 sec) 
was given before subsequent M-mode acquisitions to prevent any heating of the coil. The 
lateral pixel size was ~8 μm (corresponding to 500 radial locations over a scan range of  
4 mm) for shear wave visualization while a lateral pixel size of ~40 μm (100 radial locations) 
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was chosen for the shear wave spectroscopy measurements to minimize the amount of data 
collected and to reduce the data acquisition time. 

2.2 Data processing 

Figure 2(c) shows representative data where MNPs, acting as the shear wave generating 
source, can be seen in the structural OCT image. Our shear wave excitation source comprising 
of an inclusion of MNPs is approximately cylindrical in shape, and hence can be considered 
as generating cylindrical waves. The displacement of the cylindrical shear wave produced by 
harmonic force with angular frequency 2 fω π=  acting along the z-axis is given by 

(1)
0( , ) ( ) exp( )

4z

i
u r t H kr i tω= − where zu is the displacement along the z-axis, (1)

0H is the 

zeroth order Hankel function of the first kind, r is the radial distance and k is the shear wave 
number given by 2 /k π λ= with λ being the shear wavelength. If the measurements are made 
at sufficient distance away from the excitation source ( 1kr > ) then it can be shown that the 
phase of the cylindrical shear wave varies linearly with the radial distance 

)( , ) 2 / ( exp( ( 4))
4z

i
u r t i kr tkr ωπ π≈ − +  [34]. This linear change in phase can be used to 

calculate the shear wave speed [35]. 

 

Fig. 2. Data acquisition and processing (a) M-mode scans are taken radially away from the 
magnetic inclusion. (b) The timing diagram for the scanning protocol (c) Structural OCT image 
(z, r) showing the location of the MNP inclusion (d) Depth-averaged space-time (t, r) map 
showing the sinusoidal response at different radial distances. (e) The linear change in phase as 
the distance from the excitation source increases. 

The M-mode OCT data acquired at different radial positions away from the MNPs was 
processed by using standard phase-resolved OCT processing (i.e. resampling, Fourier 
transform and phase extraction) and subsequently the phase values (across time) were 
bandpass-filtered around the excitation frequency to remove any noise from other frequency 
bands [36]. These phase values (can also be converted into displacement values based on the 
system central wavelength and sample refractive index) can then be displayed in the form of a 
space-time map for any given depth as shown in Fig. 2(d). As expected, there is a phase lag 
between the measured displacements at different radial positions as we move away from the 
MNP excitation source. This phase lag for each radial (lateral) location as shown in Fig. 2(e) 
was computed using a Kalman filter [37], where it can be seen that the phase changes linearly 
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with propagation distance. Although the use of a Kalman filter is not necessary when the 
shear waves displacement amplitude has sufficiently high signal to noise ratio (SNR), in 
scenarios where the displacements are small (such as when using high excitation frequencies 
or in stiffer samples), the use of Kalman filter may provide more robust phase and amplitude 
estimation as has been shown in the ultrasound literature [37]. The phase gradient /k rφ= Δ Δ  
was then estimated by performing a linear fit on the radial phase profile and was used to 
calculate the shear wave speed /sc r φω= Δ Δ  at a particular excitation frequencyω  [35]. The 
first two excitation cycles in each M-mode were excluded from quantitative analysis as these 
contained a superimposed transient response possibly coming from the settling time of the 
galvanometer scanners or due to the switching on of the electromagnetic coil. The 
propagating shear waves can be visualized in the form of a video by playing the phase values 
in the cross-sectional planes (z, r) across time. In the videos, we applied a binary mask to 
remove the random phase values in the regions above and below the sample surface. The 
binary mask was computed by smoothing and thresholding the structural OCT image where 
the pixels within the sample region were given values of 1 and those outside were assigned a 
value of 0. 

In a viscoelastic medium, the shear modulus is complex and can be quantified by 
measuring the dispersion of the shear wave speed. The dispersion curves are obtained by 
measuring the shear wave speed at several different frequencies and can be fitted to tissue 
rheological models to estimate the complex modulus of the medium [34, 35, 38]. One widely 
used tissue model is a Kelvin-Voigt model which consists of a spring and dashpot connected 
in parallel. The shear wave dispersion for this tissue model is given by the expression 

 
2 2 2

2 2 2

2( )
( )

( )
s

G
c

G G

ω ηω
ρ ω η

+=
+ +

 (1) 

where sc is the shear wave speed, G is the real part of the complex shear modulus, ρ is the 
mass density, andη is the shear viscosity of the material. If a medium is purely elastic i.e. 

0η ≈  or if the shear (storage) modulus is dominant in comparison to the viscosity 

( G ωη>> ), the above equation simplifies to 2
sG cρ=  which relates the shear wave speed to 

the shear modulus for a linear isotropic elastic material [39]. 

2.3 Tissue mimicking phantom preparation 

To demonstrate that a localized inclusion of magnetic particles can generate shear waves, we 
prepared tissue mimicking phantoms using agar gel. Phantoms with different stiffness were 
prepared by varying the dry-weight concentration (0.3, 0.5, 0.7 and 1.0%) of agarose gel in 
distilled water, and the solution was subsequently boiled until it became optically clear. The 
solution was then allowed to cool at room temperature and titanium dioxide particles  
(size < 5 μm, 2 mg/ml) were added to increase the optical scattering. Subsequently the 
solution was poured into cylindrical containers (height 5-10 mm and diameter 35-90 mm) and 
allowed to congeal at room temperature. A cylindrical mold (~2.5 mm in diameter) was 
placed in the cylindrical container during the agarose congealing process so that an inclusion 
containing MNPs (Fe3O4, size 50-100 nm) could be placed at that location. The MNPs 
inclusions were prepared by mixing MNPs (50 mg/ml) in either the same concentration 
agarose gel or with PDMS gel. The MNP-gel solution was then poured into the center of the 
cured cylindrical samples. The samples were subsequently allowed to cure at room 
temperature for 4-6 hours. Although the inclusions did not seem to bond permanently with the 
surrounding medium, the mechanical coupling between the MNP inclusion and the 
surrounding medium was sufficient for the generation of shear waves in the medium. 

Agar phantoms are known to have an almost purely elastic response [40]. Therefore, to 
validate our MM-OCE method in viscoelastic samples, we prepared oil-in-gelatin phantoms 
that have been shown in the literature to exhibit significant viscosity by adding oil in  
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gelatin [41]. A sample of 8% Gelatin (Type B: 225 Bloom) was prepared by dissolving it in 
de-ionized water and heating the solution at 65° C for approximately one hour until the 
solution became clear. Titanium dioxide scattering particles (size < 5 μm, 1 mg/ml) were 
added as scattering particles. To increase the viscosity of the sample, Castor oil was added to 
the gelatin and the solution was vigorously stirred using a blender after the addition of a 
surfactant to help in the emulsification [42]. The cylindrical inclusions consisted of MNPs  
(50 mg/ml) mixed with 8% gelatin. The samples were allowed to cure at room temperature for 
one hour and then left in the refrigerator for 6 hours before imaging. 

3. Results 

3.1 Homogeneous tissue phantoms 

In Fig. 3, we show representative examples of shear wave propagation in homogenous 
agarose phantoms of different stiffness. An excitation frequency of 500 Hz was used and the 
elastic modulus was estimated using a linear elastic model as agarose gel is largely non-
dispersive (data shown in Fig. 6(a)). The changes in shear wave wavenumber can be clearly 
seen where the soft sample (0.3% agarose) exhibits a higher wavenumber (hence steeper 
phase gradient and lower shear modulus) compared to the stiffer samples (0.5% and 0.7% 
agarose). In the video (Media 1) the differences in the shear wave speed can be clearly 
visualized. 

 

Fig. 3. Shear waves in elastically homogeneous phantoms. The MNP inclusions (not shown) 
are on the right side of the images (a) Visualization of shear waves with phantoms of different 
agarose concentrations. A line-scan rate of ~92 kHz and 4000 A-lines per M-mode were 
collected. A sinusoidal excitation at 500 Hz consisting of 20 cycles was used. An increase in 
the shear wavelength and speed can be seen as the gel stiffness increases (Media 1).  
(b) Estimated Young’s moduli at different agarose concentrations. A line-scan rate of ~46 kHz, 
2000 A-lines per M-mode and 10 cycles at a excitation frequency of 500 Hz was used for these 
measurements. The error bars correspond to the standard deviation of the measured values at 3 
different spatial locations within the same sample (N = 3). The error bars for 0.3% and 0.5% 
are too small to see, and the values correspond to 4.14 ± 0.25 kPa and 15 ± 1.47 kPa, 
respectively. 
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Figure 3(b) shows the measured Young’s modulus (E) for different concentrations of 
agarose gel, which is related to the shear modulus by the relationship 2 (1 )E G υ= + , where the 
Poisson ratio υ  is approximately 0.49 for soft tissues. A different batch of samples with larger 
dimensions (h = 10 mm and diameter = 90 mm) were prepared for the results shown in  
Fig. 3(b) to minimize the impact of any boundary reflections. The experimentally determined 
Young’s moduli exhibit a power law relationship and can be fitted to E C

βα= , where C is the 
concentration of agar gel (mg/mL) and α and β are the fitting parameters. Our fitting 
parameters of α  = 357 Pa/(mg/mL) and β  = 2.3 are in agreement with several previous 
studies using agarose gel samples [32, 40]. In the samples used in these experiments, the shear 
wavelengths varied from 2 – 9 mm. Hence, the shear wave speed was estimated by selecting 
regions that were at least r > 1 mm away from the excitation source to satisfy the linear phase 
requirement, i.e. 1kr > for cylindrical waves [34]. 

3.2 Heterogeneous phantoms 

Figure 4 shows the shear wave propagation in a heterogeneous agarose gel phantom prepared 
in a side-by-side configuration with the two sides having different stiffness values. The 
embedded MNP inclusion can be seen near the middle of the OCT structural image in  
Fig. 4(a). A relatively high concentration of MNPs was used (250 mg/ml), therefore, only the 
top part of the inclusion appears in the OCT structural image. A large field-of-view was 
acquired by translating the sample between acquisitions and stitching three overlapping cross-
sectional data sets in post-processing. The phantom was prepared in two steps. In the first step 
0.7% agarose was prepared with the magnetic inclusion and allowed to congeal at room 
temperature. Subsequently, the 0.3% agarose (representing the soft part) was poured in and 
allowed to cure. The yellow dashed line shows the boundary between the two different 
concentrations. In Fig. 4(b) and in the corresponding shear wave propagation video (Media 2), 
the two different media can be qualitatively identified. In the softer region we can clearly see 
the wavelength being shorter and the shear wave propagation speed being slower compared to 
the stiff portions of the sample. 

In Fig. 4(c), a representative space-time map is shown, after averaging along the depth. As 
expected, in the region containing the MNP inclusion, no significant phase lag is observed as 
these regions move in phase with the excitation waveform. However, as we move away from 
the MNP inclusion, the phase lags become apparent, and clear differences in shear wave 
speeds can be seen between the stiff and the soft regions. 

 

Fig. 4. Shear waves in a heterogeneous medium. (a) Structural OCT image. The solid lines 
delineate the shear wave source boundaries while the dashed line indicates the interface 
between the stiff and soft regions of the sample. (b) Propagating shear waves (Media 2).  
(c) Depth-averaged space-time map. (d) Young’s modulus map estimated from the localized 
measurement of the shear wave speed. The black regions correspond to the MNP source 
location or where the linear fit R2 values were less than the threshold. A line-scan rate ~92 kHz 
with an excitation frequency of 500 Hz was used for these measurements. 
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Space-time maps similar to the one shown in Fig. 4(c) were extracted for each depth and 
were used to estimate the elastic modulus map shown in Fig. 4(d). A Kalman filter was used 
to estimate the phase lag at each depth (z) and lateral location (r) within the sample. The 
estimated phase profile was smoothed by low-pass and median filtering to remove any 
random fluctuations of the phase within the sample due to low OCT signal. The local shear 
wave speeds were calculated by performing a linear fit on the smoothed phase profile over a 
lateral distance of ~300 μm on a pixel-by-pixel basis, and the linear fits that were below a 
certain R2 threshold were discarded. The Young’s moduli were estimated using the 
relationship 2( , ) 3 ( , )sE r z c r zρ≈  where ( , )sc r z  is the local speed calculated at each lateral 
position and depth. In the softer regions of the sample that corresponds to 0.3% agarose gel 
concentration, the mean value of the estimated Young’s modulus values was ~4.3 kPa, which 
is in good agreement with the measurements shown in Fig. 3(b). In the stiff regions (0.7% 
agarose concentration), we note that the mean Young’s modulus in the regions away  
(> 1 mm) from the location of the MNPs was ~30.2 kPa, which also corresponds well to the 
previously measured values shown in Fig. 3(b). However, in the regions close to the MNPs, 
the Young’s modulus values were significantly higher (mean value ~80 kPa) than the values 
measured in Fig. 3(b). This bias is expected due to the diffraction/near-field effects of the 
presence of compressional waves, mode coupling, and the breakdown of the assumption of a 
linear phase gradient [18, 43, 44]. Moreover, these results can also be biased due to the 
reflections from the internal elastic boundaries. Despite these limitations, differences in elastic 
contrast between the soft and the stiff regions within the sample can be seen. 

3.3 Biological tissues 

We used a rat liver (35 x 20 x 4 mm) and chicken muscle (40 x 20 x 6 mm) tissue to 
demonstrate the technique in biological samples. The tissue samples were prepared by making 
a 3 mm punch biopsy hole where the MNP-gel solution was added to the tissue. The location 
of the MNPs can be seen in the rat liver OCT image shown in Fig. 5(a). In the shear wave 
propagating video (Media 3) for the liver, the influence of the geometry of the excitation 
source (in this case MNPs) can be clearly seen where the wave fronts initially follow the 
geometric profile of the source and then gradually become planar as they propagate away 
from the source. In the liver shown in Fig. 5(a), the shear wave speed was measured to be 
1.35 ± 0.05 m/s. In Fig. 5(b), the results in a chicken muscle sample are shown, where the 
propagating waves can be seen travelling at a faster speed than in the liver sample, with a 
measured shear wave speed of 4.62 ± 0.15 m/s. As biological tissues are known to exhibit 
viscoelastic behavior, we used a Kelvin-Voigt model to extract the viscoelastic properties (for 
the liver tissue) as demonstrated in the next section. 

 

Fig. 5. Shear waves in biological tissues. (a) Rat liver tissue. (b) Chicken muscle. OCT 
structural images (depth range ~1.5 mm) are shown in the first column while the second 
column shows single frames from the corresponding propagating shear waves videos of rat 
liver tissue and chicken muscle (Media 3). The magnetic particle inclusions are on the left side 
of these images. A line-scan rate of 46 kHz was used with an excitation frequency of 500 Hz 
consisting of 10 cycles. 
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3.4 Dispersion curves 

The frequency-dependent shear wave speed (termed as shear wave dispersion curve) can 
reveal the viscoelastic properties of the material. The slope of the dispersion curve is 
indicative of the viscosity of the material where a steeper slope implies a higher viscosity. A 
purely elastic material is characterized by a non-dispersive (no change in shear wave speed 
with frequency) response. Figure 6(a) shows the dispersion curves of phantoms prepared 
using agarose and gelatin gels which are known to have a predominately elastic response [34]. 
The shear wave speeds were measured using an excitation frequency ranging from  
300 - 750 Hz. Localized shear wave speed was estimated using a sliding window of length  
∆r = 800 μm over a 4 mm scan range. The mean values of these estimates were fitted to the 
Kelvin-Voigt model given by Eq. (1) while the error bars correspond to the standard deviation 
of the measurements from the mean shear wave speed at that frequency. The 0.3% agarose 
phantom gave a shear modulus of G = 1.56 kPa (corresponding to a Young’s modulus of 4.68 
kPa) and viscosity of η  = 0.12 Pa·s which shows that the response from the agarose sample is 
largely non-dispersive, hence validating the linear elastic model we have used in the results 
shown in the previous sections. The measured shear modulus for the 8% gelatin phantom 
without oil (Fig. 6(a)), was G = 2.7 kPa and the viscosity η  = 0.51 Pa·s. However, with the 
addition of 20% oil (by weight) in the gelatin phantoms (Fig. 6(b)), the shear modulus 
decreased to G = 2.4 kPa while the viscosity increased to η  = 0.85 Pa·s, which is consistent 
with the trend reported in the literature where the addition of oil increases the viscosity in 
gelatin phantoms [41]. Similar measurements were performed in a rat liver tissue shown in 
Fig. 6(c) where the estimated values of G = 1.7 kPa and η  = 0.83 Pa·s are consistent with the 
values reported in previous studies [38]. However, in biological tissues, it is widely 
acknowledged that the inherent biological variability and the tissue preparation and storage 
methods can have a significant influence on the measured viscoelastic properties [45]. 

 

Fig. 6. Dispersion curves for agarose, gelatin phantoms and tissue. (a) Gelatin with no oil and 
0.3% agarose gel. (b) Gelatin with 20% oil. (c) Rat liver sample. The solid line in each of the 
plots corresponds to the best fit to the Kelvin-Voigt model while the estimated parameters are 
given in the legend. 
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4. Discussion and conclusion 

Numerous factors such as boundary effects [46], shear wave patterns [43], diffraction and 
other near-field effects need to be taken into consideration for accurate estimation of the shear 
modulus [44]. Measurements need to be performed in the far-field and sufficiently away from 
the boundaries to minimize the bias caused by the contribution of compression waves and 
wave coupling at the boundaries. In our experiments with phantoms having large dimensions, 
the rapid attenuation of the shear waves away from the excitation source resulted in minimal 
boundary effects. However, this will not be the case in heterogeneous tissues which will have 
local internal boundaries. To ameliorate this effect, directional filters [47] and transient 
excitation in the form of short pulses can be used to minimize the impact of the reflected 
waves from the boundaries [48]. 

In principle, estimating the shear wave attenuation (amplitude decay) can provide 
additional information and can be utilized to extract the viscoelastic properties. However, 
estimating the attenuation is often unreliable and challenging as the amplitude of shear waves 
is more susceptible to noise especially if the sample is inhomogeneous. Moreover, attenuation 
due to geometric spreading and diffraction effects also needs to be taken into consideration. 
Considering these difficulties, we only utilized the shear wave speed to estimate the 
mechanical properties. 

We limited the frequency range used in these experiments to 300-750 Hz. At lower 
excitation frequencies, the shear wavelengths would be large making the measurements more 
susceptible to near-field and boundary effects [44] while also increasing the imaging time. On 
the other hand, at higher excitation frequencies the rapid attenuation of the shear waves and 
relatively low magnetic field strength from our coil would substantially decrease the SNR of 
the obtained measurements. The dynamic range of the measured G is dependent on the 
minimum and maximum values of the phase gradient i.e. /k rφ= Δ Δ  that can be reliably 
measured while the spatial resolution depends on the length scale rΔ  over which the local 
shear wave speed is estimated. The choice of the length scale rΔ  will be influenced by a 
number of factors such as the SNR, the displacement amplitudes, excitation frequency and 
tissue mechanical properties [35, 49]. The accuracy of the phase gradient estimation is 
fundamentally limited by the SNR of the measurements. The minimum amount of phase shift 
that can be measured (given sufficient SNR) depends on the number of sampling points per 
excitation cycle and is given by min 2 / ( / )sF fφ πΔ = where Fs is the sampling rate (equivalent 

to the line-scan rate of the camera in our experiments). Hence, the phase shift φΔ  induced 
(which depends onω and the material properties) by the propagating shear waves over a 
length scale ∆r should be greater than minφΔ and the sampling rate should satisfy sF ω φ> Δ . 

The shape and characteristics of the propagating wave is influenced by the geometry of 
the mechanical excitation source [43]. In our experiments, surface (Rayleigh) waves may also 
be generated as our excitation source (comprising MNPs) extends to the surface of the 
sample. However, the shear and surface waves are almost identical in speed and hence would 
not significantly impact our measured values. In these measurements, we have assumed that 
the propagating shear waves are cylindrical in shape. However, this assumption may not 
always be valid, especially in tissues where controlling the geometry of the localized MNP 
inclusions may not be possible. If the sample is uniformly loaded with MNPs, then a focused 
magnetic field can be used to generate a predictable shear wave shape where the excitation 
region would be dependent on the magnetic field characteristics of the coil. Another way to 
have an excitation source (with controlled geometry) that can generate a well-defined wave 
pattern is by using needle-based magnetic actuation or inserting a metallic rod within the 
specimen [50]. Due to the high magnetic susceptibility of the metallic (e.g. carbon steel) rod, 
relatively large localized displacements can be induced in the sample. These large 
displacements cannot only increase the propagation range of the shear waves, but can also 
potentially be used to measure the non-linear elastic parameters [51] and the elastic properties 
in an anisotropic medium by placing the rod at different orientations [52]. 
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Another consideration when using magnetic excitation is the magnetic properties of the 
tissue itself. Tissues are known to exhibit a weakly diamagnetic response characterized by an 
out-of-phase response with the applied excitation [36]. However, tissue diamagnetism will not 
affect our measurements as this response is very weak and the tissue diamagnetic properties 
are unlikely to change over the phase gradient measurement range. 

The generation of shear waves by magnetic particles can potentially explain some of the 
artifacts seen in MM-OCT and magnetomotive ultrasound [53]. From an imaging perspective, 
the goal of magnetomotive imaging is to spatially localize magnetic particles within the 
sample. The propagation of elastic waves induced by the magnetic particles can make this 
spatial localization challenging. However, due to the relatively low scan rates and small 
displacement amplitudes used in magnetomotive imaging, shear wave propagation is not 
directly visualized. These artifacts if present can be minimized by phase gating [53] or 
filtering the signals that are out of phase with the excitation [36]. 

Fundamentally, this proposed method is similar to other internal dynamic excitation 
elastography methods such as ARF elastography. However, ARF-based techniques usually 
require appropriate acoustic impedance matching between the ultrasound transducer and the 
sample, have an excitation region that is typically large, and utilize high intensity ultrasound 
that can potentially damage the areas within the focal regions, making the amplitude of the 
generated shear waves limited by the local heating effect. Although the proposed method 
using MNPs is invasive in the sense that it requires the sample to be loaded with magnetic 
particles, there are current clinical scenarios where these MNPs are already loaded in tissues 
to serve the purpose of contrast enhancement in MRI or in magnetic hyperthermia 
applications [54]. Under these scenarios, this requirement may not impose a significant 
limitation. 

An appropriate choice of the rheological model is still an open question and would depend 
on a number of factors including the frequency range used for excitation and the mechanical 
properties of the material. Rheological model-free methods have been proposed that estimate 
the complex shear modulus and wavenumber in a viscoelastic medium without making any 
assumptions of the underlying mechanical model and could be an interesting area for further 
exploration [55]. Future work will include the investigation of the influence of stiffness, size 
and geometry of the MNP source on the shear wave measurements and any bias introduced by 
these factors. Future studies should validate the estimated viscoelastic parameters with 
standard rheometry measurements. However, the low frequency range used in rheometery 
measurements (< 250 Hz) [56] may limit a direct comparison with the current technique. In 
future applications, the generation of shear waves with a spatially focused magnetic field 
would be more appropriate, enabling this technique to be used in tissue samples uniformly 
loaded with MNPs. The possibility of generating shear waves using magnetic particles may 
also be beneficial for studying cellular mechanics where magnetic beads are already widely 
used for rheological measurements [24, 25]. 
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