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Abstract—We present a real-time multimodal near-infrared
imaging technology that tracks externally-induced axial motion of
magnetic microbeads in single cells in culture. The integrated mul-
timodal imaging technique consists of phase-sensitive magnetomo-
tive optical coherence microscopy (MM-OCM) and multiphoton
microscopy (MPM). MPM is utilized for the visualization of multi-
functional fluorescent and magnetic microbeads, while MM-OCM
detects, with nanometer-scale sensitivity, periodic displacements
of the microbeads induced by the modulation of an external
magnetic field. Magnetomotive signals are measured from mouse
macrophages, human breast primary ductal carcinoma cells, and
human breast epithelial cells in culture, and validated with full-
field phase-sensitive microscopy. This methodology demonstrates
the capability for imaging controlled cell dynamics and has the
potential for measuring cell biomechanical properties, which are
important in assessing the health and pathological state of cells.

Index Terms—Cellular biomechanics, magnetic tweezers, mul-
timodal microscopy, multiphoton microscopy (MPM), optical co-
herence tomography (OCT).

I. INTRODUCTION

C ELLULAR mechanics play an important role in normal
cell function, and numerous processes at the cellular level

result in changes in the elastic properties of different cell com-
ponents, along with biochemical changes [1]–[4]. Therefore,
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it is of great interest to develop technologies that enable mea-
surements of these dynamic mechanical changes, as they would
offer new fundamental insight into the inner workings of cells,
and further our understanding of both normal and pathological
processes. These biomechanical measurements at the cellular
level have the potential to lead to new diagnostic paradigms or
biomarkers for detecting and treating disease.

Magnetic tweezers are a well-established platform for prob-
ing at the single-molecule level (particularly for DNA measure-
ments) [5] and can also be implemented in the study of cell
functions and processes [6]–[11]. While the use of magnetic
tweezers is preferred for ease of use and robustness, magnetic
tweezers suffer from limitations in time resolution and spatial
resolution, inherent in the imaging systems utilized to monitor
their motion [5]. White-light bright-field video microscopy is
the widely used imaging technique for magnetic tweezer exper-
iments, however, its main drawback is the fact that it can only
measure a 2-D plane in real time, while inference of displace-
ment in the third dimension is usually done in post-processing
and suffers from lower precision and resolution compared to the
real-time data [5].

Our group has developed magnetomotive optical coherence
tomography (MM-OCT) and magnetomotive optical coherence
elastography(MM-OCE), two imaging techniques that provide
a new type of contrast and detect dynamic mechanical changes
in biological samples probed with magnetic nanoparticles or
microspheres [12]–[14]. These particles or microspheres are set
into motion by an external magnetic field delivered by a custom-
made solenoid coil. Our systems enable real-time measurements
of axial displacements in tissues and cells with nanometer-
scale sensitivity [12]–[15], enabling minute interrogation of
their biomechanical properties. Previously, we have shown that
MM-OCE can accurately measure the natural resonant frequen-
cies of silicone samples that mimic the opto-mechanical prop-
erties of tissue [13], however, acquiring magnetomotive signals
from single cells presents new challenges, and many investiga-
tive opportunities. Our current goal is to explore the potential
of our imaging system for measuring real-time cellular-level
mechanics, which would potentially reveal mechanisms of im-
portant cell functions and processes.

We propose a new real-time, multimodal optical imaging
technique that incorporates phase-sensitive MM-OCE with op-
tical coherence microscopy (OCM). This technique provides
fast high-resolution imaging of dynamic mechanical changes
in cells probed with magnetic microbeads, which are similarly
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used in magnetic tweezer studies. This technique has the po-
tential to greatly improve the existing methodology and enable
new investigative studies in cellular biomechanics.

II. METHODS

A. Cell Sample Preparation

Three types of cells were probed in this study: mouse
macrophages, cell line TIB-67 (J774 A.1, ATCC), human breast
epithelial primary ductal carcinoma cells, cell line CRL-2314
(HCC38, ATCC), and healthy human breast epithelial cells, cell
line CRL-4010 (hTERT-HME1, ATCC). In the experiments us-
ing mouse macrophages, two types of magnetic microparticles
were utilized. The first type was multifunctional microspheres
custom-fabricated in our lab, which have an average diameter
and standard deviation of 2.2 ± 1.3 μm. These microspheres
consist of a liquid core containing a suspension of iron oxide
nanoparticles in vegetable oil, and an encapsulating albumin
protein shell [16]. These microspheres have previously been
shown to provide good magnetomotive imaging contrast for
optical coherence tomography (OCT) [16]. The second type of
magnetic microparticles/microtransducers was fluorescent mag-
netic microbeads (ME04 F /9486, Bang Labs, Fishers, IN), with
a diameter between 1–2 μm. These magnetic particles consist
of iron oxide nanoparticles and a fluorescent dye embedded
in a polystyrene matrix that allows for additional co-registered
MPM imaging.

In the experiments involving cancer and normal human
breast cells, magnetic microbeads (3 μm diameter, Invitrogen
Dynabeads R©) composed of iron oxide nanoparticles in a
polystyrene matrix were used. These magnetic microbeads were
either left uncoated or were functionalized with an RGD ligand
to target the alpha-v-beta-3 integrin receptors overexpressed on
cancer cells.

To facilitate targeting of the magnetic particles/beads to the
cells, cultures of each cell type were incubated with mag-
netic microbeads for a period of four hours at room temper-
ature in a 5% CO2 environment. Prior to imaging, cell cultures
were washed/rinsed with PBS in order to remove excess loose
microbeads.

B. Imaging System

The imaging platform used for this experiment is an inte-
grated optical coherence and multiphoton microscope (MPM)
[17]–[19]. OCM is a high resolution variant of OCT that uses
a high numerical aperture (NA) beam to achieve high lateral
spatial resolution. The high NA also restricts the depth-of-field
so images are typically acquired in an en face orientation, sim-
ilar to confocal microscopy. Unlike a confocal microscope that
relies only on spatial filtering, OCM produces optical sections
of samples using coherence gating in addition to the confocal
gating from the high NA. Images are based on optical scatter-
ing, which allows the microstructural features of cells or tissue
to be visualized. MPM is a nonlinear imaging technique that
can be used to excite two-photon fluorescence within the focal
volume of a high NA beam. In this study, MPM was used to
image multifunctional fluorescent and magnetic microspheres.

Fig. 1. Schematic of the integrated optical coherence and multiphoton micro-
scope. (a) Dual-spectrum optical source. (b) Sample arm. The red beam lines
represent light coming from the laser source as well as light backscattered from
the sample, while the green beam lines represent the two photon-excited flu-
orescence. (c) Zoomed-in region showing the electromagnet coil and the field
lines generated at the culture of cells containing magnetic microbeads. Abbre-
viations: �B – magnetic field; BS – beam splitter; DG – diffraction grating;
�FB – force on microspheres/beads due to �B ; PBS – polarizing beam splitter;
PMT – photomultiplier tube; SM – galvanometer scanning mirror.

The integrated OCM–MPM microscope allows simultaneous
co-registered imaging with both modalities [20]. This allows
the microspheres to be visualized and their location within the
cells to be determined. For this study, a small, custom-fabricated
magnetic solenoid was integrated below the sample plate to in-
duce an alternating magnetomotive force on the magnetic beads
in the cells. The magnetic field strength at the location of the
sample was ∼400 Gauss, with a gradient of ∼10 T/m. The
modulation frequency of the coil was 5 Hz.

A schematic of the microscope is shown in Fig. 1(a). A dual
spectrum laser source is implemented by splitting the output of a
tunable Ti–sapphire laser into two beams, one for OCM and one
for MPM. The details of this laser source have been previously
described [17]. Briefly, the MPM beam is used directly for two-
photon excited fluorescence, while the OCM beam is first cou-
pled into a photonic crystal fiber (LMA-5, crystal fiber), where
the spectrum is broadened through supercontinuum generation.
The beams are recombined in the sample arm of the interferom-
eter using a polarizing beam splitter. This laser source enables
tuning of the center wavelength of the laser to optimally excite
fluorescence in MPM while maintaining a broad spectrum for
enhanced optical sectioning in OCM. The interference pattern
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between scattered light in the sample arm and the reference
beam is detected by a linescan charge-coupled device camera
operating at a linescan rate of 33 kHz. OCM processing consists
of computational dispersion correction [18] and correction of
coherence gate curvature [19] caused by scanning of the beam.

A diagram of the sample arm is shown in Fig. 1(b). The
dual spectrum laser beam passes through a pair of scanning gal-
vanometers before entering a beam-expanding telescope. The
beam is then focused by a 0.95 NA water immersion objective
lens (XLUPLFL20XW, Olympus) onto the sample providing a
transverse resolution of 2 μm [21]. Fluorescence generated at the
focal volume is reflected by a dichroic mirror and focused onto
a photomultiplier tube. Scattered light collected by the objective
lens travels back along the beam path to the interferometer. The
electromagnet situated below the sample is used to modulate
the magnetic microspheres. Axial displacement of the particles
and the cell are detected as phase shifts in the OCM signal, as
a means for detecting the sample magnetomotive response. The
phase sensitivity, determined from the standard deviation of the
signal measured from a fixed mirror, was 290 mrad, correspond-
ing to a displacement sensitivity of 13 nm. The amplitude and
phase of the oscillations relative to the driving waveform are de-
termined by the local mechanical environment of the magnetic
transducers.

III. RESULTS

In the first set of experiments, mouse macrophages engulfed
the magnetic microspheres that were produced in our lab. Fig. 2
shows an OCM image of a representative macrophage that has
engulfed microspheres, clustered together at position (1), close
to the cell nucleus, as indicated in the figure. The modulation
frequency of the magnetic field was 5 Hz, and M-mode OCM
data was acquired while the magnetic field was being modulated.
Spectral analysis of the displacements measured at the cluster
of microspheres, in their immediate vicinity, at the nucleus,
away from the cluster of microspheres but still inside the cell,
and outside the cell, shows that the signal is strongest at the
location of the microspheres and decreases gradually as we
probe locations further away from them. The phase amplitude
data for positions (1), (2), and (3) were 10 rad, 5 rad, and
2 rad, respectively, corresponding to displacements of 448 nm,
224 nm, and 90 nm. Positions (4) and (5) did not show a response
to the magnetic field. This is to be expected and confirms the
fact that the microspheres are the source for the mechanical
dynamics measured in and around the cell. The spectral data
also show the presence of harmonics of the main 5 Hz mode,
with a lower intensity compared to the former. The cell response
decreases with increasing distance from the microspheres, and
clearly indicates that the measured signal is localized and not
a bulk sample response. Validation measurements taken with
diffraction phase microscopy [22] and transmission electron
microscopy, shown in Fig. 3, confirm that the microspheres
were engulfed by the macrophages.

In a second experiment, mouse macrophages engulfed flu-
orescent magnetic microbeads (Bang Labs). Fig. 4 shows a
fluorescence image of a pair of microbeads overlaid on the
OCM image of a macrophage containing the microbeads. This

Fig. 2. Phase-resolved MM-OCE from a single macrophage with phagocy-
tosed microspheres. (a) OCM image of a single macrophage. Arrows indi-
cate locations where M-mode magnetomotive measurements were made in and
around the cell (dotted line approximates the contour of the cell). Protein-shell
microspheres with a core suspension of magnetic nanoparticles in oil were
custom-made in our lab for this experiment. (b) Frequency spectra of the cell
displacement data show a response at the magnetic field modulation frequency,
5 Hz, as well as at weaker harmonic modes at 10 Hz and 15 Hz. Positions
correspond to those indicated in (a). M-mode signal strength was strongest at
the cluster of microspheres.

Fig. 3. Validation of magnetomotive microspheres engulfed by macrophages.
(a) Diffraction phase microscopy image of a macrophage exposed to magnetic
microspheres, showing phagocytic inclusions of microspheres. (b) Spatial map
of phase variance from a video-sequence of diffraction phase microscopy images
collected during modulation of an applied magnetic field. Regions of high
variance correspond to locations of microspheres. Color bar units are radians.
(c) Transmission electron microscopy image of macrophages with engulfed
microspheres.

image data illustrates one advantage of this multimodal opti-
cal imaging system, where co-registered images can be used
to identify where fluorescently-labeled particles are spatially
localized within cells that are structurally imaged with OCM.
The dynamic nanometer-scale displacement of the microbeads
and cell at the location corresponding to the microbeads is also
shown in Fig. 4. The measured displacements are sinusoidal,
with the same frequency as that of the magnetic field modula-
tion, 5 Hz, as evident by the spectrum in Fig. 4.

Lastly, cancer and normal human breast epithelial cells
were probed with RGD-targeted and non-targeted magnetic
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Fig. 4. Co-registered multimodal imaging and MM-OCE. (a) Simultaneously
acquired and co-registered OCM/MPM images of a mouse macrophage that
has phagocytosed two fluorescent microspheres (Bangs Labs). The OCM image
data is shown in grey-scale, while the two-photon excited fluorescence MPM
image data is shown in red. The location of the optical beam for recording
MM-OCE displacements is indicated by the green arrow. (b) Plot of sinusoidal
axial displacement of the microspheres as calculated from phase data. (c) Fre-
quency spectrum of the magnetomotive signal obtained by taking the Fourier
transform of the displacement signal during 5 Hz modulation by the external
magnetic field.

Fig. 5. Molecular targeting of Dynabeads for MM-OCE measurements. Bright
field microscopy images of cell cultures (human breast epithelial and primary
ductal carcinoma cells) that were incubated with targeted and non-targeted mag-
netic Dynabeads (dark point-like objects). The targeted beads show preferential
attachment to the cancer cells that over-express the alpha-v-beta-3 integrin re-
ceptor. Inset images are zoomed-in regions to highlight the spatial location of
the Dynabeads relative to the cells. Scale bar indicates 25 μm.

Dynabeads. Fig. 5 shows bright field microscopy images of the
four different combinations of cells and Dynabeads. It is evident
that the targeted beads attach strongly to the cancer cells, and
less so to the normal cells, while the non-targeted beads do not
adhere in any predictable or preferential manner to either of the
two cell lines. In these experiments, the magnetomotive signals
were weaker than in previous experiments, with less than 20% of
the Dynabeads that attached to cells responding to the magnetic

Fig. 6. Validation of magnetic Dynabead response from cancer cells. iSLIM
image of a cancer cell with targeted Dynabeads show high standard deviations
in time at the location of the Dynabeads. The data were taken using iSLIM with
a 40x/0.75NA objective. The time lapse was taken at 13 Hz for two seconds,
and then processed to map the standard deviation of each pixel. The red and
blue colors indicate areas with high and low standard deviations of the optical
path length, respectively. Scale bar indicates 30 μm. Color bar units are radians.
Dotted line approximates the contour of the cell.

field. Video data captured by instantaneous spatial light inter-
ference microscopy (iSLIM) [23], a quantitative phase imaging
technique, of cancer cells with targeted Dynabeads show only
two out of sixteen Dynabeads in the field of view responding to
the magnetic field modulation. A representative image of the sig-
nal standard deviation in time of a cultured cell with Dynabeads
is shown in Fig. 6. High values are registered at the location
of the beads. No significant differences in magnetomotive sig-
nal amplitude or oscillation patterns were observed between the
cancer cells with targeted Dynabeads and the normal cells with
targeted Dynabeads, suggesting that the biomechanical proper-
ties of the targeted alpha-v-beta-3 integrin receptors are likely
similar. The cell cultures containing non-targeted beads that are
attached non-specifically to some of the cells also produced
magnetomotive signals from a low percentage of cells. Fig. 7
is representative of some relative displacements and frequency
spectra of the magnetomotive signals from three neighboring
non-targeted Dynabeads attached to cancer cells. It is evident
that bead number 3 does not produce a signal, while beads 1 and
2 do. These different displacements oscillation patterns, and in
some cases, no displacement, highlight the observed variability.

IV. DISCUSSION

We have demonstrated a new real-time multimodal high-
resolution imaging technique that combines OCM and MPM
with magnetic actuation for dynamic nano-scale magnetomo-
tive displacement measurements at the cellular level. Magnetic
microparticles act as transducers by attaching to or being en-
gulfed by cells, thus enabling probing of the molecular receptor
or cellular mechanical environment. Microspheres and beads
were chosen for this study because single or small aggregates
of magnetic nanoparticles were found insufficient to generate a
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Fig. 7. Magnetomotive response from cancer cells. (a) Representative OCM
image of cancer cells (dotted line approximates cell contours) showing non-
targeted Dynabeads (indicated by arrows) attached to the cells. M-mode mag-
netomotive signal data was taken at locations 1, 2, and 3. (b) Representative
phase displacement responses of the cells at the locations of the Dynabeads
indicated in (a). The different amplitudes exemplify the variability of the sig-
nals from varying spatial positions on the cells. (c) The frequency spectra (via
the Fourier transform) of the displacement signals plotted in (b) during 5 Hz
modulation by the external magnetic field.

measurable magnetomotive signal, either because the magnetic
force generated by our custom solenoid was too small to set a
nanoparticle bound to the surrounding cellular medium in mo-
tion, or due to the fact that, even if the nanoparticle moved, its
displacement would be too small to have a measurable effect.

We initially chose macrophages for the proof-of-principle
demonstration of this technique due to their versatile function
that ensures phagocytosis of magnetic microspheres and local-
ization in the interior of the cell. This platform constitutes a
reliable model with a well-understood mechanism of micropar-
ticle phagocytosis. When probed with an external magnetic field,

the microspheres experience a force that sets them in motion,
which engages the cellular architecture in a similar dynamic re-
sponse. Our imaging system is capable of detecting this motion
with nanometer-scale sensitivity, as shown in Fig. 3. Because
the cyto-architecture and cellular membrane are elastic, we ex-
pected the largest displacements to be found at the location of the
microspheres, and show gradually less displacement at points
further away from the microsphere location. Our data confirmed
this prediction.

Two-photon excited fluorescence imaging (see Fig. 4) en-
hances the structural imaging obtained with OCM by spatially
locating the microparticles inside cells with high precision.
These results also demonstrate the possibility for more sophisti-
cated, versatile, probing of cell mechanics with an emphasis on
certain functional groups, based on specialized dyes that may
be employed to reveal specific organelles or processes inside a
cell.

Our technique is also appropriate for the study of the me-
chanical responses of molecular membrane-bound receptors on
cells, using magnetic agents that are functionalized and targeted
to these external membrane receptors, such as the alpha-v-beta-3
integrin receptors found on normal human breast epithelial cells
and over-expressed on the human breast cancer cells (see Fig. 5).
However, the measured magnetomotive displacement signals
from these experiments were found to be more variable com-
pared to the macrophage experiments. This finding may be due
to several different factors, such as the strength of the molecu-
lar bond between the RGD-functionalized magnetic Dynabeads
and the outer membrane-expressed integrin receptors of the cell
(compared to the phagocytosed microspheres residing inside
the macrophages in the first set of experiments), the stiffness of
the breast epithelial cell membrane, possibly higher than that
of macrophage membrane, and the potential inhomogeneity of
the mechanical properties of the biological cell culture microen-
vironment. We note that the oscillatory displacements patterns
observed for the samples of breast cells with the Dynabeads
have a rectified profile, different from the sinusoidal-type of
displacement measured from macrophages. The difference in
the mechanism of binding between the microspheres or beads
and the host cell may account for this. Further investigations
are needed to elucidate the details of the physical biochemistry
at play in these systems. Our technique, however, is a novel
platform for these future studies.

The inherent variability of the biological samples results in
variable signal strengths, a fact previously observed in sim-
ilar cellular studies that employ magnetic tweezers [5], [6].
However, responsive microspheres are reliable in that repeated
measurements under the same conditions render similar mag-
netomotive signals that are always modulated at the same fre-
quency as the solenoid coil driving frequency. This demon-
strates that our technique is robust and appropriate for studies
that would focus on characterizing the biological variability of
well-controlled systems, while taking full advantage of the high
sensitivity to nanometer-scale displacements. These results will
also lead to future research to determine the sources of the
variability, which will greatly advance our understanding of
cellular processes and support the further development of novel
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methodologies for manipulating and interrogating the biome-
chanical properties of molecules and cells. Other possible appli-
cations include drug testing, studies of fundamental metastatic
changes in cells, and toxicology studies.

V. CONCLUSION

Magnetic tweezers have become an established technique for
measuring the mechanical properties of molecules and cells.
However, this technique offers limited axial displacement reso-
lution, hampering its use in many applications. The methodol-
ogy of using phase-sensitive magnetomotive measurements in a
multimodal microscope platform presented in this study has the
potential for becoming a new paradigm for assessing molecular
and cellular biomechanics. The high nanometer-scale sensitivity
to axial displacements facilitates access to probing macromolec-
ular bonds and could enable measurements of biomechanical
properties at the cellular level. This novel approach for study-
ing cellular processes and functions could offer new insight
into how different mechanical processes, such as stretching of
membranes or receptors that are attached to controllable mag-
netic beads, affect them. Rigorous modeling and simulations of
cellular and extracellular microenvironments, coupled with sta-
tistically significant experimental studies using magnetomotive
forces, are further needed to rigorously investigate and spatially
map the biomechanical properties of single cells and their asso-
ciated molecular receptors.
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