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In this work, we use the generalized Langevin equation (GLE) to characterize and understand
memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute
the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle.
It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory
function with the reduced mass of the system. Further, we show that for different mass nanopar-
ticles it is the initial value of the memory function and not its relaxation time that determines the
“memory” or “memoryless” dynamics. The size and the shape of the nanoparticle are found to
influence both the functional-form and the initial value of the memory function. For a fixed mass
nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also
investigate and highlight the role of memory in nanoparticle dynamics and transport. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4964287]

I. INTRODUCTION

Understanding the dynamics and transport of natural
and engineered nanoparticles in a host fluid environment is
necessary for various nanofluidic applications. Nanoparticles
lie at the boundary between the macroscopic and atomistic
regimes and multiscale techniques are required to understand
their behavior. In this work, we use the generalized Langevin
equation (GLE) formulation to understand memory effects
in nanoparticle diffusion and transport. The description of a
nanoparticle’s motion by a GLE provides a powerful coarse-
grained multi-scale approach to simulate its dynamics and
transport in a host fluid environment. With the advent of
nanobiotechnology, there has been a growing interest in using
GLE based stochastic simulations as a viable alternative to
(a) investigate the so-called rare events whose timescales are
still out of reach of conventional molecular dynamics (MD)
simulation and (b) efficiently simulate processes such as self-
assembly or agglomeration of nanoparticles in a solvent/host
environment, which become computationally very expensive
in MD simulations because of explicit atomistic treatment of
the solvent/host environment molecules.1–3 GLE describes the
influence of the host fluid on the dynamics of the nanoparticle
in terms of two counteracting forces: a projected or random
force that the host fluid exerts on the nanoparticle and a
dissipative force that describes the response of the host fluid
to the dynamics of the nanoparticle. The dissipative force
is characterized by a time dependent memory function; and
memory function and projected force are related through
the fluctuation-dissipation theorem.4,5 On the basis of GLE
formulation, we extract the memory function and investigate
its scaling with the mass, size, and shape of the nanoparticle.
The systems we investigate are fullerene based nanoparticles
(see Fig. 1) immersed in water. Fullerenes are among the most

a)Electronic mail: aluru@illinois.edu

widely studied nanoparticles owing to their potential uses in
electronics, photonics, and medical applications.6–9

The remainder of the paper is organized as follows: In
Sec. II, we first review the GLE formulation to describe the
dynamics of a nanoparticle in a host fluid. We also discuss
how the equipartition theorem is modified in MD ensembles
of unequal mass particles with periodic boundary conditions
(PBCs). This knowledge is needed to correctly analyze the MD
simulation results of a heavier mass nanoparticle immersed
in the lighter mass host fluid. MD simulation details and
numerical procedure used to perform GLE simulations are
provided in Sec. III. In Sec. IV, we first discuss the scaling
of memory with the mass of the nanoparticle. Then we study
its scaling with the size and the shape of the nanoparticle. We
also discuss GLE simulation based examples to investigate
and highlight the role of memory in nanoparticle dynamics
and transport. Finally, conclusions are presented in Sec. V.

II. GLE FORMULATION AND MEMORY EFFECTS

The description of a particle’s motion by a GLE
provides a powerful coarse-grained multiscale approach to
study its equilibrium correlation functions and relaxation in
the host fluid environment. Using Mori-Zwanzig projector
operator techniques, the Hamilton’s equation of motion
for a nanoparticle (solute) of mass M interacting with N
particles of mass m (host fluid/solvent) can be written in the
mathematically equivalent form as4,5

MV̇ (t) = −M
 t

0
K(t − t ′)V (t ′)dt ′ + R(t), (1a)

Ẋ(t) = V (t). (1b)

Here X and V are, respectively, the position and the velocity,
K(t) is the memory function, and R(t) is a “projected or
random” force with statistical properties4,5

0021-9606/2016/145(13)/134108/10/$30.00 145, 134108-1 Published by AIP Publishing.
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FIG. 1. Fullerene nanoparticles studied: (a) C60, (b) C100, (c) C180, (d)
C240.

⟨R(t)⟩ = 0, (2a)
⟨V (0)R(t)⟩ = 0, (2b)
R(0) = F(0), (2c)

where F(0) = MV̇ (0) is the total force acting on the
nanoparticle at the initial time and angular brackets, ⟨.⟩, denote
ensemble average. The relation that V (0) is uncorrelated with
R(t) (Eq. (2b)) means that there is no feedback between the
nanoparticle’s motion and the projected force exerted by the
molecules of the host fluid. All feedback information or the
memory is contained in the memory function K(t), which
connects the current value of the velocity with its values
in the past. Further, the fluctuation-dissipation (FD) theorem
provides the relation between the autocorrelation function of
the projected force in terms of memory function as4,5

⟨R(0)R(t)⟩ = ⟨P2⟩K(t), (3)

where ⟨P2⟩ is the mean squared momentum (P = MV ) of the
nanoparticle. The general advantage of the GLE formulation
is that the complicated many-body interactions of the particle
with the host fluid environment are coarse-grained and entirely
described by a time-dependent memory function K(t). The
form of the memory function chosen in this work represents
the interaction of the nanoparticle with the host fluid that
is assumed to be in equilibrium. Therefore, the memory
of the particle only relates its present dynamics at time t
to a past time t ′ by a stationary form of memory kernel
K(t − t ′) in Eq. (1a). However, for the cases where the host
fluid undergoes a non-equilibrium transition to a different
macrostate, the choice of a non-stationary memory function
K(t, t ′) is appropriate.10,11 Such situations often arise in the
context of chemical reactions, or change in the host fluid
thermodynamic state or the host fluid response to an external
force.12,13 The practical use of GLE can only be made if
we have a means to compute the memory function and
assign a statistical model to the projected force. Though
Mori’s microscopic derivation provides the expressions for the

memory function and the projected force, they are extremely
involved and are often difficult to evaluate analytically, except
for certain limiting situations. Furthermore, determination
of the memory function and extraction of the projected
force from MD simulation, in which Hamilton’s equations
of motion for the entire system are solved numerically,
are also not straightforward. The difficulty arises from the
fact that the projection dynamics entering the definitions of
the memory function and the projected force requires the
propagation of the observables instead of configurations.14

The common approaches used to extract these quantities from
MD simulation are either through inversion of the GLE using
Laplace transform or through rewriting the GLE as a Volterra
type equation, commonly referred to as the memory function
equation. Multiplying both sides of Eq. (1a) by MV (0),
and performing the ensemble average using the statistical
properties of the projected force (Eq. (2b)), one obtains a
memory function equation for the momentum autocorrelation
function C(t) = ⟨P(0)P(t)⟩ in terms of K(t) as

Ċ(t) = −
 t

0
K(t − s)C(s)ds. (4)

The momentum autocorrelation function C(t) is an observable
that is easily computed from the MD simulation, and then
Eq. (4) is inverted numerically to obtain the memory function
K(t). Similarly, using Laplace transform, a closed form
equation for the autocorrelation of the projected force can
be written in terms of the autocorrelation function of the total
force as15

⟨R(0)R(s)⟩ = ⟨F(0)F(s)⟩

1 − ⟨F(0)F(s)⟩

s⟨P2⟩
−1

, (5)

where s is the Laplace variable and ⟨R(0)R(s)⟩, ⟨F(0)F(s)⟩ are,
respectively, the Laplace transform of the projected and the
total force autocorrelation. Also, once the memory function is
known, the FD relation (Eq. (3)) can be used to estimate the
autocorrelation of the projected force. Higher order correlation
functions of the projected force and consequently higher
than second moments of the relevant GLE variables (X and
V ) remain unspecified within Mori’s theory. The detailed
microscopic derivation of the GLE and the corresponding
microscopic expressions for the projected force and the
memory function can be found in Refs. 4, 5, 16, and 17.

Before we study the memory function of nanoparticles,
we discuss the generalized equipartition theorem for finite-
size MD ensembles with PBCs. The generalized equipartition
theorem is utilized to compute the mean squared momentum
⟨P2⟩ of the nanoparticle. In MD simulations, PBC are typically
applied to mimic the behavior of the bulk fluids. When PBCs
are applied during equilibrium MD simulations, the total
linear momentum is maintained equal to zero to prevent the
drifting of the center of mass of the system. Due to this total
linear momentum conservation constraint, the momentum of
one of the particles is no longer independent of the momenta
of the remaining particles, and the usual unconstrained result
of ⟨P2⟩ = dMkBT (d is the system dimensionality, kB is the
Boltzmann constant, and T is the temperature of the host-
fluid environment) gets modified. This modification can be
significant in magnitude if there are unequal mass particles
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in the system. In a canonical or NVT ensemble with the
constraint that the total linear momentum of the system is
zero, the mean squared momentum of the nanoparticle is
given by18,19

⟨P2⟩ = 2M
(
1 − M

MTotal

)
dkBT

2
≡ µdkBT, (6)

where MTotal = M + Nm is the total mass and µ
= M (1 − M/MTotal) is the reduced mass of the system. The
imposition of the zero total linear momentum constraint
reduces the mean squared momentum of the nanoparticle by
an amount equal to M/MTotal, a factor which depends both on
the mass M of the nanoparticle and the size N of the system.
For identical mass particles (M = m, M/MTotal = 1/N + 1), the
reduction is negligible (less than 1% for N > 100). However,
for unequal mass particles, this reduction can be quite large,
especially when M ≫ m. Similarly, in a microcanonical or
NVE ensemble, the additional constraint of zero total linear
momentum modifies the mean squared momentum as15,18,19

⟨P2⟩ = 2M
(
1 − M

MTotal

) ⟨E −U⟩
N

≡ 2µ
⟨E −U⟩

N
, (7)

where E is the total energy, U is the potential energy, and
⟨E −U⟩ is the average kinetic energy of the system. If
we replace ⟨E −U⟩ = dN kBT/2, we see that the canonical
distribution result given by Eq. (6) is obtained. These results
will be used to both access the accuracy of MD simulations
and understand the scaling of the memory function with the
mass of the nanoparticle.

III. SIMULATION DETAILS

MD simulations are performed using LAMMPS.20 Each
fullerene molecule is modeled as a rigid body using the fix
“rigid/NVE” in LAMMPS, which integrates the equation of
motion such that the body moves and rotates as a single
entity. Simple point charge-extended (SPC/E)21 model is used
for water. Particle-Particle Particle-Mesh (PPPM) method is
used to compute the long range electrostatic interactions.
To model water-fullerene non-bonded interactions, we use
the water-carbon interaction parameters proposed recently by
Wu and Aluru.22 These parameters are developed entirely
from ab-initio calculation data and predict the graphite-water
contact angle and water-carbon nanotube radial breathing
mode frequency shift in close agreement with experimental
results. For equilibrium MD simulations, an initial 2-5 ns
equilibration of the nanoparticle-water system is performed
in the NVT ensemble with a Nosé–Hoover thermostat.23

After equilibration, computations are performed in the NVE
ensemble. For transport simulations, the external force on the
fullerene molecule and the potential barrier are, respectively,
defined using the fix “gravity and addforce” and partial
thermostat is applied on the water molecules in the non-
streaming directions.

The memory function equation (Eq. (4)) is solved
numerically using the algorithm discussed by Berne and
Harp in Ref. 16. GLE simulation requires generation of
zero mean correlated Gaussian random numbers and a time

integration scheme to numerically solve Eqs. (1b) and (1a).
We use an approximate frequency domain method to generate
a sequence {R} of zero mean Gaussian random numbers
with a specified autocorrelation function sR = ⟨P2⟩K(t).24 The
method is as follows: First, using the autocorrelation function
sR, the spectral density SR is computed as

SR( f j) ≡
Q
2

τ=−(Q2 −1)
sRe−i2π f jτ, 0 ≤ j ≤ Q

2
, (8)

where Q is any even positive number (typically a power of
2) greater than or equal to the desired length of the sequence
and f j =

j
Q

. Then, using a sequence {W j}, j = 0, . . . ,Q − 1
of Q independent and identically distributed Gaussian random
numbers with zero mean and unit variance, the sequence {R}
is generated as

R ≡ 1
√

Q

Q−1
j=0

Rje−i2π f j t, t = 0, . . . ,Q − 1, (9)

where Rj is defined as

Rj ≡





SR(0)W0, j = 0,
1
2

SR( f j)(W2 j−1 + iW2 j), 1 ≤ j <
Q
2
,

SR(1
2
)WQ−1, j =

Q
2
,

R∗Q− j,
Q
2

< j ≤ Q − 1.

(10)

Here asterisk (∗) denotes the complex conjugate. The fre-
quency domain method is computationally faster (O(Q log Q))
than traditional time domain methods such as Cholesky
factorization and Levinson-Durbin recursion (O(Q2)).24 To
integrate the GLE in time, we use a modified Verlet algorithm
proposed by Berkowitz, Morgan, and McCammon in Ref. 25.
We briefly review the algorithm here. The Verlet algorithm26

updates the position and velocity of a particle of mass M as

Xn+1 = −Xn−1 + 2Xn +
Fn

M
∆t2, (11a)

Vn =
Xn+1 − Xn−1

2∆t
, (11b)

where Xn, Vn and Fn are, respectively, the position, velocity
and total force at step n (n > 0), and ∆t is the time step of
the integration. In GLE (Eq. (1a)), the total force at time t is
given as

F(t) = −M
 t

0
K(t ′)V (t − t ′)dt ′ + R(t). (12)

By approximating the integral in Eq. (12) by a quadrature
formula such as trapezoidal rule, the total force Fn at step
n > 0 can be computed as

Fn = −M∆t
n
j=0

K jVn− jw j + Rn, (13a)

Fn = −M∆tK0Vnw0 +

n
j=1

K jVn− jw j + Rn, (13b)
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where K0 = K(t = 0), w j is the weight factor of the integrand
at discrete point j (for trapezoidal rule, the weights w j

are 1/2 for j = 0, n and 1 for j = 1, . . . ,n − 1), and Rn

is a particular realization of the random force at step n.
Substituting Eq. (13b) in Eq. (11a) and using the expression
for Vn (Eq. (11b)), one obtains an expression for the position at
n + 1 step as

Xn+1
�
1 + K0∆t2w0/2

�
= −Xn−1

�
1 − K0∆t2w0/2

�
+ 2Xn

−∆t3
n
j=1

K jVn− jw j + Rn∆t2/M.

(14)

To use Eq. (14), X0 and X1 are needed. One can choose any
value for X0 and compute X1 using Eq. (11a) as

X1 = X0 + V0∆t +
F0

M
∆t2, (15)

where V0 is drawn from a Maxwellian distribution correspond-
ing to temperature T , and F0 = R(0). Once X1 is computed,
Eqs. (14) and (11b) are used to update the position and
the velocity in time. We have used ∆t = 0.01 ps in our
simulations.

IV. RESULTS

A. Different mass nanoparticles

In this section, we use the GLE formulation to compute
the memory function K(t) and investigate its scaling with the
mass of the nanoparticle. The systems we study are different
mass C60 fullerene molecule (Fig. 1(a)) immersed in bulk
water (m = 18 amu) at 1 bar pressure and 298 K temperature.
The mass M of the C60 molecule is varied by changing the
mass of its constituent carbon atoms by a factor of 1, 10,
and 100, corresponding to the mass ratio M/m of 40, 400,
and 4000, respectively. Figure 2(a) shows the center of mass
(COM) momentum autocorrelation function, C(t), of the C60
molecule for different mass ratios. C(t) are normalized by
their initial values. It can be observed that as the mass ratio
is increased, the behavior of C(t) changes from a non-linear
oscillatory type decay to a featureless exponential decay.
Once C(t) is obtained from MD simulation, Eq. (4) is used
to compute its memory function K(t). Figure 2(b) shows
the comparison of the memory function K(t) for different
mass ratios. The first thing to observe is that the initial value
K(0) decreases with the increase in the mass ratio. This can
be explained as follows: Eq. (4) can be differentiated with

FIG. 2. Comparison of (a) momentum autocorrelation function, C(t), (b) memory function, K (t) (inset: normalized K (t)), (c) total force autocorrelation,
F-ACF, and (d) projected force autocorrelation, R-ACF (inset: comparison of F-ACF and R-ACF for M/m = 4000) for different mass C60 immersed in water.
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respect to time to obtain K(0) as

K(0) = − C̈(0)
C(0) . (16)

Using the properties of the derivatives of stationary
autocorrelation functions, we have C̈(0) = −⟨F2(0)⟩,27 where
⟨F2(0)⟩ is the variance of the total force experienced by the
nanoparticle. Figure 2(c) shows the total force autocorrelation
function F-ACF of the C60 molecule for different mass
ratios. It can be observed that though the time decay of
F-ACF is different for different mass ratios, the variance
⟨F2(0)⟩ is almost the same and is independent of the mass
of the nanoparticle. This is physically expected as ⟨F2(0)⟩
only depends on the host-fluid’s thermodynamic state and the
nature of interaction between the nanoparticle and the host
fluid molecules. From the FD relation (Eq. (6)), we know that
C(0) is directly proportional to the reduced mass of the system.
Thus, K(0) is inversely proportional to the reduced mass of
the system and decreases with increase in the reduced mass
ratio. Now, we compare the functional-form of the memory
function. The inset of Fig. 2(d) shows the comparison of
the time decay of the normalized memory functions. The
memory functions are normalized by their initial values. It
can be observed that the time decay of K(t) is very similar
for the three mass ratios. As C̈(0) does not change with mass,
changing the mass of the nanoparticle from M to M̃ simply
rescales the memory function as

KM̃(0)
KM(0) =

CM(0)
CM̃(0) , (17a)

KM̃(t) = µM

µM̃

KM(t). (17b)

Here symbols with the subscripts M and M̃ have their usual
meaning as defined above and refer to the quantities associated
with the masses M and M̃ . We have used the generalized
equipartition theorem result (Eq. (6)) in Eq. (17a) to obtain
Eq. (17b). Thus, changing the mass of the nanoparticle
leads to a simple rescaling of the memory function with the
reduced mass of the system. We now show the validity of the
generalized equipartition theorem results for a finite-size MD
ensemble of unequal mass particles and applied PBC. Table I
reports the comparison of the mean squared momentum ⟨P2⟩
of the nanoparticle computed using Eq. (7) with the C(0)
value obtained from MD simulation data. It can be observed
that the two values are in good agreement with each other. It
should be noted that for a mass ratio of 4000 (N = 10 027), the
imposition of zero total linear momentum constraint reduces
the mean squared momentum of the nanoparticle by ∼30%
in comparison to the value of ⟨P2⟩ = 3MkBT . Once C(t) and
K(t) are known, a simple measure of the memory can be

defined through a non-dimensional parameter δ as28

δ =
τ2
C

τ2
K

, (18a)

τ2
C =

�����

 ∞

0
tC̃(t)dt

�����
, τ2

K =
�����

 ∞

0
tK̃(t)dt

�����
, (18b)

C̃(t) = C(t)
C(0) , K̃(t) = K(t)

K(0) , (18c)

where τ2
C and τ2

K are the squared characteristic relaxation
scales of the momentum autocorrelation function and its
memory function, respectively. The limit δ → ∞ corresponds
to memoryless behavior (τ2

C ≫ τ2
K) while strong memory

effects correspond to the limit δ → 0 (τ2
C ≪ τ2

K). We wish to
point out that in long time hydrodynamic limit (t → ∞), both
C(t) and K(t) scale as t−d/2, where d is the dimensionality
of the system.29,30 In this limit, both time integrals τ2

C and
τ2
K diverge. However, the ratio δ is guaranteed to converge to

zero, reflecting a high measure of hydrodynamic memory in
the system.28 With this understanding, we truncate the integral
at short time scales (upper limit changed from ∞ to a cut off
time tm ∼ 10 ps) to quantify the degree of the memory in the
diffusive regime. The relaxation times and the δ values for
the three mass ratios are reported in Table I. Since the time
decay of the memory function is almost same for all the three
mass ratios, τ2

K values are very similar. However, τ2
C increases

with increase in the mass ratio and the relaxation process
changes from one with strong-memory (smaller δ value) for
smaller mass ratio to memoryless (bigger δ value) for larger
mass ratios. This observation can be explained as follows:
Since the memory relaxation time remains the same and only
its initial value is changed for different mass ratios, we can
approximate the memory function as K(t) = K(0) exp(−λt),
where λ is the time constant. Now, differentiating Eq. (4)
with respect to time, and using K(t) = K(0) exp(−λt), one can
obtain an equation for C̈(t) as

C̈(t) = −K(0)C(t) −
 t

0
K̇(t − t ′)C(t ′)dt ′, (19a)

K̇(t) = −λK(t), (19b)
C̈(t) + λĊ(t) + K(0)C(t) = 0. (19c)

Eq. (19c) is the familiar equation of motion of a damped
harmonic oscillator, where K(0) defines the frequency and λ
is the damping constant. As the damping constant λ is the
same for all mass ratios, it is essentially K(0) that determines
the behavior of C(t). When K(0) is small (K(0) → 0), as it is
for larger mass ratios, C(t) exhibits an exponentially decaying
behavior with time constant λ, while for larger values of
K(0), C(t) exhibits non-linear oscillatory decay, as observed
for smaller mass ratios. We also report in Table I the diffusion

TABLE I. Scaling of memory with the mass of the nanoparticle.

M/m ⟨P2⟩a C(0) τ2
K (ps2) τ2

C (ps2) δ =τ2
C/τ2

K D ×10−4 (nm2/ps)

40 5.34 × 103 5.27 × 103 0.0853 ± 0.0061 0.1065 ± 0.0088 1.2493 ± 0.1362 4.98 ± 0.02
400 5.15 × 104 5.14 × 104 0.1072 ± 0.0150 1.4293 ± 0.0951 13.3235 ± 2.0633 4.38 ± 0.28
4000 3.83 × 105 3.76 × 105 0.0294 ± 0.0046 36.251 ± 0.2264 1232.75 ± 195.145 4.44 ± 0.48

aComputed using Eq. (7).
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coefficient D of the nanoparticle for the three mass ratios.
The diffusion coefficient can be computed from the memory
function K(t) as17

D =
kBT
M

 ∞

0
K(t)dt

−1

. (20)

It can be observed that the diffusion coefficient does not change
(6% deviation) with the change in the mass of the nanoparticle,
which is in accordance with the prediction from the classical
Stokes-Einstein relation.31 For consistency check, we compare
in Fig. 2(d), the autocorrelation function of the projected force
R-ACF, which is the force that the host fluid molecules exert on
the nanoparticle. It can be observed that it is almost identical
for the three mass ratios, which is expected as the projected
force does not depend on the mass of the nanoparticle.4 Also,
we show in inset of Fig. 2(d) the comparison of F-ACF and
R-ACF for the mass ratio 4000. It can be observed that F-
ACF and R-ACF are very close to each other, thus confirming
the assumption that as the Brownian limit15 is approached
(M/m → ∞ and N → ∞, giving ⟨P2⟩ → ∞ in Eq. (5)), the
autocorrelation of the projected and the total force is identical.
However, the true Brownian limit for fixed density particles is
given as ρM/ρm → ∞, where ρM and ρm are nanoparticle and
solvent mass densities, respectively.32,33 Though we report the
results for different mass C60 molecule immersed in water,

this global rescaling of the memory function with the reduced
mass is observed for other shape and size fullerene molecules
considered in this work.

B. Different shape and size nanoparticles

In this section we investigate the scaling of the memory
function with the change in the shape and size of the
nanoparticles. We consider C60, C100, C180, and C240
molecules (see Fig. 1) immersed in bulk water at 1 bar
pressure and 298 K temperature. For multi-atom clusters like
fullerenes, both the arrangement of the constituent atoms and
the size influence their dynamics and transport in the host-
fluid environment. It has been reported that shape anisotropy
and initial orientation of a nanoparticle significantly affect
its translocation across biological membranes and are used
as controlling factors to design efficient nanoscale drug
delivery systems.9 Also, unlike a smooth spherical particle, the
interaction of these multi-atom clusters with the surrounding
fluid generates a net torque which gives rise to rotational
motion. To understand the memory effects due to shape and
size change, we scale the mass of these different shape and
size fullerene molecules to maintain a constant mass ratio
M/m of 40. Figures 3(a) and 3(b) show the comparison of
the COM C(t) and F-ACF, respectively, of different size

FIG. 3. Comparison of (a) momentum autocorrelation function, C(t), (b) total force autocorrelation, F-ACF, and (c) memory function, K (t), for different shape
and size nanoparticles (M/m = 40) immersed in water.
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TABLE II. Scaling of memory with shape and size of the nanoparticle.

Fullerene K (0) (ps−2) SASA (nm2) τ2
K (ps2) τ2

C (ps2) δ =τ2
C/τ2

K D ×10−4 (nm2/ps)

C60 48.75 516.37 0.0853 ± 0.0061 0.1065 ± 0.0088 1.2493 ± 0.1362 4.98 ± 0.02
C100 70.11 697.3 0.0609 ± 0.0110 0.0571 ± 0.0106 0.9364 ± 0.2432 4.32 ± 0.41
C180 107.6 1118.76 0.0394 ± 0.0092 0.0219 ± 0.0095 0.5571 ± 0.2745 3.27 ± 0.37
C240 134.1 1429.26 0.0286 ± 0.0100 0.0344 ± 0.0131 1.2060 ± 0.6243 2.87 ± 0.30

fullerene molecules for M/m = 40. It can be observed that
both C(t) and F-ACF show a complicated non-linear behavior
for different shape and size molecules. An increased size or
solvent accessible surface area (SASA) increases the variance
⟨F2(0)⟩ of the total force. This is expected as an increased size
allows more fluid molecules to interact with the nanoparticle.
Fig. 3(c) shows the comparison of the memory function K(t).
Since the initial value of the memory function is directly
proportional to the variance of the total force (Eq. (16)), K(0)
increases with an increase in the size of the nanoparticle. The
inset of Fig. 3(c) shows the time decay of the normalized
memory function for these molecules. It can be observed that
the functional form of the memory function is quite different
for different shape and size nanoparticles. Thus, the shape
and size of the nanoparticle influence both the initial value
and the functional form of the memory function. No simple
rescaling relation is observed for the memory functions when
the size of the nanoparticle is changed for a fixed mass ratio.
Only the initial value K(0) of the memory function is found to
qualitatively scale with the SASA of the fullerene molecules,
as observed from Table II. We also report the momentum
and the memory relaxation times and the δ values for these
fullerene molecules. It can be observed that the momentum
and memory relaxation times are of comparable magnitude
and all these different shape and size nanoparticles exhibit
strong memory effects at the mass ratio of 40. Also, from
the δ values it can be inferred that for a fixed mass ratio, the
memory effects are relatively enhanced with the increase in
the size of the nanoparticle. We also report in Table II the
diffusion coefficient D of these different shape molecules. It
can be observed that D decreases with increase in the size
of the nanoparticle. We also studied the dynamics of these
different shape and size fullerene molecules at the mass ratio
of 400 and similar conclusions were obtained.

C. GLE simulation

In this section, we use GLE simulations to investigate
the role of memory in nanoparticle dynamics and transport.
To highlight the role of memory, we compare the results
obtained from GLE simulations with those obtained from
static-Langevin equation (SLE), which is extensively used
in conjunction with MD to simulate the long time scale
behavior of ions/nanoparticles in biological systems.1–3,34 The
SLE is obtained by substituting the memory function K(t) by
γδ(t) in Eq. (1a), where γ =

 ∞
0 K(t)dt is a time-independent

friction coefficient and δ(t) is the Dirac-delta function. The
Markovian or “memoryless” property of the projected force
in the SLE can be seen through the FD relation (Eq. (3)),
which becomes ⟨R(0)R(t)⟩ = ⟨P2⟩γδ(t) when K(t) = γδ(t).

A consequence of the Markovian assumption is that the
momentum autocorrelation of the nanoparticle exhibits an
exponential decay with time constant γ−1. However, the
momentum autocorrelation of fullerenes such as C60 in water
exhibits non-exponential decay and contains strong memory
effects. As pointed out earlier, the practical use of GLE
requires knowing the memory function K(t) and assigning
a statistical model to the projected force R(t). A standard
choice for R(t) is to assume that it is Gaussian distributed.
There are some studies35–37 where MD simulation is used
to study the statistical properties of the projected force in
fluidic systems. All the studies report that for both bulk
and confined fluids, the distribution of the projected force
is not strictly Gaussian. However, using a Gaussian model
for the projected force in the GLE simulations is found
to reproduce several important single-particle properties of
both bulk and confined fluids in good agreement with MD
simulation results.37,38 So, we assume a zero mean correlated
Gaussian model for the projected force, with correlation
defined through the FD relation (Eq. (3)). Thus, once the
memory function K(t) is known, GLE can be used to simulate
the dynamics and transport of nanoparticles in the host-fluid
environment. Here, we want to point out that though the
projected force is assumed to be Gaussian, it is still non-
Markovian. Doob’s theorem39 states that a correlated Gaussian
process is Markovian if and only if its correlation function is
a single exponential. Thus, the trajectories generated from
GLE using an arbitrary memory function are in-general
non-Markovian. The numerical procedure to solve GLE is
discussed in Sec. III. Numerical solution of the SLE requires
a trivial modification of the Verlet algorithm discussed in
Sec. III and is discussed in Ref. 38.

We first use the GLE simulation to demonstrate the scaling
of the memory effects with the change in the initial value of
the memory function. We consider two memory functions
with different initial values. The first memory function K(t)
is that of the C60 fullerene molecule immersed in bulk water
and the second is obtained by scaling K(t) by a factor of
1/10. This scaling only reduces the magnitude of the second
memory function and its correlation time (τ2

K) is exactly
the same as that of the first memory function. The mass
M of the nanoparticle is 720.16 amu. Figure 4(a) shows
the comparison of the normalized momentum autocorrelation
function C(t) as obtained from the GLE simulation for these
two memory functions. The first observation to be made is
that using the memory function for C60, and assuming a
Gaussian distribution for the projected force, GLE simulation
reproduces the momentum autocorrelation function C(t) (solid
line) in excellent agreement with that obtained from MD
simulation (open circle). Second, it can be observed that
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FIG. 4. (a) Scaling of the momentum autocorrelation function with the
magnitude of the memory function in GLE simulation, and (b) the time
dependence of the probability density W (θ, t) for θ = 30◦, 60◦, 120◦, and
150◦. Solid line is GLE, broken line is SLE, and open circle is MD simulation
result.

rescaling the memory function changes the behavior of C(t)
from a non-linear oscillatory type decay to an exponential
type decay, thus exhibiting the above observed transition
from a strong-memory to a memoryless behavior with the
decrease in the initial value of the memory function. Since
the momentum autocorrelation function C(t) is an ensemble
averaged quantity, it does not give a very detailed information
about the effect of memory on the molecular motion. To
analyze the effect of memory on the microscopic motion of
the nanoparticle, we study the probability distribution W (θ, t)
of the angle θ formed by the velocity V (t) of the nanoparticle
at time t with its velocity at an initial time V (0),

θ(t) = cos−1


V (0) · V (t)
∥V (0)∥ ∥V (t)∥


. (21)

Here ∥V ∥ is the magnitude of the vector V . The distribution
W (θ, t)∆θ defines the probability that the angle between the
velocity vectors V (0) and V (t) is in the interval θ + ∆θ

at time t.40,41 θ in the range 0◦ < θ < 90◦ signifies the
forward direction motion, while 90◦ < θ < 180◦ indicates the
backward direction motion with respect to V (0) (W (θ, t = 0)
= 0). Figure 4(b) shows the time dependence of W (θ, t) for
a C60 molecule immersed in water at four different θ values
(30◦, 60◦, 120◦, 150◦, ∆θ = 10◦) as obtained from GLE (solid
line), SLE (broken line), and MD (open circle) simulations.
MD simulation results are used as a benchmark to check the
accuracy of the trajectories generated by the GLE simulation,
while SLE simulation is used to highlight the discrepancies
that can occur when memory effects are neglected. It can be
observed from Fig. 4(b) that the presence of memory gives
rise to a preferred direction (θ value) at different times. At
short times (until t ∼ 0.5 ps), θ < 90◦ values are the preferred
direction, giving rise to a correlated motion in the forward
direction. At intermediate times (t ∼ 0.5-1.5 ps), θ > 90◦

directions start to build up giving rise to a correlated backward
motion. It is only at longer times (t > 1.5 ps) that W (θ, t)
becomes flat signifying a loss of memory with respect to the
initial velocity V (0). This correlated forward and backward
direction motion can give rise to interesting dynamical and
transport behavior in nanofluidic applications. SLE simulation
trajectories, which assume that there is no memory associated
with the molecular motion, completely fail to reproduce this
behavior. The time variation of W (θ, t) obtained from SLE
trajectories is a featureless flat line giving a near uniform
distribution at all the times. The presence of a cusp at small
times in the SLE data is a numerical artifact due to the finite
time step used to generate the δ-correlated noise. It is only
at longer times (t > 1.5 ps) that time variation of W (θ, t) from
GLE, SLE, and MD simulations converges to the same value.
It is remarkable to observe that the GLE simulation trajectories
reproduce the time dependence of W (θ, t) for different θ values
in very good agreement with MD simulation results. We want
to point out that this is a non-trivial result and is one of the
most critical tests of the accuracy of the GLE simulation. This
is because unlike the momentum autocorrelation function C(t)
or mean-square-displacement (MSD), which are computed by
averaging over several trajectories (ensemble average), W (θ, t)
is calculated from the time evolution of a single trajectory.
This exercise demonstrates that GLE can be used as a reliable
stochastic simulation tool to generate microscopic trajectories
of a nanoparticle in the host-fluid environment.

Now, we discuss a simple barrier crossing example
to highlight the effect this memory-induced forward and
backward motion can have on nanoparticle transport. Using
GLE and SLE we simulate the transport of C60 through a
one-dimensional (1D) Gaussian potential energy barrier U
defined as

U = U0 exp(−X2/2b2), (22)

where U0 is the barrier height and b is its width. Such
Gaussian energy barriers are used as basis functions to model
the potential of mean force (PMF) for studying the transport
of fullerene-like nanoparticles across lipid bilayers and ion
channels.2,3,34 We compute the average barrier crossing time
of a C60 molecule through the barrier, when it is immersed
in water and is acted upon by a constant external force
Fext = Ma, where a is the applied acceleration. A schematic
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FIG. 5. Schematic of the transport of C60 immersed in water across a 1-D
potential barrier U (X ).

of the system is shown in Fig. 5. Barrier crossing time is
defined as the time of transport of the nanoparticle from
an initial position X(t = 0) on the left of the barrier to the
center of the barrier (X = 0). Before we discuss the effect of
memory on the barrier crossing time, we first show that the
steady-state velocity attained by the C60 molecule in the bulk
water under the application of a constant external force Fext (no
potential barrier, U = 0) is the same from both GLE and SLE
simulation. Table III shows the comparison of the steady-state
velocity of the C60 molecule for the applied acceleration a of
0.01 nm/ps2 as obtained from GLE, SLE, and MD simulation.
It can be observed that the steady-state velocities obtained
from GLE and SLE simulation are the same and match well
with the value obtained from the all-atom MD simulation.
It is physically expected because within the linear response
regime, the steady state velocity is given by the expression
Fext/γ, which is by construction same in both GLE and SLE
simulations. Thus, the memory induced forward/backward
motion does not alter the long-time steady-state velocity. It
only affects the short-time transient motion that characterizes
the response or the resistance offered to the C60 molecule
by the surrounding water molecules. This short time memory
induced transient motion could be significant when studying
the transport of the nanoparticle across potential barriers.
Table III also reports the average barrier crossing time of a C60
molecule as obtained from GLE, SLE, and MD simulations
for the barrier potential parameters of U0 = 2kBT , b = 0.4 nm,

TABLE III. Effect of memory on transport properties of the nanoparticle.

GLE SLE MD

Steady-state velocitya (nm/ps) 0.0015 0.0014 0.0014
Barrier crossing timeb (ps) 1299 (±565) 2599 (±323) 1580 (±798)

aParameter: a = 0.01 nm/ps2.
bParameters: U0= 2kBT , b = 0.4 nm and a = 0.01 nm/ps2.

a = 0.01 nm/ps2. For GLE and SLE simulations, the average
barrier crossing time is calculated from the average of 20
simulations, where each simulation is run for 10 ns. MD
simulation result is obtained from 5 simulations, where each
simulation is run for 9 ns. It can be observed that the average
barrier crossing time predicted from SLE is much higher
(>1 ns) than that obtained from GLE simulation. Also, the
average barrier crossing time obtained from all-atom MD
simulation is much closer to the GLE simulation result. The
inclusion of the memory allows the nanoparticle to cross
the barrier in lesser time and increases its probability of
barrier crossing. This phenomenon of increased probability of
barrier crossing with the inclusion of memory is also reported
in transport of ions through biological pores.34 Alternative
approaches to decrease the barrier crossing time have also
been discussed in the context of modulating the host fluid to
a non-equilibrium state,42 or subjecting the nanoparticle to an
external noise source of additive or multiplicative nature.43,44

Thus, memory effects are important and should be included
in the stochastic-simulation based multi-scale approaches
used to study the dynamics and transport of fullerene-like
nanoparticles in aqueous solution/biological environment.

V. CONCLUSIONS

Using the GLE formulation, we studied the scaling of the
memory function with the mass, shape, and size of fullerene
nanoparticles immersed in water. It is observed that changing
the mass of the nanoparticle leads to a rescaling of the
memory function with the reduced mass of the system. We
showed that for different mass nanoparticles it is the initial
value of the memory function and not its relaxation time that
determines the memory or memoryless behavior. The change
in size and the shape of the nanoparticle affects both the
functional form and the initial value of the memory function.
Using GLE simulations we showed that the memory effects
lead to a correlated backward and forward motion which can
significantly alter the barrier crossing time of the nanoparticle
in host fluid environment.
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